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ABSTRACT
Metrics like disk activity and network traffic are widespread
sources of diagnosis and monitoring information in datacen-
ters and networks. However, as the scale of these systems
increases, examining the raw data yields diminishing insight.
We present RainMon, a novel end-to-end approach for min-
ing timeseries monitoring data designed to handle its size
and unique characteristics. Our system is able to (a) mine
large, bursty, real-world monitoring data, (b) find signifi-
cant trends and anomalies in the data, (c) compress the raw
data effectively, and (d) estimate trends to make forecasts.
Furthermore, RainMon integrates the full analysis process
from data storage to the user interface to provide accessible
long-term diagnosis. We apply RainMon to three real-world
datasets from production systems and show its utility in dis-
covering anomalous machines and time periods.

Categories and Subject Descriptors
K.6.2 [Installation Management]: Performance and us-
age measurement; H.2.8 [Database Applications]: Data
mining

General Terms
Algorithms, Design, Management, Performance

Keywords
System Monitoring, PCA, Bursty Data

1. INTRODUCTION
Many modern computing clusters consist of dozens to

thousands of machines that work together to perform a va-
riety of tasks. The size and complexity of these systems has
created a burden for administrators. Additionally, a move
towards commodity hardware has produced more frequent
failures that must be diagnosed and repaired [3]. These chal-
lenges have inspired considerable interest in monitoring tools
catered towards system administrators, who are often also
faced with monitoring external network links in addition to
the datacenter itself.
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Figure 1: Two anomalous machines discovered with
RainMon. The system can summarize bursty time-
series monitoring data (top plot) and allows easy
discovery of groups of machines that share the same
behavior: the four dots separated from the others in
the bottom plot correspond to the imbalanced ma-
chines at top. Many tools used in current practice
only offer the top view—without the helpful color-
ing. For details of the analysis, see Sec. 5.1.

Complicating matters further, analysis at the level of a
single machine is often insufficient. To provide a concrete
example that we analyze in this paper, applications like
Hadoop [1] distribute work across multiple machines. Signif-
icant imbalances in monitoring observations between groups
of machines are a problem worthy of human attention. A
task of growing importance is understanding when problems
like these occur, and determining which tasks, machines, or
network links are responsible. Furthermore, administrators
also would like to know about problems and potential ca-
pacity shortages as soon as possible [9], and predictions of
future trends would be valuable.

To provide visibility into their behavior, systems emit a
variety of timeseries streams — for example, CPU utiliza-
tion, disk traffic, and network transfers. Such streams are
widely used for datacenter monitoring through tools like
Ganglia [24], Nagios [25], Zenoss [36], and Tivoli [13]. Typi-
cally, these tools provide summaries of performance through
averages or roll-ups of streams across machines, or require
administrators to look at machine status individually. Anomaly



and outlier detection are often accomplished by thresholding
individual metric values.

Unfortunately, the increased number of incoming moni-
toring streams due to the scale of modern systems makes
diagnosis with these tools difficult. For example, simply
overlaying monitoring data from many machines produces
an unintelligible view (for example, at top in Fig. 1), yet
similar views are common in the tools used in practice [24,
25, 36]. Another significant obstacle to human-intelligible
monitoring is the burstiness of many of these streams: not
only is the raw data visually noisy, it also poses difficulties
for many timeseries analyses, such as modeling techniques
that assume a smooth time evolution of data [17]. For exam-
ple, alerts based on thresholds can produce false positives.

Despite the wide variety of anomaly detection and sum-
marization approaches that have been proposed (we survey a
few in Sec. 2), there exists a need for approaches that handle
real-world data sources, focus on bursty data, and integrate
the analysis process. To meet those goals, RainMon is an
end-to-end system for mining anomalies and trends from
bursty streams, compressing monitoring data, and forecast-
ing trends. We have integrated RainMon with multiple real
data streams produced by complex real systems to produce
insight into datacenter behavior. It has isolated problems
with machines and tasks like the ones shown in Fig. 1 in
the Hadoop framework and unearthed network glitches. It
can compress data more effectively than a non-integrated
approach and can estimate future state. These applications
are not disjoint, but rather the result of judicious combina-
tion of a few techniques from the literature into a knowledge
discovery tool.

