
DiskReduce: Replication as a Prelude to Erasure Coding in
Data-Intensive Scalable Computing

Bin Fan Wittawat Tantisiriroj Lin Xiao Garth Gibson

{binfan , wtantisi , lxiao , garth.gibson} @ cs.cmu.edu

CMU-PDL-11-112

October 2011

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Acknowledgements: We would like to thank several people who made significant contributions. Robert
Chansler, Raj Merchia and Hong Tang from Yahoo! provide various help. Dhruba Borthakur from Facebook provides
statistics and feedback. Bin Fu and Brendan Meeder gave us their scientific applications and data-sets for experimental
evaluation. The work in this paper is based on research supported in part by the Betty and Gordon Moore Foundation,
by the Department of Energy, under award number DE-FC02-06ER25767, by the Los Alamos National Laboratory,
by the Qatar National Research Fund, under award number NPRP 09-1116-1-172, under contract number 54515-
001-07, by the National Science Foundation under awards CCF-1019104, CCF-0964474, OCI-0852543, CNS-0546551
and SCI-0430781, and by Google and Yahoo! research awards. We also thank the members and companies of the
PDL Consortium (including APC, EMC, Facebook, Google, Hewlett-Packard, Hitachi, IBM, Intel, Microsoft, NEC,
NetApp, Oracle, Panasas, Riverbed, Samsung, Seagate, STEC, Symantec, and VMware) for their interest, insights,
feedback, and support.

Keywords: Distributed File System, RAID, Cloud Computing, DISC

Abstract

The first generation of Data-Intensive Scalable Computing file systems such as Google File System and
Hadoop Distributed File System employed n (n ≥ 3) replications for high data reliability, therefore delivering
users only about 1/n of the total storage capacity of the raw disks. This paper presents DiskReduce, a
framework integrating RAID into these replicated storage systems to significantly reduce the storage capacity
overhead, for example, from 200% to 25% when triplicated data is dynamically replaced with RAID sets
(e.g. 8 + 2 RAID 6 encoding). Based on traces collected from Yahoo!, Facebook and Opencloud cluster, we
analyze (1) the capacity effectiveness of simple and not so simple strategies for grouping data blocks into
RAID sets; (2) implication of reducing the number of data copies on read performance and how to overcome
the degradation; and (3) different heuristics to mitigate “small write penalties”. Finally, we introduce an
implementation of our framework that has been built and submitted into the Apache Hadoop project.

2

1 Introduction

File systems for Data-Intensive Scalable Computing (DISC), such as Google File System (GFS) [GGL03],
Hadoop File System (HDFS) [Bor09b], or S3 [S3] are popular for Internet services in today’s cloud
computing. To achieve high reliability and availability with high concurrent disk failures, these file
systems replicate data — typically three copies of each file. Thus they suffer from 200% storage
overhead, and often discourage or disallow concurrent or sequential write sharing. Alternatively,
operating at a comparable or larger scale with more demanding sharing semantics, High Perfor-
mance Computing (HPC) file systems, such as Lustre [Lus], GPFS [SH02], PVFS [CWBLRT00], or
PanFS [WUA+08], achieve tolerance for disk failures with much lower capacity overhead (e.g., 25%
or less) by erasure codes or RAID [PGK88] schemes such as RAID-DP [BFK06], Reed Solomon
P+Q [Pla97] or EVENODD [BBBM95].

The goal of this work is to reduce the storage overhead of DISC file systems by erasure coding.
Yet adding erasure coding to DISC file systems is not the same as simply switching to HPC file
systems due to at least the following reasons:

• DISC file systems were often designed to follow the model of moving code to data and thus use
a large number of commodity hardware serving as both computation node and storage node,
rather than using specialized storage clusters equipped with expensive RAID hardware.

• Replication in DISC file systems can be valuable for more than just reliability.

• DISC files are significantly larger than files in traditional systems, even HPC file systems, but
the data blocks are also significantly larger (e.g., 64 MB in HDFS and GFS) than blocks in other
file systems.

In this paper, we focus on analyzing different design choices associated with building RAID on
top of a DISC file systems to balance storage overhead, performance and reliability. Our contribu-
tions include:

• We gathered usage data from large HDFS DISC systems and find that DISC files are huge relative
to traditional and HPC file systems, but because DISC blocks are also huge, per-file RAID still
wastes significant capacity.

• We measured the performance implication of reading RAIDed data for MapReduce jobs . We
find that triplicated files can be read at higher bandwidth than single-copy files, as expected, but
that this advantage is perhaps smaller than expected, and is absent in many cases.

• As RAID sets formed with blocks from multiple files introduces RAID “small writes” even with
immutable files because file deletion must update the erasure code to reclaim deleted space, we
investigate different policies to reduce the RAID maintenance cost.

In addition, we also present DiskReduce—our implementation of RAID erasure encoding and
decoding framework extending HDFS to replicate files initially and trigger background processing
to encode triplicated files into erasure coded RAID sets. The implementation of RAID 6 encoding
has been submitted to the HDFS Apache project [Bor09b] and is available to all [Tan10].

2 Related Work

GFS, HDFS, HDFS implementation The Google file system (GFS) [GGL03] and Hadoop
distributed file system (HDFS) [Bor09b] which is modeled after GFS, defined data-intensive file

1

systems. They provide reliable storage and access to large scale data by parallel applications,
typically through the Map/Reduce programming framework [DG04]. Our implementation is a
modification on top of HDFS because it is open source. HDFS supports write-once-read-many
semantics on files. Each HDFS cluster consists of a single metadata node and a usually large
number of datanodes. The metadata node manages the namespace, file layout information and
permissions. To handle failures, HDFS replicates data three times.

Core RAID Almost all enterprise and high performance computing storage systems protect data
against disk failures using a variant of the erasure protecting scheme known as RAID [PGK88].
Presented originally as a single disk failure tolerant scheme, RAID was soon enhanced by various
double disk failure tolerance encodings, collectively known as RAID 6, including two-dimensional
parity [GHK+89], P+Q Reed Solomon codes [RS60, CLG+94], XOR-based EVENODD [BBBM95],
and NetApp’s variant Row-Diagonal Parity [CEG+04]. Lately research is turned to greater relia-
bility through codes that protect more, but not all, sets of larger than two disk failures [Haf05],
and the careful evaluation of the tradeoffs between codes and their implementations [PLS+09].

Network RAID Networked RAID has also been explored, initially as a block storage scheme
[LMC94], then later for symmetric multi-server logs [HO93], Redundant Arrays of Independent
Nodes [BFL+01], peer-to-peer file systems [WK02] and is in use today in the PanFS supercomputer
storage clusters [WUA+08]. Our system explores similar techniques, specialized to the character-
istics of large-scale data-intensive distributed file systems.

Cache design representation File caching has been widely used in distributed systems to improve
performance [HKM+88, NWO88]. The file system [CG91] combines file caching and compression
in two levels: one sector of the disk holds uncompressed data which can be accessed at normal disk
speed and a sector holds compressed data which needs to be uncompressed before access. The least
recently used files are automatically compressed. AutoRAID [WGSS96] is proposed to implement
a two-level storage hierarchy in RAID controllers where active data is mirrored and inactive data is
stored with RAID 5 protection. Migration of data between two levels is performed in the background
based on the least-recently-written data dynamically determined. Our system applies the principle
of file caching to exploit temporal locality of data access to balance performance requirement and
storage limit given temporal locality in data access. Having the similar two-layer representation of
data and background migration, however our system is replicating data among servers instead of
using hardware RAID and optimized for the unique usage of cloud data.

