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Abstract—We are approaching a point in time when it will be
infeasible to catalog and query data after it has been generated.
This trend has fueled research on in-situ data processing (i.e.
operating on data as it is streamed to storage). One important
example of this approach is in-situ data indexing. Prior work has
shown the feasibility of indexing at scale as a two-step process.
First, one partitions data by key across the CPU cores of a
parallel job. Then each core indexes its subset as data is persisted.
Online partitioning requires transferring data over the network
so that it can be indexed and stored by the core responsible for
the data. This approach is becoming increasingly costly as new
computing platforms emphasize parallelism instead of individual
core performance that is crucial for communication libraries and
systems software in general. In addition to indexing, scalable
online data partitioning is also useful in other contexts such as
load balancing and efficient compression.

We present FilterKYV, an efficient data management scheme for
fast online data partitioning of key-value (KV) pairs. FilterKV
reduces the total amount of data sent over the network and
to storage. We achieve this by: (a) partitioning pointers to KV
pairs instead of the KV pairs themselves and (b) using a compact
format to represent and store KV pointers. Results from LANL
show that FilterKV can reduce total write slowdown (including
partitioning overhead) by up to 3x across 4096 CPU cores.

I. INTRODUCTION

The exponential growth of data continues unabated. At the
same time, access times for capacity storage hard disks and
flash drives remain almost constant year-to-year. An emerging
reality we need to confront is that we are fast approaching
a point in time when it will be infeasible to comb through
all the data we are generating in order to extract insight [1}-
4]. Fortunately, computational power, as defined in FLOPS,
continues to increase in each cluster [5H7]]. This has led the
research community to move towards performing computation
on data in-situ, i.e., as it streams to storage [S]].

One example of such computation is the in-situ generation
of data indexes [9]]. In-situ data indexing trades off increased
computation at write time for improved data access speed at
read time. The best read performance is achieved when data
is dynamically partitioned during the writing of it such that
queries following the writes are restricted to small subsets of
data. Recent work has shown that in-situ indexing of key-
value (KV) pairs can be performed at the scale of hundreds of
thousands of CPU cores [10]. In addition to indexing, online
data partitioning is also useful in other contexts such as data
compression and load balancing.

978-1-7281-4734-5/19/$31.00 (© 2019 IEEE

The increase in computational power observed in modern
clusters often comes from increasing parallelism at the cost of
individual core performance [11]. GPUs and manycore CPUs
[12] that use a large number of simpler, independent cores
are becoming prevalent across the industry and in modern
High Performance Computing (HPC) platforms [5] |6]. This is
bad news for network-intensive workloads, as many network
operations depend on the performance of individual cores
[13]]. We have found that state-of-the-art Network Interface
Cards (NICs) from Intel, Mellanox, and Cray only expose one
interrupt queue to the Operating System [[14H16]]. While HPC
systems typically give applications direct access to the NIC,
performance still depends on how fast CPUs can communicate
with the NIC and how fast they can handle operations (e.g.,
tag matching) that are not processed by the NIC. Moreover,
library code that directly accesses NIC buffers can only poll
as fast as the cores will let it. This suggests that the number of
Remote Procedure Calls (RPCs) executed per time unit will be
reduced when a program is executed on a GPU- or manycore
CPU-based computing platform. As we show in
our experiments with multicore Intel Haswell and manycore
Intel Knight’s Landing (KNL) CPUs show a 3x difference in
bandwidth and a 4x difference in latency. More importantly,
the impact this will have on application performance will
increase with the number of RPCs the application performs.

To reduce the total number of RPCs sent across the network,
a trivial optimization is to batch multiple KV pairs within the
payload of one RPC. Assuming the size of the payload is fixed,
online data partitioning efficiency then depends on the amount
of data exchanged. We present FilterKV, a data management
scheme that reduces the amount of data moved through the
network when performing online data partitioning. The key
idea behind our approach is to persist each KV pair to local or
shared storage directly, thus moving it quickly off the network.
Then partitioning is performed on a compact representation of
the KV pairs. This compact KV pair representation consists
of a prefix derived from the key and the ID of the process
that generated the KV pair. In we show that this
representation is more compact than previous state-of-the-art
work that moves keys with pointers to values [17} [18]].

We demonstrate FilterKV on the Los Alamos National
Lab’s (LANL) Trinity cluster across 4096 CPU cores. Our
evaluation is based on real HPC simulation workloads that
periodically persist their in-memory state to storage [19-22].
We partition all of this data in-situ and index it as it is written
to storage. In practice, this means that our approach is tailored



TABLE I: Most powerful supercomputers that consist entirely, or in part, of
manycore processors. Data from top500.orgl We also show for each
machine the number of Bloom filter (BF) bytes one needs to budget for
each key to bound the number of data partitions per query per key to 2 (b2)

or 10 (b10). We explain these numbers further in

Machine BF Bytes

World

Rank Name (Organization) CPU Cores b2 b10
6 Trinity (LANL) 979K 340 298
12 Cori (NERSC) 622K 328 2187
13 Nurion (KISTI) 570K 326 284
14 Oakforest-PACS (JCAHPC) 556K 326 284
16 Tera (CEA) 561K 326 284
17 Stampede2 (TACC) 367K 315 273
19 Marconi (CINECA) 348K 313 272
24 Theta (ANL) 280K 3.08 2.66

to applications with bursts of I/O activity where a partitioning
can be decided on-the-fly while load balancing all the CPU
cores. The reason we consider HPC simulations an interesting
use case is because they routinely exhibit extreme entropy in
the way they generate keys. This means that our work makes
no assumptions on the order in which keys are generated
by any process. Furthermore, FilterKV can work for KV
pair sizes ranging from tiny to large. Compared with moving
entire KV pairs, we show that FilterKV can reduce total write
slowdown by up to 3x across 4096 CPU cores depending on
both available network bandwidth and available underlying
storage bandwidth. Compared with the current state-of-the-art
scheme that moves only keys and value pointers, FilterKV can
also reduce write slowdown by up to 1.9x with a negligible
increase in query latency.

