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Abstract
Memory is rapidly becoming a precious resource in many
data processing environments. This paper introduces
a new data structure called a Compressed Buffer Tree
(CBT). Using a combination of buffering, compression,
and lazy aggregation, CBTs can improve the memory
efficiency of the GroupBy-Aggregate abstraction which
forms the basis of many data processing models like
MapReduce and databases. We evaluate CBTs in the
context of MapReduce aggregation, and show that CBTs
can provide significant advantages over existing hash-
based aggregation techniques: up to 2× less memory
and 1.5× the throughput, at the cost of 2.5× CPU.

1 Introduction
This paper introduces a new data structure designed to en-
able the efficient application of compression to aggrega-
tion workloads, the Compressed Buffer Tree (CBT). We
demonstrate its effectiveness by using it to implement the
GroupBy-Aggregate abstraction found in many data pro-
cessing models like MapReduce [16] and databases [25].
Given a dataset consisting of records, this abstraction
partitions the records into groups according to some key,
then executes the aggregation function on each group.

We choose this focus for two reasons: (1) the rising
costs of memory in terms of money, power, and speed,
and (2) the importance of the GroupBy-Aggregate ab-
straction in a range of distributed programming models.
Improving the memory efficiency of this abstraction can
drastically reduce the costs of execution. In this paper,
we focus on the implementation of GroupBy-Aggregate
in MapReduce, which has become a critical analytical
tool for data-intensive applications, from machine learn-
ing [6], to text search [5], and more.

Memory is a valuable commodity in datacenters.
DRAM is expensive and an expensive consumer of
power [29]. Memory accesses are a common bottleneck
for high-performance applications [49]. With the num-
ber of cores per socket growing faster than the memory

Instance type (size) Percentage of hourly cost
CPU Memory Storage

Std. (S) 18% 47% 35%
Std. (L) 16% 44% 40%
Hi-Mem. (XL) 17% 69% 14%
Hi-CPU (M) 40% 20% 40%

Table 1: Amazon EC2 proportional resource costs
(# resource units × per-hour unit resource cost); the
per-hour unit resource costs are 1.51¢ (1 Elastic Com-
pute Unit), 1.93¢ (1GB RAM) and 0.018¢ (1GB stor-
age); analysis detailed in §5.3.

capacity per socket, memory is increasingly scarce [37].
Our analysis in Table 1 of prices charged by Amazon

for different resources in EC2 instances shows that for
most instances, memory costs already dominate, both in
terms of the proportion of total instance cost as well as the
per-unit-resource cost. In other words, with Amazon’s
standard configurations, it is far cheaper to double the
CPU capacity than to double the memory capacity.

Given these facts, this paper explores the use of com-
pression and other techniques to drastically improve the
memory efficiency of the GroupBy-Aggregate operation
in the context of MapReduce.

Our resulting techniques can be viewed as either re-
ducing overall memory requirements (saving cost), or im-
proving the amount of aggregation that can be performed
(saving resources such as bandwidth and reducing load
on the reducer nodes).

Recall that MapReduce operates in four stages: it ap-
plies a map function to incoming keys, groups identical
keys together (usually by sorting), applies an interme-
diate aggregation function to these groups (combining),
distributes each key to its final reducer node, and ap-
plies final cluster-wide aggregation (reduction) at the
reducer nodes. Essentially, both the combiner and the
reducer implement the GroupBy-Aggregate operation.
Prior work has shown that the performance of a MapRe-
duce job is largely affected by the characteristics of this
operation [45].

For many applications, hash-based grouping improves



performance [11, 34, 53] because these applications re-
quire only unsorted grouping. Unfortunately, hash-based
aggregation, more so than sorting, is a critical consumer
of memory in MapReduce: it keeps many key-value
pairs in memory during aggregation in order to effi-
ciently merge records with the same key. The perfor-
mance of hash-based aggregators also depends signifi-
cantly on the amount of memory available. Insufficient
memory can limit the amount of aggregation that can be
performed [34] or lead to job failure [11].

To solve these challenges, we present a new, memory-
efficient hash-based aggregator called the Compressed
Buffer Tree (CBT). A CBT stores the partially aggre-
gated contents in compressed form in memory to re-
duce memory consumption. Compressing individual key-
value pairs has high overhead, so the CBT compresses
larger buffers for efficiency. To avoid compressing and
decompressing buffers too often, the CBT organizes the
compressed buffers in memory as a B-tree using ideas
from buffer trees [8]. We describe the CBT in Section 3.

The CBT is implemented in a new MapReduce library
called Minni written in C++. By structuring aggregators
in the form of pipelines, Minni enables fast, scalable
execution on multi-core platforms and allows new ag-
gregators to be constructed in a modular fashion. We
describe Minni in further detail in Section 4.

2 Overview
This section motivates why GroupBy-Aggregate is a par-
ticularly important focus for memory reduction and why
existing aggregators fundamentally have high overhead.

2.1 The “Memory Capacity Wall”
Several reports suggest that the relative cost of memory
(vs compute) is likely to grow in the future. As one
example, Lim et al. project that the gap between the
number of cores and memory capacity per socket will
continue growing, effectively decreasing the amount of
memory available per core [37]. Although Compressed
Buffer Trees are a generally applicable technique, as we
describe below, the GroupBy-Aggregate operation is one
of the major memory consumers in MapReduce-style
processing, and so we specifically focus in this paper on
improving its memory use.

2.2 Memory-Efficient Aggregation
MapReduce applications involve one or more GroupBy-
Aggregate operations. A GroupBy-Aggregate operation
can occur as a combiner for map-side pre-aggregation,
and it always occurs on the reduce-side to perform final
aggregation (see Figure 1). The operation takes key-value
pairs, either from the local map operation (map-side) or
from remote mapper processes (reduce-side). GroupBy-
Aggregate first groups the pairs into partitions based upon
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M G A S Mg G A

M - Map
G - GroupBy
A - Aggregate
S - Shuffle
Mg - Merge

Figure 1: MapReduce flow diagram: GroupBy-
Aggregate can involve two separate operations (as
with sort followed by aggregate) or a single, com-
bined operation (hash and accumulate).

the key, and then applies an aggregation function to each
partition.

