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ABSTRACT
Frameworks for large scale data-intensive applications, such
as Hadoop and Dryad, have gained tremendous popularity.
Understanding the resource requirements of these frame-
works and the performance characteristics of distributed ap-
plications is inherently difficult. We present an approach,
based on resource attribution, that aims at facilitating per-
formance analyses of distributed data-intensive applications.
This approach is embodied in Otus, a monitoring tool to
attribute resource usage to jobs and services in Hadoop
clusters. Otus collects and correlates performance metrics
from distributed components and provides views that dis-
play time-series of these metrics filtered and aggregated us-
ing multiple criteria. Our evaluation shows that this ap-
proach can be deployed without incurring major overheads.
Our experience with Otus in a production cluster suggests
its effectiveness at helping users and cluster administrators
with application performance analysis and troubleshooting.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Distributed debugging, Monitors; D.2.8 [Software Engi-
neering]: Metrics—performance measures

General Terms
Performance, Measurement, Management.

Keywords
Resource Attribution, Metrics Correlation, Data-Intensive
Systems, Monitoring.

1. INTRODUCTION
Our modern world is data led. Practitioners from many

fields, including science, business, government and academia,
have turned to distributed data-intensive processing frame-
works to deal with the data deluge. As a result, frameworks
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such as Hadoop, Dryad, Pig and Hive [1, 10, 14, 23] have
gained tremendous popularity because they have enabled
the analysis of massive amounts of data at unprecedented
rates. However, understanding the resource requirements of
these frameworks and the performance characteristics of the
applications is inherently difficult due to the distributed na-
ture and scale of the computing platform. In a typical data-
intensive cluster installation, computations for user jobs are
colocated with cluster services. For example, user tasks si-
multaneously run in the same hosts as the processes for dis-
tributed database and file system services. In addition, tasks
from different user jobs may share the hosts at the same
time. This mode of operation creates complex interactions
and poses a considerable challenge for the understanding of
resource utilization and application performance. In con-
trast, in typical HPC clusters, the storage and the compu-
tations run in separate hosts. Using a cluster job scheduler,
the compute hosts are space-shared over coarse periods of
time, i.e., a subset of the cluster’s hosts are exclusively allo-
cated to a job for a period of time. Application performance
analysis in data-intensive systems is significantly harder be-
cause resources are not exclusively allocated to a job.

There are many implementations of cluster monitoring
systems [5, 6, 11, 12, 15]. These tools collect OS gener-
ated metrics, such as CPU load, at host-level granularity
and support extensions to monitor long-running processes
such as a web server. As the collected metrics age, the data
is thinned by lowering the resolution of older data through
subsampling or averaging over time. The resulting resolu-
tion of the data is insufficient to analyze the performance
of a job that executed sufficiently far in the past. In gen-
eral, the readily available tools for analyzing the collected
data are limited to the display of time series for individual
metrics, and aggregated values for the entire cluster. These
tools fail to provide the necessary information to answer
the fundamental questions to understand application per-
formance in data-intensive environments. These questions
include among others: How much of resource X is my appli-
cation using through its execution? What is the (bottleneck)
resource being exhausted by my application? What resources
are in contention throughout my application’s execution and
what share of those resources is my application getting?

We propose a simple resource attribution approach for
monitoring and analyzing the behavior of applications and
services in data-intensive clusters. Attributing the resource
utilization to important components of interest is a key con-
cept in performance analysis of computer systems. The
techniques for resource attribution are embodied in a pro-



totype monitoring system implementation named Otus. At
a high-level, Otus uses metrics and events from different
layers in the cluster software stack, from OS-level to high-
level services such as HDFS, Hadoop MapReduce (MR), and
Hbase [7, 2]. The data is correlated to infer the resource
utilization for each service component and job process in
the cluster. To effectively present these metrics to users,
a flexible analysis and visualization system is provided to
display the performance data using different selection and
aggregation criteria. We have deployed our prototype on
a 64-node production cluster that is used by researchers
from fields such as computational biology, astrophysics, seis-
mology, natural language processing and machine learning
among others. Our initial experiences suggest that Otus can
be a useful tool for helping users and cluster administrators
with application performance analysis and troubleshooting.