The remainder of the paper is organized as follows. In
we provide results that motivate the need for a more
compact data management scheme. In and [IV] we
present the design and implementation of FilterKV.
presents our evaluation of FilterKV compared with the current
state-of-the-art. Finally, we present related work in
and conclude in

II. MOTIVATION

As we build machines with increasing computational power,
or FLOPS [6| 23|, energy efficiency becomes increasingly
important. This has led to the rising popularity of manycore
processors [12]]. Manycore processors feature more CPU cores
per die, but each core operates at a lower frequency and
is less aggressively optimized for single-thread performance
(e.g., fewer reorder buffers or branch predictors for more
cores). Because power consumption decreases approximately
quadratically as CPU frequency decreases, machines equipped
with manycore processors tend to be more energy efficient.
As shows, there are a growing number of computing
platforms built partially or entirely with manycore processors.
Examples of these systems include the Trinity computer at
LANL [24], Cori at NERSC [25]], and Theta at ANL [_26].

The performance of these modern computing platforms can
be best utilized through explicit parallel processing. This can
be achieved by programming applications to use a large num-
ber of threads that each execute as many SIMD instructions
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Fig. 1: Results from LANL (Trinity) and ANL (Theta) comparing RPC
performance between an Intel multicore processor (Haswell) and two
Intel manycore processors (KNL). For reference, we also show in Figure
@ MPI ping-pong latency numbers obtained using the OSU benchmark.

as possible [12]]. However, as a result of considerably reduced
per-core performance, single-threaded request handlers found
in existing systems software (which can be difficult to vec-
torize) are no longer fast enough to meet latency targets [[11]].
Inter-process data communication, perhaps surprisingly, is one
immediate victim of this architectural shift.

To demonstrate the impact of modern manycore processors
on inter-process data communication, we developed an RPC
benchmark program [27]]. Our program uses the Mercury
RPC framework [28]] and libfabric [29] to enable communica-
tion over various low-level interfaces including TCP, RDMA,
and vendor-specific APIs such as the Cray’s GNI API [30,
31]. Using this benchmark we ran tests on the Trinity and
Theta computing platforms at LANL and ANL. Both are
Cray machines equipped with the Aries interconnect [14].
Trinity consists of two types of compute nodes using either
a traditional Intel Xeon multicore processor (Haswell) or an
1.4 GHz Intel Xeon Phi manycore processor (KNL) [12].
All Theta compute nodes use 1.3 GHz KNL processors. Our
tests evaluate each of the 3 processor types. To measure
RPC latency, we ran a sender and a receiver process on two
different nodes. We vary RPC message size from 8 to 64K
bytes. We compare two different RPC modes: polling where
network threads spin waiting for new events, and blocking
where network threads relinquish control over the CPU when
no events are present. We report average RPC latency.

In we see that the RPC latency measured on
the two KNL platforms is noticeably higher (about 4x in
our runs) than that on Haswell. Moreover, in [Figure 1c| we
see that this reduction in performance is more significant (in
absolute terms) when the RPC implementation does not poll
for new events and thus may have multiple context switches
when processing an incoming event. The stark performance
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gap between KNL and Haswell processors is due in a large
part to the fact that the latencies of RPC processing, context
switching, and system call handling are all a function of the
single-thread performance of the underlying processor rather
than the throughput of it. Likewise, our results from LMbench
[32] show that it can take roughly 6x longer to fork a process
on a KNL node than on a Haswell node.

For reference, we show in MPI latency numbers
obtained using the OSU benchmark [33]. KNL latency is still
about 4x higher than Haswell. Note that while MPI code tends
to have better network performance, it provides a different set
of semantics (e.g., requiring all peers to bootstrap together)
than that of RPC. Thus, RPC-based software code might not
be able to leverage MPI development efforts.

When per-core performance is low, total performance may
be improved by splitting a task over multiple cores and having
all the cores progressing in parallel. shows the total
RPC bandwidth we can achieve per node when performing
all-to-all data shuffling across 32 Trinity compute nodes using
different numbers of processes per node (PPN). We fix RPC
message size at 16K bytes, which is the largest payload GNI
supports without requiring bulk transfers [31]. Results show
that while KNL nodes have twice as many CPU cores as
Haswell nodes, per-node RPC bandwidth on KNL nodes is still
roughly 3x lower than that on Haswell nodes. These results
further exemplify the impact of modern computing processors
on inter-process data communication.

While our work is mainly motivated by the reduced network
performance observed on certain recent computing platforms,
this is not the only scenario where applications may have to
undergo higher network communication cost. Communication
cost increases as one scales from thousands of processes to
hundreds of thousands of processes [[10]]. Interference from
concurrent jobs and contention at network devices may also
cause applications to experience reduced network performance
[34,[35]]. The fast data partitioning techniques discussed in this
paper can be applied to these scenarios as well.

III. FAST DATA PARTITIONING DESIGNS

While HPC systems are often built using fast interconnects,
the actual network performance of these computing systems
can be significantly influenced by the compute node processor
architecture and by other bottlenecks within the system. This
can make online data partitioning potentially prohibitively
expensive. We believe that the key to mitigating this problem
is to greatly reduce the total amount of data exchanged over
the network (when partitioning data) so that the overall data
partitioning process is less subject to the hosting environment.
In this section we state the data partitioning problem, describe
the current state-of-the-art solution to it (simple data indirec-
tion), and present FilterKV, our own solution.