The design of an efficient GroupBy-Aggregate opera-
tion is the major focus of our paper because the GroupBy-
Aggregate operation is fundamental to the overall perfor-
mance of MapReduce applications. For brevity, we refer
to the GroupBy-Aggregate operation as aggregation and
the operator itself the aggregator.

In this paper, we focus on in-memory aggregators that
do not use external storage as scratch space. In general,
aggregation in memory is faster than aggregation using
disk which often requires multiple passes. However, if
the aggregated size of the data is too large for memory,
then external aggregation involving multiple aggregation
passes may be required, which we leave for future work.

The primary design goals for our aggregator are:

1. Memory-efficiency: reduce the memory capacity
overhead associated with aggregation in memory.
Rationale: Avoid spilling state to (slow) disk and
reduce DRAM costs.

2. High aggregation throughput: maximize the rate
of aggregation of intermediate key-value pairs.
Rationale: a significant portion of the execution
time of a MapReduce job is spent in aggregation,
hence the performance of the aggregator is critical.

2.3 Sort vs. Hash-based Aggregation
The Sort-merge Approach. Hadoop, a popular MapRe-
duce implementation, stores intermediate key-value pairs
emitted by the map operator in a memory buffer. When
the buffer reaches a threshold size, the contents are par-
titioned (for the different reducers), and each partition
is sorted, aggregated, and then spilled to disk. After
the map task has processed all input, the spill files are
merged to form a single sorted file for each partition.

For applications that require only map/group-by, and
need not output keys in sorted order, recent work has
shown that hash-based aggregation almost always outper-
forms sorting [53], in MapReduce, Dryad [31], and re-
lated aggregation contexts such as parallel databases [18].
Sort-merge has two problems: (1) it orders keys as a
side-effect of grouping them which leads to unnecessary
computation; and (2) the amount of memory required for
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(a) Memory overheads in hashtable-based aggregation

Allocator Per-entry memory (B)
std::

unordered map

sparse

hash map

hoard [9] 64.9 67.8
tcmalloc [21] 57.2 43
jemalloc [20] 58.1 41

(b) Per-entry memory consumption for different allocator and
hashtable combinations (Unique keys inserted: 226, keys: 8B
strings, values: 4B integers; g++-4.4 compiler on 64-bit system

Figure 2: Hashtable-based aggregation

sorting is proportional to the total number of intermedi-
ate key-value pairs in the buffer rather than the number
of distinct keys. This is inefficient for highly aggregat-
able workloads (where the dataset is much larger than
the aggregated size) because it either reduces aggrega-
tion or requires multiple passes. This problem motivated
the consideration of hash-based aggregators for MapRe-
duce [11, 34].

The Hash-based Approach. Hash-based aggregation
is common in RDBMSs, and recent work has begun to
explore its application to MapReduce [11, 34].

Aggregation using hashing works as follows: a data
structure such as a hashtable stores one “accumulator” for
each key. Intermediate key-value pairs are then hashed
by key and accumulated. Finally, the aggregated key-
value pairs are read iteratively from the hashtable and
transferred to the reducers.

Unfortunately, aggregation using a hashtable incurs
high memory overhead per entry in the hash map. Before
describing our alternative—Compressed Buffer Trees—
we briefly walk through the overheads of hash-based
aggregation and show how to shrink them in order to
have a fair basis for comparison. Figure 2a shows the
implementation of hash-based aggregation for wordcount
using a hashtable, which maps string keys to accumu-
lators, along with associated overheads. The overheads
can be classified as follows:

1. Key-value pointers: pointers to the key and the accu-
mulator are stored in the hashtable. Small accumu-
lators can be inlined in the hashtable as an optimiza-
tion, but this is difficult to do since the Value type
is decided at run-time and not at compile-time. The
pointers add 16B per entry (on a 64-bit machine).

2. Memory allocator: the key and accumulator are allo-
cated on the heap. Each allocation incurs overhead
from the user-space memory allocator, which can
be costly if the requested sizes are small. Using an
allocator that handles small objects efficiently such
as jemalloc [20] reduces the per-key overhead by
about 20B compared to the default libc allocator.

3. Hashtable implementation: unoccupied slots in the
hashtable waste space in order to limit the load
factor of the hashtable for performance reasons. A
memory-efficient implementation such as Google’s
Sparsehash [24] which minimizes the overhead of
unoccupied slots and has a per-entry overhead of
just 2.67 bits, can be used at the cost of slightly
slower inserts. Sparsehash reduces the per-entry
overhead by about 16B compared to using the STL
unordered map.

As shown in Figure 2b, the per-entry memory over-
head for state-of-the-art implementation of hashtables
and allocators reflects the high overhead associated with
this approach. It is not our intent to optimize this over-
head any further in this paper. Instead, we show that
hash-based aggregation does not require a hashtable data
structure at all.

Compressed Buffer Trees Compressing hashtables is
challenging for two reasons:

1. Compressing and decompressing on every access to
the hashtable adds unacceptably high overhead.

2. Compression works best on large blocks, but key-
value pairs in the hashtable are small. This creates a
tension between compression/decompression speed
and effectiveness.

The key to effective compression is to be able to per-
form compression in relatively large chunks while amor-
tizing the cost across multiple update operations. The
Compressed Buffer Tree achieves this by taking advan-
tage of the observation that aggregation can occur lazily:
updates need not be merged immediately, but can be
deferred.

Lazy aggregation enables effective compression: mul-
tiple accumulators can be buffered together and main-
tained in compressed form in memory. With eager ag-
gregation, the entire compressed buffer would have to be
decompressed if any of the accumulators were required.
With lazy aggregation, decompression of the buffer is
deferred until we have batched updates to multiple accu-
mulators in the buffer. Thus, the compression costs are
now amortized over multiple updates.

