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Abstract

Modern parallel and cluster file systems provide highly scalable I/O bandwidth by enabling highly parallel access to file data.
Unfortunately metadata access does not benefit from parallel data transfer, so metadata performance scaling is less common. To
support metadata-intensive workloads, we offer a middleware design that layers on top of existing cluster file systems, adds support
for load balanced and high-performance metadata operations without sacrificing data bandwidth. The core idea is to integrate
a distributed indexing mechanism with a metadata optimized on-disk Log-Structured Merge tree layout. The integration requires
several optimizations including cross-server split operations with minimum data migration, and decoupling of data and metadata
paths. To demonstrate the feasibility of our approach, we implemented a prototype middleware layer GIGA+TableFS and evaluated
it with a Panasas parallel file system. GIGA+TableFS improves metadata performance of PanFS by as much an order of magnitude,
while still performing comparably on data-intensive workloads.
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1 Introduction

Lack of a highly scalable and parallel metadata service is the Achilles heel for many parallel and cluster file
systems in both the HPC world [22, 30] and the Internet services world [12]. This is because most cluster
file systems have used centralized, single-node metadata management, and focused merely on scaling the
data path, i.e. providing high bandwidth parallel I/O to files that are gigabytes in size.

This inherent metadata scalability handicap limits numerous massively parallel applications that pro-
duce workloads requiring concurrent and high-performance metadata operations. One such example, file-
per-process checkpointing, requires the metadata service to handle a huge number of file creates at the same
time [5]. Another example, storage management, produces a read-intensive metadata workload that typically
scans the metadata of the entire file system to perform administration tasks [14, 16]. Thirdly, even in the era
of big data, most things in even the largest cluster file systems are small [8, 41]. Scalable storage systems
should expect the numbers of small files stored to soon achieve and exceed billions, a known challenge for
many existing cluster file systems [27].

We envision a scalable metadata service with two goals. The first goal – evolution, not revolution
– emphasizes the need for incremental improvements to existing cluster file systems that lack a scalable
metadata path. Although newer cluster file systems, including Google’s Colossus file system [10], OrangeFS
[21], UCSC’s Ceph [39] and Copernicus [15], promise an entirely new distributed metadata service, it is
undesirable to have to replace an existing cluster file system running in a large production environment
just because their metadata path does not provide the desired scalability. Several large cluster file system
installations, such as Panasas PanFS running at LANL [40] and Lustre running at Oak Ridge [35, 38], can
benefit from a solution that provides, for instance, distributed directory support that does not require any
modifications to the running cluster file system.

The second goal – generality and de-specialization – promises a fully, distributed and scalable metadata
service that performs well for creates, deletes, lookups, and scans. In particular, all metadata, including
directory entries, i-nodes and block management, should be stored in one structure; this is different from
today’s file systems that use specialized on-disk structures for each type of metadata.

To realize these goals, this paper makes a case for a scalable metadata middleware service GIGA+TableFS
that layers on top of existing cluster file systems and load balance file system metadata, including the names-
pace, small directories and large directories, across many servers. Our key idea is to effectively integrate a
concurrent indexing technique to distribute metadata with a tabular, log-structured on-disk representation of
all file system metadata.

For distributed indexing, we re-use the concurrent, incremental, hash-based GIGA+ indexing technique
[27]. The main shortcoming of the original GIGA+ prototype was the cost of splitting metadata partitions
for better load-balancing. This required migrating directory entries and associated file data [27] from one
storage server to another. This is inefficient for HPC systems where files can be gigabytes or more in size.
Our GIGA+TableFS avoids this data migration by interpreting directory entries as symbolic links: each
directory entry (the name created by the application) has a physical pathname that points to a file with the
actual file content stored in the underlying cluster file system.

The need for a new representation of directory entries led us to develop of a novel on-disk metadata
representation called TableFS [28], based on a log-structure merge tree (LSM-tree) data structure [24]. We
use the TableFS approach to pack all file system metadata (including directories, i-node attributes) and small
files, into many fewer, large, flat files. This organization facilitates high-speed metadata creation, lookups
and scans, even in a single computer local disk configuration [28].

Effectively integrating the TableFS metadata store with the GIGA+ distributed indexing technique re-
quires several optimizations including cross-server split operations with minimum data migration, and de-
coupling data and metadata paths. To demonstrate the feasibility of our approach, we implemented a pro-
totype middleware layer GIGA+TableFS and evaluated it on an existing Panasas PanFS deployment [40]
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Figure 1: Our scalable metadata service integrates two components: GIGA+ [27], a highly parallel and load-balanced indexing

technique to partition metadata over multiple servers, and TableFS [28], an log-structured (LevelDB) on-disk metadata represen-

tation on each server. This integrated solution is layered on top of an existing cluster file system deployment (PanFS) to improve

metadata and small file operation efficiency.

that has 5 shelves consisting of 5 metadata servers and 50 data servers. We called the combined solution
PanFS-GT. Our results show promising scalability and performance: GIGA+TableFS layering on top of
PanFS (PanFS-GT) was more than 10× faster than the original PanFS for metadata intensive workloads,
and performs comparably for data-intensive workloads.