A. The Data Partitioning Problem

In this paper we model data as KV pairs [36-39]. We focus
on the partitioning of data among the processes of a parallel
application and its impact on performance. Each application
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Fig. 2: Distributed processes of a parallel application writing data output.
Without data partitioning, data is streamed to per-process files so per-key
data ends up in multiple files and reading a key may require searching
all files. With data partitioning, each key is sent to a particular process
so that reading a key requires searching only a single data partition.

process owns a data partition. Each data partition corresponds
to a disjoint subset of keys. A data partitioning function is
used by the application to determine the process responsible
for a key subset. Each process is a sender of data, and we
assume that any process can also be a receiver for a subset of
keys. Our goal is to reduce the total amount of data that must
be communicated to remote peers.

Many applications, especially those in the scientific domain,
output data without necessarily considering the efficiency of
followup queries [3]]. For these applications, online data parti-
tioning can improve query performance by confining queries
to individual partitions of a dataset. As an example,
shows a case in which output data is not partitioned and is
directly written to per-process files. As a result, a subsequent
query may have to scan an entire dataset in order to recall the
data of a key. However, with data partitioning all data of a key
is grouped at a particular process before writing. Therefore,
reading that key requires searching only a single data partition,
as illustrated in

In this paper we focus on data partitioning that takes place
in-situ with application I/O. This is because in-situ processing
partitions data as it is written so data can be reorganized
without expensive readbacks [40-42]. For computing plat-
forms that use shared remote storage as opposed to on-node
storage [20| 21]], writing data to storage consumes a portion
of the compute node’s total available network bandwidth. As
such, the fraction of the compute node’s network bandwidth
not consumed by storage I/O can be utilized to perform in-
situ data operations. We refer to this bandwidth as residual
network bandwidth. While our previous work considered cases
where this bandwidth is high [9, [10], here we handle cases
where residual network bandwidth is limited making online
data partitioning prohibitive. Note that this limit on residual
network bandwidth may be due to the processor being unable
to fully saturate the NIC as opposed to a property of the
network itself (e.g., low NIC bandwidth).

B. Simple Data Indirection

The current state-of-the-art uses data indirection to avoid
overloading the network when it is slow. With data indirection,
one sends keys and pointers to values rather than entire KV
pairs. To do this, an application process writes the value
portion of a KV pair to a per-process log file, as shown in
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Fig. 3: Illustration of three different data partitioning schemes. @ The base format shuffles intact KV pairs so potentially lots of data is exchanged
over the network. (b) By shuffling keys with only pointers to values, simple indirection (the current state-of-the-art) moves less data but storing
pointers in addition to values can incur a significant amount of extra I/O to storage when value size is relatively small. Finally, by persisting
data pointers in a lossy manner, location information can be stored using less space, reducing total I/O while still permitting efficient reads.

Next, the offset of the write and the rank number
of the process (used as a partition ID) is encoded into a pointer.
The process then sends the composite pointer along with the
key to the partition where the key belongs. With pointers and
keys stored together at their respective data partitions, a reader
program is able to efficiently locate per-key information and
traverse pointers to read back the actual data.

The advantage of sending pointers instead of the actual data
is a reduction in the total amount of data exchanged over the
network. However, storing pointers in addition to the original
data increases total data size and has the disadvantage of
increasing an application’s total I/O time. While this overhead
is negligible when the size of pointers is dwarfed by the
size of their respective KV pairs, this is not always the case.
Values smaller than 250 bytes are reported to be the norm for
Facebook’s Memcached [43]]. Similarly, scientific application
output often consists of a large number of objects smaller
than 50 bytes [44, |45]]. In these cases, applying indirection
may end up adding more overhead to the underlying storage
(in the form of increased I/O time) than is removed from the
network. We study this in more detail in While data
compression helps, storage overhead may be high even after
data compression, as we show in To be able to
more effectively attack this problem, we show that one can use
filter data structures to more compactly represent data pointers
so that they can be stored using considerably less space, even
before compression.

C. FilterKV: Reducing I/0O and Space Overhead

To improve performance beyond simple data indirection,
one needs to reduce its I/O and space overhead when KV
size is small. Recall from that with simple data
indirection the write-path code only sends keys and pointers.
Values are written directly to per-process log files, reducing
the time that this data stays in the network (down to zero if the
storage is directly attached). Readers are able to learn where to
recover the value associated with a key by reading the pointer
stored alongside the key. Each pointer identifies the log file to
which the value is written and the offset in the log file where
the value resides. In practice, indirection pointers can easily
add a 12-byte I/O and storage overhead per key with each

pointer consisting of a 4-byte file ID and an 8-byte file offset.
Our goal is to considerably reduce this overhead while still
allowing readers to efficiently recall per-key data.

Our approach, referred to as FilterKV, exploits lossiness to
reduce data indirection overhead. Rather than recording a key’s
exact data location, we map each key to a list of candidate data
locations of which only one truly stores the data corresponding
to the key. The loss of “accuracy” here enables us to store less
information. We show in that this loss in accuracy
does not significantly impact query performance.

We use filter data structures to reduce the accuracy of our
data pointers and the total amount of extra data we must store.
shows a high-level picture of our design: instead
of writing values to per-process output files and sending keys
with pointers to their respective cores, each application process
now writes complete KV pairs to a per-process KV table. It
then sends a second copy of the keys along with the ID of the
process to the responsible cores. The final data output consists
of two types of tables. One stores the original KV pairs. The
other maps keys to their source data locations. We refer to the
first type of table as main table, and the second type of table
as auxiliary table.