Contributions: We make three primary contributions.
First, we describe a novel multi-stage analysis technique
catered towards bursty timeseries monitoring streams from
datacenters and networks. Second, we show its utility through
a series of case studies on real-world monitoring streams.
Third, we describe our end-to-end system that incorporates
storage, modeling, and visualization.

2. RELATED WORK
A variety of data mining techniques have been applied to

timeseries monitoring, many existing monitoring tools pro-
vide data infrastructure, and some consider effective visual-
ization of the output [8]. Here we focus on RainMon’s re-
lation to the wide body of related work on stream anomaly
detection and forecasting as applied to system monitoring.
More background on the techniques we use is provided in
Sec. 3; broader surveys of anomaly detection [7] and time-
series forecasting [6] are available.

Multiple data mining approaches have been proposed for
summarizing relatively smooth portions of timeseries mon-
itoring data. Patnaik et al. have developed an approach to
cooling a datacenter based on finding frequent “motifs” [28].
The Intemon tool explores the use of dimensionality reduc-
tion to monitoring timeseries [12], and a case study considers
applying the system to finding anomalies in environmental
monitoring data. We use the same core algorithm (SPIRIT
[27, 35]) as a technique for mining correlations and trends,
and expand its applicability to cope with the bursty aspect
of systems data. The symbolic SAX representation is also
promising for anomaly detection and visualization [21].

Considerable work on automated detection of anomalies
and bursts in timeseries data has resulted in a variety of tech-

niques, such as wavelet decomposition [37], changepoint de-
tection [10, 26], incremental nearest-neighbor computation
[4], and others. PCA and ICA have been applied to monitor-
ing data for a variety of features (e.g., by [16]). Other forms
of matrix decomposition have also been applied to network
monitoring data to find anomalies, though evaluations of-
ten focus on small or synthetic datasets [11]. Many other
automated approaches (e.g., [5, 14]) complement this work:
rather than defining what constitutes a violation of a trend,
we focus on modeling and presenting the data.

Forecasting of timeseries monitoring data has often been
examined independently of the mining techniques above.
For example, ThermoCast [18] uses a specialized model for
predicting timeseries temperature data in a datacenter. Some
techniques like DynaMMo [19] and PLiF [20] learn linear
dynamical systems for multiple time sequences for the pur-
poses of both forecasting and summarization, and the latter
is evaluated in part on network monitoring data (though for
the purposes of clustering). Linear Gaussian models like the
Kalman filter used here are surveyed in [31].

3. APPROACH
We address our three goals described in Sec. 1 in the fol-

lowing manner. First, in order to achieve efficient compres-
sion of monitoring data and facilitate the generation of its
intelligible summaries, we decompose the raw data into spike
data and streams that are amenable to these two objectives.
Then, actual creation of summaries is performed using in-
cremental PCA, which produces a lower-dimensional repre-
sentation of the original data. Finally, we predict future sys-
tem state by modeling the variables in the lower-dimensional
representation. This process is illustrated in Fig. 2. Also,
the core steps of the problem are formally defined as follows:

Problem Statement: Given N labeled timeseries streams,
we have at each of T time ticks a vector of observations
yt = [yt,1, . . . , yt,N ]. Each reported value yt,i ∈ R≥0. We
seek to find M < N streams st = st,1 . . . st,M at each time
tick that form a summary of the data, and other model
parameters that can be displayed to indicate outliers and
anomalies. Additionally, we seek to forecast sT+f for some
f > 0 — that is, predict future system trends.
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Figure 2: Multi-stage RainMon data flow. Raw
streams are decomposed and then modeled.

