
GIGA+ : Scalable Directories for Shared File Systems

Swapnil V. Patil
Carnegie Mellon University

svp@cs.cmu.edu

Garth A. Gibson
Carnegie Mellon University

garth@cs.cmu.edu
Sam Lang

Argonne National Lab
slang@mcs.anl.gov

Milo Polte
Carnegie Mellon University

milop@cs.cmu.edu

1. INTRODUCTION
There is an increasing use of high-performance computing
(HPC) clusters with thousands of compute nodes that, with
the advent of multi-core CPUs, will impose a significant chal-
lenge for storage systems: The ability to scale to handle I/O
generated by applications executing in parallel in tens of
thousands of threads. One such challenge is building scal-
able directories for cluster storage – i.e., directories that can
store billions to trillions of entries and handle hundreds of
thousands of operations per second.

Today some parallel applications use the file-system like a
fast, lightweight “database”, resulting in directories contain-
ing tens of millions of files [9]. For instance, phone com-
panies may wish to monitor and record information about
calls by their subscribers for billing. One such monitoring
application creates a file that logs the start and end time
of every call [1]. To support large call volumes, telecom
companies are deploying “new” infrastructure to support
more than hundred thousand calls per second [13]. Typ-
ically telecom infrastructure is over-provisioned, so even a
system that is running at one-third utilization can easily
create more than 30,000 files per second. Another example
comes from per-process checkpointing, where every process
running on a large HPC cluster generates a periodic check-
point file. A 25000-node cluster, where each node has 16-32
cores, may nearly simultaneously create more than half a
million files, one per core, to contain that core’s periodic
checkpoint. Since millions of files occur in directories today
and we expect larger directories in the future, we decided to
push the envelope for our design by setting a goal to scale
to billions of files in a directory and to make extensions to
trillions of files as simple as possible.

Traditional local file systems with UNIX semantics organize
directories in a flat, sequential data-structure. This results
in an O(n) lookup cost – for large directories this can run in
the order of few minutes. To improve the lookup speeds, var-
ious file-systems have used faster indexing structures like B-

trees for O(log n) lookups and hash-tables for O(1) lookups.
Local file systems that use fast indexing structures, such as
XFS’s use of B-trees [11] or Linux’s Ext2/Ext3 hash tables
[12], don’t scale beyond a single machine, which is insuffi-
cient for parallel HPC applications.

Several distributed file systems have been proposed for greater
scalability - GPFS uses extendible hashing [10] and Box-
wood builds a shared storage abstraction using B-link trees
[6]. GPFS uses lock tokens that are used for parallel file
data access. For synchronized file metadata access, GPFS
elects “metanodes” that control metadata writes. In Box-
wood, multiple threads use global locks for synchronizing
access to shared data. However, using a global lock service
provides significant opportunities for bottlenecks and shared
state synchronization overhead, especially at highly concur-
rent access.

Based on our target environment and application needs, we
propose the following design goals for a scalable directory
service:

• Maintain UNIX file-system semantics: To ease
adoption by existing applications, we maintain UNIX
file-system semantics (like no duplicates, no range queries
and unordered readdir scans) instead of proposing a
radically different interface like scientific databases or
custom file-system API.

• High throughput and scalability: The overall sys-
tem performance should scale with increasing cluster
size. Our goal is to store billions to trillions of entries
in a directory and handle hundreds of thousands of
operations per second.

• Incremental growth: Measurement studies have shown
that while most files are stored in a few large direc-
tories, vast number of directories are small [7]. So,
small directories should not incur storage or perfor-
mance overhead just because large directories exist.

• Minimal bottlenecks and shared state synchro-
nization: Many distributed file systems use central-
ized servers for various functions like locking, lookups
and ease of manageability. To achieve high through-
put, we seek to eliminate as much of the bottlenecks
and synchronization overhead during highly concur-
rent access as possible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Supercomputing’07 Nov. 10-16, 2007, Reno, NV
Copyright 2007 ACM 978-1-59593-899-2/07/11 ...$5.00.

26

Proceedings of the 2nd international Petascale Data Storage Workshop (PDSW '07)
held during Supercomputing '07. November 11, 2007, Reno, NV.

• Burst performance: Large directories start small
and sometimes grow very quickly. These“storms”while
building a large directory, i.e., when all clients simulta-
neously start inserting files into a newly created direc-
tory at maximum rate, need to be handled efficiently
and not lead to system instability.

The following section describes a design we’re investigating
to meet these goals.

