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1 Introduction

The increasing ubiquity of NAND flash storage is forcing
magnetic disks to accelerate the rate at which they lower
price per stored bit. Magnetic recording technologists
have begun to pack tracks so closely that writing one
track cannot avoid disturbing the information stored in
adjacent tracks [13]. Specifically, the downstream track
will be at least partially overwritten, or shingled by each
write, as shown in Figure 1, and the upstream track will
tolerate only a limited number of adjacent writes. Some
data that was stored in the downstream track will be lost,
forcing firmware or software to ensure that there was no
data in those locations that might be read in the future.

In order to avoid deployment obstacles inherent in ask-
ing host software to change before shingled disks can
be used, the current generation of shingled disks fol-
low the model established by flash storage: a shingled
translation layer of firmware in the disk remaps data
writes to empty tracks and cleans (read, move, write)
fragmented regions to create empty tracks. Known as
Drive-Managed Shingled Disks [9], host software does
not need to change because disk firmware will do extra
work to cope with any write pattern that could destroy
data. To reduce or eliminate this extra work, API changes
in the hard disk have been proposed [1] to enable Host-
Managed management of shingled disks.

This paper explores two models for Host-Managed
Shingled Disk operation. The first, Strict-Append, breaks
the disk into fixed sized bands and compels disk writes
to occur strictly sequentially in each band, allowing only
per-band-truncate-to-empty commands to recover space.
This is approximately a physical realization of the classic
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Figure 1: Feldman’s [9] Figure 5 showing the effect of two
writes, one to logical block address (LBA) 0 and one to LBA
68, on an example shingled disk. Arrows point to downstream
LBAs that will be damaged and shading shows logically down-
stream addresses that will not be damaged, for LBAs 0 and 68.

Log-Structured File System (LFS) [21], and shares the
need for the file system to schedule and execute cleaning
of bands. The second model, Caveat-Scriptor (latin for
“let the writer beware”), exposes a traditional disk ad-
dress space and a few shingled disks parameters: a dis-
tance in the downstream block address space that is guar-
anteed to never experience shingled overwrite data loss
and a distance in the upstream block address space that
cannot tolerate multiple adjacent writes. Host-Managed
software for Caveat-Scriptor shingled disks is allowed to
write anywhere, but if it fails to respect these distance
parameters, it may destroy data. We show in this paper
that Caveat-Scriptor enables the reuse of previously writ-
ten and deleted data to perform free cleaning (explained
in Section 4.2), deferring background cleaning by hours
and also requiring far less total cleaning as compared
to Strict-Append. Because sophisticated log-structured
cleaning algorithms have been extensively studied, we do
not anticipate a huge difference in throughput. Instead
we expect a reduced probability of very long response
times to be the primary benefit of less cleaning.

In this paper we will present a simple model for Host-
Managed Caveat-Scriptor, describe a simple FUSE-
based file system for Host-Managed Caveat-Scriptor,
construct and describe a file system aging tool and report
initial performance comparisons between Strict-Append
and Caveat-Scriptor. We will show the potential for
Caveat-Scriptor to help limit heavy tail response times
for shingled disks.

2 Related Work

The viability of a shingled translation layer, akin to a
NAND flash translation layer, was noted when Shingled
Magnetic Recording (SMR) was proposed for commer-
cialization [11]. Most shingled disk layout research to
date pursued Strict-Append variants of LFS [21]. Amer
et al. [6, 5] mapped bands to LFS segments and treated
each band as a circular log. Cassuto et al. [7] proposed
two indirections: (1) random-write zones on disk which
act as a writeback cache leading later to a read-modify-
write band rewrite cycle. A more sophisticated technique
(2) involved creating logically contiguous circular write-
back buffers on disk, called S-Blocks. Hall et al. [14]
built on top of S-Blocks to aid random writes. They de-
fined large sequential shingled runs holding most of the



data, I-Regions, each with a small circular buffer called
an E-Region. E-regions acted as writeback caches for I-
Regions and enabled background cleaning of I-Regions.
Lin et al. [17] exploited the difference between hot and
cold data on disks. They segregated hot from cold to pre-
vent costly cleaning operations on hot data which would
naturally be deleted more frequently. They also explored
temperature aware garbage collection mechanisms.

At least two file systems have been built for banded
shingled disks. SFS [17] was designed for video servers,
and assumed 64 MB bands, and the presence of both
random and sequential shingled zones on the same disk.
HiSMRfs [15] supported append-only semantics, relied
on unshingled partitions and added a RAID module to
support striping across multiple shingled drives.