File system statistics In this work, design choices are made based on statistics (e.g. file size
distribution, file access pattern) collected from clusters for cloud computing. As a comparison, the
file size distribution in supercomputing file systems are reported in [Day08]. The access pattern and
deletion pattern of UNIX BSD 4.2 file system is reported by a trace study in mid 80s [OCH+85]:
most of the file accessed are open only a short time and accessed sequentially; most new information
is deleted or overwritten within a few minutes of its creation.

RAID Consistency Previous works address how to reduce the cost of maintaining RAID consis-
tency (e.g. parity), without compromising data reliability. AFRAID [SW96] always applies data
update in real time but shifting parity update to idle cycles and therefore eliminates the small-
update penalty by hiding the cost, with slight loss of data availability. Paritypoint [CK93] claims
it is important for parallel file systems being able to turn off parity on a per-file basis so that
applications can disable parity update for temporary files and increase I/O independence. Data
is immutable in our system so RAID set is only updated after deletion. The check blocks are

2

D1 D2 D3 P1 P2

Fault-Free Read

D2 D3 P1 P2

Degraded Read

f1

D1 D2 D3 P1 P2

Small Degraded Write

f1

f2

D1

D1 D2 D3 P1 P2

Large Fault-Free Write

f1

f2

D1 D2 D3 P1 P2

Large Degraded Write

f1

f2

D1 D2 D3 P1 P2

Small Fault-Free Write

f1

f2

(a) RAID: normal read, normal write (to read either data blocks
not being written or all check blocks, whichever is less work, and
compute new check blocks as either the full code or the delta on the
old code) , single-failure degraded read (read all other data block
and at least one check block to decode missing block), single-failure
degraded write (read data blocks not being written and compute
new check blocks before writing non-failed check and data blocks)

D1 D2 D3

Fault-Free Read

D1 D2 D3

Fault-Free Write

Degraded Read Degraded Write

D1 D2 D3

D1 D2 D3

D1 D2 D3

D1 D2 D3

D2 D3

D1 D2 D3

D1 D2 D3

D2 D3

D1 D2 D3

D1 D2 D3

D1 D1

(b) Triplication: normal read, normal write
(to three copies), single-failure degraded read
(read one of the remaining blocks), and
single-failure degraded write (update remain-
ing blocks)

Figure 1. Basic operations of a RAID set with k = 3,m = 2 and k = 1,m = 2. Arrows
represent data flow. Replication, although more expensive in work done and capacity overhead,
is simpler than RAID.

updated asynchronously like AFRAID, but deleted blocks are marked in real time. Therefore the
consistency is always guaranteed.

Cleaning In our system after deleting blocks in a RAID set, the space has to be reclaimed by
garbage collection. This is similar to Log-structured file systems [RO91] where different heuristics
are studied to gather the freed segments into clean segments with small overhead [BHS95].

Erasure Coding in Cloud Adding erasure coding to data-intensive distributed file systems has
been introduced into the Google File System [Col]. An very early version of this work using
RAID5 with mirror to protect double failures was adapted into the Hadoop Distributed File System
[Bor09a]. An experimental study [ZDM+10] explores the workload dependent tradeoffs of erasure
coding versus replication in cloud data centers. In this paper, we focuses more on analyzing the
design choices to balance performance, manageability and storage advantage.

3 Background

RAID Basics RAID [PGK88] is widely used to increase storage reliability through redundancy.
In this paper, a RAID set1 of code (k,m) denotes a set of k data blocks D1, . . . Dk and m check
blocks P1, . . . Pm. The code (k,m) is designed to recover all data after m different block failures,
which requires

1. The check blocks Pi are each calculated from all data blocks {D1, . . . , Dm} and are independent
of each other. In practice, the first check block P1 is usually a parity block, i.e., the bitwise
exclusive-or (XOR) of all data blocks and codes with (k > 1,m = 1) are known as RAID5(or
more rarely as RAID3 or 4)[PGK88]. To tolerate double failures, P2 can be calculated using
XOR with coding schemes[Pla97] such as EVENODD [BBBM95], RAID-DP [BFK06], or using

1also referred to as a RAID stripe or RAID group in previous literature.

3

polynomials over a Finite Field using a Reed-Solomon code [RS60]. Common usage calls all of
these (k > 1,m = 2) codes RAID6.

2. Blocks in the same RAID set must be assigned to different failure domains2. Traditional RAID
systems always map the blocks of one RAID set to a fixed set of disks in the same pattern and
repeat for all RAID sets. However, in Panasas’s PanFS[WUA+08], GFS, HDFS and DiskReduce,
the storage nodes associated with each RAID set are chosen independently, a scheme for load
balancing RAID work known as declustered RAID [HG92, ML90].

RAID v.s. Replication Replication is also widely used to provide data reliability. In fact
replication can be viewed as a degenerate RAID code with k = 1. Figure 1 compares the operations
involved in reading and writing data with RAID 6 (k = 3,m = 2) and triplication (k = 1,m = 2).
The use of replication versus RAID is a multi-way tradeoffs:

• Replication is simpler.

• Replication does less work except for large write intensive workloads.

• Replication may get performance advantage due to higher disk bandwidth from more spindles,
and better chance to balance the load of disks.

• Replication consumes significantly more capacity.

HPC and DISC File Systems The two different architectures widely used for large-scale storage
clusters are:

• High Performance Computing (HPC) file systems, typified by Lustre [Lus], PanFS[WUA+08],GPFS [SH02],
or PVFS [CWBLRT00]. HPC usually separates data storage nodes from compute nodes and uses
RAID controller pairs to provide reliable data access.

• Data Intensive Scalable Computing (DISC) or Cloud Computing storage, represented by GFS
and HDFS. Each node in DISC not only provides computation but also stores the data. To handle
node failures in DISC without relatively expensive externally RAID storage, data is replicated
(triplication by default) across different nodes.

There are exceptions to this taxonomy. For example, Amazon EC2, EB3 and S3 [S3] separate
storage services and compute services into different nodes but still use replications among storage
servers nodes. In HPC, Panasas PanFS [WUA+08] separates nodes for storage service but uses
software RAID across nodes instead of embedded RAID controllers.

Our goal is to enhance the DISC storage model because it pays too large a storage overhead
(e.g., 200% for triplicating data) with software RAID techniques to lower the overhead (e.g., to less
than 25%), without sacrificing failure protection.

HDFS Basics Our work is based upon Hadoop Distributed File System (HDFS)[Bor09b]. HDFS
is an open-source data intensive file system widely used in modern DISC clusters. In design it is
very similar to the Google File System (GFS)[SRO96]. Each HDFS cluster consists of a central-
ized metadata server process called namenode and a large number of data server processes called

2Here we assume the fault model consists of both independent and dependent failures such as disk failure, node
failure, rack failure, and RAID sets are selected so that each dependent failure will cause at most one loss per RAID
set. Failures such as loss of a whole data center are outside of the scope of this paper.

