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Abstract

Freeblock scheduling replaces a disk drive’s rotational latency delays with useful background media transfers, poten-
tiallyallowing background disk I/0 to occur with no impact on foreground service times. To do so, a freeblock scheduler
must be able to very accurately predict the service time components of any given disk request — the necessary accuracy
was not previously considered achievable outside of disk firmware. This paper describes the design and implementation
of a working external freeblock scheduler running either as a user-level application atop Linuz or inside the FreeBSD
kernel. This freeblock scheduler can give 15% of a disk’s potential bandwidth (over 8.1MB/s) to a background disk

scanning task with almost no impact (less than 2%) on the foreground request response times. This increases disk
bandwidth utilization by over 6x.
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1 Introduction

Freeblock scheduling is an exciting new approach to utilizing more of a disk’s potential media bandwidth.
It consists of anticipating rotational latency delays and filling them with media transfers for background
tasks. Via simulation, our prior work [13] indicated that 20-50% of a never-idle disk’s bandwidth could be
provided to background applications with no effect on foreground response times. This free bandwidth was
shown to enable free segment cleaning in a busy log-structured file system (LFS), or free disk scans (e.g., for
data mining or disk media scrubbing) in an active transaction processing system.

At the time of that writing, we and others believed that freeblock scheduling could only be done effectively
from inside the disk’s firmware. In particular, we did not believe that sufficient service time prediction
accuracy could be achieved from outside the disk. We were wrong.

This paper describes and evaluates working prototypes of freeblock scheduling on Linux and within the
FreeBSD kernel. Recent research has successfully demonstrated software-only Shortest-Positioning-Time-
First (SPTF) [11, 22] schedulers [25, 28], but their prediction accuracies were not high enough to support
freeblock scheduling. To squeeze extra media transfers into rotational latency gaps, a freeblock scheduler
must be able to predict access times to within 200-300us on modern disks. It must also be able to deal with
the drive’s cache prefetching algorithms, since the most efficient use of a free bandwidth opportunity is on
the same track as a foreground request.

These requirements can be met with two extensions to the common external SPTF design: limited com-
mand queueing and request merging. First, by keeping two requests outstanding at all times, an external
scheduler can focus on just media access delays; the disk’s firmware will overlap bus and command processing
overheads for any one request with the media access of another. This tighter focus simplifies the scheduler’s
task, allowing it to achieve the necessary accuracy. Second, by merging sequential free bandwidth and fore-
ground fetches into a single request, an external scheduler can employ same-track fetches without confusing
the firmware’s prefetching algorithms.

Service time prediction accuracies of our external scheduler are high enough to match that of the disk’s
firmware, even though the latter has direct access to all information. On the other hand, the achieved
free bandwidth is 35% lower than simulations because the external prediction accuracies and control are
not perfect. Nonetheless, the goals of freeblock scheduling are met: potential free bandwidth is used for
background activities with (almost) no impact on foreground response times. For example, when using free
bandwidth to scan the entire disk, we measure up to 3.1 MB/s of steady-state progress or 37 free scans per
day on a 9 GB disk. When employing freeblock scheduling, foreground response times increase by less than
2%.

The remainder of this paper is organized as follows. Section 2 describes freeblock scheduling and what
it involves. Section 3 describes the additional challenges involved with implementing freeblock scheduling
outside of disk firmware. Section 4 describes our implementation. Section 5 evaluates our external freeblock
scheduler in detail. Section 6 discusses related work. Section 7 summarizes this paper’s contributions.

2 Freeblock Scheduling

Current high-end disk drives offer media bandwidths in excess of 40 MB/s, and the recent rate of improvement
in media bandwidth exceeds 40% per year. Unfortunately, mechanical positioning delays limit most systems
to only 2-15% of the potential media bandwidth. We recently proposed freeblock scheduling as an approach
to increasing media bandwidth utilization [13, 19]. By interleaving low priority disk activity with the
normal workload (here referred to as background and foreground, respectively), a freeblock scheduler can
replace many foreground rotational latency delays with useful background media transfers. With appropriate
freeblock scheduling, background tasks can make forward progress without any increase in foreground service
times. Thus, the background disk activity is completed for free during the mechanical positioning for
foreground requests.