Recently, Aghayev and Desnoyers [3] reverse engi-
neered a Drive-Managed shingled disk via a series of
carefully crafted microbenchmarks and video recordings
of the resulting disk arm movement. The disk behav-
ior indicated the presence of an on-disk cache accepting
incoming requests that were lazily written back to their
final destination. Also, the shingled disk they analyzed
seemed to have bands ranging from 15-40 MB across the
disk’s various zones.

3 Shingled Disk Model

3.1 Strict-Append

Strict-Append is a type of Host-Managed SMR [9] that
restricts host writes to only occur at the write cursors of
bands. The write cursor points to the next sector that
can be written to in a band. Writes implicitly move the
write cursor forward, that is, the only write operation is
append. When a band is cleaned, due to the inter-track
interference (see DPID in Section 3.2), the write cursor
is reset to the first sector of the band; it cannot be moved
back to any other location except the start of the band.
Bands are separated from one another by a band gap.

3.2 Caveat-Scriptor

Caveat-Scriptor is also a type of Host-Managed SMR
[9, 22] in which no write address restrictions are en-
forced. Instead the host is aware of drive characteris-
tics that enable it to make safe data placement decisions.
Caveat-Scriptor summarizes all layout risks in a few per-
drive factory-set parameters:

e Drive Isolation Distance (DID): When writing to
a certain LBA (k), shingling may result in damage
to other LBAs. Call the distance to the largest dam-
aged LBA associated with the chosen LBA (k) the
isolation distance of k. DID refers to the largest iso-
lation distance observed for any LBA on the disk. It
is safe to assume that each write damages no more
than DID LBAs downstream. '

e Drive Prefix Isolation Distance (DPID): Absent
from Feldman’s model for Caveat-Scriptor [9] was
a simple parameter to protect upstream inter-track
interference degradation of stored data. To remedy
this absence, we define DPID as the largest num-
ber of preceeding LBAs that may be degraded by
a specific LBA write, and require that no more than
one write should be done within DPID LBAs down-
stream of data that may be read in the future.

For example, in 2015, DPID is likely to be about 1
track (on the order of a megabyte) and DID is likely to
be on the order of 1-3 tracks (a few megabytes). These
numbers will probably increase slowly in the future.

4 SMRfs

SMRfs is a simple FUSE-based file system designed for
experimenting with shingled disk Host-Managed APIs.
It is not intended for production use. It implements both
Strict-Append and Caveat-Scriptor and runs on top of
a (traditional) raw disk partition. SMRfs assumes each
Host-Managed shingled disk offers two partitions, one
unshingled (traditional) and one shingled. The unshin-
gled partition allows random access and is used to store
SMRfs metadata, while the 100-1000X bigger shingled
partition stores data.

SMRf{s formats the small unshingled partition as a tra-
ditional file system whose files have no data in the unsh-
ingled partition. Each file is split into blocks of 1 MB.
Data blocks are allocated in the shingled partition using
a simple next-fit policy. The location of each block is
recorded as an extended attribute associated with the stub
file on the unshingled partition. We use Ext4 for the un-
shingled partition.

SMRfs has limited internal parallelism; there is a
background thread for reading and writing blocks on the
shingled partition, a background thread for cleaning frag-
mented space on the shingled partition and a foreground
thread for executing FUSE-relayed commands. SMRfs
also has an internal cache with limited functionality (e.g.
currently an open file must be completely instantiated in
the cache).

4.1 SMRfs for Strict-Append

SMRfs on a Strict-Append Host-Managed shingled disk
implements a variant of LFS [21], made simpler because
all metadata is in the unshingled partition. LFS regions
are the size of a band, 32 MB in our experiments [3]. Our
cleaning mechanism follows a cost-benefit policy consis-
tent with LFS and also restricts the amount of live data
moved in each cleaning cycle to 128 MB, following the
advice in Matthews et al. [18]. The cleaner is invoked
in the background when the disk is idle and less than
35% of its space is free, and it runs continuously when
the disk has less than 5% free space. It is also invoked
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Figure 2: Caveat-Scriptor Operation Example (DID > DPID):
(1) The entire disk is writable (W). (2) Allocate and write an ex-
tent starting at LBA i. DID LBAs before i are then not-writable
(NW), and DPID LBAs following the extent are write-once
(WO). (3) Allocate and write more data sequentially enlarg-
ing the readable (R) extent, and shifting the WO safety gap. (4)
Delete data just written, freeing up LBAs occupied previously,
but also converting the trailing safety gap to NW because the
first written extent has been exposed to the allowed single write
inter-track interference event, and must be rewritten before an
adjacent downstream write is allowed again. (5) Finally, allo-
cate and write as close as possible downstream, fragmenting
the disk surface.

synchronously (in the foreground) if there is less unfrag-
mented free space than is needed to accomodate a data
block being written.