4

datanodes. The namenode process manages the namespace, file layout information and permission
control. Each datanode process manages data on local storage and serves data to HDFS clients.
HDFS is designed and optimized to provide high throughput and high availability for very large
data sets and differs from traditional file systems in the following ways:

• Files have a single-writer, write-once-read-many semantics and are immutable once closed.

• Namenode keeps all metadata in memory to achieve high performance.

• Files are divided into “very large” blocks of 64 to 128 MB (compared with 4KB in traditional
file systems) to (1) facilitate data streaming for applications such as MapReduce [DG04] and to
(2) avoid overloading namenode with too much metadata or too frequent changes to metadata.

• Each data block is replicated across multiple datanodes — typically two in the same rack and
one in another rack, thus data is still accessible with two node failures or one rack (e.g. switch)
failure. The side effect of replication is a storage overhead of 200%.

4 Challenges

The basic idea of building RAID using (k,m) code on top of HDFS is straightforward: group
k different HDFS blocks into a RAID set, and then generate m check blocks to protect these k
blocks. All k + m blocks of this RAID set are stored on k + m different datanodes to survive from
m simultaneous node failures, and with a background re-replication process used to recover the
missing data. However due to the unique design features of HDFS as described in Section 3, there
are several challenges:

How to achieve low storage overhead in real HDFS environment. Since each HDFS block
is large (64 MB by default), if we follow the common rule used by lots of traditional RAID systems
that only groups blocks from the same file into the same RAID set3, it may not be trivial to find
enough number of blocks into one group and having insufficient blocks in the RAID set leads to
higher capacity overhead.

One way to solve this problem is to decrease the size of HDFS blocks. But then the increased
amount of metadata (e.g. mapping from block to the datanodes serving it) is likely to overload the
namenode which keeps metadata in memory. Another way is to divide blocks into sub-blocks to
make RAID sets and use deterministic algorithms to compute sub-block locations. Nevertheless,
this will significantly restrict the flexibility of HDFS to handle adding or losing servers. We study
the cost of different grouping strategies using file statistics from real HDFS clusters in Section 5.
Our implementation still uses 64 MB blocks, but allows blocks from different files to make one
RAID set.

How performance degrades with fewer number of copies. After encoded into RAID 6,
the number of clear copies of each data block is reduced from three to only one. We explore
the performance degradation for reading data by MapReduce applications that might result from
having fewer sources in Section 6.

Our implementation, in order to hide the potential performance degradation, makes encoding
asynchronously. In other words, Our system initially triplicates data the same as HDFS. Encoding
is triggered and performed in the background. By delaying RAID encoding, a (MapReduce) task
scheduler has more options to exploit collocation of computation in a node containing the needed

3one major advantage of making per-file RAID is to make deletion easy

5

data. In Section 5, we also discuss the opportunity to apply a cache hierarchy which treats the
triplicated data as in cache as to improve the performance.

How to mitigate the small write problem. Traditional RAID systems suffer from performance
degradation when updating data smaller than a single RAID set, due to the read-modify-write
sequence to update the check blocks. Although files in HDFS are immutable, the small write
problem could still happen if a RAID set contains blocks from different files and one of the files
is deleted. To keep RAID consistent (i.e. the remaining blocks recoverable) , we need to either
pay extra work for new check blocks, or to mark the the “deleted” blocks invisible from users. In
Section 7, we explore different strategies to mitigate the small write problem.

How to reduce the deployment/implementation complexity. When we talk to HDFS
developers, they are reluctant to use RAID because they are concerned about error handling on the
critical path. In fact this is consistent with observations from Panasas when dealing with error under
concurrent access and error cases. Since RAID encoding in our system is an asynchronous process
decoupled from the critical path, background encoding can be deferred if error are encountered
which makes the error handling easier. By encoding data asynchronously, our change can be
isolated from some or all of the HDFS nodes. Deployment thus becomes easier. In Section 8, we
introduce our prototype implementation of our framework as an external tool to HDFS.

In the following sections, we explore the tradeoffs between storage overhead, performance,
data reliability to address these challenges. We evaluate our experiments and provide most of the
analysis based on RAID 6 encoding (m = 2). However our framework is independent of the RAID
code and any RAID code can be applied to provide protection of different levels.

5 Encoding

Reducing the storage capacity used by redundant information is the most important reason for
using RAID in HDFS. However its effectiveness may be limited by the large block size used in
HDFS. In this section, we compare two strategies for grouping blocks into RAID sets.

Per-file RAID is a strategy that restricts one RAID set to the blocks from the same file. This
strategy is simple and has been adopted in storage systems including HDFS-RAID [Bor09a] and
PanFS [WUA+08]. RAID per file ensures no permission conflicts accessing a RAID set and it
facilitates encoding in the writing node before data propagates to data nodes. But the major
benefit of this strategy is to ensure that whenever a block is deleted, because its file is deleted,
all the other blocks in this RAID set are also deleted. Consequently deletion will not require re-
encoding. However, RAID per file applied to “small” files (e.g., a file of size less than 128MB may
only contain 2 data blocks) has large (100%) storage overhead.

Across-files RAID is a strategy allowing blocks from different files to be grouped in the same
RAID set, ensuring all RAID sets are as large as desired and storage overhead is correspondingly
low. However in addition to access control issues, adding or deleting a block in a multi-file RAID set
requires recomputing check blocks, as shown in Figure 1(a) and known as the small write problem.

While RAID per file has compelling advantages, we suspect that it gives up significant capacity
with small RAID sets. For example, HDFS-RAID [Bor09a] does not encode any file with less than
two blocks (e.g., 128MB). In HPC systems, PanFS uses a 64KB block size to effectively eliminate
this capacity overhead, but its metadata is not limited to the memory of one machine and it does
not try to locate 64MB at a time in just one machine. In the rest of this section we show the
capacity benefit possible with RAID across files and leave the small write problem to Section 7.

6

File Size Distribution

ID Description # Nodes Raw Capacity # Files

DW unknown 2000 21 PB 40.0 M
OC Research 64 0.3 PB 5.7 M
M45 Research 400 1.5 PB 21.8 M

A Sandbox 1800 3.8 PB 41.8 M
C Research 800 3.5 PB 10.1 M
D Production 3000 6.5 PB 23.4 M
M Research 2000 6.3 PB 25.5 M
N Research 3500 10.6 PB 35.4 M
U Production 1700 13.0 PB 17.7 M

Table 1. Clusters from which we collect file size distributions. DW (Data Warehouse) is at
Facebook, OC (Opencloud) at CMU, and all other clusters are at Yahoo!. DW is the largest
capacity HDFS cluster we know about as of May 2010 [Fac].