This section describes the free bandwidth concept in greater detail, discusses how it can be used in
systems, and outlines how a freeblock scheduler works. Most of the concepts were first described in our prior
work and are reviewed here for completeness.
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Figure 1: Illustration of two freeblock scheduling possibilities. Three sequences of steps are shown, each starting
after completing the foreground request to block A and finishing after completing the foreground request to block B. Each
step shows the position of the disk platter, the read/write head (shown by the pointer), and the two foreground requests (in
black) after a partial rotation. The top row, labelled (a), shows the default sequence of disk head actions for servicing request
B, which includes 4 sectors worth of potential free bandwidth (rotational latency). The second row, labelled (b), shows free
reading of 4 blocks on A’s track using 100% of the potential free bandwidth. The third row, labelled (c), shows free reading of
3 blocks on another track, yielding 75% of the potential free bandwidth.

2.1 Where the free bandwidth lives

At a high-level, the time required for a disk media access, Tyccess, can be computed as a sum of seek time
Tseer, rotational latency Trotate, and media access time Tyransfer-

Taccess = Lseek + Trotate + Ttmnsfer

Of Toccess, only the Tyansfer component represents useful utilization of the disk head. Unfortunately, the
other two components usually dominate. While seeks are unavoidable costs associated with accessing desired
data locations, rotational latency is an artifact of not doing something more useful with the disk head. Since
disk platters rotate constantly, a given sector will rotate past the disk head at a given time, independent
of what the disk head is doing up until that time. If the rotational latency can be predicted, there is an
opportunity to do something more useful than just waiting for desired sectors to arrive at the disk head.

Freeblock scheduling is the process of identifying free bandwidth opportunities and matching them to
pending background requests. It consists of predicting how much rotational latency will occur before the
next foreground media transfer, squeezing some additional media transfers into that time, and still getting
to the destination track in time for the foreground transfer. The additional media transfers may be on the
current or destination tracks, on another track near the two, or anywhere between them, as illustrated in
Figure 1. In the two latter cases, additional seek overheads are incurred, reducing the actual time available
for the additional media transfers, but not completely eliminating it.

The potential free bandwidth in a system is equal to the disk’s potential media bandwidth multiplied
by the fraction of time it spends on rotational latency delays. The amount of rotational latency depends
on a number of disk, workload, and scheduling algorithm characteristics. For random small requests, about
33% of the total time is rotational latency for most disks. This value decreases with increasing request size,



such as to 15% for 256 KB requests, because more time is spent on data transfer. This value increases
with increasing locality, such as to 60% when 70% of requests are in the most recent “cylinder group” [15],
because less time is spent on shorter seeks. The value is about 50% for seek-reducing scheduling algorithms
(e.g., C-LOOK and Shortest-Seek-Time-First) and about 20% for scheduling algorithms that reduce overall
positioning time (e.g., Shortest-Positioning-Time-First).

2.2 Uses for free bandwidth

Potential free bandwidth exists in the time gaps that would otherwise be rotational latency delays for fore-
ground requests. Therefore, freeblock scheduling must opportunistically match these potential free band-
width sources to real bandwidth needs that can be met within the given time gaps. The tasks that will
utilize the largest fraction of potential free bandwidth are those that provide the freeblock scheduler with
the most flexibility. Tasks that best fit the freeblock scheduling model have low priority, large sets of desired
blocks, and no particular order of access.

These characteristics are common to many disk-intensive background tasks that are designed to occur
during otherwise idle time. For example, in many systems, there are a variety of support tasks that scan
large portions of disk contents, such as report generation, RAID scrubbing, virus detection, and backup.
Another set of examples is the many defragmentation [14, 26] and replication [16, 28] techniques that have
been developed to improve the performance of future accesses. A third set of examples is anticipatory disk
activities such as prefetching [7, 10, 12, 17, 24] and prewriting [2, 4, 8, 9].

Using simulation, our previous work demonstrated two specific uses of freeblock scheduling. One set of
experiments showed that cleaning in a log-structured file system [20] can be done for free even when there is
no truly idle time, resulting in up to a 300% speedup. A second set of experiments explored the use of free
bandwidth for data mining on an active on-line transaction processing (OLTP) system, showing that over
47 full scans per day of a 9 GB disk can be made with no impact on OLTP performance. This results in a
7x increase in media bandwidth utilization.

