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Abstract

We propose a parameter server system for distributed ML, which follows a Stale
Synchronous Parallel (SSP) model of computation that maximizes the time com-
putational workers spend doing useful work on ML algorithms, while still provid-
ing correctness guarantees. The parameter server provides an easy-to-use shared
interface for read/write access to an ML model’s values (parameters and vari-
ables), and the SSP model allows distributed workers to read older, stale versions
of these values from a local cache, instead of waiting to get them from a central
storage. This significantly increases the proportion of time workers spend com-
puting, as opposed to waiting. Furthermore, the SSP model ensures ML algorithm
correctness by limiting the maximum age of the stale values. We provide a proof
of correctness under SSP, as well as empirical results demonstrating that the SSP
model achieves faster algorithm convergence on several different ML problems,
compared to fully-synchronous and asynchronous schemes.

1 Introduction
Modern applications awaiting next generation machine intelligence systems have posed unprece-
dented scalability challenges. These scalability needs arise from at least two aspects: 1) massive
data volume, such as societal-scale social graphs [10, 25] with up to hundreds of millions of nodes;
and 2) massive model size, such as the Google Brain deep neural network [9] containing billions of
parameters. Although there exist means and theories to support reductionist approaches like subsam-
pling data or using small models, there is an imperative need for sound and effective distributed ML
methodologies for users who cannot be well-served by such shortcuts. Recent efforts towards dis-
tributed ML have made significant advancements in two directions: (1) Leveraging existing common
but simple distributed systems to implement parallel versions of a limited selection of ML models,
that can be shown to have strong theoretical guarantees under parallelization schemes such as cyclic
delay [17, 1], model pre-partitioning [12], lock-free updates [21], bulk synchronous parallel [5], or
even no synchronization [28] — these schemes are simple to implement but may under-exploit the
full computing power of a distributed cluster. (2) Building high-throughput distributed ML architec-
tures or algorithm implementations that feature significant systems contributions but relatively less
theoretical analysis, such as GraphLab [18], Spark [27], Pregel [19], and YahooLDA [2].

While the aforementioned works are significant contributions in their own right, a naturally desirable
goal for distributed ML is to pursue a system that (1) can maximally unleash the combined compu-
tational power in a cluster of any given size (by spending more time doing useful computation and
less time waiting for communication), (2) supports inference for a broad collection of ML methods,
and (3) enjoys correctness guarantees. In this paper, we explore a path to such a system using the
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idea of a parameter server [22, 2], which we define as the combination of a shared key-value store
that provides a centralized storage model (which may be implemented in a distributed fashion) with
a synchronization model for reading/updating model values. The key-value store provides easy-
to-program read/write access to shared parameters needed by all workers, and the synchronization
model maximizes the time each worker spends on useful computation (versus communication with
the server) while still providing algorithm correctness guarantees.

Towards this end, we propose a parameter server using a Stale Synchronous Parallel (SSP) model of
computation, for distributed ML algorithms that are parallelized into many computational workers
(technically, threads) spread over many machines. In SSP, workers can make updates δ to a param-
eter1 θ, where the updates follow an associative, commutative form θ ← θ + δ. Hence, the current
true value of θ is just the sum over updates δ from all workers. When a worker asks for θ, the SSP
model will give it a stale (i.e. delayed) version of θ that excludes recent updates δ. More formally,
a worker reading θ at iteration c will see the effects of all δ from iteration 0 to c − s − 1, where
s ≥ 0 is a user-controlled staleness threshold. In addition, the worker may get to see some recent
updates beyond iteration c − s − 1. The idea is that SSP systems should deliver as many updates
as possible, without missing any updates older than a given age — a concept referred to as bounded
staleness [24]. The practical effect of this is twofold: (1) workers can perform more computation
instead of waiting for other workers to finish, and (2) workers spend less time communicating with
the parameter server, and more time doing useful computation. Bounded staleness distinguishes
SSP from cyclic-delay systems [17, 1] (where θ is read with inflexible staleness), Bulk Synchronous
Parallel (BSP) systems like Hadoop (workers must wait for each other at the end of every iteration),
or completely asynchronous systems [2] (workers never wait, but θ has no staleness guarantees).