2 Design and implementation

Figure 1 presents the overall architecture of our scalable metadata service. Our metadata service is a mid-
dleware inserted into existing deployments of cluster file systems to improve metadata efficiency while
maintaining high I/O bandwidth for data transfers. The system uses a client-server architecture, and consists
of three core components:

• Client: Applications interact with our middleware through the FUSE user-level file system [1],
through a library directly linked into the application or through a module in a common library such
as MPI-IO [7]. The stateless client-side code redirects applications’ file operations to the appropriate
destination according to the types of operations. All metadata requests (e.g. create() and mkdir()),
and data requests on small files (e.g. read() and write()), are handled by the metadata indexing
modules that address these requests to the appropriate server. For all data operations on large size
files, the client code redirects the request directly to the underlying cluster file system to take full
advantage of data I/O bandwidth. A newly created, but growing file may be transparently reopened
by the client module.

• Metadata Indexing Server: Each indexing server manages its local metadata storage backend to
store and access all metadata information and small file data. It uses the GIGA+ algorithm to partition
large directories across indexing servers. It also monitors the growth of small files, and migrates
newly large files into the underlying cluster file system when its size exceeds a threshold.

• Metadata Storage Backend: The metadata storage backend is a modified version of TableFS which
packs metadata and small file data into large, log-structured, flat files, and stores these files in the un-
derlying cluster file system. Since TableFS converts random updates into sequential writes, it greatly
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improves disk performance. In order to dynamically redistribute large directories, the metadata stor-
age backend also modifies TableFS to support exporting and importing flat files in batch.

Remainder of this section describes more details of our system. Section 2.1 presents a primer on how
GIGA+ distributes metadata. Section 2.2 shows how TableFS stores all file system metadata and small files
using a single on-disk structure on each server. Section 2.3 focus on the challenges in effectively integrating
GIGA+ and TableFS to work with existing cluster file systems.

2.1 Distributed Metadata Indexing

GIGA+ is a distributed hash-based indexing technique that incrementally divides each directory into multi-
ple partitions that are spread over multiple servers [27]. Each filename stored in a directory entry is hashed
and mapped to a partition using a per-directory index. GIGA+ selects a hash partition such that for any
distribution of unique filenames, the hash values of these filenames will be uniformly distributed in the hash
space. This makes load balancing much easier. In addition to load-balanced distribution, GIGA+ also grows
the directory index incrementally, i.e. all directories start small on a single server, and then expand to more
servers as they grow in number of entries.

A core scalability idea in GIGA+ is parallel splitting: each server splits without system-wide serializa-
tion or synchronization. Such uncoordinated growth causes GIGA+ servers to have only a partial view of
the entire per-directory index; there is no central server that holds the global view of the partition-to-server
mapping. Each server knows about the partitions it stores and knows the identity of other server that know
more about each “child” partition resulting from a prior split by this server. This information is known as the
per-server split history of a directory’s partitions. The full per-directory GIGA+ index is a transitive closure
of the split history on each server and represents the lineage of the directory’s partitioning.

The full index (and split history) of a directory is also not maintained synchronously by any client.
GIGA+ clients can search through the partitions of a directory by traversing its split histories starting with
the first partition that was created during mkdir and clients can cache what they learn. However, such an
opportunistically cached index by a client may be incomplete or stale at any time, particularly for rapidly
mutating directories. GIGA+ allows clients to keep using stale mapping information because addressed
servers verify and brief to clients as needed. More discussion of the cost-benefit of using inconsistent
mapping state is not relevant to this work and can be found in prior GIGA+ literature [25, 27].

2.2 Metadata Storage Backend

Our metadata storage backend implements a modified version of TableFS to pack together and manage all
the metadata and small files, hiding them from the underlying cluster file system.

TableFS [28] is a stacked file system which uses another file system as an object store, and organizes all
metadata and small files into a single on-disk table using a Log-Structured Merge (LSM) tree [24, 17]. The
reason for using LSM tree is that it buffers new and changed entries in memory and translate small random
disk writes into large sequential writes. Because LSM tree can dramatically reduce random disk seeks, it is
a natural fit for metadata intensive workloads. We decribe the structure of an LSM tree and how LSM trees
are used in TableFS in greater detail in the following sections.