2.3 Freeblock scheduling

In a system supporting freeblock scheduling, there are two types of requests: foreground requests and
(background) freeblock requests. Foreground requests are the normal workload of the system, and they will
receive top priority. Freeblock requests specify the background disk activity for which free bandwidth should
be used. As an example, a freeblock request might specify that a range of 100,000 disk blocks to be read,
but in no particular order — as each block is retrieved, it is handed to the background task, processed
immediately, and then discarded. A request of this sort gives the freeblock scheduler the flexibility it needs
to effectively utilize free bandwidth opportunities.

Requests of the two types are kept in separate lists and scheduled separately. The foreground scheduler
runs first, deciding which foreground request should be serviced next in the normal fashion. Any conventional
scheduling algorithm can be used. Device driver schedulers usually employ seek-reducing algorithms, such as
C-LOOK or Shortest-Seek-Time-First. Disk firmware schedulers usually target overall positioning overheads
(seek time plus rotational latency) with Shortest-Positioning-Time-First (SPTF) algorithms [11, 22].

After the next foreground request (request B in Figure 1) is determined, the freeblock scheduler computes
how much rotational latency would be incurred in servicing B; this is the free bandwidth opportunity. Like
SPTF, this computation requires accurate estimates of disk geometry, current head position, seek times, and
rotation speed. The freeblock scheduler then searches its list of pending freeblock requests for a good match.
After making its choice, the scheduler issues any free bandwidth accesses and then B.

The freeblock scheduling algorithm assumed in this paper greedily schedules freeblock requests within
free bandwidth opportunities based on the number of blocks that can be accessed; the one with the highest
number of blocks is selected. Many other algorithms are possible. More concretely, the freeblock algorithm
selects the maximal answer to the question, “for each track on the disk, how many desired blocks could be
accessed in this opportunity?”. For each track, ¢, answering this question requires computing the extra seek
time involved with seeking to ¢t and then seeking to B’s track, as compared to seeking directly to B’s track.
Answering this question also requires determining which disk blocks will pass under the head during the
remaining rotational latency time and counting how many of them correspond to pending freeblock requests.
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Figure 2: Effects of uncertainty on prediction accuracy. This figure shows two possible scenarios of observed response
times when one and two requests are outstanding at the disk. The two scenarios only differ in the amount of overlap between
the media and bus transfers. The varying overlap has different effects on the positioning time of request B and therefore on
the amount of available free bandwidth. In the one-request-outstanding case, the amount of rotational latency is affected by
the variable overlap. For the two-requests-outstanding, the rotational latency is the same in both scenarios, making predictions
easier for the foreground and freeblock schedulers.

Note that no extra seek is required for the source track or for B’s track. The algorithm prunes the search
space to reduce the computation time required.

3 Fine-grain External Disk Scheduling

Fine-grain disk scheduling algorithms (e.g., Shortest-Positioning-Time-First and freeblock) must accurately
predict the time that a request will take to complete. Inside disk firmware, the information needed to make
such predictions is readily available. This is not the case outside the disk drive, such as in disk array firmware
or OS device drivers.

Modern disk drives are complex systems, with finely-engineered mechanical components and substantial
runtime systems. Behind standardized high-level interfaces, disk firmware algorithms map logical block
numbers (LBNs) to physical sectors, prefetch and cache data, and schedule media and bus activity. These
algorithms vary among disk models, and evolve from one disk generation to the next. External schedulers are
isolated from necessary details and control by the same high-level interfaces that allow firmware engineers
to advance their algorithms without reducing compatibility. This section outlines major challenges involved
with fine-grain external scheduling, the consequences of these challenges, and some solutions that mitigate
the negative effects of these consequences.

3.1 Challenges

The challenges faced by a fine-grained external scheduler largely result from disks’ high-level interfaces, which
hide internal information and restrict external control. Specific challenges include coarse observations, non-
constant delays, non-preemption, on-board caching, in-drive scheduling, computation of rotational offsets,
and disk-internal activities.

Coarse observations. An external scheduler sees only the total response time for each request. These
coarse observations complicate both the scheduler’s initial configuration and its runtime operation. The
initial configuration must deduce from these observations the individual component delays (i.e. mechanical



positioning, data transfer, and command processing) as well as the amount of their overlap. These delays
must be well understood for an external scheduler to accurately predict requests expected response times.
The runtime operation must deduce the disk’s current state after each request; without this knowledge, the
subsequent scheduling decision will be based on inaccurate information.