2. DESIGN OF GIGA+
We are engaged in a research project to map out the trade-
offs in a distributed directory service, called Giga+, that
meets the above goals. Giga+ partitions each directory
over a scalable number of servers – i.e., huge directories are
striped over large number of servers. Directories are parti-
tioned in a manner that effectively load-balances all servers;
Giga+ achieves this uniform distribution by hashing the
name of the directory entries.

2.1 Client Lookup in GIGA+: P2SMap and
Incremental Growth

For scalable performance, a good solution needs a mapping
technique that allows the clients to lookup the correct par-
tition and the server it maps to without an intermediate
lookup service or a consistent client cache. Using an interme-
diate lookup server can introduce a bottleneck in the system.
Directories with billions of entries can grow to 10-100 GB
in size; as a result, caching a directory at the client is hard.
In addition under high insert rates, a cache consistency pro-
tocol can incur a significant overhead in terms of number
of messages and cache synchronization latency. Even just
caching the mapping i.e., non-leaf nodes of the B-tree, can
experience large rates of change in a high throughput sys-
tem. Thus it is important in Giga+ that clients be able
to derive the correct partition and server for an operation
without overloading some specific look-up server or keeping
up-to-date caches of all clients.

A novel property of Giga+ is that each client caches its
own partition-to-server map (P2SMap), without using a tra-
ditional, synchronous cache consistency protocol. As the
directory grows, at high insert rates, the directory is parti-
tioned on more servers. Clients will not immediately know
about the partitions created at the server due to an opera-
tion sent by another client. As a result, all clients will end up
having different, out-of-date copies of the P2SMap. Despite
the inconsistent copies of P2SMap, Giga+ ensures that the
clients’ requests are forwarded to the correct server.

Giga+ guarantees correctness by keeping local records of
how the directories grow with usage – i.e., each server keeps
a split history of all partitions they store. To provide in-
cremental growth, each directory in Giga+ is represented
using an extendible indexing structure like a B-link tree [5]
or extendible hashing [4]. In this discussion, we limit our-
selves to extendible hashing, which uses a hash-table that
grows and shrinks dynamically with usage, although a B-
tree approach would be similar. Extendible hashing uses
a two-level structure: A header table at the first level and
buckets at the second level. The header table is an index
that maps a key to the appropriate buckets; in Giga+ the

P2SMap serves as the header table. Similarly, in Giga+ ,
buckets contain the contents of the directory and are dis-
tributed across the servers; these buckets are referred to as
(directory) partitions.

Inserting an entry in a full partition results in splitting the
partition across two servers. Giga+ servers keep a split his-
tory for every partition they store, recording all splits they
perform. For instance, splitting a partition P1, at server S1,
creates a new partition P2 on a another server S2. The split
history for P1, recorded by S1, includes information about
the new partition resulting from the split: P2, the server
that holds P2 (i.e. S2) and other information about P2, like
the range of keys. A client with stale P2SMap sends its
request to an “incorrect” server that no longer holds the de-
sired partition. However this “incorrect” server knew about
the desired partition in the past; so, the server uses its split
history to update the client’s P2SMap. Eventually client
requests are sent to the “correct” server . In the example
above, S1 may receive operations from a client with a stale
P2SMap for keys now stored in P2, which it cannot service.
However, using its split history, S1 is able to redirect the
client to a server more recently responsible for those keys,
i.e. S2 In this worst case, this process could take O(log n)
forwarding hops, but the client updates its P2SMap with
each forward, so the number of times this action is per-
formed is bounded. Thus, the split history at the servers
allows Giga+ clients to maintain an inconsistent copies of
P2SMap without affecting the correctness of the system.

Another key feature of Giga+ is the novel representation
of P2SMap that uses a deterministic mapping between par-
titions and the servers. Each huge directory is partitioned
over a set of servers known a priori, called the server list.
Giga+ achieves a load-balanced partitioning by using keys
obtained by hashing the directory entry names; this key
serves as an index to lookup the desired partition. As a re-
sult, given the server list and the index, clients in Giga+ use
their P2SMap to locate the partition and the server that
holds partition.

The P2SMap is represented as a bitmap, where the status
of a bit indicates the presence or absence of a partition as
shown in Figure 1. Given an index I, clients check the status
of the bit at position I in the bitmap. If the bit is set, the
partition exists and we use the server list to find the server
and the partition ID on that server. If the bit is not set,
either the partition does not exist or the client bitmap is
stale and doesn’t know about the partition. In both cases,
we check the status of the bit at position �I/2�; if the bit at
this position is not set, we check the bit at position �I/4�,
etc. Clients repeat this until they encounter a bit that is set
and send the request to the appropriate server as shown in
Figure 2.