How can the system ensure that sufficiently many up-
dates have been batched so that it is worthwhile decom-
pressing a compressed buffer of accumulators? The an-
swer to this question comes from an analogous tradeoff
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that exists in external data structures that try to intelli-
gently move data to and from slower external storage.

Consider the implementation of an external binary
search tree: immediately inserting an element into the
tree requires traversing the tree and performing the
insert—a read and a write operation per update, lead-
ing to poor performance. The buffer tree proposed by
Arge [8] instead adds a buffer to each node in the search
tree. Inserts are buffered into the root node until it be-
comes full. The root is then emptied by pushing the
values one level down to buffers on the next level. This
emptying process is implemented recursively. The im-
portant benefit of this solution is that it transforms the
original multiple, random I/Os of small updates into I/O
involving large buffers.

Buffer trees provide the solution we seek; they enable
batching of updates to compressed buffers. The cost of
decompressing and compressing buffers in memory is
analogous to reading and writing buffers to disk in the
setting of external data structures.

Using this insight, we organize compressed buffers
into a B-tree keyed by the hashes of the intermediate key.
We then use this resulting Compressed Buffer Tree for
aggregation in MapReduce by performing aggregation
only when a buffer is pushed to its children. As a result,
the system performs compression and decompression
once per buffer flush instead of once per insert operation.
The structure trades the O(1) access time of a hashtable
(which is not needed in our application) for fast insertion
and aggregation into compressed memory.

The CBT also improves memory efficiency through
serialization. As a pre-requisite to being able to compress
the buffer in memory, inserted values must be serialized.
This avoids memory overheads from pointers and further
saves memory by using efficient binary encoding. For
example, Protobufs [22] serializes integers as varints
which take one or more bytes allowing smaller values to
use fewer bytes.

We describe the design of the Compressed Buffer Tree
in Section 3. We then describe the system in which
we use and evaluate CBTs, called Minni, our library
for MapReduce, in Section 4. We evaluate the CBT and
Minni in Section 5 and discuss related work in Section 6.

3 Compressed Buffer Trees
The CBT is based on the buffer tree design for I/O-
efficient external data structures [8]. The buffer tree uses
an (a,b)-tree with each node augmented by a memory
buffer. Inserts and deletes are not performed immediately,
but buffered at successive levels of the tree to improve
I/O performance. The CBT is an in-memory variant of a
buffer tree that uses a B-tree and maintains most of the
buffers in compressed form for memory-efficiency.

The CBT offers fast, memory-efficient aggregation

Compressed 
fragment

Uncompressed 
fragment

Structured 
buffer (can 

include both of 
above)

Figure 3: Compressed Buffer Tree

of intermediate key-value pairs and can be used in both
the combining and reducing phases of a MapReduce
application. The CBT is designed to avoid the overheads
associated with hash table-based aggregation through
effective use of buffering and compression. The CBT
can achieve high throughput, comparable to aggregation
using hashtables, despite the additional computational
overhead from compression and maintenance operations.

3.1 Partial Aggregation Objects (PAOs)
Our MapReduce system, described in Section 4, aggre-
gates values using a simple data structure called a Partial
Aggregation Object (PAO); we introduce PAOs here to
help simplify the description of CBTs. The PAO is an
abstraction that hides the underlying runtime implemen-
tation and provides interfaces for aggregation operations.
Before aggregation, each intermediate key-value pair is
represented using a PAO. During aggregation, PAOs ac-
cumulate partial results. PAOs also provide sufficient
description of a partial aggregation such that two PAOs
pq and pr with the same key can be merged to form a
new PAO, ps. Because different PAOs with the same
key provide no guarantees on the order of aggregation,
applications must have a merge function that is both
commutative and associative.

3.2 Overview of the basic CBT
The entire CBT resides in memory. We term all nodes
except the root and leaf nodes “internal nodes.” The root
is uncompressed, and the buffers of all internal nodes
and the leaf nodes are stored in compressed form.

To insert a PAO into the CBT, the PAO is serialized,
and the tuple 〈hash, size, serialized PAO〉 is ap-
pended to the root node’s buffer; hash is a hash of the
key, and size is the size of the serialized PAO.

When a buffer reaches some threshold (e.g., half its ca-
pacity), it is emptied into the buffers of nodes in the next
level. To empty the buffer, the system decompresses the
buffer (if not already decompressed), sorts the tuples by
hash value, decompresses the buffers of the nodes in the
next level and partitions the tuples into those receiving
buffers based on the hash value.

If a receiving buffer in the next level fills up as a result
of the incoming tuples, the buffer-emptying process is
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applied recursively; if the child node is not full (and
therefore does not need to spill further), its buffer is
compressed. Serializing a large number of PAOs into
each buffer substantially increases the effectiveness of
compression.

Insertion behaves like a B-tree: a full (again, using
some fullness threshold) leaf node splits into two, and the
new leaf node is added to the parent of the leaf node. If
this causes the number of children of the parent to exceed
the maximum allowed, then the parent splits recursively
and splitting can propagate up to the root.

As mentioned before, MapReduce aggregation does
not require efficient random lookups. The important
operations are fast insertion and iterative access to the
accumulators after all the PAOs have been inserted and
aggregated. For iteration, all the buffers are emptied
recursively, flushing all PAOs to the leaf nodes of the
CBT. The leaf nodes are then accessed in order and the
aggregated PAOs deserialized.

In the naive CBT design described so far, the compres-
sion/decompression overhead during insertion is high.
We avoid this overhead by restructuring the buffers from
simple linear lists to collections of compressed buffer
fragments.

3.3 Structured Buffers
Using a single linear buffer for each tree node has several
disadvantages. When a buffer is full, the node must spill
that data into the buffers of its children. Each child buffer
must be decompressed, the data copied, and the buffer
re-compressed. Not only does frequent decompression
and compression add significant CPU overhead, but this
naive design fails to take advantage of the fact that the
data copied from the parent is already sorted by hash.