This paper is structured as follows. In Section 2 we dis-
cuss goals and requirements for Otus. Section 3 describes
the general architecture of monitoring systems and related
work. Details about the implementation of Otus and the
techniques used for attributing resource utilization are pre-
sented in Section 4. We present several case studies to illus-
trate how Otus can help users analyze the runtime behavior
of their applications and troubleshoot performance problems
(Section 5). We evaluate the overhead of running Otus in
a production cluster and show that it imposes low per-node
overheads (Section 6). Section 7 discusses how the system
can be improved and future research directions.

2. ENABLING RESOURCE ATTRIBUTION
Our main goal is to help users, application programmers

and system administrators gain insight about the perfor-
mance of the applications and the distributed execution plat-
form. The main approach used in Otus is to attribute re-
source consumption to user jobs and distributed cluster ser-
vices by correlating and aggregating detailed information for
individual processes running as part of those jobs or services.
The following building blocks are required to provide clear,
useful information about resource utilization that can lead
to better understanding of application performance.

Collection of fine-grained resource utilization data:
The collection of resource usage metrics needs to be per-
formed at a granularity that is finer than host-wide metrics
and include data from various levels of the software stack.
Of particular importance is the data that helps distinguish
the interaction between components and the logical relation-
ships between services and user job processes. The metrics
need to be collected for select processes on a per-process
granularity, at time scales of 1–10 seconds, and need to be
labeled such that they can be later identified and aggregated
according to user job or system service.

Simple and flexible visual analysis: Collecting de-
tailed resource utilization is not enough to explain the ob-
served performance of an application. To be effective, as
more data is collected, it is important to summarize and dis-
play information in a simple and easy to understand manner,
using different filtering and aggregation criteria depending
on the analysis. The Otus interface offers a set of views that
display the data in time series graphs with various levels
of aggregation and filtered by criteria such as Hadoop job
id. Users can issue custom queries to specify aggregation
criteria other than the pre-defined ones (see Section 4).

Scalable and efficient storage of historical data:
The collected data needs to be displayed on-line as well as
stored persistently for later analysis. For example, it is de-
sirable to analyze the performance of a job that finished
execution in the previous hour and compare it to a job that
executed the previous week. Monitoring large scale clus-
ter at fine granularity will produce large amounts of data.
Storing and querying this data requires a scalable storage
back-end. The system must scale performance-wise in order
to support both on-line monitoring and flexible performance
analysis. It must be efficient in terms of the size needed to
represent the data and the computational resources needed
to process queries.

Our initial Otus prototype focuses on the top two re-
quirements. We present results for two storage back-end
approaches. We have started exploring alternatives for stor-
ing the metrics in an efficient and scalable way.

3. BACKGROUND
Contemporary monitoring systems (e.g. [12], [15], [8],

[11], [19]) for large scale clusters share many similarities in
their architecture. The techniques used in Otus can be im-
plemented by extending these systems and leveraging their
overall architecture for transporting the metrics data in large
clusters.

3.1 Monitoring System Architecture
The general architecture of today’s monitoring systems

consists of four components as shown in Fig. 1: Collector,
aggregator, storage and visualizer. The collector is a back-
ground process running on each cluster host. It periodically
reads performance metric values, e.g. number of disk I/O
operations, and passes those to an aggregator. The aggrega-
tor processes metrics data received from multiple collectors,
then it decides where and how to store the data. In some
systems, the aggregator performs data thinning and aggre-
gation of metrics. The storage back-end provides a central
repository for storing and querying the metrics received by
the aggregators. Its performance needs to scale up as the
number of hosts, metrics and queries increases. The visu-
alizer provides a graphical interface for users to query and
analyze the metrics collected by the system. To illustrate
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Figure 1: Architecture of monitoring systems

the basic data flow, consider the scenario of collecting the
total number of bytes read from disk across the cluster hosts.
In each node, the collector process obtains the I/O utiliza-
tion data (i.e., number of bytes read and written) from the
Linux /proc file system and sends the newest value to the
aggregator. The aggregator sums the values received from
all the collectors, and then writes the aggregate and individ-
ual values to the storage back-end. Through the visualizer,
users can then get time-series graphs of the aggregate read
bandwidth for their clusters.