In the following sections, we describe each step in detail.
In each of these sections, we refer to the input of each stage
as yt and its output as xt. Note that the decomposition
and summarization stages of the analysis are streaming al-
gorithms; that is, they can produce xt+1 given yt+1 and the
model parameters estimated from y1 . . . yt. This aspect is
important in a monitoring setting, since data arrives in an
incremental fashion as systems produce it; streaming analy-
ses allow for efficiency through incremental updates.



3.1 Decomposition
One of the domain challenges of modeling datacenter time-

series is the burstiness of many system metrics, such as net-
work and disk I/O [17]. Much of this burstiness is irrelevant
for diagnosis, but significant bursts and long-term trends
are useful features. This motivates us to borrow ideas from
Cypress [30], a framework for decomposing datacenter time-
series data into smoothed trends, spiky bursts, and residual
data. We show concretely how decomposition can be used
to effectively compress relevant data in Sec. 5.5.
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Figure 3: Stream decomposition: data is low-pass
filtered; spikes that are 3σ larger than the residuals
are segregated and stored separately.

In order to obtain a smoothed representation of the signal,
the raw data (A in Fig. 3) is passed through a low-pass filter
with cut off frequency fs/2m [29], where fs is the sampling
frequency of the timeseries and m is an application-specific
parameter that is tunable based on the nature of the data
streams. We use an exponential moving-average filter:

xt = αyt + (1− α)xt−1 α =
∆t

m∆t/π + ∆t

where ∆t is the interval between time ticks, and m can be
experimentally determined by performing spectrum analysis
on examples of the data streams [30]. Currently, we simply
use m = 60 sec in the filtering of testing data.

The presence of significant spikes can be useful for time-
based anomaly detection. In this kind of analysis, the most
pronounced spikes in the signal are the most relevant. To de-
tect these spikes, we apply a threshold to the “noise,” which
is the signal obtained by subtracting the band-limited sig-
nal (B) from the original signal (A). We choose 3σ as the
threshold, where σ is the standard deviation of the “noise.”
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Figure 4: Sample of timeseries data decomposition.
Observe the burstiness of the CPU monitoring data.

Fig. 4 illustrates a timeseries signal (CPU utilization) at
each of the stages described above; the letters correspond
to those in Fig. 3. We then pass the smoothed signal (E)
with amplitude-constrained residuals to the next stage —
summarization through dimensionality reduction.

3.2 Summarization
For the purposes of producing summaries that capture the

overall behavior of the system, we use incremental PCA. We
use the hidden variables it produces as timeseries summaries
and its weight matrix to help identify anomalous streams.
Additionally, the algorithm we use (SPIRIT [27]) adapts the
number of hidden variables; addition or removal can signify
a change in behavior.

The underlying model is that the N -dimensional data are
well-modeled by M ≤ N hidden variables. As each new vec-
tor of observations yt ((E) in Sec. 3.1) arrives, we update the
model with the technique shown in Algorithm 1. We choose
SPIRIT for two primary reasons. First, it is incremental,
with complexity O(MN). Second, in the datasets under ex-
amination, we expect linear correlations between streams in
any case (e.g., the similar cluster resource utilization pat-
terns in Sec. 5). The output xt from this stage is used as
the summary st.

Algorithm 1 SPIRIT update

Require: A number of principal components Mt, weight
matrix W , new observation yt+1 of dimensionality N , en-
ergy vector d, energy thresholds fE and FE , previous en-
ergies Ex, Ey, λ = 0.99