We implement an SSP parameter server with a table-based interface, called SSPtable, that supports
a wide range of distributed ML algorithms for many models and applications. SSPtable itself can
also be run in a distributed fashion, in order to (a) increase performance, or (b) support applications
where the parameters θ are too large to fit on one machine. Moreover, SSPtable takes advantage of
bounded staleness to maximize ML algorithm performance, by reading the parameters θ from caches
on the worker machines whenever possible, and only reading θ from the parameter server when the
SSP model requires it. Thus, workers (1) spend less time waiting for each other, and (2) spend less
time communicating with the parameter server. Furthermore, we show that SSPtable (3) helps slow,
straggling workers to catch up, providing a systems-based solution to the “last reducer” problem on
systems like Hadoop (while we note that theory-based solutions are also possible). SSPtable can
be run on multiple server machines (called “shards”), thus dividing its workload over the cluster;
in this manner, SSPtable can (4) service more workers simultaneously, and (5) support very large
models that cannot fit on a single machine. Finally, the SSPtable server program can also be run on
worker machines, which (6) provides a simple but effective strategy for allocating machines between
workers and the parameter server.

Our theoretical analysis shows that (1) SSP generalizes the bulk synchronous parallel (BSP) model,
and that (2) stochastic gradient algorithms (e.g. for matrix factorization or topic models) under SSP
not only converge, but do so at least as fast as cyclic-delay systems [17, 1] (and potentially even
faster depending on implementation). Furthermore, our implementation of SSP, SSPtable, supports
a wide variety of algortihms and models, and we demonstrate it on several popular ones: (a) Ma-
trix Factorization with stochastic gradient descent [12], (b) Topic Modeling with collapsed Gibbs
sampling [2], and (c) Lasso regression with parallelized coordinate descent [5]. Our experimental
results show that, for these 3 models and algorithms, (i) SSP yields faster convergence than BSP (up
to several times faster), and (ii) SSP yields faster convergence than a fully asynchronous (i.e. no stal-
eness guarantee) system. We explain SSPtable’s better performance in terms of algorithm progress
per iteration (quality) and iterations executed per unit time (quantity), and show that SSPtable hits a
“sweet spot” between quality and quantity that is missed by BSP and fully asynchronous systems.

2 Stale Synchronous Parallel Model of Computation
We begin with an informal explanation of SSP: assume a collection of P workers, each of which
makes additive updates to a shared parameter x ← x + u at regular intervals called clocks. Clocks
are similar to iterations, and represent some unit of progress by an ML algorithm. Every worker

1 For example, the parameter θ might be the topic-word distributions in LDA, or the factor matrices in a
matrix decomposition, while the updates δ could be adding or removing counts to topic-word or document-word
tables in LDA, or stochastic gradient steps in a matrix decomposition.
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has its own integer-valued clock c, and workers only commit their updates at the end of each clock.
Updates may not be immediately visible to other workers trying to read x — in other words, workers
only see effects from a “stale” subset of updates. The idea is that, with staleness, workers can retrieve
updates from caches on the same machine (fast) instead of querying the parameter server over the
network (slow). Given a user-chosen staleness threshold s ≥ 0, SSP enforces the following bounded
staleness conditions (see Figure 1 for a graphical illustration):

• The slowest and fastest workers must be ≤ s clocks apart — otherwise, the fastest worker is
forced to wait for the slowest worker to catch up.

• When a worker with clock c commits an update u, that u is timestamped with time c.
• When a worker with clock c reads x, it will always see effects from all u with timestamp ≤
c− s− 1. It may also see some u with timestamp > c− s− 1 from other workers.

• Read-my-writes: A worker p will always see the effects of its own updates up.

Clock 0 1 2 3 4 5 6 7 8 9 

SSP: Bounded Staleness and Clocks 

Updates visible to 
all workers 

Worker 1 

Worker 2 

Worker 3 

Worker 4 

Staleness Threshold 3 

Updates visible to Worker 1, 
due to read-my-writes 

Updates not necessarily 
visible to Worker 1 

Here, Worker 1 must wait on 
further reads, until Worker 2 
has reached clock 4 

Worker progress 

Figure 1: Bounded Staleness under the SSP Model

Since the fastest and slowest workers are
≤ s clocks apart, a worker reading x at
clock c will see all updates with times-
tamps in [0, c − s − 1], plus a (possi-
bly empty) “adaptive” subset of updates in
the range [c − s, c + s − 1]. Note that
when s = 0, the “guaranteed” range be-
comes [0, c − 1] while the adaptive range
becomes empty, which is exactly the Bulk
Synchronous Parallel model of computa-
tion. Let us look at how SSP applies to an
example ML algorithm.