To compare these two strategies in real HDFS clusters, we gathered file size data from HDFS
clusters in CMU, Facebook and Yahoo! (summarized in Table 1). Figure 2(a) plots the cumulative
distribution function (CDF) of file size. Across all clusters, the largest single file observed is about
2.7 TB; the median size ranges widely from 16 KB to 6 MB, and the average ranges from 8 MB to
108 MB. Compared with HPC file systems reported by Dayal et al [Day08] where median file size
ranges from 2 KB to 256 KB and mean from 169 KB to 29 MB, file systems for cloud computing
have considerably bigger files. Yet even with these “large” files, at least 70% and as many as 99%
of files are smaller than 64MB (1 HDFS block), as shown in Figure 2(a).

Common wisdom says that small files are numerous but take little total space so the capacity
overhead for small files might be negligible. Figure 2(b) plots the CDF of space used by files up
to a particular size. Across all clusters 40% to 80% of the storage capacity is consumed by files
smaller than 1GB (16 blocks); in cluster C, at the extreme, 55% of capacity is used by files smaller
than 256 MB (4 blocks). Facebook’s DW cluster, the largest, has some 2PB of files smaller than
256MB. Because four block files will often have poor RAID overhead, we expect RAID across files
to be more efficient.

Figure 3 shows our calculation of the storage overhead that would be induced by RAID in
these clusters. In Figure 3 we construct across-files RAID sets from all the blocks of the files in the
same directory, RAID per directory. This is a sample to implement approximation of RAID across
any file. Generally, RAID per file leads to a higher capacity overhead due to the large number of
“small” files. For example, averaged on all clusters, the (k = 4,m = 2) storage overhead is about
75%, while if all RAID sets were full the overhead would be 2/4 = 50%. When k is larger, lowering
the best case overhead, the gap between the average RAID per file overhead and the optimal RAID
6 overhead is still larger. Ideally the (k = 16,m = 2) code has an overhead of 12.5% but RAID per
file only achieves an average overhead of about 50%.

In contrast, RAID per directory overhead performs very close to the ideal RAID 6 overhead
across all clusters even when k is small. Essentially, directories are large enough to construct full
RAID sets with big blocks.

Because the storage overhead for check blocks in RAID per directory is, roughly, half what it
is with RAID per file, the rest of this paper focuses on RAID across files instead of RAID per file.
Of course even RAID per file has a storage overhead that is much less than triplication, and it is
simple to implement, so we are not surprised that it is used in today’s HDFS-RAID [Bor09a].

7

0.9
0.99

0.999
0.9999

0.99999

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1K 1M 64M 1G 1T

Fr
ac

tio
n

of
 fi

le
s

w
ho

se
 s

iz
e

<
x

x: file size in bytes

DW
M45

A
C
D
M
N
U

OC

(a) Fraction of files ≤ x bytes

0.9
0.99

0.999
0.9999

0.99999

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Fr
ac

tio
n

of
 s

pa
ce

 u
se

d
by

 fi
le

s
w

ho
se

 s
iz

e
<

x

DW
M45

A
C
D
M
N
U

OC

0.00001
0.0001
0.001
0.01
0.1

1K 1M 64M 1G 1T
x: file size in bytes

(b) Fraction of storage used by files ≤ x bytes

Figure 2. File statistics (cumulative distribution function, CDF) collected from HDFS clusters
listed in Table 1 (using the cluster IDs in that table). Figure (a) shows the CDF of file size
and (b) shows the CDF of the total capacity used in files up to a given size.

6 Read Performance

Triplicated data is available from three disks in three nodes, increasing the total disk bandwidth
available for reading that data. This has led to more than three replicas for performance rather
than reliability [SRO96]. In this section we study how reducing the number of data copies impacts

8

25%

50%

75%

100%

(4,2) (8,2) (16,2) (4,2) (8,2) (16,2) (4,2) (8,2) (16,2) (4,2) (8,2) (16,2) (4,2) (8,2) (16,2) (4,2) (8,2) (16,2)

S
to

ra
ge

 O
ve

rh
ea

d

A C D M N U

per file
per dir

25%

50%

75%

100%

(4,2) (8,2) (16,2) (4,2) (8,2) (16,2) (4,2) (8,2) (16,2) (4,2) (8,2) (16,2) (4,2) (8,2) (16,2)

S
to

ra
ge

 O
ve

rh
ea

d

DW M45 OC Average Weighted

per file
per dir

Figure 3. Storage overhead for check blocks with RAID sets restricted to blocks of the same
file and directory for the clusters in Table 1, with different RAID set sizes: k = 4, 8, 16 and
m = 2. We also show the average overhead treating each cluster equally and weighting each
cluster by its total capacity.

read performance. Then we investigate how to overcome the potential performance degradation by
exploiting temporal locality in data access.

To study the impact on read performance when data has different replication levels, we tested
a private HDFS cluster with one namenode and 50 datanodes and running Hadoop in the same
nodes. Each node has two quad-core Xeon processors of 2.66GHz, 16 GB of memory, one 1TB
7200-rpm SATA disk and a 1 Gigabit Ethernet.

Our test uses a MapReduce job to output 1200 blocks (75 GB), configured with N reducers
and with R replications. Parameter N varies from 10 to 50 and R is 1 or 3. Because in Hadoop
each reducer creates one file containing all output, N reducers will write N different files. Since
the first copy of any block is written locally, if R = 1 all blocks in an output file are stored in the
reducer node. As a result, if only 10 reducers generate all 1200 blocks with only 1 copy, these 1200
blocks will be distributed only on 10 datanodes, each having 120 blocks. With 3 copies, while 10
datanodes will each have a complete local copy of one output file, the remaining two copies of any
block will be spread randomly across the entire cluster. This microbenchmark gives us a convenient
way to generate evenly distributed (N=50) and unevenly distributed (N=10) data.

Figure 4 shows the completion time when all 1200 blocks are read by 1200 maps in a map-only
Hadoop job, as the average of 13 runs. When all 1200 blocks are replicated three times the read
time is insensitive to the number of files that partition the blocks. Figure 5 shows that Hadoop is
able to find a datanode containing the needed block for almost all maps when the data is triplicated.

However, when there is only one copy of each block, the time to read all blocks is sensitive to
how the files were written – the time to read 10 files with one copy is 6 times longer than the time
to read the same data written into 50 files. Figure 5 shows that with one copy Hadoop is not able
to find a node with a copy 40% of the time.

9

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50

Ti
m

e
to

 re
ad

 b
ac

k
(s

ec
)

N: number of files

452.23

1 copy 3 copies

Figure 4. Time to read in a “hotspot” benchmark

ID Duration HDFS Log type

M45 590 days Namenode/Datanode Log
DW 30 days Namenode/Datanode Log
A 440 days Namenode/Datanode Log

Table 2. Logs with access time details.

Our point is that there are certainly cases where a RAID encoding, having only one copy of
each data block, could have slower read performance than when all data is triplicated. 4

6.1 Temporary Locality and Caching Hierarchy

Caching is widely used to temporarily represent data in a faster location. To protect against
potential performance degradation of reading the RAID encoded data, we propose a triplicated
cache of recently written data. Namely, the storage of data is divided into a triplicated cache layer
providing better performance and a RAIDed layer saving space capacity.

To predict the effectiveness of such a cache, we gathered detailed logs from Facebook and
Yahoo! clusters, described in Table 2. Based on these logs, we compose the creation and read
access time of all data blocks. For each read, we calculate the “block age”. The cumulative
distribution function (CDF) of this block age on read accesses is shown in Figure 6. Over 90% of
block accesses in the M45 and DW clusters happen within the first day after creation and in the A
cluster, more than 50% of block accesses occur in the first day.