Non-constant delays. Deducing component delays from coarse observations is made particularly diffi-
cult by the inherent inter-request variation of those delays. If the delays were all constant, deduction could
be based on solving sets of equations (response time observations) to figure out the unknowns (component
delays). Instead, the delays and the amount of their overlap vary. As a result, an external scheduler must
deduce moving targets (the component delays) from its coarse observations. In addition, the variation will
affect response times of scheduled requests, and so it must be considered in making scheduling decisions.
Figure 2 illustrates the effect of variable overlap between bus transfer and media transfer on the observed
response time.

Non-preemption. Once a request is issued to the disk, the scheduler cannot change or abort it. The
SCSI protocol does include an ABORT message, but most device drivers do not support it and disks do not
implement it efficiently. They view it as an unexpected condition, so it is usually more efficient to just allow
a request to complete. Thus, an external scheduler must take care in the decisions it makes.

On-board caching. Modern disks have large on-board caches. Exploiting its local knowledge, the
firmware prefetches disk sectors into this cache based on physical locality. Usually, the prefetching will
occur opportunistically during idle time and rotational latency periods®'. Sometimes, however, the firmware
will decide that a sequential read pattern will be better served by delaying foreground requests for further
prefetching. An external scheduler is unlikely to know the exact algorithms used for replacement, prefetching,
or write-back (if used). As a result, cache hits and prefetch activities will often surprise it.

In-drive scheduling. Modern disks support command queueing and they internally schedule queued
requests to maximize efficiency. An external scheduler that wishes to maintain control must either avoid
command queueing or anticipate possible modification of its decisions.

Computation of rotational offsets. The disk constantly rotates, although its speed may vary slightly
over time. As a result, an external scheduler must occasionally resynchronize its understanding of the disk’s
rotational offset. Also, whenever making a scheduling decision, it must update its view of the current offset.

Internal disk activities. Disk firmware must sometimes execute internal functions (e.g., thermal
recalibration) that are independent of any external requests. Unless a device driver uses recent S.M.A.R.T.
interface extensions to avoid these functions, an unexpected internal activity will occasionally invalidate the
scheduler’s predictions.

3.2 Consequences

The above-listed challenges have five main consequences on the operation of an external fine-grained disk
scheduler.

Complexity. Both the initial configuration and runtime operation of an external scheduler will be
complex and disk-specific. As a result, substantial engineering may be required to achieve robust, effective
operation. Worse, effective freeblock scheduling requires very accurate service time predictions to avoid
disrupting foreground request performance.

Seek misprediction. When making a scheduling decision, the scheduler predicts the mechanical delays
that will be incurred for each request. When there are small errors in the initial configuration of the scheduler
or variations in seek times for a given cylinder distance, the scheduler will sometimes mispredict the seek
time. When it does, it will also mispredict the rotational latency.

When the scheduler over-estimates a request’s seek time (see Figure 3(a)), it may incorrectly decide that
the disk head will “just miss” the desired sectors and have to wait almost a full rotation. With such a
large predicted delay, the scheduler is unlikely to select this request even though it may actually be the best
option.

!Freeblock scheduling often removes the disk’s opportunity to prefetch during rotational latency periods. It does so to fetch
known-to-be-wanted data, which we argue is a more valuable activity. In part, we assert this because the lost prefetching will
rarely eliminate subsequent media accesses, since the prefetched sectors are usually not in LBN order and not aligned to any
block boundary or size.
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Figure 3: The effects of mispredicting seek time on request response time.

When the scheduler under-estimates a request’s seek time (see Figure 3(b)), it may incorrectly decide
that the disk head will arrive just in time to access the desired sectors with almost no rotational latency.
Because of the small predicted delay, the scheduler is likely to select this request even though it is most likely
a bad choice.

Over-estimated seeks usually do not cause significant problems for foreground scheduling. However,
under-estimated seeks can cause substantial unwanted delays in foreground requests when extra rotational
misses are incurred. In addition, when the foreground scheduler is used in conjunction with a freeblock
scheduler, an over-estimated seek may cause a freeblock request to be inserted in place of an incorrectly
predicted large rotational latency. Like an self-fulfilling prophecy, this will cause an extra rotation before
servicing the next foreground request even though it would not otherwise be necessary.

Idle disk head time. The response time for a single request includes mechanical actions, bus transfers,
and command processing. As a result, the read/write head can be idle part of the time, even while a request
is being serviced. Such idleness occurs most frequently when acquiring and utilizing the bus to transfer data
or completion messages. Although an external scheduler can be made to understand such inefficiencies, they
can reduce its ability to utilize potential free bandwidth.