The bitmap representation of P2SMap has several significant
advantages. First, the size of P2SMap is small enough (few
kilobytes) to reside in-memory at most times. A directory
with billion entries, which is split such that each partition
holds 10000 entries, needs 100000 buckets – the P2SMap for
this directory is a little more than 12 kilobytes. Second,
bitmap representation enforces that partitions on a given
server are stored in an ordered table. Since, each server can

27

3

2

1

0 F1, F3 ..

F2, …

F4, bar

Header-table Partitions

Server 1

Server 2

Server 3

Header-table is represented
as a bitmap that indicates
“presence” or “absence”
of a partition on a server.

1

1

0

1

Figure 1: This figure shows how an extendible hash-table [Fagin79] is used to store a directory, which is
split into partitions (which store the dir entries) that are distributed across many servers. The header-table
represents the mapping information used by clients lookup the correct partition and its server. Instead of
keeping the header-table, GIGA+ uses a bitmap, which indicates the “presence” or “absence” of a partition
on the server. This provides a deterministic mapping of partitions to the correct server.

potentially store many partitions for a directory (and many
such directories), the lookup for the right partitions is fast.

2.2 Optimizations: Two-Level Metadata and
Insert Storms

Giga+ uses a few optimizations to meet its design goals.
Large insert rates can cause bottlenecks when updating the
metadata at the metadata servers (MDS). Giga+ avoids
this by using a two-level metadata hierarchy that updates
the remote MDSs very rarely, by keeping the most frequently
updated metadata on the local server. For example, infre-
quently updated metadata, such as the owner and creation
time of a directory may be stored at a centralized server
without introducing a bottleneck, whereas highly dynamic
attributes such as access and modification time are allowed
to diverge across all servers managing the directory. It is the
responsibility of clients to achieve the consistency they de-
sire for these non-centralized attributes, e.g. by polling. In
order to tolerate and recover from failures, Giga+ keeps a
write-ahead log of server operations and uses active-passive
synchronous backups.

While Giga+ should perform well in steady state, certain
workloads can generate bursts of high traffic that result in
packet loss and increased latency. Giga+ provides server
resources proportional to the directory size – i.e., small di-
rectories are striped across small number of servers. When
many clients start inserting into a small directory at their
maximum rate, the servers holding the directory stripes will
be overloaded. For example, scientific workloads periodi-
cally checkpoint by barrier syncing all clients, and causing
each core to create separate checkpoint files in a newly-
created directory. The volume of inserts operations sent
to the single server storing the directory’s initial partition
may overwhelm the network switches, saturate buffers at the
server, and force the directory to undergo many partition
splits to accommodate the new files, causing general insta-
bility. A similar phenomenon was observed in the Sprite
file-system when a server recovering from a crash experi-
enced a storm of recovery messages from clients [2]. We call
this phenomenon an insert storm.

Similar to the approach in the Sprite file-system, in Giga+ ,
if a server is overloaded, i.e., doesn’t have resources to ser-
vice a request, it responds with a negative acknowledgment
(NACK) that tells the clients to back-off and engage in flow
control. Without these NACK messages, clients can falsely
assume that the server is unavailable and either stop sending
messages or send them continuously at a rapid rate. How-
ever, NACKing all requests at the server may be detrimental
to high priority control messages like “heart-beats” to detect
server availability. We plan for servers to maintain a sepa-
rate channel reserved for high priority messages, a technique
used in some cluster storage systems [3].

However, using NACKs doesn’t resolve our initial concern:
Giga+ provides server resources only in proportion to the
current size of the directory, which may be insufficient for
quickly and stably handling a storm. Ideally, to service a
storm, the system should preemptively allocate extra servers
to handle the expected final size of the directory. In order to
estimate the final size of the directory, we need to aggregate
statistics about the pending requests in the system.

In Giga+ , we propose to use intermediate proxies that help
both in aggregating statistics and in diverting bursty traffic
to non-overloaded servers in the face of an insert storm. If
a server is overloaded and clients begin receiving NACKs,
each client sends their requests to a randomly selected proxy
server that buffers and aggregates the client traffic rather
than directly to its destination. These proxy servers control
the traffic sent to the overloaded servers by using flow control
mechanisms. In addition, aggregating all client requests at
the proxy servers allows the collection statistics about these
requests.

