
A case for scaling HPC metadata performance
through de-specialization

Swapnil Patil, Kai Ren and Garth Gibson
Carnegie Mellon University

{svp, kair, garth}@cs.cmu.edu

I. INTRODUCTION

Lack of a highly scalable and parallel metadata service is
the Achilles heel for many cluster file system deployments in
both the HPC world [17], [24] and the Internet services world
[10]. This is because most cluster file systems have focused
on scaling the data path, i.e. providing high bandwidth parallel
I/O to files that are gigabytes in size. But with proliferation of
massively parallel applications that produce metadata-intensive
workloads, such as large number of simultaneous file creates
[6] and large-scale storage management [2], cluster file sys-
tems also need to scale metadata performance.

Numerous applications and use-cases need support for con-
current and high-performance metadata operations. One such
example, checkpointing, requires the metadata service to han-
dle large number of file creates and updates at very high speeds
[6]. Another example, storage management, produces read-
intensive metadata workload that typically scans the metadata
of the entire file system to perform administration tasks for
analyzing and querying metadata [11], [13].

We envision a scalable metadata service with two goals.
The first goal – evolution, not revolution – emphasizes the
need for a solution that adds new support to existing cluster
file systems that lack a scalable metadata path. Although newer
cluster file systems, including Google’s Colossus file system
[9], OrangeFS [16], UCSC’s Ceph [27] and Copernicus [12],
promise a distributed metadata service, it is undesirable to
replace existing cluster file systems running in large produc-
tion environments just because their metadata path does not
provide the desired scalability or the desired functionality.
Several large cluster file system installations, such as Panasas
PanFS running at LANL [28] and PVFS running on Argonne
BG/P [1], [21], can benefit from a solution that provides, for
instance, distributed directory support that does not require any
modifications to the running cluster file system. The second
goal – generality and de-specialization – promises a fully,
distributed and scalable metadata service that performs well
for ingest, lookups, and scans. In particular, all metadata,
including directory entries, i-nodes and block management,
should be stored in one structure; this is different from today’s
file systems that use specialized on-disk structures for each
type of metadata.

To realize these goals, this paper makes a case for a
scalable metadata service middleware that layers on existing
cluster file system deployments and distributes file system

metadata, including the namespace tree, small directories
and large directories, across many servers. Our key idea is
to effectively synthesize a concurrent indexing technique to
distribute metadata with a tabular, on-disk representation of
all file system metadata.

For distributed indexing, we re-use the concurrent, incre-
mental, hash-based GIGA+ indexing technique [20]. The main
shortcoming of the GIGA+ prototype is that splitting the meta-
data partitions for better load-balancing involves migrating
the directory entries and the associated file data [20]. This
is inefficient for HPC systems where files can be gigabytes or
more in size. Our middleware avoids this data migration by
interpreting directory entries as symbolic links: each directory
entry (the name created by the application) has a physical
pathname that points to a file in the underlying cluster file
system that stores the contents of the file. This representation
of directory entries is enabled through the use a novel on-disk
metadata representation based on a log-structure merge tree
(LSM-tree) data structure [18], [22]. We use the LevelDB key-
value store to implement all file system metadata, including
files, directories, and their i-node attributes, in flat files sorted
on a unique key [14]. This organization facilitates high-speed
metadata creation, lookups and scans.

Effectively integrating the LevelDB-based metadata store
with the distributed indexing technique requires several op-
timizations including cross-server split operations with min-
imum data migration, and decoupling data and metadata
paths. To demonstrate the feasibility of our approach, we
implemented a prototype middleware layer using the FUSE
file system and evaluated it on 64-node cluster. Preliminary
results show promising scalability and performance: the single-
node local metadata store was 10X faster than modern local
file systems and the distributed middleware metadata service
scaled well with a peak performance of 190,000 file creates
per second on a 64-server configuration.

II. DESIGN AND IMPLEMENTATION

Figure 1 shows the architecture of our scalable metadata
service that is designed to be layered on existing deployments
of cluster file systems. Our approach uses a client-server
architecture and has three components: unmodified applica-
tions running on clients, the GIGA+ directory indexing service
on clients and servers, and the LevelDB-based persistent
metadata representation managed by the server. Applications
interact with our middleware using the VFS interface exposed

ClusterFS setup

Metadata
indexing

client
Apps

FUSE

!
"
#
$
%

Metadata
indexing

server

ClusterFS

levelDB-based directory
structures stored on ClusterFS

{logical_path ! clusterfs_path}

LevelDB
for metadata

ClusterFS
!"#$%&'(

clusterfs_path " resolve(logical_path),
create(logical_path), mkdir(logical_dir), ...