The temporal locality shown in Figure 6 suggests that a triplicated data cache is likely to satisfy
most block accesses in many clusters, delivering whatever performance benefit if any triplication
has to offer. When data is newly generated, it is triplicated until it falls out of the cache and is
RAID encoded to save space.

4Interestingly, the 50 file case in Figure 4 suggests that large data sets, written and read with full parallelism, will
often see no degradation in read bandwidth when RAID encoded.

10

0%

20%

40%

60%

80%

100%

10 20 30 40 50

pe
rc

en
t o

f l
oc

al
 m

ap
s

N: number of files

1 copy 3 copies

Figure 5. Fraction of map tasks that are local

Number of user blocks to cache

1K 2K 4K 8K 16K 32K 64K

17% 20% 23% 31% 45% 65% 81%

Table 3. Cache hit ratio, LRU replacement policy

Table 3 shows an LRU caching simulation of the M45 cluster trace over 564 days. In this
trace more than 60 million user blocks are created, on average more than 100,000 per day. Table 3
suggests that, if we keep different blocks triplicated, the cache hit ratio would be 80%. In terms
of cost, 64,000 triplicated blocks are less than the average number created in one day and use less
than 10% of the capacity of M45.

7 Deletion

Traditional RAID systems suffer a performance degradation when updating data smaller than
one RAID set, compared to updating a whole RAID set, known as small write problem[PGK88],
because they have to execute a read-modify-write sequence to update the check blocks in addition
to the data blocks. In HDFS files are immutable, yet this small write problem will still occur when
deletion happens in RAID sets built from multiple files. For example, if we want to delete one block
from a RAID set and recover the capacity of that block, the corresponding check blocks have to be
recalculated without it in order to ensure that the RAID equation is still consistent and the blocks
remaining in the RAID set are still recoverable. We will address appending to blocks in Section
9.2.

One simple way to fully eliminate the small write problem in HDFS is to only use per-file RAID
restricting all blocks in the RAID set to be from the same file, as is done in “HDFS RAID”[Bor09a]
and PanFS [WUA+08]. This simple strategy ensures that any RAID set will always be deleted as
a whole. Though simple, Section 5 argues per-file RAID leads to a storage overhead much higher
than RAID across files.

11

0.9
0.99

0.999
0.9999

0.99999

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1sec 1min 1hr 1day 1week 1mon 1yr

φ:
 fr

ac
tio

n
of

 b
lo

ck
 a

cc
es

s
at

 a
ge

 <
 t

Block Age t

M45
A

DW

Figure 6. Distribution of block age at read access time.

D3 D4 P'1 P'2D1 D2 D3 D4 P1 P2

D1 D2 D3 D4 P1 P2

D'1 D'2 D3 D4 P'1 P'2

 Lazy

Deferred

Deferred

w/ Blocks Replacement

Delete

Figure 7. Three different ways to handle deletion

In this section we investigate three strategies illustrated in Figure 7 to handle deletion when
across-file RAID is implemented:

1. Lazy Deletion never recalculates the RAID equation but instead marks deleted blocks “unseen”
until all blocks in a RAID set are deleted, then it recovers the space of all blocks. Lost or failed
blocks can still be recovered from the old RAID equation. However, the space in deleted blocks
can not be reclaimed until all blocks in this RAID set are deleted. This strategy pays zero cost for
maintaining RAID consistency on deletion, but may cause capacity to “leak” into partially unseen
RAID set.

2. Deferred Deletion does not recalculate check blocks immediately after each block deletion.
Instead, it delays the recalculation in case the entire RAID set is deleted before a timeout. This
scheme exploits temporal locality in deletion as it is likely that one deletion is soon followed by
related deletion. All unseen space will be reclaimed after a delay, and the cost of one “read-modify-
write” operation may be amortized over multiple deletes. The weakness of this strategy is that

12

after eliminating deleted blocks from a RAID set, the RAID set becomes “shorter” (i.e. it has fewer
data blocks), thus the storage overhead for its check blocks is increased.

3. Deferred Deletion with Block Replacement also defers recalculation, but when it recal-
culates check blocks it also adds new blocks into the existing RAID set to prevent the RAID set
from becoming shorter. This approach is similar to the small write process in traditional RAID
systems where the deferred recalculation is provided by a non-volatile write back cache in the RAID
controller [MC93]. One weakness of this strategy is that it is likely to make the blocks in a RAID
set more diverse, reducing the chance of a clean delete in the future.

0%

20%

40%

60%

80%

100%

Lazy Defer-1hr Defer-1day Defer-1hr
w/ replacement

S
to

ra
ge

 o
ve

rh
ea

d

Deletion Strategy

Average RAID per-file (8,2)

per-sys,enc-delay:0
per-sys,enc-delay:1hr

per-dir,enc-delay:0
per-dir,enc-delay:1hr

(a) Storage overhead, trace1

0%

20%

40%

60%

80%

100%

Lazy Defer-1hr Defer-1day Defer-1hr
w/ replacement

S
to

ra
ge

 o
ve

rh
ea

d

Deletion Strategy

Average RAID per-file (8,2)

per-sys,enc-delay:0
per-sys,enc-delay:1hr

per-dir,enc-delay:0
per-dir,enc-delay:1hr

(b) Storage overhead, trace2

 0

 0.5

 1

 1.5

 2

Lazy Defer-1hr Defer-1day Defer-1hr
w/ replacement

E
xt

ra
 IO

 p
er

 d
el

et
io

n

Deletion Strategy

per-sys,enc-delay:0
per-sys,enc-delay:1hr

per-dir,enc-delay:0
per-dir,enc-delay:1hr

(c) Storage overhead, trace1

 0

 0.5

 1

 1.5

 2

Lazy Defer-1hr Defer-1day Defer-1hr
w/ replacement

E
xt

ra
 IO

 p
er

 d
el

et
io

n

Deletion Strategy

per-sys,enc-delay:0
per-sys,enc-delay:1hr

per-dir,enc-delay:0
per-dir,enc-delay:1hr

(d) Storage overhead, trace2

Figure 8. RAID across files deletion costs for (k = 8,m = 2) RAID sets. Storage overhead is
compared to RAID per file in Figure 4. Extra block IO per block deletion measures the work
done in recalculation.

To evaluate these strategies, we run a trace driven simulation using two different traces from
Yahoo M45, each containing the creation and deletion events across the entire cluster over 2000
hours (about 80 days). In each simulation, we modeled two different across-files block select poli-
cies: per-directory as discussed in section 5 and per system, where RAID sets are selected by
namenode from the consecutively created blocks. We consider RAID per system because it is easier
to implement online and undelayed in namenode in block creation. Encoding has a configurable
delay so if a block is deleted before encoding, it never joins a RAID set. When a block is deleted

13

after joining a RAID set, it is marked “unseen” and the check blocks are not recalculated until
configurable re-encode time out occurs. 5

Figure 8 shows the storage overhead at the end of each 80-day simulation. Because clusters
tend to be operated for 3-5 years, an 80 day trace is only 5-10% of the lifetime of the cluster.
Accordingly, increases in storage overhead from 25% to 30% in 80 days predicts that the large
advantage RAID across files has over RAID per file will be lost in about a year. For this reason
we reject all lazy deletion strategies and the deferred deletion strategies using RAID per system.
The strategies which appear to sustain an advantage over RAID per file are the block replacement
strategies or the RAID per directory with deferred deletion strategies.