3.2 Related Work
There is a large body of work in the area of monitor-

ing of distributed system. Some approaches focus primarily
on building scalable monitoring infrastructures, while oth-
ers aim at pinpointing faults and diagnosing performance
problems.

Ganglia [12], Collectd [5] and Munin [24], focus on col-
lecting host-wide performance metrics, that is, the metrics
are summed for all running processes on a node. RRD-
Tool [13] has been used in these systems to bound storage
space and generate time-series graphs for their user inter-
faces. They aid system administrators in performing tasks
such as identifying loaded hosts or services. However, they
do not provide enough support for more detailed application
performance analysis. DataGarage [11] and OpenTSDB [19]
aim at warehousing time-series data for large scale clusters
by using a distributed storage system. Chukwa [15], Flume
[8] and Scribe [17] are scalable monitoring systems that col-
lect log-based data. These systems implement features for
enabling scalable data gathering and transport. Otus lever-
ages the infrastructure provided by these systems and ex-
tends it to enable resource attribution.

Path-tracing tools (e.g., Dapper [18], Xtrace [9], Stardust
[22] and Spectroscope [16]), collect and analyze fined-grained
event traces from distributed system. By comparing perfor-
mance metrics in different traces, these tools can help to
isolate problematic components in the system. Chopstix
[3] collects low-level OS events continuously (e.g L2 cache
misses) at the granularity of procedures and instructions,
and combines human experience to do troubleshooting. Xu
et al. [25] parses logs to create features and use machine
learning techniques to detect abnormal events in the clus-
ter. Specialized debugging tools for data-intensive system
have been recently developed. Artemis [6] collects metrics
for each task in Dryad system [10], and provides algorithms
to detect outliers automatically. Tan et al. [21, 20] proposed
a series of visualization tools to analyze Hadoop logs. These
tools mainly focus on off-line debugging and analysis of logs,
a function that is complementary to Otus.

4. IMPLEMENTATION
The main goal of Otus is to aid users in understanding

the performance of their applications by providing useful re-
source usage information for their jobs. The resource attri-
bution and metric correlation techniques embodied in Otus
are implemented by extending the basic components of the
monitoring system architecture described in Section 3.1. Be-
low we explain the mechanisms employed in Otus to asso-
ciate resource usage with jobs and cluster services.

4.1 Data Collector
The role of data collector is to retrieve necessary met-

ric data that enables the analysis of resource utilization of
applications in the cluster. The current prototype of Otus
focuses on metric data about detailed resource utilization
information of key processes such as task tracker, data node
and MapReduce tasks. It collects the resource usage (like
CPU, memory, etc) of each process from the Linux /proc
file system. To associate resource usage on a process level to
higher level entities such as MapReduce tasks and users, we
instrument higher-level system to record additional meta-
data to these resource utilization data.

The data collector is implemented as a plug-in to a Col-
lectd daemon. It is periodically invoked by the Collectd
daemon, and scans /proc to retrieve metric data. In /proc,
each process has a corresponding directory where the OS
kernel exposes process performance counters such as CPU
usage, memory usage, and I/O statistics. In addition, Otus
extracts metadata information from a per-process file in
/proc named cmdline, which contains the command line ar-
guments passed to the process. From these arguments, Otus
can identify the software layer to which the process belongs,
e.g., MapReduce task, task tracker, HDFS, HBase, etc. For
MapReduce tasks, Otus also extracts the corresponding task
ID from the arguments, which is used to create the mapping
between process ID and Hadoop jobs.

For frameworks like MapReduce, the collector performs
local aggregations, such as summing the values for a pro-
cess sub-tree that belongs to a single MapReduce task, and
only sends the aggregated value to the aggregator. For ex-
ample, in MapReduce system, local aggregation is enabled
for jobs whose mapper/reducer tasks will spawn many child
processes. Because users may be only interested in under-
standing the task process as a whole instead of each child
process, local aggregation can reduce the amount of data
that is sent over the network.