!le/directory creation

Data path
(using the

clusterfs_path)

Metadata
 path

Fig. 1. Design of our scalable metadata middleware that
integrates a distributed metadata indexing technique with a
tabular metadata-optimized on-disk layout on each server and
layers on existing cluster file systems.

through the FUSE user-level file system [3]. All metadata
requests, such as create(), mkdir() and open(), are
handled through the GIGA+ indexing modules that address
the request to the appropriate server. Each indexing server
manages its local LevelDB instance to store and access all
metadata information. This LevelDB instance stores flat files
(in its special format) containing changes in metadata. Once
the client receives the relevant metadata back from the server,
our middleware allows clients to access the actual file contents
directly through the cluster file system.

Using GIGA+ and LevelDB enables us to tackle two key
challenges: highly concurrent metadata distribution for ingest-
intensive parallel applications such as checkpointing [6] and
optimized metadata representation that stores all file system
metadata in structured, indexed files managed by existing
cluster file system deployments [14].

Remainder of this section describes more details of our
approach. Section II-A presents a primer on how GIGA+
distributes metadata. Section II-B shows how LevelDB stores
all file system metadata using a single on-disk structure on
each server. Section II-C describes the challenges in effectively
integrating GIGA+ and LevelDB to work with existing cluster
file systems.

A. Scalable partitioning using GIGA+

GIGA+ is a distributed hash-based indexing technique that
incrementally divides each directory into multiple partitions
that are spread over multiple servers [20]. Each filename stored
in a directory entry is hashed and mapped to a partition using
an index. GIGA+ selects a hash partition such that for any
distribution of unique filenames, the hash values of these
filenames will be uniformly distributed in the hash space. In
addition to load-balanced distribution, GIGA+ also grows the
directory index incrementally, i.e. all directories start small on
a single server, and then expand to more servers as they grow
in size.

The core idea behind GIGA+ is parallel splitting: each server
splits without system-wide serialization or synchronization.
Every server makes a local decision, without coordinating

Buffer

L0

L1

L3

Disk:

RAM:

…..

002,..,123

[001..100]

[001..110] [550..800]

[001..080] [900..910]

….

[120..530
]

[115..300] [310..400]

Compaction

Fig. 2. LevelDB represents data on disk in multiple SSTables
that store sorted key-value pairs.

with other servers, about when to split a partition. Such
uncoordinated growth causes GIGA+ servers to have a partial
view of the entire index; there is no central server that holds
the global view of the partition-to-server mapping. Each server
knows about the partition it stores and the identity of another
server that knows more about each “child” partition resulting
from a prior split by this server. This information is known as
the per-server split history of its partitions. The full GIGA+
index is a transitive closure of the split history on each server
and represents the lineage of directory partitioning.

The full index (and split history) is also not maintained
synchronously by any client. GIGA+ clients can enumerate
the partitions of a directory by traversing its split histories
starting with the first partition that was created during mkdir.
However, such a full index that is cached by a client may be
stale at any time, particularly for rapidly mutating directories.
GIGA+ allows clients to keep using the stale mapping in-
formation and receiving mapping updates from servers. More
discussion on the cost-benefit of using inconsistent mapping
state is not relevant to this work and can be found in prior
GIGA+ literature [19], [20].

B. Metadata layout using LevelDB

LevelDB [14] is an open-source key-value storage library
that features a log-structured merge (LSM) Tree [18] for on-
disk storage. LevelDB is inspired by the per-server tablet
architecture in BigTable [4]. In a simple understanding of
an LSM tree, an in-memory buffer cache delays writing
new and changed entries until it has a significant amount of
change to record on disk. Using LevelDB as a local storage
representation for metadata can transform metadata updates
to large, non-overwrite, sorted and indexed logs on disks,
which greatly reduces random disk seeks. The detailed design
of LevelDB and how to use LevelDB to store metadata is
explained in the following sections.