Figure 8(c) and 8(d) show the extra block IO done per block deletion. Lazy deletion never
recalculates so it does no extra block IO, but the other schemes may have to read partial RAID
sets to recalculate check blocks, then write new check blocks. These figures show that the deferred
deletion with block replacement strategies pay 3-10X as much extra IO as the deferred deletion
strategies.

In summary, with delayed encoding and delayed deletion, RAID per directory sustains its
storage overhead advantage over RAID per file. Moreover the RAID per system strategy is not as
effective and the block replacement on delayed deletion may do unnecessary extra work.

8 Prototype Implementation

We built a tool and a library illustrated in Figure 9 layered on top of and independent of HDFS.
This tool encodes directories into RAID sets and repairs corrupted files, and the associated library
can detect and correct missing data while reading. Without comments, the tool and library consist
of less than 2,700 lines of Java code, including a RAID 6 erasure code based on the open-source
Jerasure coding library [PSS08]. This implementation is available via MAPREDUCE-2036 [Tan10].

In this implementation, encoding and repairing are done asynchronously. The tool invokes a
MapReduce job to do encoding and (permanent) repair. While encoding, blocks from different files
in the same directory are grouped together and the grouping information is stored as an HDFS file
in the directory similar to the Hadoop Archive [HAR] design. Currently, deletion is only supported
for whole directories. Before repairing, unmodified HDFS FSCK is used to enumerate the lost of
un-replicated blocks. With this list, our repair tool launches a MapReduce job to recompute all
damaged files using RAID6 check blocks.

This implementation has a simple deployment strategy. An encoded file can still be read by
unmodified HDFS (as an under-replicated file). To benefit from online reconstruction of lost data,
an Hadoop application uses our reading library. Online reconstruction is done by catching an
exception thrown from the HDFS layer, the technique used by HDFS-RAID [Bor09a].

This layered approach also has limitations. It doesn’t have control over HDFS block placement
and may need to migrate blocks to respect RAID’s requirement for distinct fault domains. Also,
to repair a corrupt file, it rewrites the entire file because HDFS files are immutable. Finally, the
implementation does not handle append (see Section 9.2).

Experimental Setup We demonstrate our prototype on a cluster of 61 nodes where one node
serves as a master while the others serve as clients and slaves for MapReduce and HDFS. Each
node has two quad-core 2.83GHz Xeon processors, 16 GB of memory, and four 7200 rpm SATA 1
TB Seagate Barracuda ES.2 disks. Nodes are interconnected by 10 Gigabit Ethernet and Arista

5This deletion simulation did not include an LRU cache so encoding is triggered by a timeout rather than eviction.
We felt that an explicit timeout is easier to reason about.

14

Application

Detect failures
and provide

online
reconstruction

RAID Library

HDFS

data

data

Create groups

RAID Tool

Encode blocks

Map Phase

Construct
metadata

Reduce Phase

RAID set

info

RAID set

info

list of blocks

parity

data

meta-

data

files

Encode Path Read Path

Figure 9. Encode and Read Path for RAID files

10GE switches. All nodes are runing Linux 2.6.32 with XFS as the local file system to store HDFS
blocks. Data intensive jobs in this cluster are able to move data to and from disks at about a
maximum of 6GB/s.

Methodology We ran the prototype for 30 experiments, each with three phases: writing, encoding
and reconstructing. Each experiment constructs a directory that has 3,840 files of size 64 MB each,
or 240GB (1GB per disk on average) in total. The size of each file is intentionally set to be one
block so that we can estimate the reconstruction speed if it were possible to repair a single block in
a larger HDFS file. We employ (8,2) erasure code to encode, i.e. 8 data blocks and 2 check blocks
in each RAID set. To trigger reconstruction, we make two nodes offline before running the tool to
repair all damaged files. The throughput is measured only when all workers are busy (before 90%
of maps complete), and buffer caches are flushed between phases.

Table 4 shows the throughput in terms of user data for each phase and the total disk bandwidth
consumed. Since the peak of the disk bandwidth is about 6GB/s in this cluster, writing is near
saturation, encoding is 20% less than disk saturation and reconstruction is going at about one third
of the disk peak, though we expect this to improve.

Operation Throughput Disk I/O
GB/s (stdev) GB/s (stdev)

Write (triplication) 1.93 (0.06) 5.80 (0.18)
Encode (RAID6 8+2) 3.69 (0.34) 4.61 (0.43)
Repair (2-node failure) 0.23 (0.02) 2.09 (0.19)

Table 4. Demonstration throughput

Because there are four 1TB disks in each node, with all data triplicated, it will take about 6
hours to encode all 80TB user data to RAID 6 and free up space for another 140TB of new data.
Reconstruction is not as efficient but the loss of two full nodes (8TB) will be repaired in less than
10 hours. Large clusters would reconstruct faster because RAID sets are declustered [HG92, ML90]
–all nodes participate in reconstructing the same 8TB data as the system gets more nodes.

15

8.1 Hadoop applications

To demonstrate this prototype in a real use, we run three Hadoop applications. The first two
applications were obtained from users of a research cluster while the last one is a generic Hadoop sort
application. The first application, sampling, is one phase of a distributed astrophysics algorithm,
DiscFinder [FRL+10], that identifies large-scale astronomical structures from massive observations
and simulation datasets. It reads the input dataset to determine the appropriate partitions while
generating a negligible-size output. The second application is a Twitter analyzer which processes
raw Twitter data into a different format for other tools to operate on [KMF10]. The last one is a
sort application.

We used the same setup as described earlier. Each application executed three times with four
phases: running an application with a triplicated input data-set, encoding the dataset, running the
application again with the encoded dataset, and encoding the output dataset. Encoding constructs
RAID sets with 8 data blocks and 2 check blocks.

25%
50%

100%

150%

200%

Input Output Input Output Input OutputS
to

ra
ge

 O
ve

rh
ea

d

Sampling Twitter Sort

per file
per dir

Figure 10. Overhead of RAID per-file and per-dir for each application’s input and output

Figure 10 shows the storage overhead of per-file and per-dir RAID 6 (8,2) for the input and
output of each application. For the inputs of sampling and sort application where each file is larger
than 1GB, the overhead of RAID per file is small and comparable to the overhead of RAID per-dir.
For the input of the twitter application where each file is much smaller than 64MB, the overhead of
RAID per file is as high as 200%. In the Hadoop framework, each reducer generates one output file.
In general, the size of each output file is inversely proportional to the number of reducers. However,
most applications choose to use a large number of reducers in order to increase parallelism. For
the outputs of the sampling and sort applications, with the configured number of reducers, the
size of each output file is less than 256MB. In this case, the overhead of RAID per file is 54% and
83%, respectively, while the overhead of RAID per-dir is only 27% and 31%, respectively. Using
per-dir RAID, an application is flexible to choose a number of reducers to optimize for performance
without regard for storage overhead.