2.1 An example: Stochastic Gradient Descent for Matrix Problems
The Stochastic Gradient Descent (SGD) [17, 12] algorithm optimizes an objective function by ap-
plying gradient descent to random subsets of the data. Consider a matrix completion task, which
involves decomposing an N ×M matrix D into two low-rank matrices LR ≈ D, where L,R have
sizes N × K and K ×M (for a user-specified K). The data matrix D may have missing entries,
corresponding to missing data. Concretely, D could be a matrix of users against products, with Dij

representing user i’s rating of product j. Because users do not rate all possible products, the goal is
to predict ratings for missing entries Dab given known entries Dij . If we found low-rank matrices
L,R such that Li· ·R·j ≈ Dij for all known entries Dij , we could then predict Dab = La· ·R·b for
unknown entries Dab.

To perform the decomposition, let us minimize the squared difference between each known entry
Dij and its prediction Li· ·R·j (note that other loss functions and regularizers are also possible):

min
L,R

∑
(i,j)∈Data

∥∥∥∥∥Dij −
K∑

k=1

LikRkj

∥∥∥∥∥
2

. (1)

As a first step towards SGD, consider solving Eq (1) using coordinate gradient descent on L,R:
∂OMF

∂Lik

=
∑

(a,b)∈Data

δ(a = i) [−2DabRkb + 2La·R·bRkb] ,
∂OMF

∂Rkj

=
∑

(a,b)∈Data

δ(b = j) [−2DabLak + 2La·R·bLak]

where OMF is the objective in Eq(1), and δ(a = i) equals 1 if a = i, and 0 otherwise. This can be
transformed into an SGD algorithm by replacing the full sum over entries (a, b) with a subsample
(with appropriate reweighting). The entries Dab can then be distributed over multiple workers, and
their gradients computed in parallel [12].

We assume that D is “tall”, i.e. N > M (or transpose D so this is true), and partition the rows of
D and L over the processors. Only R needs to be shared among all processors, so we let it be the
SSP shared parameter x := R. SSP allows many workers to read/write to R with minimal waiting,
though the workers will only see stale values of R. This tradeoff is beneficial because without
staleness, the workers must wait for a long time when readingR from the server (as our experiments
will show). While having stale values of R decreases convergence progress per iteration, SSP more
than makes up by enabling significantly more iterations per minute, compared to fully synchronous
systems. Thus, SSP yields more convergence progress per minute, i.e. faster convergence.
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Note that SSP is not limited to stochastic gradient matrix algorithms: it can also be applied to parallel
collapsed sampling on topic models [2] (by storing the word-topic and document-topic tables in x),
parallel coordinate descent on Lasso regression [5] (by storing the regression coefficients β in x), as
well as any other parallel algorithm or model with shared parameters that all workers need read/write
access to. Our experiments will show that SSP performs better than bulk synchronous parallel and
asynchronous systems for matrix completion, topic modeling and Lasso regression.

3 SSPtable: an Efficient SSP System Client process

Thread
cache

Thread
cache

Thread
cache

Application
thread

Application
thread

Application
thread

Table serverTable serverTable server

Process
cache

Thread
cache

Application
thread

Table server

Table data

Pending 
requests

Figure 2: Cache structure of SSPtable, with
multiple server shards

An ideal SSP implementation would fully exploit the lee-
way granted by the SSP’s bounded staleness property,
in order to balance the time workers spend waiting on
reads with the need for freshness in the shared data. This
section describes our initial implementation of SSPtable,
which is a parameter server conforming to the SSP model,
and that can be run on many server machines at once (dis-
tributed). Our experiments with this SSPtable implemen-
tation shows that SSP can indeed improve convergence
rates for several ML models and algorithms, while fur-
ther tuning of cache management policies could further
improve the performance of SSPtable.

SSPtable follows a distributed client-server architecture. Clients access shared parameters using a
client library, which maintains a machine-wide process cache and optional per-thread2 thread caches
(Figure 2); the latter are useful for improving performance, by reducing inter-thread synchronization
(which forces workers to wait) when a client ML program executes multiple worker threads on each
of multiple cores of a client machine. The server parameter state is divided (sharded) over multiple
server machines, and a normal configuration would include a server process on each of the client
machines. Programming with SSPtable follows a simple table-based API for reading/writing to
shared parameters x (for example, the matrix R in the SGD example of Section 2.1):

• Table Organization: SSPtable supports an unlimited number of tables, which are divided into
rows, which are further subdivided into elements. These tables are used to store x.