LSM trees and LevelDB – TableFS uses an open-source implementation of an LSM tree called Lev-
elDB [17]. LevelDB provides a simple key-value store interface, supporting point queries and range queries.
In LevelDB, by default, a set of changes are spilled to disk when the total size of modified entries exceeds
4 MB. When a spill is triggered, called a minor compaction, the changed entries are sorted, indexed and
written to disk in a format called an SSTable [3]. These entries may then be discarded from the in memory
buffer. Discarded entries can be reloaded by searching each SSTable on disk, possibly stopping when the
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Figure 2: LevelDB is an on-disk LSM-tree implementation that represents data in multiple files (called
SSTables) containing sorted key-value pairs. SSTables are grouped into different levels with lower-numbered
levels containing more recently inserted key-value pairs. Finding a specific pair on disk may search up to all
SSTables in level-0 and at most one in each higher-numbered level. Compaction is the process of combining
SSTables by merge sort and moving combined SSTables into higher-numbered levels.

first match occurs if the SSTables are searched most recent to oldest. The number of SSTables that need
to be searched is reduced by maintaining the minimum and maximum key value and a Bloom filter[6] on
each, but, with time, the cost of finding a record not in memory still increases. Major compaction, or simply
“compaction”, is the process of combining multiple overlapping range SSTables into a number of disjoint
range SSTables by merge sort.

As illustrated in Figure 2, LevelDB extends this simple approach to further reduce read costs by divid-
ing SSTables into levels. In 0-th level, each SSTable may contain entries with any key value, based on what
was in memory at the time of its spill. The higher-numbered levels of LevelDB’s SSTables are the results of
compacting SSTables from their own or lower-numbered levels. In levels excepth the 0-th level, LevelDB
maintains the following invariant: the key range spanning each SSTable is disjoint from the key range of
all other SSTables at that level. So querying for an entry in the higher levels only needs to read at most
one SSTable in each level. LevelDB also sizes each of the higher levels differentially: all SSTables have
the same maximum size and the sum of the sizes of all SSTables at level L will not exceed 10L MB. This
ensures that the number of level grows logarithmically with increasing numbers of entries.

Table schema – TableFS (prior to GIGA+TableFS) aggregates directory entries, i-node attributes and small
files into one LSM tree with an entry for each file and directory. To translate the hierarchical structure of the
file system namespace into key-value pairs, the 224-bit key is chosen to consist of the 64-bit i-node number
of a entry’s parent directory and a 160-bit SHA-1 hash value of its filename string (final component of its
pathname). The value of an entry contains the file’s full name and i-node attributes, such as i-node number,
ownership, access mode, file size, timestamps (struct stat in Linux). For small files with size less than T
(defaulting to 4KB), the value field also contains the file’s data. For large files, the file data field in a file row
of the table is replaced by a symbolic link that points to the actual file object in the underlying file system.

Figure 3 shows an example of representing a sample file system’s metadata into one table. Embedding
the i-node number of parent directory into the key helps with resolving the pathname. Traversing the user’s
directory tree involves constructing a search key by concatenating the i-node number of current directory
with the hash of next component name in the pathname. Another benefit of this schema is that all the entries
in the same directory have rows that share the same first 64 bits in their row key. For readdir operations,
once the i-node number of the target directory has been retrieved, a scan sequentially lists all entries having
the directory’s i-node number as the first 64 bits of their table’s key.

Previous evaluation [28] has shown using the TableFS schema with a LevelDB backend can greatly
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Figure 4: This graph (from prior work [28]) shows that the performance of single-node TableFS with FUSE
is 10X faster than modern Linux filesystems. The workload is to create 100 million zero-length files in one
directory. X-axis only shows the time until TableFS finished all insertions because the other file systems
were much slower. Y-axis has a logarithmic scale.

improve metadata performance of a local file system. Figure 4 is taken from a prior TableFS paper, which
compared the instantaneous single disk throughput of a FUSE-based TableFS with three underlying Linux
file systems: Ext4 [19], XFS [36], and Btrfs [29]. The workload created 100 million zero-length files in a
single directory on one disk. All systems perform well at the very beginning of the test, but the file create
throughput drops significantly for all systems as the total data gets larger. Btrfs suffers the most serious
throughput drop, slowing down to 100 operations per second. TableFS, however, maintains a more steady
performance with an average speed of 2,200 operations per second respectively, and is 10X faster than all
other tested file systems.

2.3 Integrating GIGA+ and TableFS

To effectively build GIGA+TableFS middleware that integrates the GIGA+ distribution mechanism and the
TableFS metadata representation, we have to tackle two main challenges: modify TableFS to support for
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migrating directory partitions as required by GIGA+; and decouple metadata and data paths to achieve
high performance for both paths. This section discusses the modifications we made to overcome these two
challenges.