Instead, the buffer at each node holds a set of lists,
or buffer fragments. Each copy from parent buffer to
child buffer creates a new uncompressed fragment that
is appended to the child’s buffer. Compressed fragments
already in the child remain compressed when a new frag-
ment is added. Only when the buffer is full are all of
the fragments decompressed. Since each fragment is
already sorted by hash, we can use a fast merge instead
of sort. The system ensures that each fragment is large
enough so that compression is effective. The structured
buffer, shown in Figure 3, both improves throughput and
reduces CPU overhead.

3.4 Reducing Insertion Blocking Time
PAOs are inserted into the CBT by an insertion thread.
The insertion thread blocks when the root buffer becomes
full and remains blocked until the buffer is emptied into
the nodes in the next level. Aggregation performance
depends significantly on minimizing the amount of time
that the insertion thread remains blocked. We describe

the techniques that the CBT uses to achieve high through-
put by reducing the blocking time of the insertion thread.

Asynchronous operations The first technique we use
to reduce the blocking time for the inserter is to make
core CBT operations such as compression, sorting/merg-
ing and emptying asynchronous. As shown in Figure 4,
queues are maintained for each of these operations and
nodes are moved between queues after processing. When
a node is full, it is inserted into the decompression queue
for decompression of all its buffer fragments. It is then
moved to the sorting queue, where it is sorted or merged
and finally moved to the emptying queue. For exam-
ple, in Figure 4, if the copy from Node r into Node a
causes the latter to become full, Node a is scheduled for
decompression (and further merging and emptying) but
insertion into Node r resumes once its buffer has been
emptied without waiting for Node a or other children to
finish emptying.

Prioritized Emptying In the above description, a node
will never empty into an already-full child, because nodes
are emptied in strictly the same order in which they were
queued. However, this strict ordering can increase the
blocking time for the insertion thread. For example,
if Node d was scheduled to empty before the root r,
insertions into the root would be delayed because the
root r cannot empty until d has first done so.

We therefore use a level-based prioritization with pri-
ority inheritance: the root node has the highest priority
and the leaf nodes the lowest. To ensure that full chil-
dren are emptied before the parent, the parent donates its
priority to its full children, if necessary, so that they are
emptied first. For example, in Figure 4, Node r cannot
be emptied before Node a because the latter is full. The
priority of Node a is, therefore, increased in the queue.
After Node a is emptied, Node r will empty ahead of
Node d owing to its higher priority.

Double-buffered root To further reduce the blocking
time of the inserter, we double-buffer the root as shown
in Figure 4. This allows insertion to continue while the
primary buffer is being emptied. When the secondary
buffer is full, the inserter blocks if the primary buffer
has not been emptied yet, otherwise the two buffers are
swapped and insertion continues.

3.5 Column-Specialized Compression
The CBT borrows the idea of organizing data by columns
from column-store databases to enable the application of
specialized compression techniques to save memory.

Remember that each buffer fragment in the CBT con-
sists of tuples of the form 〈hash, serialized PAO
size, serialized PAO〉; storing tuples column-wise
results in three columns, each of which is compressed
separately. For example, in each buffer fragment, the
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Figure 4: Techniques to reduce inserter blocking: asynchronous operations, prioritized emptying for higher
level nodes (Node r (root) has highest priority, but if child Node a is also queued for emptying, the priority of a
is increased) and double-buffering of root.

hashes appear in sorted form. Therefore, we use Delta-
encoding to compress the column of hashes. Because
many of the sizes of the serialized PAOs are similar, we
use Run-Length Encoding (RLE) to compress the sizes-
of-serialized-PAOs column. The serialized PAOs column
is compressed with Snappy [23].

Storing the fields column-wise also improves perfor-
mance: when the buffer is being sorted or merged, com-
parisons are made only on the hash values. Storing the
hash values of the PAOs in a fragment contiguously al-
lows more hashes to fit in a cache line.

3.6 The CBT API
PAOs are serialized into the root buffer using insert().
After all PAOs have been inserted, invoking flush()
fully aggregates the PAOs by pushing the PAOs to the
leaves of the CBT. The aggregated values can then be
accessed through an iterator. A bulk version of insert()
is also provided to minimize function call overhead since
the CBT is implemented in a separate shared library.

4 Implementation
We implement the Compressed Buffer Tree as an aggre-
gator in a MapReduce library called Minni. We chose
to implement our own MapReduce library for several
reasons: First, Hadoop’s code structure did not allow us
to easily replace their sort-based aggregator. Minni is de-
signed to be flexible and modular. Different components
such tokenizers, serializers, etc. can be used to compose
different aggregators which can then be selected at run-
time. Second, Minni supports multiple cores within a
single instance of a mapper or a reducer by structuring
aggregators as pipelines. Finally, we wanted to avoid
Hadoop’s Java-related memory overheads; Minni is writ-
ten in C++.

4.1 Programming Model
Unlike traditional MapReduce, the intermediate phase in
Minni does not operate on raw key-value pairs. Instead,
Minni operates on partial aggregation objects or PAOs.

Since traditional MapReduce groups using sorting, it

Operation Description
PAO* create (Token t[]) Create PAO from Tokens
destroy (PAO* p) Destroy p
merge (PAO* p1,

PAO* p2)
Merge p2 into p1

serialize (PAO* p,

string* out)
Serialize p to out

deserialize(string* in,

PAO* p)
Deserialize from in into p

Table 2: The Minni API

can treat intermediate keys and values as raw strings.
However, Minni’s aggregator-agnostic PAOs may con-
tain arbitrary intermediate state. The programmer must
therefore provide the functions shown in Table 2 to ma-
nipulate the PAOs.

Minni reads its input data from a distributed file system
(DFS) and creates tokens from the data. Minni includes
a set of pre-defined tokenizers such as delimiting tok-
enizers and file tokenizers. Programmers can also supply
their own tokenizers. Table 2 describes the Minni API:
The first two functions define how a PAO is created from
these tokens and how it is destroyed. The next function
defines how to merge a PAO with another that has the
same key. The last two functions deal with PAO seri-
alization. Minni supports Protobufs [22] and Boost [1]
serialization, or allows the programmer to use custom
serialization.