Ensure: Updated W , d, M , reconstruction ŷt+1, hidden
variables xt+1

r ← yt+1

for i ← 1 . . .M do
z = WT

i · r (where Wi is the ith column of W )
di ← λdi + z2

Wi ← Wi + z(r−zWi)
di

r ← r − zWi

end for
W ← orthonormalize(W )
xt+1 ← WT · yt+1

ŷt+1 ← W · xt+1

Ex ← λEx + ||xt+1||2
Ey ← λEy + ||ŷt+1||2
if Ex < fEEy then
M ← max(0,M − 1)

else if Ey > FEEx then
M ← min(N,M + 1)

end if

PCA-based algorithms like SPIRIT function best when
the magnitudes of the features are approximately equal.
This is decidedly not true of monitoring data; metrics like
network bytes written are on the order of 107, while CPU
usage is delivered as a value between 0 and 100. For batch
analysis, we simply normalize the data. For streaming anal-
ysis, we use domain knowledge of the data to associate a
“maximum” value with each stream. This maximum is only
accurate to an order of magnitude, but looking ahead in a
stream to find the true maximum runs counter to the philos-
ophy of incremental updates. We use a linear transform for
data that is less bursty, and use a logarithmic transform for
I/O-related metrics. For parameters Rmin and Rmax, which
define the typical order-of-magnitude range of a value, the
transform for a value v is:

Linear: f(v) =
v −Rmin

Rmax −Rmin

Logarithmic: f(v) =
ln(v + 1)

ln(Rmax)



3.3 Prediction
To forecast future system trends, we estimate future val-

ues of the streams output by the summarization stage. This
problem amounts to multivariate timeseries forecasting, for
which there is a wide body of work. We select a Kalman filter
since it generalizes recursive linear regression. Other studies
have compared forecasting models for datacenter event time-
series [33]. Alternative approaches like ARIMA [6] could be
applied in this stage.

Given the response of SPIRIT (xt in Sec. 3.2, denoted yt
here), we learn a state evolution model with hidden states
xt as follows:

xt+1 = Axt + w

yt = Cxt + v

where A is the state transition matrix, C captures the ob-
servation model, and w ∼ N(0, Q) and v ∼ N(0, R) are the
state evolution and observation noise models, respectively.
See Fig. 5 for a pictorial representation of the model evolu-
tion. The two main sub-problems associated with learning
these models are inference and parameter learning. Infer-
ence deals with issues of estimating the unknown hidden
variables given some observations and a given fixed model
parameters. Parameter learning pertains to estimating the
model parameters given only the observations.
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Figure 5: Kalman filter model. Hidden variables
from dimensionality reduction (y) are further mod-
eled with hidden states x.

With every observation yt, we update the model parame-
ters as detailed in Appendix A.1. Then, we smooth the pre-
dictions by iterating backwards (see Appendix A.2). With
the forward predictions and smoothed reverse predictions,
we use the standard Expectation-Maximization (EM) pro-
cedure both to learn the parameters and to predict the la-
tent state variables (see Appendix A.3). That is, given the
observations, we use the current model parameters to pre-
dict the latent state variables. Then given these latent state
parameters and the observations, we determine the model
parameters by maximum likelihood estimation.

4. IMPLEMENTATION
RainMon is an end-to-end system, accommodating the

knowledge discovery process from storage through analy-
sis to visualization. An overview of the system design is
shown in Fig. 6. The tool can obtain data directly from
existing monitoring systems using RRDtool [24, 32] and
a database that stores terabyte-scale timeseries data [34].
Since both these data sources provide data in ranges, we
run both streaming algorithms in batch fashion. The analy-
sis process in RainMon is distributed; although we currently
only run the analysis on a single machine, it can be parti-

tioned and run in parallel. A web-based interface (shown in
Fig. 7) accesses the analysis results and can display analysis
results to multiple users simultaneously.
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Figure 6: End-to-end, scalable architecture. Rain-
Mon can access multiple widely-deployed backing
databases [24, 32], and is designed for scalability.

We have made RainMon open-source; additionally, we are
releasing the CMU.net dataset, which we used as part of
our evaluation, to the community. Both are available at
http://code.rainmon.com.

5. APPLICATIONS
To assess the utility of RainMon, we demonstrate through

a series of case studies how it was used to find problematic
machines and time periods in real-world data. Note that the
plots that follow were generated for clarity on paper, but all
of the visualizations can be created in RainMon’s interface.
Using the techniques described in Sec. 3.1-3.3 and this tool,
RainMon has been applied to three scenarios:

Hadoop Machine-level metrics from the OpenCloud Hadoop
cluster at Carnegie Mellon University (CMU). Machines
are numbered cloud1-cloud64.