Induced prefetching. Freeblock scheduling works best when it uses free bandwidth to pick up blocks
on the source or destination tracks of a foreground seek. However, if the disk observes two sequential READs,
it may assume a sequential access pattern and initiate prefetching that causes a delay in handling subsequent
requests. If one of these READs is from the freeblock scheduler, the disk will be acting on misinformation
since the foreground workload may not be sequential.

Loss of head location information. Several of the challenges will cause an external scheduler to
sometimes make decisions based on inaccurate head location information. For example, this will occur for
unexpected cache hits, internal disk activity, and triggered foreground prefetching.

3.3 Solutions

To address these challenges and to cope with their consequences, external schedulers can employ several
solutions.

Automatic disk characterization. An external scheduler must have a detailed understanding of
the specific disk for which it is scheduling requests. The only practical option is to have algorithms for

automatically discovering the necessary configuration information, including LBN-to-physical mappings, seek



timings, rotation speed, and command processing overheads. Fortunately, mechanisms [27] and tools [21]
have been developed for exactly this purpose — researchers have enjoyed substantial success with this difficult
problem.

Seek conservatism. To address seek time variance and other causes of prediction errors, an external
scheduler can add a small “fudge factor” to its seek time estimates. By conservatively over-estimating
seek times, the external scheduler can avoid the full rotation penalty associated with under-estimation.
To maximize efficiency, the fudge factor must balance the benefit of avoiding full rotations with the lost
opportunities inherent to over-estimation. For freeblock scheduling decisions, a more conservative (i.e.,
higher) fudge factor should be selected to prefer less utilized free bandwidth opportunities to extra full
rotations suffered by foreground requests.

Resync after each request. The continuous rotation of disk platters helps to minimize the propagation
of prediction errors. Specifically, when an unexpected cache hit or internal disk activity causes the external
scheduler to make a misinformed decision, only the one request is affected. The subsequent request’s posi-
tioning delays will begin at the same rotational offset (i.e., the previous request’s last sector), independent
of how many unexpected rotations that previous request incurred.

Limited command queueing. Properly utilized, command queueing at the disk can be used to increase
the accuracy of external scheduler predictions. Keeping two requests at the disk, instead of just one, avoids
idling of the disk head. Specifically, while one request is transferring data over the bus, the other can be
using the disk head.

In addition to improving efficiency, the overlapping of bus transfer with mechanical positioning simplifies
the task of the external scheduler, allowing it to focus on media access delays as though the bus and processing
overheads were not present. When the media access delays dominate, these other overheads will always be
overlapped with another request’s media access (see Figure 2).

The danger with using command queueing is that the firmware’s scheduling decisions may override those
of the external scheduler. This danger can be avoided by allowing only two requests outstanding at a time,
one in service and one in the queue to be serviced next.

Request merging. When scheduling a freeblock request to the same track as a foreground request, the
two requests should be merged if possible (i.e., they are sequential and are of the same type). Not only will
this merging avoid the misinformed prefetch consequence discussed above, but it will also reduce command
processing overheads.

Appending a freeblock request to the end of the foreground request can hurt the foreground request since
completion will not be reported until both requests are done. This performance penalty is avoided if the
freeblock request is prepended to the beginning of the foreground request.

4 Implementation

This section describes the changes to an operating system necessary to support a freeblock scheduler. It also
describes the specifics of our FreeBSD 4.0 implementation.

4.1 Device driver foreground scheduler

Device driver schedulers in current systems (e.g., FIFO, SSTF, and variants of SCAN) make all scheduling
decisions beforehand and do not care in which order the requests finish at the disk. Since we require the
foreground scheduler to track the current head position to determine the positioning time for a request, we
have implemented a new foreground scheduler that replaces the default device driver scheduler.

4.1.1 Feedback scheduling

The foreground scheduler works on a principle of feedback. It predicts the positioning time of a request
given the current head position i.e., the cylinder number, surface, and rotational angle. Once the request
completes, the last known head position is set to the end location of the just-finished request, and the actual
response time is compared to the predicted time. This comparison is necessary to determine whether some
activity not predicted by the foreground scheduler occurred at the disk. This activity may include reordering
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Figure 4: Freeblock scheduling inside a device driver.

of requests at the disk, a disk controller cache hit, or triggering of prefetching activity that delayed handling
of outstanding requests.