Because information stored in auxiliary tables is partitioned,
a reader program is able to quickly determine a key’s source
location by looking it up at the auxiliary table responsible for
the key. The reader then goes to the corresponding main table
to retrieve the data of the key. Due to intentionally reduced
accuracy, it is possible for keys to be mapped to multiple
source locations. In such cases, a reader program searches all
these locations, potentially concurrently, until it finds the data
of interest. Because main tables are packed with complete KV
pairs, readers know when they hit a key.

IVv.

To avoid overloading the network when partitioning data,
the current state-of-the-art method adds an index entry for
every data record it handles. Then partitioning is performed
on indexes instead of the original data. We call this simple
data indirection, and it can add a significant I/O and storage
overhead when data is small. To alleviate this overhead,
we have designed FilterKV. It includes a compact mapping

IMPLEMENTATION AND MEASUREMENTS
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Fig. 4: Compactly mapping keys to ranks using Bloom filters. Step 1
inserts two key-rank mappings into the filter, turning two subsets of the
filter’s bits from 0 to 1. Step 2 retrieves k1’s mapping by exhaustively
checking all possible mappings for k1. Due to false positives, a Bloom
filter may map a key to one or more ranks. In this example, there are 4
ranks and k1 is mapped to both rank 1 (True positive) and 2 (False).
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Fig. 5: A hybrid auxiliary table design using both filters and indexes. Keys
are stored as small fingerprints in a filter. Each fingerprint is mapped
to one or more ranks at the index layer. False positives are still possible
because multiple keys may be mapped to a single key fingerprint. Readers
nevertheless can quickly retrieve the ranks mapped to a key using a single
filter and index lookup; no exhaustive filter tests are needed.

structure (Figure 3c)) able to produce much less index data than
the current state-of-the-art method does (Figure 3b). To reduce
index size, we allow individual keys to be mapped to multiple
data locations using our compact lossy auxiliary tables. In this
section we present techniques for implementing these tables
while keeping query latency low. Note that because keys can
be mapped to multiple data locations, a query may have to
check all of them in order to find the data of interest.

A. Our Initial Implementation using Bloom Filters

One way to structure auxiliary tables in a compact lossy
format is to use filters. Filters are typically dense data struc-
tures whose canonical use involves managing memberships.
In these applications, one inserts keys into a set and then
asks if a key is in the set. Typically a filter returns “False”
when a key is definitely not in the set (i.e., no false negatives)
or “True” when it may be in the set (i.e., false positives are
possible). Compared with elementary data structures such as
hash tables and binary search trees, filters can be extremely
space-efficient. This is typically achieved by filters carefully
converting keys to small fingerprints before storing them in
their base data structures. There are many implementations of
filters [46-49]. In this section we use the Bloom filter [46] as
an example filter to implement our auxiliary tables.

In FilterKV, auxiliary tables are used to map keys to their
source data locations. To store these key-location mappings
using a Bloom filter, we treat each individual mapping as an
opaque object and put the binary representation of it (e.g., the
concatenation of the binary representation of the key and that
of the source location) into the filter (Figure 4). To recall the
source location of a key, we execute a series of queries against
the filter. Each query targets a distinct data location, testing if
there might exist a mapping from the key to that particular data
location. We try all data locations of a dataset. For example,
shows a case in which there are 4 data partitions.
So we run 4 different queries to test all of them (1 partition
each). The total number of source data locations (including
false positives) we get for a key is dictated by the filter data
structure’s false positive rate, which we now discuss.

To achieve space efficiency, filters store in their base data
structures small fixed-sized fingerprints instead of the actual
data (which in our case is the opaque mapping objects we
insert into the filter which can be of arbitrary size). The false
positive rate of a filter is largely determined by the number
of bits we set for each fingerprint. The more bits we set, the
less the rate of false positives. For Bloom filters, each filter is

built atop a bit vector and each incoming data is hashed into
a subset of bits (the fingerprint) in the bit vector as shown in
The more bits we budget for each fingerprint, the
larger the size of the base bit vector and the less likely that
different fingerprints collide and we get false positives.
Return to With auxiliary tables implemented
using Bloom filters, bounding the total number of data par-
titions a query needs to search for a key is just a matter of
configuring the filter to allocate enough bits for its fingerprints.
To demonstrate the effectiveness of this approach we show in
the minimum amount of Bloom filter bytes we need
to budget for each key in order to bound the number of data
partitions per query per key at 2 (b2) or 10 (b10). For each
machine, we imagine running an application that consumes
the entire machine such that the total amount of data partitions
is equal to the total amount of CPU cores the machine has.
Results show that even for the world’s largest machines we
can ensure good query performance by spending only about 3
bytes per key on data indexes. This is considerably less than
the 12-byte per-key index overhead borne by the current state-

of-the-art as we analyzed in [Section III-B
B. A Filter-Index Hybrid Implementation for FilterKV

The core of FilterKV is an efficient data partitioning scheme
that reduces the total amount of data exchanged over the
network. We achieve this by maintaining an auxiliary table at
every data partition to record the source location of each indi-
vidual key. Auxiliary tables take extra space. To minimize I/O
and space overhead, we need to additionally restrict the size of
these auxiliary tables on storage and we must do so without
considerably increasing query latency. In we
discussed representing auxiliary tables using compact filters
such as the Bloom filter.