LevelDB and LSM trees – In LevelDB, by default, a set of
changes are spilled to disk when the total size of modified
entries exceeds 4 MB. When a spill is triggered, called a
minor compaction, the changed entries are sorted, indexed and
written to disk in a format called an SSTable[4]. These entries
may then be discarded by the in memory buffer and can be
reloaded by searching each SSTable on disk, possibly stopping

Key Value
<0,h1> 1, “home”, struct stat

<1,h2> 2, “foo”, struct stat

<1,h3> 3, “bar”, struct stat,
symbolic link to object

<2,h4> 4, “apple”, struct stat,
symbolic link to object

<2,h5> 5, “book”, struct stat,
symbolic link to object

Le
xi

co
gr

ap
hi

c
or

de
r

book
hash(“book”)=h5

/
Home

hash(“home”)=h1

foo
hash(“foo”)=h2

bar
hash(“bar”)=h3

apple
hash(“apple”)=h4

0

32

1

4
5

Fig. 3. An example illustrating a table schema for storing
metadata into LevelDB.

when the first match occurs if the SSTables are searched most
recent to oldest. The number of SSTables that need to be
searched can be reduced by maintaining a Bloom filter[7] on
each, but, with time, the cost of finding a record not in memory
still increases. Major compaction, or simply “compaction”, is
the process of combining multiple SSTables into a smaller
number of SSTables by merge sort.

As illustrated in Figure 2, LevelDB extends this simple
approach to further reduce read costs by dividing SSTables
into sets, or levels. In 0-th level, each SSTable may contain
entries with any key value, based on what was in memory at
the time of its spill. The higher levels of LevelDB’s SSTables
are the results of compacting SSTables from their own or lower
levels. In these higher levels, LevelDB maintains the following
invariant: the key range spanning each SSTable is disjoint from
the key range of all other SSTables at that level. So querying
for an entry in the higher levels only need read at most one
SSTable in each level. LevelDB also sizes each of the higher
levels differentially: all SSTables have the same maximum size
and the sum of the sizes of all SSTables at level L will not
exceed 10L MB. This ensures that the number of level grows
logarithmically with increasing numbers of entries. LevelDB
compactions are similar to streaming B-trees used in TokuDB
products [5], [8].

Table schema – The local metadata store aggregates directory
entries and inode attributes into one LevelDB table with a row
for each file and directory. To link together the hierarchical
structure of the user’s namespace, the rows of the table are
ordered by a 224-bit key consisting of the 64-bit inode number
of a file’s parent directory and a 160-bit SHA-1 hash value
of its filename string (final component of its pathname). The
value of a row contains the file’s full name and inode attributes,
such as inode number, ownership, access mode, file size,
timestamps (struct stat in Linux), and a symbolic link that
contains the actual path of the file object in the object store.
Figure 3 shows an example of storing a sample file system’s
metadata into one LevelDB table.

All the entries in the same directory have rows that share
the same first 64 bits in their the table’s key. For readdir
operations, once the inode number of the target directory has
been retrieved, a scan sequentially lists all entries having the

directory’s inode number as the first 64 bits of their table’s
key. To resolve a single pathname, the metadata server starts
searching from the root inode, which has a well-known global
inode number (0). Traversing the user’s directory tree involves
constructing a search key by concatenating the inode number
of current directory with the hash of next component name in
the pathname.

C. Integrating GIGA+ and LevelDB

To effectively integrate the GIGA+ distribution mechanism
with the LevelDB-based metadata representation, we tackled
several challenges.

Metadata representation – LevelDB stores all metadata
including GIGA+ hash partitions for directories, entries in each
hash partition, and other bootstrapping information such as
root entry and GIGA+ configuration state. The general schema
used to store all file is:

<KEY> --> <VALUE>

{parentDirID, {attr(dirEntry),
gigaPartitionID, --> symlink,
hash(dirEntry), gigaMetaState}
dirEntry}

The main difference from the LevelDB schema described
in Section II-B is the addition of two GIGA+ specific fields:
gigaPartitionID to identify a GIGA+ hash partition and
gigaMetaState to store the hash partition related mapping
information. These GIGA+ related fields are used only if large
directories are distributed over multiple metadata servers.1

Partition splitting – Each GIGA+ hash partition and its
directory entries are stored in SSTable files in a local LevelDB
instance. Recall that each GIGA+ server process splits a hash
partition P on overflow and creates another hash partition P ′

which is managed by a different server; this split involves
migrating approximately half the entries from old partition P
to the new hash partition P ′ on another server during which
the key range in write is locked. We explored several ways to
perform this cross-server partition split.