Metadata representation – TableFS stores all additional metadata including GIGA+ per-directory hash
partitions, entries in each hash partition, and GIGA+ bootstrapping information such as root partition entry
and GIGA+ configuration state. The general schema used to store all metadata is:

key parentDirID,gigaPartitionID,hash(dirEntry)

value attributes, symlink|data|gigaMetaState]

The main difference from the TableFS schema described in Section 2.2 is the addition of two GIGA+
specific fields: gigaPartitionID to identify a GIGA+ hash partition within a directory and gigaMetaState
to store the hash partition related mapping information for directories. These GIGA+ related fields are used
only if a large directory is large enough to be distributed over multiple metadata servers. 1

Partition splitting – Each server’s TableFS instance stores metadata, including GIGA+ directory partitions
and their directory entries in LevelDB which stores them as a set of files (whose format is called SSTable)
in a server specific directory in the underlying cluster file system. Each GIGA+ server process splits a large
partition P on into itself and another hash partition P′ which is managed by a different server; this split
involves migrating approximately half the entries from old partition P to the new partition P′ on another
server. During splitting, the partition in migration is locked against client for simplification. We explored
several ways to perform this cross-server partition split.

A straightforward solution would be to perform a range scan on partition P, and remove about half the
entries (that will be migrated to the new partition P′) from P. All removed entries would then be batched
together and sent in a large RPC message to the server that will manage partition P′. The split receiver
would insert each key in the batch into its own TableFS instance. While simplicity of this solution makes it
attractive, it is slow in practice and vulnerable to failures during splitting.

We have devised a faster and safer technique to reduce the time that the splitting range is locked. The
immutability of SSTables in LevelDB makes a fast bulk insert possible – an SSTable whose range does not
overlap any part of a current LSM tree can be added to Level 0 without its data being pushed through the
write-ahead log and minor compaction process. To take advantage of this opportunity, we extended TableFS
to support a three-phase GIGA+ split operation:

• Phase 1: The split initiator locks and then performs a range scan on its TableFS instance to find all
entries in the hash-range that needs to be moved to another server. Instead of packing these into an
RPC message, the results of this scan are written in SSTable format to a file in the underlying cluster
file system.

• Phase 2: The split initiator notifies the split receiver about the path to the SSTable-format split file
in a much smaller RPC message. Since this file is stored in shared storage, the split receiver directly
inserts this file as a symbolic link into the LevelDB tree structure without actually copying this file.
The insertion of this file into the split receiver is the commit part of the split transaction.

1A optimization is to eliminate gigaPartitionID in the key by using the same hash function for both GIGA+ and TableFS
keys, since the hash of entry name can determine the partition ID.
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• Phase 3: The final step is a clean-up phase: after the split receiver completes the bulk insert operation,
it notifies the initiator, who then deletes the migrated key-range from its TableFS instance and unlocks
the range. 2

Decoupled data and metadata path – All metadata and small file operations go to the GIGA+ server;
however, following the same path for data operations on large files would incur a large and unnecessary
performance penalty from shipping data through a single busy machine and over the network an extra time.
This penalty can be significant in HPC use-cases because large files are easily be gigabytes to terabytes and
approaching petabyte in size.

To avoid this penalty our middleware is designed to perform all data-path operations on large files
directly through the cluster file system module in client machine. Figure 1 illustrates this data path (BLUE
colored lines). Once the application opens a file with size greater than T , the GIGA+TableFS client library
code will get back a symbolic link to the physical path in the cluster file system, which it will open locally.
All subsequent accesses to this large file will go through the client operating system to the native cluster file
system in parallel transfers. Thus applications should achieve the same data bandwidth as clients access to
the underlying cluster file system.

FUSE-based clients can use the same trick but with additional overhead of double context switching
and memory copying [5]. Recent work [13] shows that the FUSE kernel module can be modified to make
performance degradation less than 3%. We have not implemented this modification in our current prototype
yet, because FUSE is not preferred for HPC parallel codes, and is mostly used for external user access and
storage management (e.g. ls, mkdir, f ind).

While a file is open, some of its attributes (e.g., file size and last access time) may change in the cluster
file system relative to TableFS’s pre-open and stale copy of the file’s attributes. GIGA+TableFS monitors
what large files are currently open. For attribute queries to open files, GIGA+TableFS will directly query the
underlying cluster file system to get the most up-to-date attribute values. Later on or after the file is closed,
GIGA+TableFS will synchronize both copies of these attributes. 3 By doing so, GIGA+TableFS servers can
achieve the same level of metadata consistency as provided by the underlying cluster file system.

Layering on the Panasas file system – In PanFS [40], the Volume is the basic unit administrators use to
manage the storage pool of PanFS. The volume is a directory hierarchy with a quota limit, and appears as a
directory below the single mount point for the whole storage system. Each PanFS volume is only managed
by a single metadata manager, although the data of all files created in all volumes are spread over the entire
storage pool.