Our external device driver scheduler works as follows. When a request arrives from the file system, it
is first inserted into a pool of outstanding requests. A suitable request is then selected from the pool and
put at the end of a FIFO dispatch queue. This queue holds the requests that are ready to be dispatched to
the disk. If there are fewer than mazoutstanding requests at the disk, up to mazoutstanding requests are
immediately sent from the dispatch queue to the disk drive through the transport layer. If there are already
mazoutstanding requests at the disk drive, the requests are kept in the dispatch queue and no new requests
are sent to the disk drive.

When a disk request completes, a callback is made to the foreground scheduler. If the pool of outstanding
requests is not empty, a new suitable request is selected and put at the end of the FIFO dispatch queue.
Finally, the request at the head of the dispatch queue is sent to the disk.

The maximal number of outstanding requests at the disk mazoutstanding is set to two. This value
achieves the desired overlapping and also prevents the firmware scheduler from reordering requests at any
time. Since one request is being serviced and the other one is queued. Defanging the internal scheduler is
necessary to be able to correctly predict response time and to impose a correct order on request processing
when a freeblock request is inserted to the disk.

4.1.2 Request selection

The selection of a suitable request is done according to these rules. If there is only one request in the pool
and no requests at the disk or at the dispatch queue, the foreground request is put into the dispatch queue.
If there is at least one outstanding request at the disk drive and the dispatch queue is empty, the request
that incurs the smallest positioning time from the end location of the last outstanding request at the disk
is selected. If there is already a request at the dispatch queue, the end position of the request at the tail of
the queue is used to select the next suitable request.

For each request put into the FIFO dispatch queue, the foreground scheduler keeps the starting and
ending location (in terms of cylinder, head, and rotational offset), the estimated positioning and completion
times, the issue time, and any other information passed to the device driver from above (i.e., file system
information, buffer pointers etc.).

4.2 Freeblock scheduler

The freeblock scheduler inspects the request at the head of the dispatch queue. Since the request’s positioning
time has been already determined by the foreground scheduler, the freeblock scheduler immediately starts
matching the opportunity to a suitable freeblock request.



The initial choice of a potential freeblock request is successively improved until a request at the disk
finishes and a new request is to be sent to the disk. When this occurs, the best currently known choice for a
freeblock request is taken and scheduled to the disk. At each iteration, another potential request from the
pool of the freeblock requests is evaluated to see (i) if it meets the constraints given by the two foreground
requests and (ii) if the utility of that candidate is higher than the currently selected potential freeblock
request.

The scheduling of requests and the interplay between the foreground and the freeblock scheduler is
depicted in Figure 4. The diagram shows a situation when there are two outstanding requests at the disk —
a freeblock request £b1 is currently being serviced by the disk and a foreground request forel is queued.
When the disk finishes the freeblock request £b1, it immediately starts to work on the already queued
foreground request forel.

The notification as well as the data of the just-finished freeblock request £b1 is sent back to the host
where it is intercepted by the device driver. The device driver then picks from the head of the FIFO dispatch
queue the next request, labeled £b2, and sends it to the drive. When the foreground request forel finishes,
the device driver simply dispatches to the disk fore2 which is now at the head of the dispatch queue. It
also informs the freeblock scheduler, via a stop flag, to stop looking for a better freeblock since the current
best choice for a freeblock request has already been sent to the disk.

With mazoutstanding set to two, the freeblock scheduler is initially invoked when there are at least three
outstanding foreground requests at the device driver i.e., two requests at the disk and one queued in the
dispatcher queue. The freeblock scheduler remains operational as long as there are always at least two
outstanding foreground requests in the system.

The freeblock scheduler is orthogonal to the foreground scheduler and thus can run asynchronously.
The only requirements are that the freeblock scheduler can see the dispatch queue and all the associated
information with the requests in it. Conversely, the main scheduler must be able to grab the best currently
known freeblock request and send it to the disk whenever a disk request completes.

The two schedulers communicate through the restart flag that is set by the foreground scheduler when
a new foreground request is selected. When the flag is set, the freeblock scheduler inspects this new pair
of foreground requests, clears all flags, and starts searching for a suitable freeblock request that can be put
between this new pair of foreground requests.