Unfortunately, while filters scale well for modern computing
platforms with millions of CPU cores, they can be problematic
for future exascale computing platforms [23|] with tens or
hundreds of millions of processing cores producing tens or
hundreds of millions of data partitions. To see why, recall
from that auxiliary tables are used to map keys to
the data locations that might store the keys. With auxiliary
tables implemented using filters, we insert into filters opaque
mapping objects. Each mapping object identifies the source
data location of a specific key, as illustrated in To
recall the source location of a key, we test the existence of
all possible key-location mappings of the key. As the number
of filter tests we need to perform approaches the number of



Buckets  Slots

-+ fpp,rank5 | fpa,rank8 | fpe,rank3 | fpp,rank1
- fpr,rank1

- fpc,rank1
-+ fpc,rank?
- fpe,rank1
- fpp,rank3

k1,rank{1,3,5} }

k1(fpo)

Logical View
i fpg,rank4 |

Fig. 6: Compactly mapping keys to ranks with partial-key cuckoo hash
tables. A cuckoo hash table consists of an array of buckets. Each bucket
holds up to a certain amount of data slots (4 in this example). Each slot
stores a partial-key (fingerprint) and the rank it maps to. This figure
shows 6 buckets and 11 non-empty slots. Key k1 can be stored either at
bucket 0 or 5. Because different keys may share fingerprints, a partial-key
cuckoo hash table may map keys to more than 1 ranks. In this example,
k1 is stored as “fp_b” and is mapped to ranks 1, 3, and 5.

data partitions a dataset has, processing a query may require
running an excessive amount of filter tests, and the latency of
these tests may no longer be dwarfed by storage reads.

To attack this problem, we build upon our filter-based

auxiliary table design discussed in and propose a

new hybrid implementation that uses both filters and indexes.
Our new design, shown in consists of a filter layer
and an index layer. The filter layer consists of an array of
fingerprints. Each fingerprint represents a set of user keys and
is mapped to one or more source locations in the index layer.
Storing fingerprints instead of the original keys allows for high
space efficiency, an idea we inherit from [Section TV-Al On the
other hand, directly remembering the source locations of each
fingerprint as indexes prevents queries from having to perform
a potentially large number of filter tests which can be time-
consuming. The cost of improved query efficiency is increased
space for storing auxiliary tables. We discuss and measure this
tradeoff in more detail in

To implement FilterKV auxiliary tables using this new
hybrid design, we use partial-key cuckoo hash tables [47, |50],
a cuckoo hash table [51} 52] variant that stores fingerprints
of keys (partial-keys) instead of full keys. As illustrated in
each partial-key cuckoo hash table consists of an
array of buckets. Each bucket holds up to a certain amount
of data slots. When a key-value pair is inserted into a partial-
key cuckoo hash table, the key is transformed into a partial
key using a hash function. The resulting “<partial-key,value>"
pair is then assigned to two candidate buckets in the table
and can be placed at any of the empty slots in either of the
buckets. When no such slot is available, a random slot from
one of the two buckets will be selected to hold the incoming
key with the current resident of the slot evicted and relocated
to its alternative positions in the table. This relocation process
continues until an empty slot can be found, or fails after a
large number (e.g., 500) of recursive attempts and causes the
table to be resized. In practice, partial-key cuckoo hash table
sizes are powers of 2, so each resize doubles the size of a table
[47]. Mapping every key to two potential locations in the table
allows for high levels of table space utilization before a table
must be resized [53]]. But because not all slots are necessarily
filled after all keys have been inserted into the table, partial-
key cuckoo hash tables can “leak” space in the data structure,
leading to unnecessary memory and on-storage space usage.

To minimize wasted space, our implementation creates a
new table when the current one is full. For example, rather than
resizing a 1-million-slot table to 2 million, our implementation
combines a 1-million-slot table with an 128K-slot table to hold
1.1 million keys. This keeps space utilization at about 95% in
practice.

C. Measurements

A key benefit FilterKV brings over the current state-of-the-
art (simple data indirection) is a more compact representation
of data indexes. The cost of this is that a query may have to
perform additional lookups to find the data of a key. In this
section we evaluate this tradeoff. We study 3 data partitioning
schemes: data indirection as the current state-of-the-art (Fmt-
DataPtr), FilterKV using Bloom filters (Fmt-BF), and FilterKV
using partial-key cuckoo hash tables (Fmt-Cuckoo).

Test runs consist of generating 16 million keys and storing
their indexing information using different formats. All gener-
ated keys are random 8-byte integers. We vary the number
of data partitions each data structure needs to index over,
defined as N, from 1024 to 16 million (the largest current
supercomputer have about 10 million CPU cores). For the
current state-of-the-art (Fmt-DataPtr), we set each data pointer
to be 12 bytes consisting of an 8-byte offset and a 4-byte rank
number as per For the FilterKV using Bloom
filters (Fmt-BF), we configure each Bloom filter to budget 4
+ log(V) bits for each key so that it uses the same amount of
space as its partial-key cuckoo hash table counterpart. Finally,
for the FilterKV using partial-key cuckoo hash tables (Fmt-
Cuckoo), we configure each partial-key (key fingerprint) to be
4 bits and its value to be log(/N) bits so that it has enough
bits to distinguish all partitions.

shows the read overhead associated with each data
partitioning scheme. Note that each scheme can be viewed as
a table mapping keys to the data partitions that might store
the keys. We measure query amplification, which counts the
average number of data partitions a scheme returns for a key.
Unsurprisingly, the number is always 1 for the current state-
of-the-art (Fmt-DataPtr) as it keeps complete information for
each key. For the Bloom filter format (Fmt-BF), its query
amplification is essentially a function of both the filter’s false
positive rate and the total number of data partitions. While
the filter’s false positive rate keeps decreasing as we increase
the number of Bloom filter bits (4 + log(/V)) we budget for
each key, the decrease wasn’t significant enough to compensate
for the increase in the total number of data partitions (V).
Consequently, the scheme’s overall query amplification keeps
increasing, though logarithmically, as the total number of data
partitions increases. To bound query amplification, we could
configure the filter to budget 4 + 1.44log(/N) bits per key
(according to Bloom filter math) rather than the 4 + log(V)
bits we tested, at the cost of increased space overhead.