4.2 SMRIfs for Caveat-Scriptor

SMRfs on a Caveat-Scriptor Host-Managed shingled
disk implements a traditional disk layout allocator with
the following necessary Caveat-Scriptor safety policy:
protect potentially readable data. Any run of shingled
LBAs containing data that may be read again, Read-
able (R), must be preceeded by at least DID LBAs that
are Not-Writable (NW), and followed by either a run of
DPID LBAs that are Write-Once (WO), if the most re-
cent write event to any LBA in the WO region was be-
fore the oldest write event in the last DPID LBAs in the
R run, or followed by a run of DPID LBAs that are NW
(if, for example, the tail section of a sequentially written
run was deleted from SMRfs, so the tail of the surviving
R run has already seen one nearby downstream write as
illustrated in Figure 2).

The consequence of this safety policy is that deletion
of N LBAs from a larger run of readable LBAs does not
allow all N LBAs to become writable. Typically there
will be DPID LBAs at the start and DID LBAs at the
end that are NW. This reduces writable space, and this
reduction becomes worse as the disk is fragmented into
smaller R and W runs.

When a deletion causes all data in a readable run of
LBAs to never be readable again, SMRfs for Caveat-
Scriptor does not need to reserve safety gaps at the be-
ginning and end of the newly deleted run. In fact, it can
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Figure 3: Free Cleaning in Caveat-Scriptor Example (DID =
DPID): (11) Starting with an aged and fragmented disk, with 3
runs of R data and 2 runs of W or WO LBAs, delete the entire
R run at LBA i. (12) Since there is no nearby readable data to
protect, the adjacent NW and WO runs can be reclaimed. (13)
The entire enclosing writable run is coalesced.

reclaim adjacent NW and WO runs. As illustrated in Fig-
ure 3, reclaiming NW or WO safety gaps is free cleaning.
Strict-Append SMRfs can only do this when all LBAs
before the write cursor in a band have been deleted, so
free cleaning in Caveat-Scriptor SMRfs is much more
likely to happen.

S Preliminary Evaluation

Our experiments use the PRObE Marmot cluster [10]
whose nodes have dual core 64 bit, 1.6 GHz AMD
Opteron-242 processors along with 16 GB of RAM and
a single 2 TB WDC SATA 7200rpm disk.

Because the behavior of shingled disks is driven by al-
location and fragmentation, we built and used an aging
tool before running benchmarks [23]. Our aging tool is
parameterized to fill a target fraction of the disk with user
data (70% of a 100 GB disk) based on a distribution of
file sizes (Figure 4 (1)) taken from a study of a Yahoo!
Hadoop Cluster [8] and a distribution of file ages (Figure
4 (2)) accelerated (by a factor of 1 sec = 6.08 hrs of the
reference distribution) to match an observed age distri-
bution [4]. Long runs of creates and deletes (with prob-
ability 0.9) are performed rather than simple alternation
while maintaining the target utilization.

Figure 4 (3) shows a 5+ hour test run of Strict-Append
SMRfs versus Caveat-Scriptor SMRfs on a 100 GB par-
tition. In both runs, the aging tool follows the same
pseudo-random sequence, and in both we inject four ap-
plication benchmark runs into the middle, at the same
point in the aging tool progress (marked at time A). The
four benchmarks are two invocations of Postmark [16]
and two invocations of Filebench [19].