• read row(table,row,s): Retrieve a table-row with staleness threshold s. The user can
then query individual row elements.

• inc(table,row,el,val): Increase a table-row-element by val, which can be negative.
These changes are not propagated to the servers until the next call to clock().

• clock(): Inform all servers that the current thread/processor has completed one clock, and
commit all outstanding inc()s to the servers.

Any number of read row() and inc() calls can be made in-between calls to clock(). Differ-
ent thread workers are permitted to be at different clocks, however, bounded staleness requires that
the fastest and slowest threads be no more than s clocks apart. In this situation, SSPtable forces the
fastest thread to block (i.e. wait) on calls to read row(), until the slowest thread has caught up.
To maintain the “read-my-writes” property, we use a write-back policy: all writes are immediately
committed to the thread caches, and are flushed to the process cache and servers upon clock().

To maintain bounded staleness while minimizing wait times on read row() operations, SSPtable
uses the following cache protocol: Let every table-row in a thread or process cache be endowed
with a clock rthread or rproc respectively. Let every thread worker be endowed with a clock c, equal
to the number of times it has called clock(). Finally, define the server clock cserver to be the
minimum over all thread clocks c. When a thread with clock c requests a table-row, it first checks
its thread cache. If the row is cached with clock rthread ≥ c − s, then it reads the row. Otherwise,
it checks the process cache next — if the row is cached with clock rproc ≥ c − s, then it reads the
row. At this point, no network traffic has been incurred yet. However, if both caches miss, then a
network request is sent to the server (which forces the thread to wait for a reply). The server returns
its view of the table-row as well as the clock cserver. Because the fastest and slowest threads can
be no more than s clocks apart, and because a thread’s updates are sent to the server whenever it
calls clock(), the returned server view always satisfies the bounded staleness requirements for the

2 We assume that every computation thread corresponds to one ML algorithm worker.
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asking thread. After fetching a row from the server, the corresponding entry in the thread/process
caches and the clocks rthread, rproc are then overwritten with the server view and clock cserver.

A beneficial consequence of this cache protocol is that the slowest thread only performs costly server
reads every s clocks. Faster threads may perform server reads more frequently, and as frequently as
every clock if they are consistently waiting for the slowest thread’s updates. This distinction in work
per thread does not occur in BSP, wherein every thread must read from the server on every clock.
Thus, SSP not only reduces overall network traffic (thus reducing wait times for all server reads), but
also allows slow, straggler threads to avoid server reads in some iterations. Hence, the slow threads
naturally catch up — in turn allowing fast threads to proceed instead of waiting for them. In this
manner, SSP maximizes the time each machine spends on useful computation, rather than waiting.

4 Theoretical Analysis of SSP
Formally, the SSP model supports operations x ← x ⊕ (z · y), where x,y are members of a ring
with an abelian operator ⊕ (such as addition), and a multiplication operator · such that z · y = y′

where y′ is also in the ring. In the context of ML, we shall focus on addition and multiplication
over real vectors x,y and scalar coefficients z, i.e. x ← x + (zy); such operations can be found
in the update equations of many ML inference algorithms, such as gradient descent [12], coordinate
descent [5] and collapsed Gibbs sampling [2]. In what follows, we shall informally refer to x as the
“system state”, u = zy as an “update”, and to the operation x← x+ u as “writing an update”.

We assume that P workers write updates at regular time intervals (referred to as “clocks”). Let up,c
be the update written by worker p at clock c through the write operation x← x+up,c. The updates
up,c are a function of the system state x, and under the SSP model, different workers will “see”
different, noisy versions of the true state x. Let x̃p,c be the noisy state read by worker p at clock c,
implying that up,c = G(x̃p,c) for some function G. We now formally re-state bounded staleness,
which is the key SSP condition that bounds the possible values x̃p,c can take:
SSP Condition (Bounded Staleness): Fix a staleness s. Then, the noisy state x̃p,c is equal to

x̃p,c = x0 +

c−s−1∑
c′=1

P∑
p′=1

up′,c′


︸ ︷︷ ︸
guaranteed pre-window updates

+

 c−1∑
c′=c−s

up,c′


︸ ︷︷ ︸

guaranteed read-my-writes updates

+

 ∑
(p′,c′)∈Sp,c

up′,c′


︸ ︷︷ ︸
best-effort in-window updates

, (2)

where Sp,c ⊆ Wp,c = ([1, P ] \ {p}) × [c − s, c + s − 1] is some subset of the updates u written
in the width-2s “window”Wp,c, which ranges from clock c − s to c + s − 1 and does not include
updates from worker p. In other words, the noisy state x̃p,c consists of three parts:

1. Guaranteed “pre-window” updates from clock 0 to c− s− 1, over all workers.
2. Guaranteed “read-my-writes” set {(p, c − s), . . . , (p, c − 1)} that covers all “in-window”

updates made by the querying worker3 p.
3. Best-effort “in-window” updates Sp,c from the width-2s window4 [c − s, c + s − 1] (not

counting updates from worker p). An SSP implementation should try to deliver as many
updates from Sp,c as possible, but may choose not to depending on conditions.

Notice that Sp,c is specific to worker p at clock c; other workers at different clocks will observe
different S. Also, observe that SSP generalizes the Bulk Synchronous Parallel (BSP) model:
BSP Corollary: Under zero staleness s = 0, SSP reduces to BSP. Proof: s = 0 implies [c, c +
s− 1] = ∅, and therefore x̃p,c exactly consists of all updates until clock c− 1. �

Our key tool for convergence analysis is to define a reference sequence of states xt, informally
referred to as the “true” sequence (this is different and unrelated to the SSPtable server’s view):

xt = x0 +

t∑
t′=0

ut′ , where ut := ut mod P,bt/Pc.

In other words, we sum updates by first looping over workers (t mod P ), then over clocks bt/P c.
We can now bound the difference between the “true” sequence xt and the noisy views x̃p,c:

3 This is a “read-my-writes” or self-synchronization property, i.e. workers will always see any updates they
make. Having such a property makes sense because self-synchronization does not incur a network cost.

4 The width 2s is only an upper bound for the slowest worker. The fastest worker with clock cmax has a
width-s window [cmax − s, cmax − 1], simply because no updates for clocks ≥ cmax have been written yet.
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Lemma 1: Assume s ≥ 1, and let x̃t := x̃t mod P,bt/Pc, so that

x̃t = xt −

[∑
i∈At

ui

]
︸ ︷︷ ︸

missing updates

+

[∑
i∈Bt

ui

]
︸ ︷︷ ︸
extra updates

, (3)

where we have decomposed the difference between x̃t and xt into At, the index set of updates ui
that are missing from x̃t (w.r.t. xt), and Bt, the index set of “extra” updates in x̃t but not in xt. We
then claim that |At|+ |Bt| ≤ 2s(P − 1), and furthermore, min(At ∪ Bt) ≥ max(1, t− (s+ 1)P ),
and max(At ∪ Bt) ≤ t+ sP .
Proof: Comparing Eq. (3) with (2), we see that the extra updates obey Bt ⊆ St mod P,bt/Pc,
while the missing updates obeyAt ⊆ (Wt mod P,bt/Pc \ St mod P,bt/Pc). Because |Wt mod P,bt/Pc| =
2s(P − 1), the first claim immediately follows. The second and third claims follow from looking at
the left- and right-most boundaries ofWt mod P,bt/Pc. �

Lemma 1 basically says that the “true” state xt and the noisy state x̃t only differ by at most 2s(P−1)
updates ut, and that these updates cannot be more than (s+1)P steps away from t. These properties
can be used to prove convergence bounds for various algorithms; in this paper, we shall focus on
stochastic gradient descent SGD [17]:
Theorem 1 (SGD under SSP): Suppose we want to find the minimizer x∗ of a convex function
f(x) = 1

T

∑T
t=1 ft(x), via gradient descent on one component ∇ft at a time. We assume the

components ft are also convex. Let ut := −ηt∇ft(x̃t), where ηt = σ√
t

with σ = F

L
√

2(s+1)P
for

certain constants F,L. Then, under suitable conditions (ft are L-Lipschitz and the distance between
two points D(x‖x′) ≤ F 2),

R[X] :=

[
1

T

T∑
t=1

ft(x̃t)