Proxy servers use these statistics of client requests to control
the behavior of the system under a storm using the high
priority channel. If the statistics indicate a storm of file
creates in the same directory, Giga+ would preemptively
split the partition to accommodate the high insert rates.
By splitting a directory’s partitions when they are mostly
empty, rather than waiting for them to be full, we seek to

28

{ 1 1 1 0 0 1 0 0 }0

Hash(key) = K
indexed at ‘i’

1 0 0
while bitmap[i] != 0 {

 i = i/2;
}

Figure 2: This figure shows how we use the BITMAP representation to lookup the presence or absence of
a partition on any server. A bit-value of “1” indicates the presence of a partition on a server, and value “0”
indicates the absence of the partition on a server. If the bit-value of “0”, GIGA+ indexing techniques halves
the index and checks the status of the parent partition..

eliminate most of the traffic needed to share the contents of
the partition. This helps Giga+ service the storm of create
requests by pre-allocating extra servers for the directory,
thus allocating server resources in proportion to the final size
rather than the current size. Even though this optimization
introduces another level of indirection to traffic, it avoids
the bottleneck of a single server during an insert storm and
uses pre-splitting to reduce the expense of many incremental
growths from a small directory into a large one. As a result,
Giga+ can handle bursty request traffic by minimizing the
overhead caused by dropping requests and increased latency.

3. STATUS
Currently, we are implementing Giga+ in PVFS (Parallel
Virtual File System), an open-source cluster file system [8],
used in production at various national labs. PVFS stores
directories on a single server, which limits the scalability
and throughout of operations on a single directory. Our
Giga+ prototype extends PVFS by striping large directories
over multiple servers.

4. REFERENCES
[1] Private Communication with Garth A. Gibson,

Panasas Inc.

[2] M. Baker and J. K. Ousterhout. Availability in the
Sprite Distributed File System. Operating Systems
Review, 25(2), Apr. 1991.

[3] M. Eisler, P. Corbett, M. Kazar, D. S. Nydick, and
J. C. Wagner. Data ONTAP GX: A Scalable Storage
Cluster. In Proc. of the FAST ’07 Conference on File
and Storage Technologies, San Jose CA, Feb. 2007.

[4] R. Fagin, J. Nievergelt, N. Pippenger, and H. R.
Strong. Extendible Hashing – A Fast Access Method
for Dynamic Files. ACM Transactions on Database
Systems, 4(3), Sept. 1979.

[5] P. L. Lehman and S. B. Yao. Efficient Locking for
Concurrent Operations on B-Trees. ACM
Transactions on Database Systems, 6(4), Dec. 1981.

[6] J. MacCormick, N. Murphy, M. Najork, C. A.
Thekkath, and L. Zhou. Boxwood: Abstractions as the
Foundation for Storage Infrastructure. In Proc. of the

6th Symposium on Operating Systems Design and
Implementation (OSDI ’04), San Francisco CA, Dec.
2004.

[7] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A.
Kunze, M. Kupfer, and J. G. Thompson. A
Trace-Driven Analysis of the UNIX 4.2 BSD File
System. In Proc. of 10th ACM Symposium on
Operating Systems Principles (SOSP ’85), Orcas
Island WA, Dec. 1985.

[8] PVFS2. Parallel Virtual File System, Version 2.
http://www.pvfs2.org.

[9] R. Ross, E. Felix, B. Loewe, L. Ward, J. Nunez,
J. Bent, E. Salmon, and G. Grider. High end
computing revitalization task force (HECRTF), inter
agency working group (HECIWG) file systems and
I/O research guidance workshop.
http://institutes.lanl.gov/hec-fsio/docs/HECIWG-
FSIO-FY06-Workshop-Document-FINAL6.pdf,
2006.

[10] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proc. of the
FAST ’02 Conference on File and Storage
Technologies, Monterey CA, Jan. 2002.

[11] A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck. Scalability in the XFS
File System. In Proc. of USENIX Conference ’96, San
Jose CA, 1996.

[12] T. Y. Ts’o. Planned Extensions to the Linux
Ext2/Ext3 Filesystem. In Proc. of USENIX
Conference ’02, FREENIX Track, Monterey CA, 2002.

[13] VERIZON. ’Trans-Pacific Express’ to Offer Greater
Speed, Reliability and Efficiency.
http://newscenter.verizon.com/press-
releases/verizon/2006/verizon-business-joins.html,
Dec. 2006.

29