4.2 Minni Architecture
Similar to MapReduce and Hadoop, the Minni master
node schedules work on worker nodes. Workers can
share data directly over the network or through a dis-
tributed filesystem (DFS). Minni currently supports two
DFSs: HDFS [4] and KFS [14].

Every Minni job has two parts: a job description (speci-
fication) and a dynamically loadable object implementing
Minni’s API. Based on the job description, the master as-
signs map and reduce tasks to workers. In Minni, a map
task emits a series of locally-aggregated PAOs which are
then split using a partitioning function and transferred to
reducers over the network.
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// WordCountPAO inherits from PAO
class WordCountPAO : public PAO {
string key;
int count;
};

PAO* WordCountOperations::create(Token toks[]) {
WordCountPAO *p = new WordCountPAO();
p->key = tok[0];
p->count = 1;
return (PAO*)p;
}
WordCountOperations::destroy(PAO* p) {
delete p;
}
WordCountOperations::merge(PAO* p1, PAO* p2) {
WordCountPAO *w1 = (WordCountPAO*)p1;
WordCountPAO *w2 = (WordCountPAO*)p2;
w1->count += w2->count;
}

Figure 5: Minni implementation of wordcount

4.3 Scalability
There are two options for scaling performance within
a single node. Like other MapReduce libraries, Minni
allows multiple mappers and reducers to be executed
on a single node. Minni also supports pipelining to
make use of additional available resources. Minni, there-
fore, handles the mapper sub-tasks—reading from the
DFS, tokenizing the input, hashing the key in the in-
ternal hash-table, merging and possibly serializing—as
threaded pipeline stages using Intel’s Thread Building
Blocks [30] pipeline construct to do so1.

Pipelining increases throughput by taking advantage
of available CPU and I/O resources with only a modest
increase in memory consumption. TBB uses multiple
threads to implement different stages in the pipeline and
also processes tokens in batches at each stage. Addi-
tional memory is required for transfer buffers, but Minni
only passes pointers to objects in the transfer buffers to
minimize copying costs and memory usage. Running
multiple mappers, on the other hand, requires keeping
multiple hash-tables or CBTs in memory which use all
resources proportionally.

4.4 Example Minni Application
Figure 5 shows an example of wordcount implemented
using the Minni API listed in Table 2. The create
function creates a PAO specific to the application and
sets the key of this PAO and its value to 1, signifying that
so far only 1 token matching the key associated with this
PAO has been found. Merging simply involves adding
the counts of the two PAOs.

Although different than the normal MapReduce inter-
face of programming only a map and reduce function,
the Minni API is intuitive especially for aggregatable
workloads. In addition, the data structure used to store

1This differs from the pipelining used in some implementations
of MapReduce [15] where it applies to the pipelining between map,
shuffle and reduce stages to obtain early results.

PAOs during aggregation is completely abstracted from
the programmer.

5 Evaluation
In this section, we evaluate the Compressed Buffer Tree
and compare it with alternative data structures for imple-
menting the GroupBy-Aggregate operation. First, we use
microbenchmarks to test the effects of workload charac-
teristics and system parameters (§5.1) and, next, we use
example applications implemented in Minni (§5.2). To
compare the alternatives, we introduce a cost model for
the resources based on Amazon EC2 pricing data (§5.3).

Alternatives for hash-based aggregation We compare
the CBT against two hashtable implementations. The
first, denoted HT, uses Google’s sparse hash map [24],
an extremely memory-efficient hashtable implementa-
tion; with this comparison, we seek to show that the CBT
is often as much as 2× more memory efficient than HT.
However, HT does not support concurrent insertion and
uses less CPU than CBT making throughput comparisons
unfair. Therefore, we also compare against a second con-
current hashtable implementation, denoted HT-C, which
uses the concurrent hash map from Intel’s Threading
Building Blocks [30]. For experiments, we constrain HT-
C to use the same amount of CPU as the CBT, allowing
for fair throughput comparisons; we seek to show that the
performance of the CBT is within an acceptable range of
HT-C while being as much as 3× more memory efficient.

Setup The experiments use a 12-core server (two
2.66GHz six-core Intel X5650 processors) running Linux
2.6.32 with 48GB of DDR3 RAM and one 1TB hard disk.
Minni uses KFS [14] as the distributed file system to store
the input and output datasets; the aggregation state for all
experiments is stored completely in memory. Because
the focus of this section is to compare data structures
for the GroupBy-Aggregate operation, for clarity, we
evaluate and report performance for a single GroupBy-
Aggregate operation on one node and not the entire job
execution time (including shuffle etc.). This operation
could represent either a map-side combine operation (to
partially aggregate results and lower network bandwidth
utilization) or a reduce-side reduction.

5.1 Compressed Buffer Trees
To evaluate the design and benefits of the CBT, we use
microbenchmarks consisting of wordcount with a set of
synthetic datasets. We define the aggregatability of the
dataset with respect to an application as the ratio of the
size of the dataset to the aggregated size of the dataset.
Wordcount’s aggregatability is proportional to the av-
erage number of occurrences of words in the dataset.
The synthetic datasets are represented as SYN〈x,ywc,z〉
where x is the number of unique keys in the dataset, ywc
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Figure 6: Techniques for memory efficiency and high aggregation performance of CBT: a). Aggregation
throughput, b). memory efficiency

the aggregatability with respect to wordcount and z the
average size of each key. We use randomly generated
keys in the synthetic datasets, which is the worst-case
for compressibility. The keys are of uniform length and
uniformly distributed in the dataset. We consider datasets
with variable-length keys and non-uniform distributions
in §5.2.

We first evaluate the impact of CBT design features
and configuration parameters on aggregation perfor-
mance and memory consumption. We then evaluate the
effects of workload characteristics; and finally, we briefly
examine the CBT CPU usage.

5.1.1 Design features

We analyze the performance of the CBT by consider-
ing its features in isolation. For each feature, we show
its incremental2 impact on aggregation throughput and
memory consumption in Figures 6a and 6b respectively.