CMU.net Time taken for a packet to make a round trip from
CMU to other locations in the world, as measured by
the ping program.

Abilene Network flows measured from the Abilene network
backbone of Internet2 (courtesy [15])

Dataset Nodes Metrics Size
Hadoop System Metrics 64 58 220GB
CMU.net Ping Times 6 18 17.1MB
Abilene Network Flows 121 1 5.7MB

Table 1: Datasets used in case studies.

In a cluster where all machines are shared across the same
scheduler, such as many Hadoop clusters, a typical large
job will span all machines in the cluster. Similar resource
utilization patterns on all machines indicate that a job is
performing normally, whereas a single machine or groups
of machines that behave differently indicate anomalies or
imbalance. We first consider the task of isolating a machine
or small group with abnormal behavior.

For the analyses below, we do not provide summary statis-
tics on the precision and recall of detection since determin-
ing whether a deviation is anomalous through root-cause
diagnosis is a question in itself; further work is needed to
establish complete ground truth and anomaly criteria for
datasets like the Hadoop system metrics. Given a definition
of an anomaly, a variety of outlier detection approaches can
be applied (e.g., [5]). Here we present case studies for which
further investigation has shown that anomalous behavior did
indeed exist in the cluster or network.



Figure 7: RainMon interface. Overlaid in black boxes is the workflow of the tool. At bottom are the scatterplot
of W:,2 vs W:,1 and a machine “energy” heatmap. In the central pane are linked, zoomable, customizable
timeseries plots. An interactive demonstration of the interface is available at http://demo.rainmon.com.

5.1 Outlier Machine Isolation
Caused by Machine: After selecting a region of data

to analyze ((1) in Fig. 7), a useful visualization for quickly
identifying machines that do not behave like others is a plot
of the projection coefficients of the first two hidden variables
to each smoothed data stream, i.e., W:,2 vs W:,1 of the PCA
weight matrix W (from Algorithm 1, (2) in Fig. 7). If disk
reads were closely correlated over time on all machines, and
disk writes were also correlated, we would see two clusters
on the plot — one for each metric. For example, in the case
shown in Fig. 8, we see that this is the situation for almost
all of the machines (points), but that the metrics for one
machine (cloud11) were far from those for the others.
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Figure 8: Outlier node discovery. RainMon’s scat-
terplot of W:,2 vs W:,1 shows that the coefficients of
cloud11 are separated from the other machines.

From this point, the tool provides the ability to easily
construct overlaid timeseries plots of multiple metrics ((3)
in Fig. 7). An examination of the disk read behavior of
cloud11 compared with two other cluster members is shown
in Fig. 9. Observe that during periods of heavy read activity
on other machines it was idle (around Oct. 12), and that

the collection process on the machine failed (the flat line
from Oct. 13 onwards). Additionally, from the spike data
we found that a burst of read activity on cloud11 occurred
before a burst on most other nodes.
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Figure 9: Individual machine examination. After
identifying candidate outliers, RainMon allows users
to build custom plots and overlay timeseries data.

Caused by Task: As another example of identifying out-
lier nodes in a representative cloud workload, we explicitly
introduced load imbalance to a job running in the Hadoop
cluster. The job is an email classification task running on a
Hadoop-based machine learning framework [2]. Specifically,
in the example input dataset, we generated a number of
duplicated emails under a specific newsgroup topic, so that
the total amount of input data is approximately an order of
magnitude larger than that of the other topics. This caused
the Mapper processes handling the topic to last longer and
consume more resources than the others, because of the un-
even input distribution.