A simple approach to splitting would be to perform a
LevelDB range scan on partition P and deleting about half the
results (corresponding to the keys that are migrated to the new
partition) from P . All entries that need to be moved to the new
partition P ′ are batched together and sent in an RPC message
to the server that will manage partition P ′. The recipient server
inserts each key in the batch in its own LevelDB instance.
While the simplicity of this approach makes it attractive, we
would like a faster technique to reduce the time that the range
is write locked.

1Since we already store the hash of the directory entry, we can use the
hash-values to identify hash partitions if we chose to use the same hash
function for both GIGA+ and LevelDB keys. This optimization can eliminate
the need for gigaPartitionID in the schema.

The immutability of LevelDB SSTables makes such a fast
bulk insert possible – an SSTable can be added to Level 0
without its data being pushed through the write-ahead log
and minor compaction process. To take advantage of this
opportunity, we extended LevelDB to support a three-phase
split operation. First, the split initiator performs a range scan
on its LevelDB instance to find all entries in the hash-range
that needs to be moved to another server. The results of this
scan are written in a LevelDB-specific SSTable format to file
in the underlying cluster file system. In the second step, the
split initiator notifies the split receiver about the new LevelDB-
format file in a much smaller RPC message. The split receiver
then bulk inserts the file into the LevelDB tree structure instead
of iteratively inserting one key at a time. The final step is
a clean-up and commit phase: after the receiver completes
the bulk insert operation, it notifies the initiator, who then
deletes the migrated hash-range from its LevelDB instance
and unlocks the range.

Decoupled data and metadata path – All metadata opera-
tions go through the GIGA+ server; however, following the
same path for data operations would incur an unnecessary
performance penalty of shipping data over the network on
extra time. This penalty can be significant in HPC use-cases
where files can easily be gigabytes to terabytes in size.

To avoid this penalty our middleware is designed to perform
all data-path operations directly through the cluster file system
module in client machine. Figure 1 illustrates this data path (in
BLUE color). Once the client completes a lookup on a desired
file name, it gets back a symbolic link to the physical path
in the cluster file system. All subsequent accesses using this
symbolic link force the client operating system to resolve this
link into the cluster file system. While the file is open, some of
its attributes (e.g., file size and last access time) may change
relative to LevelDB’s per-open copy of the attributes. GIGA+
will capture these changes on file close on the metadata path.
Other attribute changes relatvie to permissions can be updated
on-flight through GIGA+ servers.

III. PRELIMINARY EVALUATION

We built a FUSE-based middleware filesystem prototype
and tested its metadata performance on a 64-node cluster of
dual core machines with 16GB memory interconnected with
one GigE NIC. Each node had a GIGA+ indexing server pro-
cess that managed its own LevelDB instance that was stored
on a local disk running Linux Ext3 file system. This hardware
does not have HPC-class networking or cluster file system,
so our preliminary experiments exclusively used metadata-
intensive microbenchmarks. To emulate shared storage for split
operations, we used a NFS-mounted volume accessible from
all machines; this volume was only used for our cross-server
LevelDB split optimization. We evaluated the performance of a
single-node LevelDB-based metadata store and the scalability
of our distributed middleware on 64 nodes.

We first evaluated the performance of a single-node
LevelDB-based metadata store by running a test that creates

0 5 10 15 20 25 30 35
Time (K Seconds)

102

103

104

105

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

BTRFS
Ext4
XFS
LevelDB Metadata Store

Fig. 4. Single-node LevelDB-based metadata store is 10X
faster than modern Linux filesystems for a workload that
creates 100 million zero-length files. X-axis only shows the
time until LevelDB finished all insertions because the other
file systems were much slower. Y-axis has a logarithmic scale.