Figure 11 shows that the time each application takes when input dataset are triplicated or
encoded are comparable. When an input dataset is large enough to spread across all nodes in the
cluster, the benefit of an extra copy or two is small. The input size for sampling, twitter, and sort
applications are 143 GB, 24 GB, and 120 GB, respectively, and the number of blocks used are 2340,
1504, and 1920, respectively.

Figure 11 and Table 5 show that encoding the output of twitter takes 11.3% extra time and
19.5% extra work while encoding the output of sort takes 15.6% extra time and 13.1% extra work.
For a cluster with these workloads, an application must be 20% slower if encoding is done during

16

 0

 100

 200

 300

 400

sampling tweet sort

C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Application

encode(input)
app(triplicated)

app(encoded)
encode(output)

Figure 11. Time to complete each phase

Operation Read GB Write GB Total GB

Twitter (application) 81.1 282.7 363.8
Twitter (encoding) 56.1 15.0 71.1

Sort (application) 544.0 759.7 1303.7
Sort (encoding) 130.8 40.5 171.3

Table 5. Total I/O for running application and encoding its output

busy time. On the other hand, if encoding is done during idle time when it does not slow other
work, there must be at least 20% of idle time.

9 Discussion

9.1 Synchronous v.s. Asynchronous encoding

Synchronous RAID encoding creates RAID check blocks immediately on the critical path of writing
data The primary advantages of synchronous RAID encoding on HDFS is that it generates less disk
and network bandwidth writing data. If a (m, k) code is used, each RAID set containing m data
blocks triggers m+ k disk writes and m+ k− 1 network transfer (all blocks have to be on different
datanodes with the writer may keep one locally). Thus the amortized cost for adding a block is
1 + k/m writes to disk and 1 + (k − 1)/m blocks transfer over network, compared to triplication
where adding each data block incurs 3 disk writes and 2 network transfer.

Implementing synchronous RAID on HDFS also makes RAID set selection harder. RAID per
system is feasible, but inefficient, while RAID per directory is more complex. Moreover synchronous
RAID encoding exposes applications to the risk of read performance problems.

In contrast, Asynchronous RAID encoding does not perform RAID encoding on the critical
path but instead does it in the background. This approach costs more I/O and network resources
than triplication or synchronous encoding as it performs triplication first, then reads back and
encodes data afterwards. However, it may benefit from deletion from the triplicated cache, or
deletion of all blocks in a RAID sets before recalculation. Moreover, in conversation with the HDFS
developers, they are reluctant to use RAID because they are concerned about the complexity of
error handling on the critical path. By encoding data asynchronously, it can be deferred and retried
if any error or complexity is encountered.

17

90%
99%

99.9%
99.99%

99.999%

 0%

 20%

 40%

 60%

 80%

 100%

1sec 1min 1hr 1day 1week 1mon 1yr

φ:
 fr

ac
tio

n
of

 b
lo

ck
 d

el
et

io
n

at
 a

ge
 <

 t

Block Age t

Yahoo! M45
Facebook

Opencloud

Figure 12. Cumulative distribution of block age on deletion.

9.2 Append

Early versions of HDFS did not support file append operations. Thus a file becomes immutable
once closed, and could only be modified by making a new copy with a different name. Since version
0.21.0, HDFS supports file append operation which breaks the write-once semantics.

Though we assume immutable data in HDFS in previous analysis, there are different ways to
incorporate RAID into HDFS when append is enabled:

Keep last blocks uncoded: Since the append operation only affects the last block of any file,
one simple design is to triplicate the last block instead of encoding it. To append a file, only the
last block which is in triplication needs to be mutated. However, this approach may suffer from
high storage overhead as we see many files are “small”.

Triplicate the block being appended. To achieve low storage overhead, all blocks including
the last block of any file will be encoded. If a file has been encoded and the last block of that file is
not full, to append the file, the last block is re-created in a triplicated form with data copied from
the old version. The old version of the block will be deleted. Then, the data will be appended to
the newly created block. Both the deletion and new block creation add extra cost.

Triplicate the data being appended. Instead of triplicating the old block first for every
append operation, we can triplicate only the data appended. For append operation, an empty block
is created and data is written to this block. The metadata of this file needs to be changed so that
the system knows a new block is added to the file. It requires that HDFS allows non-full blocks
other than the last block. When the system is idle, these data can be encoded to the RAID set.

10 Conclusion

This paper proposes a framework extending HDFS by initially replicating blocks, then converting
them into RAID as they age out of the replicated cache. While the read performance benefit of

18

replication is, perhaps, smaller than expected, it is still significant in cases and will be mostly
obtained in files that can remain replicated for a few days.

When encoding simplicity encourages the contents of each RAID set be taken from the same
file, but because DISC file systems have such large block size, this leads to excessive capacity
overhead. When RAID sets include blocks from multiple files, deletion of one file either does not
reclaim space or requires check blocks to be recomputed. Data collected from DISC system at
Yahoo! and Facebook guide our evaluation of these effects. Perhaps not surprisingly traditional
RAID issues such as the small write performance penalty occur in DISC systems too.

Our prototype has been built for HDFS and released with the Apache project as MAPREDUCE-
2036 for all users’ benefit.

19

References

[BBBM95] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon. EVENODD: An Efficient Scheme
for Tolerating Double Disk Failures in RAID Architectures. IEEE Transactions on Computers,
44(2):192–202, 1995.

[BFK06] Ellie Berriman, Paul Feresten, and Shawn Kung. NetApp RAID-DP: Dual-Parity Raid 6
Protection Without Compromise. 2006.

[BFL+01] Vasken Bohossian, Chenggong C. Fan, Paul S. LeMahieu, Marc D. Riedel, Lihao Xu, and
Jehoshua Bruck. Computing in the RAIN: A Reliable Array of Independent Nodes. IEEE
Transactions on Parallel and Distributed Systems, 12(2):99–114, 2001.

[BHS95] T. Blackwell, J. Harris, and M. Seltzer. Heuristic Cleaning Algorithms for Log-Structured
File Systems. In Proc. of the 1995 Winter USENIX Technical Conference, pages 277–288,
New Orleans, LA, January 1995.

[Bor09a] Dhruba Borthakur. HDFS and Erasure Codes, August 2009. http://hadoopblog.blogspot.
com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html.

[Bor09b] Dhruba Borthakur. The Hadoop Distributed File System: Architecture and Design, 2009.
http://hadoop.apache.org/common/docs/current/hdfs_design.html.

[CEG+04] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James Leong,
and Sunitha Sankar. Row-Diagonal Parity for Double Disk Failure Correction. In Proc. of
the 2004 Conference on File and Storage Technologies, pages 1–14, 2004.

[CG91] Vincent Cate and Thomas R. Gross. Integration of Compression and Caching for a Two-Level
File System. In Proc. of International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 200–211, April 1991.

[CK93] Thomas Cormen and David Kotz. Integrating Theory and Practice in Parallel File Systems.
In Proc of the 1993 DAGS/PC Symposium, pages 64–74, 1993.