Another special case is the reuse of Java Virtual Machine
(JVM) by the Hadoop framework. To avoid the overhead
of JVM startup, Hadoop implements a feature that allows
the JVMs from finished tasks to be used by new tasks of the
same job. This causes a single JVM process ID to correspond
to multiple MapReduce tasks. The correct task ID cannot
be obtained by merely reading the process’s cmdline file in
/proc. A solution for this case is to instrument the per-node
task tracker process to export the needed information so the
collector can obtain the current mapping between task IDs
and JVM processes.

All metrics data collected by the data collector are in the
form of time-series values represented as tuples of the form
<Local Time Stamp, Software Name, Metric Name, Value>.
The aggregator can categorize incoming metrics based on
these tags.

4.2 Aggregator
The metrics collected by Otus on a node are periodically

transferred to aggregators where they are categorized, ag-
gregated and written to a storage back-end. Aggregators
have different ways of summarizing incoming data accord-
ing to metric types. For metrics related to MapReduce jobs,
since they are associated with task processes, the aggregator
adds up the metric values over all tasks belonging to a job.
This type of aggregation gives the resource usage of an entire
MapReduce job. Another type of aggregation is to sample
the raw metrics data at fixed-sized time-scales such as one
hour, one day and etc. The data points over a fixed range
of time are coalesced into a single data point. This aggre-
gation reduces the number of data points transferred when
querying data in a long time range at coarse granularity.

4.3 Storage Back-ends
In our implementation, we explored two different storage

back-ends: One that uses RRDTool and another one that
uses a MySQL database for storing the metrics. RRDTool
is a lightweight database that stores data into a circular
buffer, in a so called RRD file. Therefore, the system’s stor-



age footprint remains constant over time. Another advan-
tage of RRDTool is its simple interface and visualization
tool kit. However, RRDTool has scalability problems when
the number of metrics and nodes increases. A large number
of metrics updates causes the RRDTool storage back-end to
generate lots of small writes to disk and results in bad I/O
performance. That is why we tried a MySQL database as
an alternative storage back-end to increase the scalability of
the monitoring system. Below, we describe the implemen-
tation of the storage back-ends using RRDTool and MySQL
respectively.

RRDTool as storage back-end
RRDTool is designed to store multiple time-series variables
in a single RRD file. To make the data schema simple and
flexible, Otus only stores one metric per RRD file. The same
strategy is used by Collectd and Ganglia.

We categorize the collected metrics into two types and
use a RRD schema depending on the type as illustrated
in Figure 2. Type 1 corresponds to system-wide long-term
metrics that are collected all the time. They include host-
level resource utilization metrics, e.g., CPU, memory usage,
etc., and metrics of long-running processes, e.g., HDFS’s
data node daemons, Hadoop’s task trackers, HBase’s tablet
servers, etc. Type 2 metrics correspond to the resource
utilization of MapReduce task processes. MapReduce task
processes only run for a limited amount of time, and each
MapReduce job has different numbers of task processes. Thus,
Type 2 are short-term metrics and their number cannot be
pre-determined.

Type 1 metrics 

Node #1 Node #2 

CPU.rrd Memory.rrd 

Type 2 metrics 

Node #1 Node #2 

CPU.rrd Memory.rrd 

MR Job #1 MR Job #2 

Slot #1 Slot #2 

Figure 2: Data schema of RRDTool

All Type 1 metrics are stored in a central directory using
the same approach as the base Collectd RRD back-end im-
plementation. Under the central directory, a sub-directory
per-host is used to store the metric data for a particular
cluster node. Each metric is stored as a single RRD file in
the sub-directory corresponding to the source host. Type 2
metrics are handled in a different manner as follows. The
RRD files are grouped into directories by MapReduce job
ID. Each MapReduce job has its own job directory, which
contains sub-directories that are named by node IDs. In a
Hadoop MapReduce system, there is a limit on the number
of tasks that can concurrently execute in each node. To re-
duce the number of RRD files, we map MapReduce tasks
into a fixed number of slots in every node. Thus each node
subdirectory contains RRD files named by slot ID. Resource
utilization information of tasks running in the same slot will
be stored into the same RRD file.