A typical PanFS storage cluster has multiple shelves, each shelf consisting of one or two metadata man-
agers and 9 or 10 storage nodes. However, since a volume is assigned to a particular metadata manager, all
the metadata accesses to any file/directory in a volume can only be served by that single metadata manager.

Since GIGA+TableFS distributes a single namespace over all GIGA+TableFS servers at fine granularity
(the partition of a directory or an entire small directory), all the metadata managers of PanFS can be exploited
and load balanced if each is responsible for volumes backing the same number of GIGA+TableFS servers.

The simple way to do this is to run one GIGA+TableFS server per PanFS server and has the LevelDB
instance in a GIGA+TableFS server store its SSTables in a volume specific to that GIGA+TableFS server.
Large files can be randomly assigned to hidden directories in all PanFS volumes.

2The three phases of splitting can be refined even further: Assume that the splitting is initiated at the time Tsplit . The split initiator
can generate SSTables containing entries older than Tsplit without locking the hash range. When the generation of SSTables with
entries older than Tsplit is finished, the split initiator can lock the hash range and then write SSTables with newly added or updated
entries later than Tsplit . By doing so, the duration of locking splitting hash range can be further reduced. However, due to the code
complexity of this optimization, we left this optimization for future work.

3Some attribute changes, such as permissions, can be updated by GIGA+TableFS servers.
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Fault tolerance – The middleware design and techniques used for scaling the performance of GIGA+TableFS
does not impose any major new challenges for handling failures. The primary functions required for fault tol-
erance include replication of the GIGA+TableFS server’s write-ahead logging for file system state changes
into the storage of another machine, detection of server failure, failover to a backup server, and replaying of
the replicated write-ahead log. These are all standard techniques found in parallel file systems like PanFS.
The replication of the write-ahead log may not even be necessary if GIGA+TableFS is layered on a full-
featured file system such as PanFS, and its write-ahead log is RAIDed or replicated by the underlying file
system.

For directory partition splitting and other operations requiring distributed transactions (e.g. hardlink

and rename), these are implemented as three-phase operations with failure protection from write-ahead log-
ging in source and destination server and eventual garbaging collection of incorrupted, hidden, interrupted
states. LevelDB also implements write-ahead logging and atomic batching operation which is used as prim-
itives for fault tolerance by TableFS.

The library version of the GIGA+TableFS client does not bring any new failure properties either.
Directory-specific client state recovery is naturally supported by the GIGA+ protocal, which tolerates in-
complete or stale state by re-fetching the current server list and rebuilding its directory index cache each
time it contact specific servers. For most operations except open and close, the GIGA+TableFS server
does not need to keep state about its clients. Revoking the open reference count for a large file can be
achieved by maintaining renewable lease on the server side, or by polling the state if the file in the underly-
ing file system using proprietary APIs, if at all. The migration of small files from TableFS to the underlying
file system is handled by the GIGA+TableFS server, and is protected by its write-ahead logging and server
failure protocol.

3 Experimental Evaluation

This section evaluates the scale and performance of our prototype using a mix of metadata-intensive and
data-intensive benchmarks. Our evaluation layers GIGA+TableFS on the Panasas PanFS file system, and
focuses on three questions:

• How does GIGA+TableFS enhance metadata throughput, particularly number of file creates per sec-
ond for concurrent file creation workloads, on the PanFS storage system?

• What is the data throughput of GIGA+TableFS layered on PanFS for N-N checkpointing workload
found in HPC systems?

• How portable is GIGA+TableFS to be used on other cluster storage systems and configurations?

3.1 Setup and Methodology

Our prototype is implemented in about 10,000 lines of C code using a modular design comprising of
TableFS, LevelDB and PanFS layers. In particular, the PanFS layer is unmodified and can be replaced
with any other cluster file system. The current version implements most common POSIX file system oper-
ations except hardlink, rename, and xattr related operations. The first two operations, hardlink and
rename, are particularly complicated because they need distributed transaction support for correct and fault
tolerant cross-server operations; this problem is beyond the scope of this paper.
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Cluster 1 Cluster 2
(Storage cluster) (Test applications)

#Nodes 5 64
OS CentOS 6.3 Ubuntu 12.10
Kernel 2.6.32 x86 64 3.6.6 x86 64
CPU AMD Opteron 6272 AMD Opteron 242

64 Cores Dual Core
Memory 128GB DDR 16GB DDR
Network 40GE NIC 1GE NIC
Storage PanFS Western Digital
System 5 Shelves Local hard disk

(5 MDS + 50 ODS) 2TB per node
100 seeks/sec
random seeks
137.6 MB/sec

seq. reads
135.4 MB/sec

seq. writes

Table 1: Settings of two clusters used for evaluation.