Fig. 10 compares three different ways of visualizing CPU-
related metrics of the Mahout workload in RainMon. The
top graph shows raw user-level CPU usage of a set of ma-



chines that processed the task, and the middle graph shows
spikes of this data extracted by decomposition. The bot-
tom graph shows the first and second hidden variables com-
puted from the set of CPU-related metrics including user-
level CPU usage. The injected excessive input was processed
by cloud9 and cloud28, increasing their resource usage. Even
though the outliers are visible in the original data, they con-
sist of multiple datapoints and require a threshold to distin-
guish from other behavior. In the extracted spike data, each
single datapoint greater than zero can be treated as a po-
tential anomaly, and general trends can be observed in the
hidden variables hv0 and hv1. Note that spikes can also
be negative, further emphasizing that domain knowledge is
important to interpret the meaning. For example, a sudden
workload increase may be witnessed by positive CPU spikes,
whereas a brief network problem may manifest through neg-
ative network spikes.
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Figure 10: Separation of trends and spikes. Anoma-
lous timeseries spikes caused by overburdened tasks
and overall trends are distinguished by RainMon.

5.2 Machine Group Detection
It is not always the case that a single machine is an out-

lier. In many cases of uneven workload distribution across
machines in a cluster, groups of machines may behave dif-
ferently. For example, we identified a case with RainMon
where all machines were reading data as expected, but there
were two groups of writers—only about half the machines
were writing heavily. Fig. 11, the plot of W:,2 against W:,1,
illustrates the two groups of machines, which we have high-
lighted with gray rectangles. This was caused by a large
Hadoop job whose tasks did not generate even output loads
across machines. Some of those tasks generated more output
data than other tasks, causing the machines running these
tasks to experience higher disk write traffic. A programmer
can fix this problem by partitioning the data more evenly
across machines.

5.3 Detecting Correlated Routers
To demonstrate the applicability of RainMon to network

monitoring, as well as within-datacenter monitoring, we ana-
lyze the packet flow count in the Abilene network [15]. Abi-
lene is a nationwide high-speed data network for research
and higher education. This public dataset was collected
from 11 core routers with packet flow data between every
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Figure 11: Machine group discovery. From the scat-
terplot, RainMon can also identify groups of ma-
chines with different behavior.
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Figure 12: Correlated anomaly identification. Rain-
Mon’s scatterplot illustrates a cluster of nodes and
allows visualization of the anomalous streams. All
streams shown in (b) correspond to a single router
named “IPLS.”

pair of nodes for a total of 121 packet flow streams. We
analyzed a week’s worth of data binned at 5 minute inter-
vals for a total of 2016 time ticks. Visualizing this data via
the scatterplot of W:,2 vs W:,1 reveals some tightly clustered
streams (see Fig. 12(a)) that interestingly all correspond to
packet flows from a single router named “IPLS.” Examining
in detail the corresponding data streams, this correlation be-
tween “IPLS” and other routers becomes quite evident (see
Fig. 12(b)) in the abnormal behavior on its part around time
tick 400.



5.4 Time Interval Anomaly Detection
In addition to finding anomalous machines, RainMon can

be useful in detecting anomalous time intervals. The trends
observed in hidden variables provide an overall picture of
trends in smoothed data and anomalies across a multi-tick
timescale. This can be helpful in finding unusual behavior
in time from inspection of only a single trend.
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Figure 13: Trend discovery. Change in ping time be-
havior (Qatar) and sustained increase (PSU) found
from the first hidden variable. Absolute values on
the “Value” axis should not be interpreted.

When applying the tool to one year of data from the
CMU.net dataset, we could rapidly identify changes in a sin-
gle ping destination by examining the first hidden variable.
Fig. 13 illustrates one of the cases: we observed a sudden
point change in the trend that was retained after decom-
position around Jan. 5, 2012, and an increase starting at
approximately Jan. 10. From inspection of the weight coef-
ficients of the first hidden variable, we isolated two unusual
behaviors on two of the links. First, a point increase in ping
time is clearly observable in the PSU timeseries. Second, the
changes towards the end of the time window shown in the
figure helped identify a change in the “normal” ping time to
Qatar. This time was nearly constant at 0.221 sec before
Jan. 10, and became 0.226 sec in the period after Jan. 15, a
change difficult to localize from the traditional display cur-
rently used for the data. A network administrator confirmed
that these sustained changes were legitimate and likely occur
due to maintenance by a telecommunications provider.