When a new RRD file is created, RRDTool requires that
the circular buffer size be specified. However, we cannot
estimate the length of the appropriate RRD file for MapRe-
duce tasks. Otus pre-allocates a delibrately large RRD file

to store metrics for each task slot. If the actual length of the
job is shorter than the pre-allocated value, additional disk
space is reclaimed after the MapReduce job finishes, by cop-
ing the metric data to a new RRD file with the appropriage
length according to the job’s duration. Then, the original
pre-allocated RRD files are deleted.

MySQL as storage back-end
Similar to the RRD back-end, the MySQL back-end uses
two different schemas to store the metrics according to their
type. For Type 1 metrics, each node has a single table to
store metrics related to that host. Since the number of met-
rics can be known in advance, we use a “wide table” schema,
as follows: < TimeStamp,Metric1, . . . ,Metricn >. For
Type 2 metrics, each MapReduce job has a table to store
metrics. The schema for these tables is the following: <
TimeStamp, TaskID,MetricName,MetricV alue >. This
schema is different from the schema used in the RRD back-
end, and allows metric data for a large number of tasks to
be combined into a single “narrow” table. To reduce the
required storage, we assign an integer ID to each type of
metric instead of a string with the explicit metric name.

4.4 Visualizer
The goal of graphically displaying the metrics data is to

aid with gaining insight about how jobs and services use the
available cluster resources. The Otus visualizer is web-based
and implemented in PHP. In the RRD version, RRDTool
returns query results as graphs that are displayed by the
web browser. In the MySQL version, a query result is a list
of data, which is rendered by the browser using JavaScript.
The Otus user interface provides two pre-defined views that
show performance metrics at different levels: node view and
group view. Users are also able to issue customized queries
to the storage back-end to get metrics data.
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Figure 3: Memory usage decomposed in one node

A node view can show resource utilization of selected pro-
cesses for a particular node in the cluster. Figure 3 shows
an example of a node view for a particular MapReduce job.
This view shows the virtual memory usage of six mapper
task slots over a period of time. Each slot corresponds to
multiple mapper tasks and is labeled with different colors.



We can infer from the figure that most of the mapper tasks
consumed about 700MB of virtual memory. It also shows the
virtual memory of other long-running processes like the task
tracker and HDFS data node. As all metrics are gathered
from every node, a node view provides the most fine-grained
view of data.

In contrast, group views display aggregate metrics for a
group of nodes, so users can understand the system behavior
quickly without looking at every node in a large cluster. A
group view aggregates a metric by summing the values for
the selected group of nodes. Figure 4 shows a sample group
view. We can infer from this figure that MapReduce job
201101170028 0332 dominated the memory usage for over
a 5-minute period, and the peak memory usage reached 35
percent of the total memory available in the cluster.

Figure 4: Memory usage of the whole cluster

5. CASE STUDIES
We deployed Otus in a production cluster at CMU. The

cluster is a Hadoop cluster that runs MapReduce jobs used
by researchers from fields such as computational biology,
machine learning and astrophysics among others. We have
been using Otus to diagnose system and application perfor-
mance problems that arise in the cluster. Below are three
cases that illustrate how visual correlation of resource met-
rics help users understand application performance and infer
problem causation.

5.1 Resource Exhaustion in Cluster Hosts
Detailed resource usage data is useful for diagnosing the

causes of abnormal conditions such as resource exhaustion.
For example, during the course of cluster operations, a num-
ber of nodes crashed after several MapReduce jobs executed.
The nodes were soon rebooted and put back into service. A
few hours later the problem recurred on different nodes. In
conjunction with the system administrators, we used Otus
to examine the historical resource utilization of the crashed
nodes and found that their CPU utilization was moderate
prior to the crashes. However, they showed low levels of free
memory. Otus allowed us to dive deeper and attribute the
memory utilization to specific processes as shown in Fig. 5.
A large portion of the physical memory was consumed by un-
known processes that did not belong to the running MapRe-
duce jobs or services.

Then, we queried Otus to retrieve a list of live nodes that
had similar memory usage patterns. The system administra-
tor logged into a few of these nodes and found out that the
memory was being consumed by orphan Python processes.
These processes were spawned by Hadoop streaming jobs1,
but were not properly cleaned up by the framework when
the respective jobs were killed. Otus classified the stray pro-
cesses as “other” since they were orphan and could not be
traced back to specific MapReduce jobs. The orphan pro-
cesses accumulated over time. Although they did not use
the CPU, they consumed valuable memory until eventually
very little memory was available to run other jobs.