Baseline The baseline CBT consists of a buffer tree in
memory with no compression enabled, with buffers as
simple memory regions with no structure and no asyn-
chronous processing. The basic CBT consumes about
34% less memory compared to HT. It avoids overheads
associated with allocating small objects on the heap (by
always allocating large buffers) and avoids storing point-
ers for each PAO (by serializing the PAO into the buffer).
Aggregation throughput of the baseline CBT is about
18% less than that of HT.

+Comp Compressing all of the buffers, except the root
and a buffer being emptied, with Snappy [23] (in this
simplified version of the CBT, no specialized compres-
sion is done; instead Snappy is used for the entire buffer)
reduces memory use by a further 27%. These are worst-

2Gains/losses are relative to previous version and not to the baseline

case savings because the randomly generated keys used
in the synthetic datasets are not compressible (Snappy
uses a dictionary-based algorithm and relies of recurring
patterns for effective compression). The cost of the re-
duction in memory is a loss of aggregation throughput by
28% due to compression occurring synchronously with
insertion.

+AsynSort, +AsynComp Compression and sorting con-
sume substantial CPU time, and performing them syn-
chronously hurts insertion performance. By blocking
the inserter only when the root buffer is unavailable, as
described in §3.4, and compressing and sorting lower
level nodes asynchronously, aggregation throughput can
be improved by nearly 93% with no impact on memory
consumption; the tradeoff is a 104% increase in CPU
usage.

+Prio To further reduce inserter blocking time, we use
level-based prioritization with priority donation to sched-
ule nodes for emptying, as described in §3.4. This tech-
nique improves aggregation throughput by a further 10%,
using no additional memory.

+DoubBuf Double-buffering the root (§3.4) allows in-
sertion to continue even when the root is being emptied.
Double-buffering increases throughput by nearly 32% at
the cost of 24% additional memory. Double buffering
nodes other than the root as well as increasing the num-
ber of buffers for the root does not increase performance
enough to justify the memory use.

+StructBuf Structuring the buffer into multiple buffer
fragments avoids decompressing already-compressed
fragments while copying data, and allows the use of
merging instead of sorting to join buffers. This technique
reduces CPU usage by 15%.
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+SpecComp Storing the PAO in a column-oriented man-
ner as 〈hash,size,serialized PAO〉 (§3.5) improves
the effectiveness of compression, reducing memory use
by a further 16%.

Next we consider how the performance and memory
consumption of the CBT depend on system parameters
such as the node buffer size and the tree fan-out.

5.1.2 CBT Parameters

Although the CBT avoids many overheads associated
with hashtable-based aggregation, it incurs memory over-
head when serialized PAOs with the same key occur at
multiple levels of the tree as a result of lazy aggregation.

This overhead depends on certain CBT parameters: the
node buffer size and the fan-out of the tree. A model for
the optimal selection of these parameters is beyond the
scope of this paper; instead, we provide some intuition
for the dependence of both memory consumption and
aggregation performance on these parameters.

Memory Usage The heatmap for memory use in Fig-
ure 7a shows that for a given buffer size, the overhead
decreases with increasing fan-out (color darkens). This
is because a high fan-out decreases the height of the tree
and reduces the possible number of occurrence of PAOs
with the same key in different levels of the tree. For
a given fan-out, the variation of memory use with the
buffer size shows an interesting pattern. In general, in-
creasing the buffer size (keeping fan-out fixed) causes
increased buffering (or less frequent spilling) leading to
higher memory overhead (cf. buffer sizes 150-210MB in
Figure 7a). However, larger buffers also result in fewer
nodes in the tree which can reduce the height of the
tree. This causes a net reduction in memory overhead (cf.
buffer sizes: 120, 240MB).

Performance The heatmap for aggregation throughput
in Figure 7b shows two trends: First, aggregation perfor-
mance increases (color darkens) with increasing buffer
sizes; this is because larger buffers allow more buffering
and less frequent spilling. Second and more prominently,
performance decreases with increasing fan-out of the
tree; this is because smaller fan-outs increase the height
of the tree which leads to a greater number of internal
nodes (e.g. with 64 leaf nodes, a fan-out of 4 would
require 16+4+1=21 internal nodes, but a fan-out of 16
would require just 4+1=5 internal nodes). A greater
number of internal nodes provides more opportunity for
buffering, increasing performance.

5.1.3 Workload Properties

Here we consider the three aggregators (CBT, HT and
HT-C), and evaluate how three workload properties affect
their performance: the number of unique keys, the aggre-
gatability (for wordcount in the following experiments),
and the size of the PAO.
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Figure 7: Dependence of per-key memory and ag-
gregation throughput on CBT parameters. For clar-
ity, in this experiment, compression is disabled. The
workload used is SYN〈10e8,10,8〉; other synthetic
datasets were tested and showed similar trends.
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Figure 8: Effect of increasing aggregated data size on
memory consumption and performance. The work-
load used is SYN〈x,50,8〉 where x is varied.

Aggregated data size The memory use of hash-based
aggregation depends on the number of unique keys in
the dataset. We use a set of synthetic datasets with an
increasing numbers of unique keys while keeping the
aggregatability of the dataset constant. Figure 8 shows
that the CBT consumes as much as 38% and 65% less
memory per key than HT and HT-C respectively, while
maintaining a throughput of between 75–97% of HT-C.

Aggregatability We examine memory efficiency as a
function of increasing aggregatability by using a progres-
sively larger number of total keys with a fixed number
of unique keys. With hashtable-based aggregation, in-
creased aggregatability does not require more memory
since a single PAO is maintained per key (and word-
count’s PAOs do not grow with aggregation). With a
CBT, however, lazy aggregation allows duplicate keys
in interior nodes (Figure 9), and so memory increases
slightly as the dataset grows. Overall, CBT uses 35%
less memory than HT for the values tested.

PAO size Here we grow PAOs by increasing the key
size, holding the rest of the parameters constant. Fig-
ure 10 shows that the CBT uses less memory than HT,
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Figure 9: Effect of increasing data aggregatability
on CBT performance. The workload used is SYN〈7∗
107,x,8〉 where x is varied.

but the use grows at nearly the same rate as the key size
increases. This suggests that when the keys are long and
incompressible, the benefit yielded by the CBT decreases.
But keys in real applications seldom have these proper-
ties. In cases where this is true, this can be replaced by a
shorter identifier (e.g. if the key is an image encoding, it
can be replaced by its filename or a hash [42]).