]
− f(x∗) ≤ 4FL

√
2(s+ 1)P

T

This means that the noisy worker views x̃t converge in expectation to the true view x∗ (as measured
by the function f(), and at rate O(T−1/2)). We defer the proof to the appendix, noting that it
generally follows the analysis in Langford et al. [17], except in places where Lemma 1 is involved.
Our bound is also similar to [17], except that (1) their fixed delay τ has been replaced by our
staleness upper bound 2(s + 1)P , and (2) we have shown convergence of the noisy worker views
x̃t rather than a true sequence xt. Furthermore, because the constant factor 2(s + 1)P is only an
upper bound to the number of erroneous updates, SSP’s rate of convergence has a potentially tighter
constant factor than Langford et al.’s fixed staleness system (details are in the appendix).

5 Experiments
We show that the SSP model outperforms fully-synchronous models such as Bulk Synchronous
Parallel (BSP) that require workers to wait for each other on every iteration, as well as asynchronous
models with no model staleness guarantees. The general experimental details are:
• Computational models and implementation: SSP, BSP and Asynchronous5. We used SSPtable for the

first two (BSP is just staleness 0 under SSP), and implemented the Asynchronous model using many of the
caching features of SSPtable (to keep the implementations comparable).

• ML models (and parallel algorithms): LDA Topic Modeling (collapsed Gibbs sampling), Matrix Fac-
torization (stochastic gradient descent) and Lasso regression (coordinate gradient descent). All algorithms
were implemented using SSPtable’s parameter server interface. For TM and MF, we ran the algorithms in a
“full batch” mode (where the algorithm’s workers collectively touch every data point once per clock()),
as well as a “10% minibatch” model (workers touch 10% of the data per clock()). Due to implementa-
tion limitations, we did not run Lasso under the Async model.

• Datasets: Topic Modeling: New York Times (N = 100m tokens, V = 100k terms, K = 100 topics),
Matrix Factorization: NetFlix (480k-by-18k matrix with 100m nonzeros, rank K = 100 decomposition),
Lasso regression: Synthetic dataset (N = 500 samples with P = 400k features6). We use a static data
partitioning strategy explained in the Appendix.

• Compute cluster: Multi-core blade servers connected by 10 Gbps Ethernet, running VMware ESX. We
use one virtual machine (VM) per physical machine. Each VM is configured with 8 cores (either 2.3GHz
or 2.5GHz each) and 23GB of RAM, running on top of Debian Linux 7.0.
5 The Asynchronous model is used in many ML frameworks, such as YahooLDA [2] and HogWild! [21].
6This is the largest data size we could get the Lasso algorithm to converge on, under ideal BSP conditions.
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Convergence Speed. Figure 3 shows objective vs. time plots for the three ML algorithms, over
several machine configurations. We are interested in how long each algorithm takes to reach a given
objective value, which corresponds to drawing horizontal lines on the plots. On each plot, we show
curves for BSP (zero staleness), Async, and SSP for the best staleness value ≥ 1 (we generally
omit the other SSP curves to reduce clutter). In all cases except Topic Modeling with 8 VMs, SSP
converges to a given objective value faster than BSP or Async. The gap between SSP and the other
systems increases with more VMs and smaller data batches, because both of these factors lead to
increased network communication — which SSP is able to reduce via staleness. We also provide a
scalability-with-N -machines plot in the Appendix.
Computation Time vs Network Waiting Time. To understand why SSP performs better, we look
at how the Topic Modeling (TM) algorithm spends its time during a fixed number of clock()s. In
the 2nd row of Figure 3, we see that for any machine configuration, the TM algorithm spends roughly
the same amount of time on useful computation, regardless of the staleness value. However, the time
spent waiting for network communication drops rapidly with even a small increase in staleness,
allowing SSP to execute clock()s more quickly than BSP (staleness 0). Furthermore, the ratio of
network-to-compute time increases as we add more VMs, or use smaller data batches. At 32 VMs
and 10% data minibatches, the TM algorithm under BSP spends six times more time on network
communications than computation. In contrast, the optimal value of staleness, 32, exhibits a 1:1
ratio of communication to computation. Hence, the value of SSP lies in allowing ML algorithms
to perform far more useful computations per second, compared to the BSP model (e.g. Hadoop).
Similar observations hold for the MF and Lasso applications (graphs not shown for space reasons).
Iteration Quantity and Quality. The network-compute ratio only partially explains SSP’s behav-
ior; we need to examine each clock()’s behavior to get a full picture. In the 3rd row of Figure 3,
we plot the number of clocks executed per worker per unit time for the TM algorithm, as well as
the objective value at each clock. Higher staleness values increase the number of clocks executed
per unit time, but decrease each clock’s progress towards convergence (as suggested by our theory);
MF and Lasso also exhibit similar behavior (graphs not shown). Thus, staleness is a tradeoff be-
tween iteration quantity and quality — and because the iteration rate exhibits diminishing returns
with higher staleness values, there comes a point where additional staleness starts to hurt the rate of
convergence per time. This explains why the best staleness value in a given setting is some constant
0 < s < ∞— hence, SSP can hit a “sweet spot” between quality/quantity that BSP and Async do
not achieve. Automatically finding this sweet spot for a given problem is a subject for future work.
6 Related Work and Discussion
The idea of staleness has been explored before: in ML academia, it has been analyzed in the con-
text of cyclic-delay architectures [17, 1], in which machines communicate with a central server (or
each other) under a fixed schedule (and hence fixed staleness). Even the bulk synchronous paral-
lel (BSP) model inherently produces stale communications, the effects of which have been studied
for algorithms such as Lasso regression [5] and topic modeling [2]. Our work differs in that SSP
advocates bounded (rather than fixed) staleness to allow higher computational throughput via local
machine caches. Furthermore, SSP’s performance does not degrade when parameter updates fre-
quently collide on the same vector elements, unlike asynchronous lock-free systems [21]. We note
that staleness has been informally explored in the industrial setting at large scales; our work provides
a first attempt at rigorously justifying staleness as a sound ML technique.