Figure 5: Abnormal resource utilization

5.2 Hadoop Memory Management
Memory management, as an important part of resource

control in Hadoop MapReduce system, is designed to pre-
vent multiple MapReduce tasks in the same node from com-
peting for memory resources. In Hadoop MapReduce sys-
tem, users and cluster administrators can set three parame-
ters to limit the memory usage of MapReduce jobs:

• Process maximum memory : This parameter limits mem-
ory used by each task process, and every child process
it spawns.

• Task maximum memory : It limits the total amount
of virtual memory and physical memory used by the
entire process tree for a task. The process tree includes
all processes launched by the task or its children, (e.g
in streaming jobs).

• Node maximum memory : This limits the total virtual
and physical memory of all map-reduce tasks and their
children processes in each node of the cluster.

The first two parameters mentioned above are user defin-
able. The users can use them to specify the memory require-
ment of their jobs. The last one is specified by the cluster
administrator.

When Hadoop schedules MapReduce jobs, it monitors the
memory usage of each mapper/reducer task. If any of the

1Hadoop streaming [1] is a mode of operation that allows
users to execute a script as part of a MapReduce job.



aforementioned memory thresholds is exceeded, the corre-
sponding task is killed. This mechanism makes it necessary
for users to appropriately specify memory limit parameters
for their jobs. Improperly setting these parameters results
in jobs failing due to out of memory (OOM) errors. Often,
users cannot accurately estimate the memory requirements
for their MapReduce programs due to the large number of
factors that affect memory consumption, e.g., input size,
number of records, dynamic allocation of small structures,
memory allocated by the framework, etc. In lieu of use-
ful memory usage information, users commonly overestimate
the memory limit creating too high of a demand for mem-
ory resources in the cluster hosts. Often, as a side effect of
this situation. task trackers launch fewer mapper/reducer
tasks per node, increasing job running time and wait time
for jobs in the queue. Users benefit in multiple ways from
the detailed resource usage data available through Otus.

• Monitor the memory utilization of MapReduce jobs
continously to help users set the correct memory pa-
rameters in future runs.

• Understand “Out of Memory” failures. The memory
metrics in Otus can differentiate between the following
causes: 1) killed by MapReduce framework: because
the total memory of one process or the total process
tree exceeds the limit; 2) killed by the Operating Sys-
tem: because processes in the node used up the avail-
able physical memory and swap space. To infer failure
causes, one can get information from Otus about the
memory usage of killed processes. If the memory usage
of the killed process exceeds one of the above limits,
the process may have been killed by the MapReduce
framework. Otherwise, if the total memory consumed
by all processes exceeds the size of physical or virtual
memory of the node, the OS may have killed one of
the processes.

Memory Stress Benchmark
The memory stress benchmark consists of a MapReduce pro-
gram that stress tests the memory management in Hadoop.
We use this benchmark to test the memory limit param-
eters for jobs and verify the behavior of memory manage-
ment specified in the Hadoop documentation. We also use
this benchmark to recreate job failures related to memory is-
sues. The benchmark program executes as a map-only job.
Each map task dynamically allocates two-dimensional ar-
rays and continuosly traverses the arrays to prevent the OS
from paging out the allocated memory. Users can specify
the task duration as well as the size of the array according
to the memory parameters in their cluster.

Discovering Pitfalls in JVM Reuse
While running the memory stress benchmark in our cluster
testbed, we discovered a memory starvation situation caused
by Hadoop’s JVM reuse feature, resulting in high failure
rates for memory intensive jobs. In our memory stress ex-
periment, a particular memory-intensive job required 4 GB
of virtual memory per task. The maximum memory per
node parameter was set to be 12 GB. In this case the frame-
work allows simultaneous execution of up to three of those
tasks. Figure 6 shows the memory used by Hadoop tasks
in one of the cluster hosts. Initially, only three tasks were
executing as expected. After the initial tasks finished, a new

Figure 6: Potential pitfall in memory management

set of JVMs was spawned for new tasks. The original JVMs
were not immediately reused nor terminated, and remained
on standby. All these JVMs consumed the available physi-
cal memory and triggered process failures as they could not
allocate memory. The display of detailed memory usage in-
formation was instrumental to track down this problem.