5.1.4 CPU Overhead

Figure 6a showed that the benefits in memory efficiency
and aggregation throughput cost additional CPU re-
sources. We believe, however, that this tradeoff is reason-
able, as memory is increasingly a more limited resource
than CPU in big-data environments. Further, we find
that compression, merging, sorting and serialization con-
stitute about 65% of the total CPU used during CBT
execution. Therefore, there are likely opportunities for
more effective algorithms (e.g. more efficient compres-
sion algorithm) or for optimized implementation of these
algorithms (e.g. with hardware acceleration [44]).

5.2 Example Applications
We next describe three example Minni applications that
we implemented to evaluate our CBT-based aggregator.
Each application contains a GroupBy-Aggregate opera-
tion in the map and reduce phases. Memory consumption
and throughput are shown in Figure 11. Unlike the mi-
crobenchmarks, the datasets used with these applications
have varying key-lengths and distributions of keys.

N-gram Statistics of eBooks An n-gram is a continu-
ous sequence of n items from a given of sequence of
text. This application computes n-gram statistics on 30k
ebooks downloaded from Project Gutenberg [2]. We cal-
culate the number of instances of 1-, 2- and 3-grams on
words in the dataset. N-gram counting is useful in differ-
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Figure 10: Dependence of performance and mem-
ory consumption on key length. The dataset used is
SYN〈107,10,x〉 where x is key length.

ent application such as protein sequencing [52], machine
translation [40] and spelling correction [32].

This application tests the ability of the aggregators to
handle workloads with large numbers of unique keys.
Each PAO contains a key-value pair: the n-gram and
a 32-bit count. Merging PAOs simply adds the count
values, similar to wordcount.

Image Clustering In this application, we cluster similar
images using the perceptual hashes [42] of 80 million
images from the MIT Tiny Image dataset [48]. Percep-
tual hashes (PHs) of two images are close (as defined by
a similarity metric like Hamming distance) if the images
are perceptually similar according to the human visual
response. Perceptual hashes are robust enough to handle
transformation such as skews, rotation etc. and can be
used for duplicate detection.

Each PAO consists of a PH-prefix as key and a list
of similar images as value. Merging two PAOs with the
same key combines their image lists. From an input
image and its hash (e.g. A, 563), a PAO is created whose
key is a prefix of the PH (e.g. 56) and whose value is
the image’s file name. Therefore, PAOs for images with
the same prefix (e.g. 561, 567), which by definition are
perceptually similar, can be merged by merging the file
lists from the PAOs.

This basic method does not find images that are similar
but differ in higher-order bits (e.g. 463 and 563). There-
fore, we repeat the process after rotating the PH values
for each image (635 and 634 share the same prefix). This
works because the Hamming distance is invariant under
rotations.

PageRank This application performs a simplified ver-
sion of an iterative PageRank computation on the
Twitter follower network [33]. The input is an ad-
jacency list of the input graph. For each tuple:
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Figure 11: Comparison of CBT with HT and HT-C
for example Minni applications

〈source〉〈dest1〉 . . .〈destn〉 in the input, PAOs using
source, dest1 etc. as keys are created. Each page is given
a default PageRank value in the first iteration which is
divided among the target pages. A PAO has a string key
for the page, a float value for the rank and an optional list
of links to pages. PAOs with the same key are merged by
adding their associated PageRanks. At the end of each
iteration, the aggregated PAOs are serialized to the DFS
and become the input for the next iteration.

5.3 Cost model
Tradeoffs between memory consumption, CPU and ag-
gregation throughput appear throughout the system. To
decide whether a tradeoff is “worthwhile” requires a cost
model for the resources. The model must account for
the total cost of operation including purchase and energy
costs. Instead of synthesizing a model using such com-
ponents costs, inspired by an idea in a web log post [38],
we analyze the publicly available pricing of different
Amazon EC2 instances, which have varying amounts of
CPU, memory and disk resources, to estimate the unit
cost of each kind of resource as priced by Amazon.

Let A be a m× 3 matrix with each row containing
the number of units of CPU, memory and storage avail-
able in a type of instance for m different kinds of in-
stances. The number of rows is equal to the number
of different types of EC2 instances offered (e.g. Stan-
dard Small, Hi-memory Large etc.). Let b be an m×1
matrix representing the hourly rates of each kind of in-
stance and let x = [c,m,d]> be the per-unit-resource rates
for CPU, memory and disk respectively. Then, solving
for x in A.x = b by using a least squares solution that
minimizes ‖b−A.x‖2 yields the per-unit-resource costs.
Using prices from April 2012, this yields hourly costs of
1.51¢ per ECU (Elastic Compute Unit), 1.93¢ per GB of
RAM and 0.018¢ per GB of storage.

Appl. (x,y) Hourly rate (¢) Total cost (¢)

HT HT-C CBT HT HT-C CBT

1-gram 4, 178 19 39 25 0.8 2.6 1
2-gram 103, 7 41 64 35 3.5 4.5 2.5
3-gram 462, 2 82 103 47 34.5 15.7 12.5
Clustering 286, 5 67 83 33 12.5 4.7 3.8
PageRank 36, 40 15 23 18 5.6 7.6 5.5

Table 3: Dataset Parameters and Costs using Ama-
zon EC2 cost model: x represents the number of
unique keys in the dataset and y represents the av-
erage number of occurrences

5.3.1 Analysis

Figure 11 shows the total memory consumption and ag-
gregation throughput for the applications for the different
data structures. Table 3 shows the corresponding costs
predicted by our model.

Memory Usage CBT is much more memory efficient
than HT and HT-C in the case of 2-gram, 3-gram and
Clustering applications. In the case of 1-gram and PageR-
ank, the memory use is nearly the same. This is because
the number of unique keys in these datasets (Table 3)
is small, and the static overhead of CBT dominates the
per-key memory. However for 2-grams and 3-grams,
which have a high number of unique keys, CBT is more
memory efficient than both HT and HT-C.