In the first few minutes, shown in Figure 4 (3), the
aging tool achieved 70% utilization of the disk capacity.
Strict-Append SMRf{s (blue line) always at the top con-
tinued to fill the disk, cleaning for the first time when
only 5% of the disk was available for new writes. Be-
cause the aging tool was running constantly through-
out the test, there was never any idle time cleaning, so
Strict-Append SMRfs triggered 128 MB of cleaning each
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Figure 4: Space availability under test (3) and aging tool file size and file age distributions (1) and (2) (obtained from [4] and
[8] respectively). We aged a 100 GB disk to 70% utilization (shown by the dashed line) via successive create + write and delete
operations (without fsync) imitating 100% cache hits for reads. At time A, 800 GB worth of aging had been done before starting
two successive runs of Postmark [16] (file sizes 3-7 MB) then two successive runs of the Filebench [19] fileserver profile (mean file
size 9 MB) while the aging tool was slowed down to half its normal speed. Time B shows the end of the second Filebench run which
left 4.5 GB additional user data on the disk. The aging tool then resumed full speed until time C, when Caveat-Scriptor finally ran
out of SMRfs block-sized free space. The end point of Strict-Append running the same workload is when it had transfered the same

amount of user data as Caveat-Scriptor.

time free disk space fell to 5%. Because 128 MB does
not take too long to clean, it only suffered synchronous
foreground cleaning during the very busy benchmarking
runs.

Caveat-Scriptor SMRfs (red, yellow and brown lines)
achieved free cleaning throughout the test; that is, no
cleaning work is invoked until time C. The lowest (red)
line shows the total amount of user data being mutated
by the aging tool; the middle (yellow) line shows the user
data plus NW space and the top (brown) line shows the
user data plus NW and WO space. Because the aging tool
emulates a Hadoop style workload, with large file sizes,
free cleaning works quite well over hours. During the
benchmarks, however, even with large average file sizes,
considerable NW space accumulated (and persisted be-
cause the aging tool will never delete benchmark files).

Figure 5 shows the average throughput of the two
runs of Postmark (on the right) for Strict-Append ver-
sus Caveat-Scriptor. While there was a small average
throughput advantage for Caveat-Scriptor, the use of
small (128 MB) amounts of cleaning work each time
cleaning is triggered in Strict-Append limited the over-
all slowdown it experienced. On the left in Figure 5, we
show the maximum response times of events in the two
runs of Filebench. Here the penalty for frequent cleaning
in Strict-Append is more evident.

One interpretation for the behavior in Figure 4 (3) is

that Caveat-Scriptor, although able to defer the continu-
ous cleaning seen in Strict-Append, is not able to avoid
building up space lost to safety gaps beyond 5.5 hours in
this test. Eventually disk space will be fragmented into
enough small safety gaps that continuous cleaning could
be needed in both systems. Like solid state disks (SSD),
if the data mutation workload does not leave enough idle
system opportunities for extensive cleaning (defragmen-
tation), peak write throughput and response times will
degrade.

The difference, however, is that after sufficient disk
idleness for defragmentation, should an intense mutation
period start again, Caveat-Scriptor SMRfs will be able
to operate without cleaning for much longer than Strict-
Append. Provided the duty cycle for user work in the
shingled disk is not 100% (and disk idleness is usually
very common [12]), Caveat-Scriptor may be able to hide
all cleaning, while Strict-Append will need a very small
duty cycle to hide much cleaning.

6 Discussion and Conclusion

While Strict-Append SMRfs has a sophisticated cleaner
based on 20+ years of LFS research, cleaning in Caveat-
Scriptor is a new topic for storage research. In addition to
free cleaning and the resulting deferred cleaning, Caveat-
Scriptor cleaning can be “a little at a time”, potentially
causing much less impact on user response times.
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Figure 5: Maximum latency by operation type observed by
Filebench (left) when executing in parallel with the aging tool
as shown in Figure 4. Average read and write throughput when
running Postmark (right) along with the aging tool as shown in
Figure 4.

Caveat-Scriptor can provide cleaning flexibility, but it
can also enable catastrophic off-by-one software layout
bugs. For this reason we expect drive vendors to be slow
to offer Caveat-Scriptor APIs for Host-Managed disks.
However, even a drive-managed shingled disk needs a
disk model for its firmware engineers to program. Per-
haps using an internal Caveat-Scriptor API might allow
Drive-Managed shingled disks to offer less variable re-
sponse times.

Finally, Caveat-Scriptor [9] is similar to copy-on-write
(CoW) file systems like Btrfs [20] in terms of treatment
of in-place updates. With efforts already being made
to make Ext4 SMR-friendly [2], incorporating Caveat-
Scriptor in a CoW file system seems a feasible next step.
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Notes

!"There are some LBAs immediately following a written LBA that
are always safely unaffected. The minimum number of these is called
Drive No Overlap Range (DNOR) and can be used to dynamically
“construct” unshingled space [9]. We do not use DNOR space in
Caveat-Scriptor SMRfs yet.