5.5 Compression
To further show concretely how decomposition is effective,

we show how RainMon can compress data, since the sum-
mary from dimensionality reduction can be projected back
into the space of the original data. That is, by retaining
hidden variables st and the weight matrix W , RainMon can
store a lossy version of the timeseries data — but, by keep-
ing spike data, it can also maintain potential anomalies with
full fidelity. Since W is adapted over time in Algorithm 1,
one would need to store this matrix at multiple points in
time. Therefore, for this evaluation, we perform PCA over
an interval of time, rather than use incremental PCA, and
use a fixed number of hidden variables.

Fig. 14 shows the total compressed size of the data seg-
ment when stored with a combination of hidden variables
and weight matrix (in red) and spike data (black). For com-
parison, we show two alternative compression approaches:
using dimensionality reduction on the non-decomposed in-
put (blue bars) and storing the original data (green line).

8 12 16 24 32 64
Number of Hidden Variables

0

100

200

300

400

S
iz

e
(k

ilo
by

te
s) HVs + W (With Decomposition)

HVs + W (No Decomposition)

Spike

Original (gzip)

Figure 14: Space savings: storing hidden variables
uses less space than the baseline lossless compression
approach (green “Original” line).
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Figure 15: Greater accuracy through decomposition:
Storing lossless spike data separately provides im-
proved accuracy relative to no decomposition.

For fairness, we apply generic (gzip) compression to the
data in all cases, which is a standard baseline approach to
storing timeseries monitoring data [22]. For M = 16 hid-
den variables and eleven 56-hour intervals of 118 streams
of disk access data from the Hadoop dataset, the reduced-
dimensionality data and spikes together occupy 114± 5KB.
This is 26.5% the size of the gzip-compressed original data
(430 ± 80KB), and only requires 16KB (14%) of additional
storage for the sparse, highly-compressible spike data.

Though spike data requires slightly more space, it yields
better accuracy than using non-decomposed input. For the
same data shown in Fig. 14, Fig. 15 shows the reconstruc-
tion accuracy of smoothed+spike data (“With Decomp.”)
and PCA as run on the original data (“No Decomp.”)—
the former has both higher mean accuracy and lower vari-
ance1. Additionally, since spikes are stored with full fidelity,
anomaly detection and alerting algorithms that require pre-
cise values could operate without loss of correctness.

5.6 Prediction
We further consider how effectively the trends captured

in hidden variables can be forecasted. If projected back into
the original space, future machine utilization can be useful
for synthetic workload generation and short-term capacity
planning [9]. RainMon uses a Kalman filter as described
in Sec. 3.3 to produce adaptive predictions. To provide an
indirect comparison to other approaches, we instead force a
fixed look-ahead and also run vector autoregression (VAR)
[23] and trivial last-value prediction (Constant) for the same

1Reconstruction accuracy A is computed as the geometric
mean of the coefficient of determination R2 for each time-
series; we compare data where A is defined for both models:

A =

(
N∏
i=1

1−
∑T
t=1(yt,i − ŷt,i)2∑T
t=1(yt,i − ȳi)2

)1/N
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Figure 16: Kalman filter predictive performance. A Kalman filter model was used to predict summarized
hidden variables two hours into the future. Fig. (a) shows the prediction overlaid on the first hidden variable
for a 5-day slice of memory and disk metrics on the Hadoop dataset; (b) shows a CDF of the mean squared
error between the prediction and data as compared to vector autoregression and simple constant prediction.
Figs. (c) and (d) show the same for the Abilene dataset.

look-ahead. As seen in Fig. 16, on a slice of Hadoop data,
the Kalman filter slightly outperforms VAR, whereas both
VAR and the Kalman filter have less predictive power than
constant forecast for the Abilene data. Though further work
is needed to fully characterize these datasets, this highlights
the limitation of RainMon’s model-based predictor on par-
ticularly self-similar or difficult data.