All experiments were performed on two clusters described in Table 1. The first cluster is a 5-shelf
PanFS storage cluster, and the second cluster is a 64-node setup to run GIGA+TableFS code and applica-
tions. Table 1 describes the hardware and software configuration of these clusters. The first cluster is used
to evaluate the scale and performance of the underlying cluster file system that uses our middleware. The
second cluster is used to demonstrate that our middleware solution can be layered on other file system de-
ployments without any configuration changes; this setup emulates a case that each GIGA+ server runs in
a different NFS node and manages its own TableFS instance locally to scale the metadata performance of
NFS. In all tests, the client uses library version code; the threshold for splitting a partition is always 8,000
entries; and TableFS managed by GIGA+ server syncs its data every 5 seconds.

In the following sections, we will first show the evaluation on the end-to-end performance of the inte-
grated system on top of PanFS, and then present the results of a scaling experiment on another platform.

3.2 End-to-end System Evaluation

The goal of our end-to-end evaluation is to understand how the cluster file system scales with multiple
metadata servers. As shown in Table 1, PanFS consists of five shelves; in other words, PanFS has a total
of five metadata servers (called director blades) and fifty object servers (called OSD blades). Ideally, a
GIGA+TableFS server should be co-located with the metadata server; such a setup will allow the cluster
file system to scale metadata performance as more GIGA+TableFS servers and metadata servers are added.
However, this would require a few configuration changes to allow GIGA+TableFS server process to run on
the PanFS metadata servers.

Because our goal is to avoid any configuration changes, we used five additional test nodes, each with
64 cores and a 40 GigE NIC, that together can saturate the 5-shelf PanFS storage cluster. Each test node has
three subsystems: one GIGA+TableFS server, 32 GIGA+TableFS clients and a PanFS DirectFlow (client)
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PanFS-GT and original PanFS

module. Each GIGA+TableFS client is a library that is linked with a workload generating application.
These clients send file operations to the GIGA+TableFS servers. The GIGA+TableFS server stores and
accesses file system metadata through the PanFS DirectFlow module. In addition, the GIGA+TableFS
clients can also communicate with the cluster file system through the PanFS DirectFlow module (this path
is used to access the file data as described in earlier sections). In the rest of this section, this layering of
GIGA+TableFS on PanFS is called PanFS-GT. In summary, the PanFS-GT configuration consists of a total
of 160 workload generating application threads (linked with 160 GIGA+TableFS clients) that communicate
with 5 GIGA+TableFS servers that use the 5 metadata servers in the underlying PanFS storage cluster.

To generate application workloads, we use two HPC benchmarks that are used widely by vendors and
users of parallel file systems. To test the metadata path, we used the mdtest synthetic benchmark [2]. To test
the data path, we used LANL’s File System Test Suite checkpoint benchmark[23].

Metadata Intensive Workloads – We use the synthetic mdtest benchmark to generate a three-phase
workload: The first phase creates 5 million zero-files in a single shared directory [39, 27]. The second phase
performs stat() on random files in this large directory. The third phase deletes all files in this directory in a
random order.

We compare the performance of native PanFS and PanFS-GT for this benchmark. However, to ensure
a fair comparison we cannot compare them directly. This is because of two reasons: first, a single directory
can only utilize one PanFS metadata server, and second, PanFS directories can contain at most 1 million
files. For a fair comparison, we compare PanFS-GT with native PanFS that creates 1 million files in 5
different directories owned by 5 different metadata servers.

Figure 5 shows the aggregated throughput during the first phase. We vary the number of clients running
in each test node to determine the number of clients needed to saturate both PanFS-GT and native PanFS
systems. Both systems achieve the highest aggregated throughput using 32 or more number of clients per
node. In all the experiments shown later, by default, we report results with 32 clients per test node. For all
cases, PanFS-GT is approximately 3.5 times faster than the native PanFS using 5 volumes. The aggregated
peak throughput for the 5-server and 160-client system is about 25,000 file creates per second.

Figure 6 shows the aggregated throughput of different operations during the three-phase mdtest work-
load. In addition to the PanFS-GT and 5-shelf PanFS, this figure also reports the aggregated throughput of
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Figure 6: The average aggregated throughput of different operations in mdtest when generating 5 million
zero-length files in a single shared directory. Since PanFS has a hard limit to allow only create 1 million
entries in one directory, the bar showing PanFS with 1 volume only gives the average throughput for the
case of creating 1 million entries.

creating 1 million files in single-shelf PanFS. For lookup and deletion workloads, PanFS-GT outperforms
native PanFS by a factor to 10 to 15 higher operations per second. Fast lookup performance results from
memory indexing and Bloom filters in LevelDB. For deletion of a key, LevelDB essentially just inserts a new
entry with the deletion mark next to the key to be deleted, and delays the actual deletion in later compaction
processes.