[CLG+94] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-
Performance, Reliable Secondary Storage. ACM Computing Surveys, 26(2):145–185, 1994.

[Col] Storage Architecture and Challenges. http://research.google.com/university/

relations/facultysummit2010/storage_architecture_and_challenges.pdf.

[CWBLRT00] Philip H. Carns, III Walter B. Ligon, Robert B. Ross, and Rajeev Thakur. PVFS: A Parallel
File System for Linux Clusters. In Proc. of the 4th Annual Linux Showcase and Conference,
pages 317–327, Berkeley, CA, USA, 2000.

[Day08] Shobhit Dayal. Characterizing HEC Storage Systems at Rest. Technical Report CMU-PDL-
08-109, Carnegie Mellon University, 2008.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In Proc. of the 6th Symposium on Operating System Design and Implementation,
pages 137–150, Berkeley, CA, USA, 2004.

[Fac] Facebook Datawarehouse Cluster. http://hadoopblog.blogspot.com/2010/05/

facebook-has-worlds-largest-hadoop.html.

[FRL+10] Bin Fu, Kai Ren, Julio Lopez, Eugene Fink, and Garth Gibson. DiscFinder: A Data-Intensive
Scalable Cluster Finder for Astrophysics. In Proc. of the 19th ACM International Symposium
on High Performance Distributed Computing, pages 348–351, Chicago, IL, USA, June 2010.

20

http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html
http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html
http://hadoop.apache.org/common/docs/current/hdfs_design.html
http://research.google.com/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://research.google.com/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-hadoop.html
http://hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-hadoop.html

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. ACM
SIGOPS Operating Systems Review, 37(5):29–43, 2003.

[GHK+89] Garth A. Gibson, Lisa Hellerstein, Richard M. Karp, Randy H. Katz, and David A. Patterson.
Failure Correction Techniques for Large Disk Arrays. In Proc. of International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 123–132,
1989.

[Haf05] James Lee Hafner. WEAVER Codes: Highly Fault Tolerant Erasure Codes for Storage
Systems. In Proc. of the 2005 Conference on File and Storage Technologies, 2005.

[HAR] Hadoop Archives Guide. http://hadoop.apache.org/common/docs/r0.20.0/hadoop_

archives.html.

[HG92] Mark Holland and Garth A. Gibson. Parity Declustering for Continuous Operation in Re-
dundant Disk Arrays. In Proc. of International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 23–35, 1992.

[HKM+88] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and Performance in a Distributed File
System. ACM Transactions on Computer Systems, 6(1):51–81, 1988.

[HO93] J. Hartman and J. Ousterhout. The Zebra Striped Network File System. In Proc. of the 14th
ACM Symposium on Operating System Principles, pages 29–43, 1993.

[KMF10] U Kang, Brendan Meeder, and Christos Faloutsos. Spectral Analysis for Billion-Scale Graphs:
Discoveries and Implementation. In Proc. of the 14th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, Hyderabad, India, June 2010.

[LMC94] Darrell D. E. Long, Bruce R. Montague, and Luis-Felipe Cabrera. Swift/RAID: A Distributed
RAID System. ACM Computing Systems, (3):333–359, 1994.

[Lus] Lustre. http://www.lustre.org.

[MC93] Jai Menon and Jim Cortney. The Architecture of a Fault-Tolerant Cached RAID Controller.
In Proc of the 20th Annual International Symposium on Computer Architecture, pages 76–86,
1993.

[ML90] Richard R. Muntz and John C.S. Lui. Performance Analysis of Disk Arrays Under Failure. In
Proc. of the 16th International Conference on Very Large Data Bases, pages 162–173, 1990.

[NWO88] M. Nelson, B. Wlch, and J. Ousterhout. Caching in the Sprite Network File System. ACM
Transaction on Computer Systems, 6(1):134–154, February 1988.

[OCH+85] J. OUsterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson. A Trace-
Driven Analysis of the UNIX 4.2 BSD File System. In Proc. 10th ACM Symposium on
Operating Systems Principles, pages 15–24, 1985.

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). ACM SIGMOD Record, 17(3):109–116, 1988.

[Pla97] James S. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Sys-
tems. Software - Practice & Experience, 27(9):995–1012, September 1997.

[PLS+09] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn. A Performance Evaluation
and Examination of Open-Source Erasure Coding Libraries For Storage. In Proc. of the 7th
USENIX Conference on File and Storage Technologies, pages 253–265, Februry 2009.

21

http://hadoop.apache.org/common/docs/r0.20.0/hadoop_archives.html
http://hadoop.apache.org/common/docs/r0.20.0/hadoop_archives.html
http://www.lustre.org

[PSS08] James S. Plank, Scott Simmerman, and Catherine D. Schuman. Jerasure: A Library in
C/C++ Facilitating Erasure Coding for Storage Applications - Version 1.2. Technical Report
UT-CS-08-627, University of Tennessee Department of Computer Science, August 2008.

[RO91] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a Log-
Structured File System. ACM Transactions on Computer Systems, 10:1–15, 1991.

[RS60] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. Journal of the
Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[S3] Amazon Simple Storage Service. http://aws.amazon.com/s3.

[SH02] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for Large Computing
Clusters. In Proc. of the 1st USENIX Conference on File and Storage Technologies, page 19,
Berkeley, CA, USA, 2002.

[SRO96] Steven R. Soltis, Thomas M. Ruwart, and Matthew T. O’Keefe. The Global File System.
In Proc. of the 5th NASA Goddard Conference on Mass Storage Systems and Technologies,
pages 319–342, 1996.

[SW96] Stefan Savage and John Wilkes. AFRAID: A Frequently Redundant Array of Independent
Disks. In Proc. of annual conference on USENIX Annual Technical Conference, Berkeley,
CA, USA, 1996.

[Tan10] Wittawat Tantisiriroj. MAPREDUCE-2036: Enable Erasure Code in Tool Similar to Hadoop
Archive, 2010. https://issues.apache.org/jira/browse/MAPREDUCE-2036.

[WGSS96] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID Hierar-
chical Storage System. ACM Transactions on Computer Systems, 14(1):108–136, 1996.

[WK02] H. Weatherspoon and J. Kubiatowicz. Erasure Coding vs. Replication: A Quantitative
Comparison. In Proc. of the 1st International workshop on Peer-To-Peer Systems, March
2002.

[WUA+08] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small, Jim
Zelenka, and Bin Zhou. Scalable Performance of the Panasas Parallel File System. In Proc.
of the 6th USENIX Conference on File and Storage Technologies, pages 17–33, 2008.

[ZDM+10] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno Thereska, , and Dushyanth Narayanan.
Does Erasure Coding Have a Role to Play in My Data Center? Technical Report MSR-TR-
2010-52, Microsoft Research, 2010.

22

http://aws.amazon.com/s3
https://issues.apache.org/jira/browse/MAPREDUCE-2036

	Introduction
	Related Work
	Background
	Challenges
	Encoding
	Read Performance
	Temporary Locality and Caching Hierarchy

	Deletion
	Prototype Implementation
	Hadoop applications

	Discussion
	Synchronous v.s. Asynchronous encoding
	Append

	Conclusion