Unlike the Bloom filter format (Fmt-BF), the average num-
ber of data partitions the Cuckoo format (Fmt-Cuckoo) returns
per query is bounded (roughly 2 in these tests), and does not
increase as the total number of data partitions increases. This
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Fig. 7: Comparison of three different data partitioning schemes. Fmt-
DataPtr is the current state-of-the-art. Figure (b) shows Fmt-DataPtr’s
space usage both before and after data compression is applied.

is because Cuckoo directly maps keys to source data partitions
so the scheme’s query amplification is only a function of the
filter’s false positive rate (no exhaustive filter tests) and is not
affected by the total number of data partitions (V).

shows each scheme’s space overhead, measured
as the number of bytes per key. In the current state of the
art, the space overhead is shown both before and after data
compression (overlaid on the same bar). We used Google’s
Snappy compression code to compress data [54f]. As the
current state-of-the-art (Fmt-DataPtr) keeps complete infor-
mation for each key, it consumes the most space in spite of
compression. Further, we see that the index entropy increases
as the number of partitions is increased, thus reducing the
benefits of compression at scale. Both FilterKV schemes are
able to use much less space due to their compact, albeit
lossy, storage representations even before data compression.
The Cuckoo format (Fmt-Cuckoo) used slightly more space
than the Bloom filter format (Fmt-BF). This is because none
of the Cuckoo runs were able to fully utilize the space in their
respective cuckoo hash tables, as explains.

V. EXPERIMENTS

This section evaluates the end-to-end performance of differ-
ent online data partitioning schemes. We compare data parti-
tioning that shuffles full KV pairs (Fmt-Base), data partitioning
that uses indirection (Fmt-DataPtr), and data partitioning that
implements both data indirection and lossy data pointers using
partial-key cuckoo hash tables (Fmt-FilterKV).

A. Microbenchmark Results

Our first group of experiments evaluate the performance
of different data partitioning schemes under different job and
KV size configurations. These experiments were performed on
the Narwhal computing cluster at CMU [55]. Each Narwhal
compute node consists of 4 CPU cores, 16GB memory, and an
1000Mbps NIC for network communication. These compute
nodes are interconnected by a fat tree Ethernet with a 14:6
oversubscription ratio at the access layer and a 24:20 ratio
at the distribution layer. Inter-process communication among
a large number of Narwhal compute nodes is expected to
be expensive in general, making Narwhal an ideal testbed
for comparing the effectiveness of different data partitioning
schemes in controlling and balancing their total network
and I/O activities. In this particular group of experiments,

network communication cost is high because the total net-
work bandwidth available to each compute node is extremely
limited. While HPC platforms are routinely paired with faster
interconnects, their storage is faster too, making efficient data
communication no less important. We study performance atop
a real-world HPC cluster in

We developed a simple program to drive our tests. In each
run, we start a certain number of parallel processes and have
each process generate random KV pairs of a certain size. Each
process is both a data sender and a receiver. In the first set of
runs, we fix KV size at 64 bytes and vary the total number of
processes from 64 to 640 using up to 160 Narwhal compute
nodes. The results are shown in In the second set
of runs, we fix the total number of processes at 256 using 64
Narwhal compute nodes and vary KV size from 16 to 192
bytes. The results are shown in Note that while KV
sizes can differ across runs, all keys are fixed at 8 bytes. Also
fixed is the total amount of data each process generates, which
is set at 960MB per run. Our program buffers at most 16MB
of data in memory before writing it to storage efficiently.

We compare two different levels of residual network band-
width representing two different levels of network communi-
cation cost. To better understand this cost, we consider a real-
world machine as a case study. The Trinity supercomputer at
LANL features one burst-buffer storage node per 32 compute
nodes [24]]. All Trinity compute nodes and burst-buffer nodes
are deployed within a single interconnection network. Both
types of nodes carry the same type of NIC, and writing data
from compute nodes to burst-buffer is largely bottlenecked
at the NICs of the burst-buffer nodes. Therefore, the resid-
ual network bandwidth (total available network bandwidth -
storage bandwidth) for each Trinity compute node is roughly
97% (1 - 1/32) of the node’s total available network band-
width. As shown in and O} by configuring residual
network bandwidth at 50% and 75% in our tests, we emulate
cases where the actual network performance observed by an
application is considerably lower than advertised.