5.3 Resource Usage in Cloud Databases
One important feature of Otus is to account the resource

usage of different components of the distributed system, and
correlate the variance of resource utilization with system be-
haviors. During the course of benchmarking experiments for
distributed cloud database systems, we encountered a per-
formance degradation in one of the benchmarked systems.
The benchmark program continuously inserted and updated
rows in a table. After performing these operations for a pe-
riod of time, the performance of the system degraded result-
ing in lower query throughput as the benchmark progressed.

The benchmarked system was a new Java implementation
of BigTable [4] built on top of HDFS [1]. A tablet server
executes on each cluster host and manages disjoint partitions
of the tables stored in the database. Each tablet server
maintains an in-process memory cache for recently accessed
records, and writes dirty records to data files when there
is memory pressure. Periodically, the system also performs
major compactions to merge small data files into larger ones.

We used Otus to analyze the database’s resource utiliza-
tion in two continuous rounds of the benchmarking experi-
ments. These experiments were carried out in a small subset
of our cluster consisting of six tablet server hosts and a sepa-
rate host for the master processes. Figures 7 and 8 show two
types of resource utilization under the group view. Figure 7
shows the aggregated disk I/O throughput for the HDFS
data server processes where the tablet servers were execut-
ing. The timeline (X axis) corresponds to two consecutive
experiments. We noticed that the read throughput gradu-
ally dropped, which corresponds to the decrease in query
throughput. There was no write activity during the exper-
iments, the writes only occurred at the end of the experi-
ments after manually triggering major compactions. Figure
8 shows the aggregate memory utilized by different compo-
nents of the system, e.g., HDFS data server, tablet server
and logger. The table servers consumed the largest portion
of the memory available on the testbed hosts. We formu-
lated a hypothesis that the degradation was caused by the
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Figure 8: Aggregated memory utilization

growth and fragmentation of a data structure in memory.
This hypothesis was later confirmed by the developers.

5.4 Case Studies Summary
Our initial experience suggests that Otus is useful for ap-

plication performance analysis and troubleshooting. By us-
ing resource utilization graphs generated with Otus, we are
able to narrow down the number of potential sources of per-
formance problems and rule out potential causes such as
system misconfiguration. Then, we can combine data from
other other tools to find the actual cause.

6. EVALUATION
We ran a set of experiments in our production cluster.

Each node of the cluster runs a collector that scans /proc
and extracts metrics every five seconds. The collectors send
the data to the aggregator every ten seconds. Since the size
of our cluster is sufficiently small, the aggregator, storage
back-end and web front-end all run in a single monitoring
node. We also use Otus to monitor its own resource con-
sumption during the experiment.

The production cluster, where we run experiments, con-
sists of 64 nodes, each containing two quad-core 2.83 GHz

Xeon processors, 16 GB of memory, and four 7200 RPM 1 TB
Seagate Barracuda ES SATA disks. Nodes are intercon-
nected by 10 Gigabit Ethernet. The monitoring node has a
2 GHz Xeon processor, 2 GB of memory, and two 7200 RPM
1 TB Seagate Barracuda SATA disks with software RAID 1.
All nodes run the Linux 2.6.32 kernel.

In our evaluation of data collectors, the baseline is the
Collectd [5] daemon without the Otus plug-in that collects
fine-grained resource utilization metrics from a Hadoop sys-
tem. We use two workloads: idle and busy. In the idle
workload no MapReduce jobs run in the cluster. In the
busy workload, multiple jobs use up all the available task
slots in the compute hosts. Since the complexity of mon-
itoring a Hadoop system is proportional to the number of
MapReduce jobs and service processes, the busy workload
represents the heaviest load for our monitoring system. In
the busy workload, there are over 80 performance metrics
per host.