Small File Workloads – We also use mdtest benchmark to generate small file workloads to evaluate
the effectiveness of embedding file content with the metadata inside TableFS. In this test, mdtest benchmark
creates 5 million files in a single directory, and writes 4KB and 16 KB of data in these files. Our choice
of file sizes is motivated by prior file system studies that have observed that 4KB is the median file size for
many desktop workloads [20] and 16KB is the median file size for large PanFS storage clusters [41]. The
threshold for embedding files, T , for our prototype is set to 64KB, so all these files are stored in TableFS
instance.

Figure 7 shows the aggregated throughput of both PanFS-GT and native PanFS during the small file
workload test. We observe that PanFS-GT is about 2.5× faster than native PanFS for 4KB files. However,
PanFS-GT is about 35% slower than PanFS for 16KB file size. We found that embedding 16KB file makes
the key-value pair significantly larger. This causes higher write amplification during LevelDB compactions
because LevelDB compactions will try to merge-sort both file data and metadata. Additionally, LevelDB
writes the inserted key-value pairs twice: first to the transaction log and then (during a compaction) to the
SSTable. With larger key-value pairs, LevelDB’s per-operation efficiency is reduced due to the increased
cost of extra copies of large values. This suggests that the threshold T for embedding file size should not
be greater than 16KB. Embedding larger files may sacrifice read performance for faster insertion rate; this
may be done using a column-oriented layout approach that stores metadata and small file separately. These
tradeoffs are not studied in this paper and left for future work.

Data Intensive Workloads – To study the data path throughput, we use the LANL filesystem check-
point benchmark to generate different types for HPC checkpoint I/O patterns [23]. Our experiments use this
benchmarking tool to generate a concurrent N- N checkpoint write and read workload.

All checkpoint I/O is performed by a set of processes that synchronize with each other using MPI
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Figure 7: Average aggregated throughput during creating 5 million small files with different size in one
shared directory

barriers. At the beginning, each process creates and opens a new checkpoint file for writing. Each process
then waits at a barrier until all processes are ready to write. Once all processes are ready, each process starts
to write the checkpoint data to its own file (and all processes do this writing concurrently). Once a process
has written the specified number of bytes, it waits for all other processes to finish writing, and then syncs
its data to the file system before closing the file. Before starting the read phase, we terminate all processes
accessing these checkpoint files so that we can unmount the filesystem in order to ensure that all freshly
written data has been flushed out from all the nodes’ memory to prevent any performance side-effects from
caching. After the filesystem has been mounted again, the benchmark reads the checkpoint in the same way
it was written, however we shift, so each process will read the file generated by another process.

In this test, we also vary the number of clients per test node from 8 to 64 clients. The clients in each
node will generate a total of 640GB checkpoint data to the underlying file system. The size of data buffer
for each file system call is set to be 16KB. For PanFS-GT, the checkpoint files generated in the test will be
first stored in TableFS, and then migrated to the underlying PanFS.

Figure 8 and 9 show the average throughput during the write phase and read phase in the N-N check-
point workload respectively. For the checkpoint writing case, in Figure 8, we observe that PanFS-GT write
throughput is comparable with the native PanFS. In fact, for smaller configurations with 8 clients per server,
PanFS-GT outperforms native PanFS by about 20%. For the checkpoint reading workload, in Figure 9,
PanFS-GT reads about 10% slower than native PanFS.

3.3 Understanding Scaling Behavior

This section shows how GIGA+TableFS scales over time in large multi-server setup. To understand this
behavior we layered GIGA+TableFS on a different cluster (cluster #2 from Table 1) comprising of 64-nodes
running GIGA+TableFS clients and servers. The main difference is the backend storage: this analysis
emulates a federated NFS setup where each PanFS-GT server process in node manages its own TableFS
instance and store SSTables into a local disk. To emulate shared storage for split operations, we used a NFS-
mounted shared directory accessible from all machines; this shared directory was only used for moving
SSTables of splitting directory partitions across servers.
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Figure 8: The aggregated write throughput in N-N check-pointing workload. Each volume receives 640 GB
data.
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Figure 9: The aggregated read throughput in N-N check-pointing workload.

This analysis uses a weak scaling experiment that creates 1 million files per server, for a total of 64
million files in the 64-server configuration. We vary the number of servers from 1 to 64 to understand how
performance scales with more servers.