6. CONCLUSION AND DISCUSSION
Understanding usage and behavior in computing clusters

is a significant and growing management problem. Integrat-
ing decomposition, dimensionality reduction, and prediction
in an end-to-end system has given us enhanced ability to
analyze monitoring data from real-world systems. RainMon
has enabled exploration of cluster data at the granularity of
the overall cluster and that of individual nodes, and allowed
for diagnosis of anomalous machines and time periods.

Our experience with RainMon has helped to define its
limitations, and we highlight three directions of ongoing
work here. First, parameter selection is both involved and
necessary given the diversity of datacenter streams, and as
briefly glimpsed in Sec. 5.6 the ability to mine monitoring
data varies across environments. Mining other datasets us-
ing similar techniques, or optimizing them for the ones we
study, is an ongoing and future challenge.

Second, understanding how analysis results are interpreted
is key to improving their presentation. Initial feedback from
industry visitors and a few administrators has resulted in
changes to RainMon’s interface, but active deployment of
RainMon on more systems and studies with administrators
and cluster users are needed to enhance its utility.

Third, scaling these techniques to larger systems will re-
quire further towards performance tuning. Currently, the
downsampling and slicing capabilities of our storage ap-
proach have enabled us to handle large datasets like the
Hadoop streams. However, robustness at even greater scales
remains to be demonstrated. Larger systems also complicate
collection, aggregation, and fault-tolerance.
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APPENDIX
A. KALMAN FILTER DETAILS

A.1 Prediction
Given the initial model parameters (µt|t and Pt|t) for the

linear dynamical system and the current observation (yt),
we update the model parameters to compute µt+1|t+1 and
Pt+1|t+1 as follows:

Vt = APt|tA
T +Σw

Kt+1 = VtC
T (CVtC

T +Σv)−1

µ̂t+1|t+1 = Aµ̂t|t+Kt+1(yt+1−CAµ̂t|t)

Pt+1|t+1 = Vt−VtC
T (CVtC

T +Σv)−1CVt

A.2 Smoothing
Given the predictions x̂t|t and P̂t|t from above that were

computed over the past T time samples, we compute the
smoothed predictions using predictions from the future:

As
t = Pt|tA

T (Vt)−1

µ̂s
t = µ̂t|t+As

t (xst+1−Ax̂t|t)

Ps
t = Pt|t+As

t (Ps
t+1−Vt)AsT

t

where µ̂st and P 2
t are the smoothed estimates of the model

parameters computed by using the observations in the fu-
ture. We start at t = T and go backwards to t = 1. These
are useful for parameter learning as described next.

A.3 Parameter Learning
Given the forward Kalman filter predictions and the smoothed

reverse predictions we estimate all the model parameters as
follows, where n refers to the EM iteration index:

E[xt] = µ̂s
t

E[xtx
T
t−1] = Ps

t A
sT
t−1+µ̂s

t µ̂
sT
t−1

E[xtx
T
t ] = Ps

t +µ̂s
t µ̂

sT
t

An = (
∑T

t=2 E[xtx
T
t−1)(

∑T
t=1 E[xtx

T
t ])−1

Σn
w =

∑T
t=2 E[xtx

T
t ]+AnE[xt−1xT

t−1]AnT

T−1
−∑T

t=2 E[xtxt−1]AnT +AnE[xt−1xt]

T−1

Cn = (
∑T

t=1 ytE[xTt ])(
∑T

t=1 E[xtx
T
t ])−1

Σn
v =

∑T
t=1 yty

T
t +CnE[xtx

T
t ]CnT

T
−

ytx
sT
t CnT +Cnxs

tyT
t

T

µn
0 = E[xt]

Σn
0 = E[xtx

T
t ]−E[xt]E[xt]T