100 million zero-length files in a single directory. Figure
4 compares the instantaneous throughput of LevelDB-based
metadata store with three Linux file systems: Ext4 [15], XFS
[26], and BTRFS [23]. All systems perform well at the
beginning of the test, but the file create throughput drops
gradually for all systems. BTRFS suffers the most serious
throughput drop, slowing down to 100 operations per second.
The LevelDB-based store, however, maintains a more steady
performance with an average speed of 2,200 operations per
second respectively, and is 10X faster than all other tested
file systems.

Next, we evaluated the scalability of our distributed meta-
data middleware prototype. Figure 5 shows the instantaneous
throughput during the concurrent create workload in a strong
scaling experiment, i.e. creating 1 million files per server, for
a total of 64 million files in the 64-server configuration. The
main result in this figure is that as the number of servers
doubles the throughput of the system also scales up. With
64 servers, GIGA+ can achieve a peak throughput of about
190,000 file creates per second. The prototype delivers peak
performance after the directory workload has been spread
among all servers. Reaching steady-state, the throughput
quickly grows due to the splitting policies adopted by GIGA+.

After reaching the steady state, throughput slowly drops as
LevelDB builds a larger metadata store. In fact, in large setups
with 8 or more servers, the peak throughput drops by as much
as 25% (in case of the 64-server setup). This is because when
there are more entries already existing in LevelDB, it requires
more compaction work to maintain LevelDB invariants and to
perform a negative lookup before each create has to search
more SSTables on disk. In theory, the work of inserting a new
entry to a LSM-tree is O(logB(n)) where n is the total number
of inserted entries, and B is a constant factor proportional to
the average number of entries transferred in each disk request
[5]. Thus we can use the formula a·S+b

log T to approximate the

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

 0 50 100 150 200 250 300 350 400 450

F
i
l
e
s

c
r
e
a
t
e
d

p
e
r

s
e
c
o
n
d

Time (seconds)

Incremental growth phase
 (shaded area)

64 servers

32 servers

16 servers

8 servers

4 servers

2 servers

1 server

Fig. 5. Our middleware metadata service prototype shows
promising scalability up to 64 servers. Note that at the end of
the experiment, the throughput drops to zero because clients
stop creating files as they finish 1 million files per client.
And the solid lines in each configuration are Bezier curves
to smooth the variability.

throughput timeline in Figure 5, where S is the number of
servers, T is the running time, and a as well as b are constant
factors relative to the disk speed and splitting overhead. This
estimation projects that when inserting 64 billion files with 64
servers, the system may deliver an average of 1,000 operations
per second per server, i.e. 64,000 operations per second in
aggregate.

IV. FUTURE CHALLENGES

Before our work can be useful in real HPC deployments,
we need to address several issues.

First, we will layer our middleware on top of a real cluster
file system. This will allow us to inherit the data path scalabil-
ity when accessing the file data as well as LevelDB’s SSTables.
We also plan to explore how we can effectively leverage the
fault tolerance mechanisms and system configuration tools
already present in the cluster file systems.

Second, we will minimize the FUSE overheads associated
with accessing files. Even after the application gets a symbolic
link pointing to the physical location of the file, our current
prototype will rely of FUSE and VFS to dereference the
symbolic link. We want to avoid this FUSE interposition by
changing the FUSE kernel module to support distributed file
system file handles but still receive prompt notifications of
attribute changes on file close.

Third, we will explore several recently published opti-
mizations to minimize the background compaction operations
triggered by data stores built on the LSM trees and similar
data-structures [5], [8], [25]. Compactions are a necessary evil:
in order to speed up future reads and scans, the steal resources
from foreground operations that happen simultaneously with
these background operations. We want to explore heuristics
that can minimize the impact of foreground operations for
metadata-specific workloads.

V. SUMMARY

Modern cluster file systems provide highly scalable I/O
bandwidth along the data path by enabling highly parallel
access to file data. Unfortunately metadata scaling is lagging
behind data scaling. We propose a file system design that
inherits the scalable data bandwidth of existing cluster file
systems and adds support for distributed and high-performance
metadata operations. Our key idea is to integrate a distributed
indexing mechanism with general-purpose optimized on-disk
metadata store. Early prototype evaluation shows that our
approach outperforms popular Linux local file systems and
scales well with large numbers of file creations.