Throughput CBT uses more CPU than (serial) HT and
always yields higher throughput. When compared to
HT-C, which uses the same amount of CPU, CBT has
higher throughput in cases where there is high aggregata-
bility. High aggregatability implies that on average, keys
occur more frequently and this leads to synchronization
overhead for HT-C.

Cost Table 3 shows that the CBT is able to reduce the
cost of resources through a combination of memory effi-
ciency and high throughput.

6 Related Work
External Memory Data Structures External memory
(EM) data structures have been developed primarily to
handle very large datasets. Vitter [51] and Arge [7] pro-
vide in-depth surveys of EM literature including buffer
trees [8], which inspired the CBT. In that work, buffering
is used extensively to minimize I/O between in-memory
data structures and backing storage. The CBT uses buffer-
ing, but not in the same way—buffering paired with
lazy aggregation allows compression of the buffers in-
memory. The EM research literature [51, 7, 8, 10, 17, 50]
considers compression an orthogonal and application-
specific technique.
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6.1 Compression for Memory Efficiency
Compressed Data Structures Although the CBT ap-
plies conventional compression techniques to save mem-
ory, the grouping and aggregation occurs on decom-
pressed data. A natural alternative to this approach is to
use specialized compressed data structures which allow
specific operations to be performed on compressed data.
This study of compressed or succinct data structures is
advancing rapidly; for example, both Grossi et al. and
Välimäki et al. show how compressed suffix trees help
in practice for real-world problems by reducing mem-
ory use [26, 49]. While we believe this is a promising
approach, to our knowledge, no compressed data struc-
ture provides a suitable interface to implement a generic
GroupBy-Aggregate operation.

Databases There is a significant body of work involv-
ing compression in databases. Chen et al. compress
the contents of databases, and derive optimal plans for
queries involving compressed attributes [12], and Li et
al. consider aggregation algorithms in a compressed
Multi-dimensional OLAP databases [35]. SILT [36] is a
key-value store that introduces a number of techniques,
including compression and entropy coding, to build
memory-efficient indexes in memory for key-value pairs
stored on flash. We believe that the CBT is a promising
candidate for implementing aggregation within RDBMS
systems.

Memory Compression A number of previous ap-
proaches integrate compression into the memory hi-
erarchy in a manner that is transparent to applica-
tions [3]. Among software-only approaches, swap com-
pression [47] involves setting aside a partition in the main
memory to store evicted pages in compressed form and
gain performance by avoiding reads from storage.

6.2 MapReduce and Big Data Analytics
MapReduce [16] has many implementations in dif-
ferent languages [43, 4], with different runtime char-
acteristics [19, 27], and for specific hardware plat-
forms [13, 46]. Its simple programming model of two
key API functions—map and reduce—has been adapted
to many problems [5, 6, 39, 41]. Dryad [31] provides a
more flexible model of computation over MapReduce.
Dryad has been extended to support aggregatable work-
loads by Yu et al. [53]. Yu et al. describe continuous
partial aggregation and associated operations like merge,
but they do not optimize the storage of PAOs, which we
have done with the CBT.

The closest work in spirit to Minni is hash-based
MapReduce such as Tenzing [11] or One-Pass MapRe-
duce [34]. Tenzing is a SQL query execution engine
built on top of MapReduce [11]. Tenzing requires ef-
ficient support for SQL aggregation operations such as

SUM, MIN, etc. and turns to hashtables to implement them.
As we have shown, the CBT could replace hashtables in
Tenzing for memory efficiency.

Spark [54] attempts to keep as much of a dataset in-
memory and notices significant reduction in job times
over equivalent MapReduce implementations. Spark is
built on top of Mesos [28] and implements “Resilient
Distributed Datasets” (RDDs) [54]. RDDs are read-only
data structures that are recomputed if pieces are lost.
RDDs could be implemented with CBTs, although the
aggregation optimizations of the CBT are lost in a read-
only setting. Piccolo [45] exposes a shared, distributed,
mutable key-value store interface to programmers via
Partition Tables. Partition Tables support aggregation of
updates to key-value pairs. Piccolo compresses on-disk
Partition Tables, but not when they are in memory.

7 Conclusion and Future Work
Experience with important cloud computing infrastruc-
tures suggests a growing compute-memory gap: not only
do memory costs begin to dominate the overall cost of
cloud computing, but the amount of memory available is
limited relative to the amount of computation available.
As a result, memory-efficient computing techniques may
become far more critical.

This paper introduced the Compressed Buffer Tree,
a B-Tree-like data structure inspired by external data
structures that allows efficient compression of large in-
memory append-and-aggregate datasets for memory ef-
ficiency and high throughput. The CBT sacrifices O(1)
retrieval of the value associated with a key, but works
well for workloads that are amenable to lazy aggrega-
tion, such as the GroupBy-Aggregate operation found in
combining and reducing phases of MapReduce.

This paper also introduced the Minni MapReduce run-
time, designed around partial aggregation objects for
efficient aggregation. Minni’s modular architecture al-
lows drop-in replacement of key components such as
the aggregator data structure making it well-suited as an
evaluation platform for CBTs.

While the CBT increases the memory efficiency of ag-
gregated data, datasets can be too large to fit in memory.
In future work, we plan to address this issue by intelli-
gently moving state from the CBT to fast storage such as
SSDs, allowing external aggregation of large datasets.

Although our evaluation and empirical results in
this paper focus on MapReduce, the CBT is a general
data structure that acts as a drop-in replacement for in-
memory aggregators. Yu et al. [53] have shown that the
GroupBy-Aggregate operation is crucial for other dis-
tributed models such as Dryad and parallel databases.
We believe that the CBT will be broadly applicable to
these areas.
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[40] J. B. Mariòo, R. E. Banchs, J. M. Crego, A. de Gis-
pert, P. Lambert, J. A. R. Fonollosa, and M. R.
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