We use write slowdown to gauge the total data partition-
ing overhead during the writing of data to storage. This is
measured as the additional time each run must spend to finish
writing all the data. For example, write slowdown is said to be
100% if it takes a run twice of the time to write the data with
data partitioning, as opposed to directly writing the data to
storage without performing any online data operations. Note
that this overhead includes both the overhead associated with
network communication and the overhead incurred by writing
filter and indexing information in addition to the original data.

compares performance as a function of job size.
We also report the total number of RPC messages each run
sends. The base format (Fmt-Base) shuffles intact KV pairs so
a large amount of data is sent across the network in each run.
The overall data partitioning overhead rises quickly as job size
increases. The current state-of-the-art (Fmt-DataPtr) shuffles
keys and pointers to values so much less network activities
are needed to partition data. This leads to a much lower write
slowdown (even though it writes more data) than the base
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format. Finally, by combining indirection with a lossy data
indexing scheme, FilterKV is able to decrease the total amount
of indexing data written to storage compared with the current
state-of-the-art while sending even less data to the network
(because no data offsets need to be sent), further reducing
write slowdown.

compares performance as a function of KV size.
The base format shuffles and stores intact KV pairs. Thus
its performance does not change with KV size. Both the
current state-of-the-art and FilterKV use data indirection to
reduce network communication. The indexes these two formats
generate can cause a significant amount of extra storage 1/O
when KV size is small, and are less significant when KV
size is large. As such, the overall data partitioning overhead
of these two formats decreases as KV size increases. While
FilterKV outperforms the current state-of-the-art in all cases,
the advantage is most critical when KV size is between 32 and
64 bytes which is the data size of many scientific workloads
[44] 145]. While we didn’t test keys larger than 192 bytes, we
expect the difference between the two formats to continue to
shrink as the figure shows.

B. Macrobenchmark Results

Our second group of experiments evaluate the end-to-end
performance of FilterKV under a real-world scientific use case:
plasma physics. As a case study, our experiments use the
Vector Particle-In-Cell (VPIC) simulation code from LANL to
perform magnetic reconnection simulations [44] 56]. In such
simulations, each simulation process manages a region of cells
in the simulation space through which particles move. Every
few timesteps the simulation stops and each process writes to
storage the state of all the particles currently managed by the
process. In our tests, state for each particle is 64 bytes. VPIC

scientists are interested in the state of a tiny subset of particles
at individual timesteps. The identities of these particles are
not known until the end of a simulation. Unmodified VPIC
directly writes data into per-process output files. But because
particles move during a simulation, per-particle state often
ends up in multiple output files. This means that without post-
processing, reading back a particle would require searching an
entire VPIC dataset. To speed up queries, we use our previous
work, DeltaFS Indexed Massive Directories, to dynamically
partition and index data as it streams to storage [9, |10]. To
partition data, our previous implementation shuffles intact KV
pairs. With this paper we have modified it to support both the
DataPtr format and the FilterKV format.

Our experiments were performed on the LANL’s Trinity
cluster. Recall from [Section I| that Trinity consists of two types
of compute nodes using either the Haswell CPU or the KNL
manycore CPU. Each Haswell node consists of 32 CPU cores
and 128GB memory. Each KNL node consists of 68§ CPU
cores and a total of 112GB memory, with 96GB main memory
and an additional 16GB high-bandwidth memory (HBM).
Our runs only allocate memory from the main memory. Our
results (not shown in the paper) indicate that using HBM does
not change performance as our runs are not bottlenecked on
memory operations.

Our test consists of running a VPIC simulation and then
performing 100 independent queries. Each simulation uses
4096 processes and simulates a total of 32 billion particles.
Approximately 2TB of data is produced per timestep. Particle
data is first staged at a burst-buffer allocation and is later
written to the platform’s underlying filesystem. We use differ-
ent numbers of burst-buffer nodes to test performance under
different network-to-storage ratios. After simulation data is
persisted, queries are executed from the underlying filesystem.
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Each query randomly targets a particle and a timestep and
reads the state of that particle under that timestep.

compares the write slowdown of different online
data management schemes as a function of available underly-
ing storage bandwidth. The right-half of the figure focuses on
the performance when the storage bandwidth available to a
job is high. Higher storage bandwidth increases the impact
of network performance on overall performance. As such,
using an efficient data partitioning scheme that reduces the
total amount of data exchanged over the network becomes
crucial. Results show that FilterKV can reduce total write
slowdown by up to 3.3x compared with the base format and
by up to 2.8x compared with the current state-of-the-art, thus
significantly closing the gap between KNL performance and
Haswell performance.

The left-half of the figure shows the performance when the
underlying storage bandwidth available to a job is low. Lower
storage bandwidth means that the overall data writing process
is more likely to be bottlenecked on storage. So reducing the
total amount of data written to storage using a compact storage
representation becomes crucial. Our results show that FilterKV
can reduce total write slowdown by up to 2x compared with the
current state-of-the-art. Nevertheless, because both FilterKV
and the current state-of-the-art writes more data than the base
format does, they tend to perform worse than it when available
storage bandwidth is relatively low.

shows the performance when we use TCP rather
than more efficient Cray GNI to perform low-level network
operations. While we are by no means advocating TCP for
production jobs, our results show that with FilterKV we can
effectively run TCP jobs almost as fast as GNI jobs, suggesting
that performance becomes less subject to the network.

11c| compare the read performance of different
data management schemes. We report query latency, storage
seeks, and total data fetched. Note that in these experiments,
each partition is persisted as a flattened LSM-Tree by DeltaFS
[9, [10]. The base format uses 3 or more read operations to
read back a particle. The first read operation reads the footer

of the partition containing the particle of interest. The second
read operation loads the partition’s indexes (roughly 12MB).
The remaining read operations each read a data block until the
reader finds the target particle (multiple of 4MB). On average,
3.1 read operations (or storage seeks) were executed per query
(i.e., about 10% queries executed 4 or more read operations).
The median query latency for the base format is 190 ms.

To reduce the total amount of data pushed to the network
during the write phase, the current state-of-the-art partitions
data using indirection. The cost of applying indirection is one
extra read operation per query which increases median query
latency from 190 ms to 250 ms in our tests (KNL-DataPtr).