Distributed platforms such as Hadoop and GraphLab [18] are popular for large-scale ML. The
biggest difference between them and SSPtable is the programming model — Hadoop uses a stateless
map-reduce model, while GraphLab uses stateful vertex programs organized into a graph. In con-
trast, SSPtable provides a convenient shared-memory programming model based on a table/matrix
API, making it easy to convert single-machine parallel ML algorithms into distributed versions. In
particular, the algorithms used in our experiments — LDA, MF, Lasso — are all straightforward
conversions of single-machine algorithms. Hadoop’s BSP execution model is a special case of SSP,
making SSPtable more general in that regard; however, Hadoop also provides fault-tolerance and
distributed filesystem features that SSPtable does not cover. Finally, there exist special-purpose
tools such as Vowpal Wabbit [16] and YahooLDA [2]. Whereas these systems have been targeted at
a subset of ML algorithms, SSPtable can be used by any ML algorithm that tolerates stale updates.

The distributed systems community has typically examined staleness in the context of consistency
models. The TACT model [26] describes consistency along three dimensions: numerical error, order
error, and staleness. Other work [24] attempts to classify existing systems according to a number
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Topic Modeling: Convergence
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Topic Modeling: Computation Time vs Network Waiting Time
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Matrix Factorization: Convergence
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Figure 3: Experimental results: SSP, BSP and Asynchronous parameter servers running Topic Modeling,
Matrix Factorization and Lasso regression. The Convergence graphs plot objective function (i.e. solution
quality) against time. For Topic Modeling, we also plot computation time vs network waiting time, as well as
how staleness affects iteration (clock) frequency (Quantity) and objective improvement per iteration (Quality).

of consistency properties, specifically naming the concept of bounded staleness. The vector clocks
used in SSPtable are similar to those in Fidge [11] and Mattern [20], which were in turn inspired
by Lamport clocks [15]. However, SSPtable uses vector clocks to track the freshness of the data,
rather than causal relationships between updates. [8] gives an informal definition of the SSP model,
motivated by the need to reduce straggler effects in large compute clusters.

In databases, bounded staleness has been applied to improve update and query performance. Lazy-
Base [7] allows staleness bounds to be configured on a per-query basis, and uses this relaxed stale-
ness to improve both query and update performance. FAS [23] keeps data replicated in a number of
databases, each providing a different freshness/performance tradeoff. Data stream warehouses [13]
collect data about timestamped events, and provide different consistency depending on the freshness
of the data. Staleness (or freshness/timeliness) has also been applied in other fields such as sensor
networks [14], dynamic web content generation [3], web caching [6], and information systems [4].
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