Figure 10 shows the instantaneous throughput during the concurrent create workload. The main result
in this figure is that as the number of servers doubles the throughput of the system also scales up. With
64 servers, GIGA+ can achieve a peak throughput of about 190,000 file creates per second. The prototype
delivers peak performance after the directory workload has been spread among all servers. Reaching steady-
state, the throughput quickly grows due to the splitting policies adopted by GIGA+.

After reaching the steady state, throughput slowly drops as TableFS builds a larger metadata store.
In fact, in large setups with 8 or more servers, the peak throughput drops by as much as 25% (in case of
the 64-server setup). This is because when there are more entries already existing in TableFS, it requires
more compaction work to maintain invariants inside LevelDB and to perform a negative lookup before each
create has to search more SSTables on disk. In theory, the work of inserting a new entry to a LSM-tree
is O(logB(n)) where n is the total number of inserted entries, and B is a constant factor proportional to
the average number of entries transferred in each disk request [4]. Thus we can use the formula a·S+b

logT to
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approximate the throughput timeline in Figure 10, where S is the number of servers, T is the running time,
and a as well as b are constant factors relative to the disk speed and splitting overhead. This estimation
projects that when inserting 64 billion files with 64 servers, the system may deliver an average of 1,000
operations per second per server, i.e. 64,000 operations per second in aggregate. This still exceeds today
supercomputer’s most rigorous scalability demands for 40,000 file creates per second in a single directory
[22].

4 Related Work

This paper proposes a layered approach that allows a cluster file system to distribute both namespace and
directories. A prior proposal of this work was presented in a workshop [26]. In this section, we discuss prior
work related to metadata systems in modern cluster file systems and optimized layouts for high-performance
metadata.

In many cluster file systems, the metadata path lacks the concurrency and scalability found in the data
path. Many file systems, including Lustre [18], Google file system [11] and HDFS [12], continue to rely on
a single metadata server to store all file system metadata. This simplifies the complexity of administration
and implementation, but limits the scalability to how fast one server can service all metadata operations.
Some cluster file systems distribute metadata on multiple metadata servers. The main difference is what
metadata is distributed and how it is distributed.

PanFS and PVFS cluster distribute different parts of the namespace on different metadata servers.
PanFS uses a coarse-grained distribution by assigning a subtree of the namespace (called volume) to each
metadata server (called directory blade) [40]. PVFS is more fine-grained: it spreads different directories,
even the ones in the same sub-tree, on different metadata servers [31]. However, both PanFS and PVFS lack
support for distributed large directories.

Few cluster file systems have added support for distributed directories but each system uses a different
technique to spread these directories. A beta release of OrangeFS, a commercially supported PVFS distri-
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bution, uses a simplified version of GIGA+ to distribute large directories on several metadata servers [21].
Ceph uses an adaptive partitioning technique called CRUSH for distributing its metadata and directories
on multiple metadata servers [39]. IBM GPFS uses extensible hashing to distribute directories on different
disks on a shared disk subsystem [32]. GPFS has the most complete and stable distributed directory im-
plementation, but its design relies heavily on cache consistency and distributed locking mechanisms. When
compared to GIGA+, this may result is much lower file create performance (when files are created in a single
directory) but GPFS delivers very high read-only directory read performance by caching directory blocks
on all readers [27].

Another novel aspect of this paper is the use of optimized single-node metadata representation to faster
metadata performance. Several recent efforts have focused on using advanced data-structures, such as mod-
ified LSM-trees [33], stratified B-trees [37], fractal trees [9], and VT-trees [34]. These approaches speed
up the number of IOs per second for hard drives or solid state devices by improving compaction process
or by using new functionality such as data versioning. Although TableFS may benefit from all of these
improvements, GIGA+ integration in some cases may result in a complex implementation and deployment.
Understanding the interaction between these single-node TableFS optimizations and cross-server operations
will be explored in future work.

5 Conclusion

Many HPC cluster file systems lack a general-purpose scalable metadata service that distributes both names-
pace and directories. This paper presents an approach that allows existing file systems to deliver scalable and
parallel metadata performance. The key idea is to re-use a cluster file system’s scalable data path to provide
concurrent access on the metadata path. Our experimental prototype has demonstrated a 10X improvement
in the metadata performance of a production cluster file system, Panasas’s PanFS.

This paper makes three contributions. The first contribution is an efficient combination of scale-out
indexing technique (GIGA+) with a scale-up metadata representation (TableFS) to enhance the scalability
and performance of metadata operations. The second contribution is the ease of deployment: our system can
be layered on a cluster file system without any changes to the file system. This layering also facilitates easy
federation of different file systems through a middleware library, an approach that is popular with other HPC
systems such as MPI-IO and PLFS. The third contribution is the portable design that can use any existing
file system deployments without any configuration changes (but with different fault tolerance assumptions)
to the file system or the systems software on compute nodes.
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