ACKNOWLEDGMENT

This research is supported in part by The Gordon and Betty
Moore Foundation, NSF under award, SCI-0430781 and CCF-
1019104, Qatar National Research Foundation 09-1116-1-172,
DOE/Los Alamos National Laboratory, under contract number
DE-AC52- 06NA25396/161465-1, by Intel as part of the Intel
Science and Technology Center for Cloud Computing (ISTC-
CC), by gifts from Actifio, EMC, Emulex, Facebook, Fusion-
IO, Google, Hewlett-Packard, Hitachi, Huawei, Intel, NEC,
NetApp, Oracle, Panasas, Samsung, Seagate, STEC, Syman-
tec, VMWare, and Western Digital. We thank the member
companies of the PDL Consortium for their interest, insights,
feedback, and support.

REFERENCES

[1] BG/P File Systems. https://www.alcf.anl.gov/resource-guides/
bgp-file-systems.

[2] File System Metadata Management in ISSDM. https://issdm.soe.ucsc.
edu/node/242.

[3] FUSE. http://fuse.sourceforge.net/.
[4] Fay Chang and. BigTable: a distributed storage system for structured

data. In OSDI, 2006.
[5] Michael Bender and et al. Cache-oblivious streaming B-trees. In SPAA,

2007.
[6] John Bent and et al. PLFS: a checkpoint filesystem for parallel

applications. In SC, 2009.
[7] B.H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communication of ACM 13, 7, 1970.
[8] John Esmet and et al. The TokuFS streaming file system. HotStorage,

2012.
[9] Andrew Fikes. Storage Architecture and Challenges (Jun 2010). Talk

at the Google Faculty Summit 2010.
[10] HDFS. Hadoop file system. http://hadoop.apache.org/.
[11] Stephanie Jones and et al. Easing the burdens of HPC file management.

2011.
[12] Andrew Leung and et al. Copernicus: A scalable, high-performance

semantic file system. Technical Report UCSC-SSRC-09-06, University
of California, Santa Cruz, 2009.

[13] Andrew Leung and et al. Magellan: A searchable metadata architecture
for large-scale file systems. Technical Report UCSC-SSRC-09-07,
University of California, Santa Cruz, 2009.

[14] LevelDB. A fast and lightweight key/value database library. http://code.
google.com/p/leveldb/.

[15] Avantika Mathur and et al. The new EXT4 filesystem: current status
and future plans. In Ottawa Linux Symposium, 2007.

[16] Micheal Moore and et al. OrangeFS: Advancing PVFS. FAST Poster
Session, 2011.

[17] Henry Newman. HPCS Mission Partner File I/O Scenarios, Revision
3. http://wiki.lustre.org/images/5/5a/Newman May Lustre Workshop.
pdf, 2008.

[18] Patrick O’Neil and et al. The log-structured merge-tree. Acta Informat-
ica, 1996.

[19] Swapnil Patil and et al. Giga+: scalable directories for shared file
systems. In PDSW, 2007.

[20] Swapnil Patil and Garth Gibson. Scale and concurrency of GIGA+: File
system directories with millions of files. In FAST, 2011.

[21] PVFS2. Parallel Virtual File System, Version 2. http://www.pvfs2.org.
[22] Kai Ren and Garth Gibson. TableFS: Enhancing Metadata Efficiency

in the Local File System. CMU Parallel Data Laboratory Technical
Report CMU-PDL-12-110, 2012.

[23] Ohad Rodeh and et al. BRTFS: The Linux B-tree Filesystem. IBM
Research Report RJ10501 (ALM1207-004), 2012.

[24] Rob Ross and et al. High End Computing Revitalization Task Force
(HECRTF), Inter Agency Working Group (HECIWG) File Systems
and I/O Research Guidance Workshop 2006. http://institutes.lanl.gov/
hec-fsio/docs/HECIWG-FSIO-FY06-Workshop-Document-FINAL6.
pdf, 2006.

[25] Russell Sears and Raghu Ramakrishnan. bLSM: a general purpose log
structured merge tree. SIGMOD, 2012.

[26] Adam Sweeney and et al. Scalability in the XFS file system. In USENIX
ATC, 1996.

[27] Sage A. Weil and et al. Ceph: A Scalable, High-Performance Distributed
File System. In OSDI, 2006.

[28] Brent Welch and et al. Scalable Performance of the Panasas Parallel
File System. In FAST, 2008.