Finally, with a compact lossy storage format for fast data
partitioning, each FilterKV query must first read an entire
auxiliary table (roughly 18MB each) and then attempt reads at
multiple data partitions due to false positives (1.88 partitions
per query in these runs). As such, FilterKV has the highest
minimum (190 ms) and median (440 ms) read latency among
all three data management schemes. Though overall FilterKV
shows comparable read performance with the base format and
the current state-of-the-art, while being about 200 ms slower.

VI. RELATED WORK

Filter data structures are used by many storage systems to
improve read performance. Unlike indexes which directly map
keys to data locations, filters speed up queries by indicating
where not to read thus saving the query process from per-
forming potentially a large number of unnecessary storage
reads [57]]. When the key space of an application is bounded,
filters can be implemented using compressed bitmaps [58}
59]. When the key space is unbounded, filters are typically
implemented through hash-based data structures such as the
Bloom filter [46], cuckoo filter [47,|50], and quotient filter [48}
49]. Recently, we have also seen filters implemented using tries
such as SuRF [60] and using perfect hash functions such as
the ECT structure in SILT [50]]. These filter implementations
may also be used to implement FilterK'V.

The idea of data indirection is used by many LSM-Trees
KV stores to reduce the I/O overhead associated with their
background data reorganization operations. For example, Wis-
cKey [18]] reduces background data reorganization overhead by
storing keys and values separately and only performing data
reorganization on the keys. Similar use of this idea is also
found in systems such as IndexFS [17] and Cassandra [39].
In addition to data indirection, systems such as Monkey [61]]
and SlimDB [62] use analytical models to generate optimized
filter configurations that balance per-filter performance with
available memory. This allows for minimizing its overall false
positive rate given a fixed memory budget. Such designs work
best on dedicated server machines whose entire memory can
be used to serve data operations. Unlike these designs, this
paper focuses on in-situ contexts in which memory available
for data operations may be extremely limited. Finally, VT-
Tree [63]] features a design that allows in-order data to be
linked into an ordered data structure instead of performing a
direct merge-sort. This design can also be viewed as a form of
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data indirection. This paper focuses on using data indirection
to reduce network communication as opposed to storage 1/0O.
In addition, great emphasis is placed on using compact data
representations to reduce space overhead.

Rich in-transit data processing capabilities are provided by
multiple middleware libraries such as PreDatA [41]], GLEAN
[34, [35]], NESSIE [64], and DataSpaces [65]. These systems
all use auxiliary nodes to provide asynchronously data anal-
ysis functions. Similarly, systems such as Damaris [66] and
Functional Partitioning [67] co-schedule analysis, visualiza-
tion, and de-duplication tasks on compute nodes, but require
dedicated cores. Unlike these systems, FilterKV processes
data only during the writing of it without requiring dedicated
computing resources. The GoldRush runtime [68]] provides an
embedded in-situ analytics capability by scheduling analysis
tasks during idle periods in simulation execution using an
OpenMP threaded runtime. The analysis tasks leverage the
FlexIO [40] capability within ADIOS [42] to create shared
memory channels for generating task inputs. Similar to these
systems, FilterKV runs inside a parallel application and uses
only the idle computing and network resources temporarily
available during application I/O to process data.

Large-scale VPIC simulations have been conducted with
trillions of particles, generating terabytes of data for each
recorded timestep [1} |69, [70]. An important reason FilterKV
is particularly useful to VPIC is that per-particle data in VPIC
is extremely small so storing data pointers in addition to data
can be prohibitively expensive.

VII. CONCLUSION

In this paper we described a novel data management mech-
anism, FilterKV, for fast online data partitioning. We use
indirection to reduce the total amount of data we need to
send and receive over the network (when partitioning data) so
that the overall data partitioning process becomes less subject
to the hosting platform. We then strive to use the minimal
amount of physical indexes to manage data indirection so that
per-key overhead can be kept low and we can achieve good
performance even when KV size is tiny. Critically, performing
the latter distinguishes us from the current state-of-the-art.

To achieve space efficiency, we devised a lossy storage
scheme for our data pointers. We allow each data pointer to
reference multiple source data locations so that we can use
less total bits to represent each key-location mapping. We use

compact filters to implement this lossy data scheme. We com-
pared two implementations: a filter-only implementation that
uses Bloom filters, and a filter-index hybrid implementation
that uses partial-key cuckoo hash tables. We expect the first to
work well for jobs of moderate scales (e.g., < 1 million parallel
processes). By eliminating the need for exhaustive filter tests,
the second can handle jobs of even larger scales.

We have evaluated the performance of FilterKV using both
microbenchamarks and macrobenchmarks. Results show that
FilterKV works best when a job consists of a large number
of parallel processes and when the effective network-storage
ratio of a job is relatively low. While FilterKV outperforms
the current state-of-the-art during the write phase, we expect
the gain to be most critical when individual KV size is small.
The cost of fusing lossiness into data indexes is increased
query time. Our results show that FilterKV is able to provide
comparable read performance with the base format and the
current state-of-the-art, albeit requiring looking up and reading
more data when processing a query.

As data size continues to grow, being able to process data in-
situ becomes increasingly important. Online data partitioning,
being one type of many possible in-situ operations, reorganizes
data as it streams to storage,and improves the long-term value
of data by storing it in a better format. With emerging HPC and
high performance data analytics platforms combining multiple
processor, memory, and storage technologies in new ways, it
is also a good opportunity to revisit existing systems software
designs and to adapt them to new computing environments. In
this paper we revised established data partitioning schemes,
better decoupling its performance from the performance of
the underlying platform.
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