CPU PhyMem VMem Network
No Plug-in (Idle) 0.28% 776 KB 117 MB 83 B/s
No Plug-in (Busy) 0.33% 902 KB 121 MB 85 B/s
With Plug-in (Idle) 0.85% 29.9 MB 155 MB 274 B/s
With Plug-in (Busy) 1.29% 34.5 MB 165 MB 571 B/s

Table 1: Average resource utilization for collectors

Table 1 shows the resource requirements for the collectors
running on each compute node. The first column (CPU)
shows the CPU utilization percentage. The PhyMem col-
umn contains the collector’s average resident memory size,
and VMem denotes the virtual memory size. The Network
column has the average network bandwidth consumed by
the collector, not accounting for packet headers, when send-
ing the data to the aggregator. The data shows that the
CPU utilization is small, and overall the resource require-
ments are modest for current server-class hosts. Running
the Otus plug-in incurs a minor memory overhead because
collectd needs to execute the Python interpreter to run the
plug-in. This requirement can be alleviated by implement-
ing the Otus functionality as a C plug-in.

CPU PhyM VirtM Disk Writes
(%) (MB) (MB) (KB/s) (ops)

Idle
RRD 44 7 261 66 47
MySQL 52 313 1160 54 31

Busy
RRD 50 14 293 144 1097
MySQL 75 369 1162 180 63

Table 2: Aggregator resource utilization

For the aggregator resource utilization, we compared two
implementations: one with a RRD storage back-end, and the
other one with a MySQL back-end. Table 2 shows the aggre-
gator’s resource utilization on the monitoring node for each
implementation. The data for the Idle and Busy scenarios
is shown for both implementations. The last two columns
show the disk write activity in bytes written/s and number
of writes/s. Notice that the RRD implementation generates
a large number of writes during busy periods. The MySQL
back-end successfully reduces the number of write operations
through write-ahead logging. However, the MySQL version
consumes much more CPU and memory resources than the
RRD one. The high memory usage is caused by the MySQL



back-end’s large memory buffer. The high CPU usage, we
speculate, is an implementation artifact of our aggregator’s
use of Python rather than the RRDTool’s use of C. We be-
lieve the performance of the MySQL version can be greatly
improved.

Size MB (Factor)
Type 1 Type 2

RRD 3 MB 8 MB
MySQL 3.5 MB (1.2 X) 31 MB (3.9 X)

Table 3: Daily storage requirement per host

Another evaluation of the two storage back-ends is to com-
pare their in-disk storage cost. As mentioned in Section 4.3,
metrics of type one are related to long running processes,
and metrics of type two are related to MapReduce task pro-
cesses. The total storage space needed for storing metrics is
proportional to the number of hosts in the cluster. Table 3
contains the storage requirements per monitored host per
day. In this case, twenty four metrics of type one and sixty
metrics of type two are stored in the storage back-ends. The
MySQL back-end has a much higher storage requirement for
metrics of type two, up to 3.9 times that of the RRD back-
end. This is due to the “narrow” table used in the MySQL
back-end to store type 2 metrics, which has an index on the
time stamp and explicitly includes a metric id in each record.
In contrast, in the RRD back-end there is no index on the
time stamp field, and the metric id is not explicitly stored
in each record, but instead encoded in the RRD metadata.

Overall, the evaluation shows that it is feasible to imple-
ment, with relatively little overhead, the mechanisms that
are needed to perform resource attribution. However, in or-
der to deploy these technique in larger clusters, the storage
back-end needs to scale up.

7. FUTURE WORK
We intend to improve the scalability of our system by

adopting OpenTSDB [19], an open source scalable database
for time-series data built atop HBase [2]. With data stored
in HBase, we can also leverage Hive as a query engine on
top of HBase. This could further enhance functionality by
flexibly allowing users to analyze their performance data and
search for root causes of performance problems.

We are also collaborating with a team that specializes
on automatic strategies to detect abnormal behaviors and
performance problems in large clusters [20, 21]. We plan
to develop new strategies that take advantage of the richer
resource metrics collected by Otus.

8. CONCLUSION
Understanding performance and resource requirements of

data-intensive applications is increasingly hard due to the
complex interactions between distributed system components.
Otus is a monitoring system that helps address this chal-
lenge by attributing resource utilization to jobs and services
executing in a cluster. It is feasible to use Otus in pro-
duction clusters without introducing significant overheads.
Our experience deploying Otus in a production cluster shows
its utility for troubleshooting and monitoring data-intensive
clusters.
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