4.3 Kernel implementation

We have implemented the device driver foreground and the freeblock schedulers in FreeBSD 4.0 kernel. For
SCSI disks (/dev/da), the foreground scheduler replaces the default C-LOOK scheduler implemented by
the bufqdisksort () function. Currently, our device driver scheduler implements the Shortest-Seek-Time-
First (SSTF), Shortest-Positioning-Time-First (SPTF), and seek-weighted Shortest-Positioning-Time-First
(SPTF-SWn%) algorithms. Just like the default C-LOOK scheduler, our foreground scheduler is called from
the dastart () function and it puts requests onto the device’s queue, buf_queue, which is the dispatch queue
in Figure 4. This queue is emptied by xpt_schedule(), which is called from dastart () immediately after
the call to the scheduler.

The only architectural modification to the direct access device driver is in the return path of a request.
Normally, when a request finishes at the disk, dadone() function is called. We have inserted into this
function a callback to the foreground scheduler. If the foreground scheduler selects another request, it calls
xpt_schedule() to keep max outstanding at the disk. If no new request is put onto the dispatch queue, the
dadone() proceeds normally.

The freeblock scheduler is implemented as a kernel thread and it communicates with the foreground
scheduler via a few shared variables. These variables include the restart and stop flags and the pointers to
the pair of foreground requests for which a freeblock request should be selected.

Before using the freeblock scheduler on a new disk, the disk performance attributes must be first obtained
by the DIXtrac tool [21]. This one time cost of 3-5 minutes can be a part of an augmented newfs process
that stores the attributes along with the superblock and i-node information.

The current implementation generates freeblock requests for a disk scan application from within the
kernel. The full disk scan starts when the disk is first mounted. The data received from the freeblock



| Quantum Atlas 10k |

Year 1999
Rotation speed 10000 RPM
Head switch time 0.8 ms
Avg. seek time 5.0 ms
Number of heads 6
Sectors per track 334-224
Sustained bandwidth | 27-18 MB/s
Capacity 9 GB

Table 1: Quantum Atlas 10k disk characteristics.

requests do not propagate to the user level. Suitable freeblock requests are based on the bitmap of sectors
that have not yet been touched by freeblock requests.

4.4 User-level implementation

The foreground and freeblock schedulers can also run as a user-level application. In fact, the FreeBSD
kernel implementation was originally developed as a user-level application under Linux 2.4. The user-level
implementation bypasses the buffer cache, file system, and the device driver by assembling SCSI commands
and passing them directly to the disk via linux’s “SCSI generic” interface.

In addition to easier development, the user-level implementation also offers greater flexibility and con-
trol over the location, size, and issue time of foreground requests during experiments. For the in-kernel
implementation, the locations and sizes of foreground accesses are dictated by the file system block size
and read-ahead algorithms. Furthermore, the device driver only sees requests that are generated because of
buffer cache misses and not necessarily because file system requests from the applications. Because of this
greater flexibility, the user-level setup is used for most of our experiments.

5 Evaluation

This section evaluates the external freeblock scheduler, showing that its service time predictions are very
accurate and that it is therefore able to extract substantial free bandwidth. As expected, it does not achieve
the full performance that could be achieved from within disk firmware — it achieves approximately 75% of
the predicted free bandwidths. The limitations are explained and quantified.

5.1 Experimental setup

Most of our experiments are run on the Linux version of the scheduler. The system hardware includes a
550MHz Pentium III, 128 MB of main memory, an Intel 440BX chipset with a 33MHz, 32bit PCI bus,
an adaptec AHA-2940 Ultra2Wide SCSI controller, and a 9GB Atlas 10K disk drive whose characteristics
are listed in Table 1. The system is running Linux 2.4.2. The experiments with the FreeBSD kernel
implementation use the same hardware.

Unless otherwise specified, the experiments use a synthetic foreground workload that approximates ob-
served OLTP workload characteristics. This synthetic workload models a closed system with per-task disk
requests separated by think times of 30 milliseconds. The experiments use a multiprogramming level of
ten, meaning that there are ten requests active in the system at any given point. The OLTP requests are
uniformly-distributed across the disk’s capacity with a read-to-write ratio of 2:1 and a request size that is
a multiple of 4 KB chosen from an exponential distribution with a mean of 8 KB. Validation experiments
(in [19]) show that this workload is sufficiently similar to disk traces of Microsoft’s SQL server running
TPC-C for the overall freeblock-related insights to apply to more realistic OLTP environments.

The background workload consists of a single freeblock read request for the entire capacity of the disk.
That is, the freeblock scheduler is asked to fetch each disk sector once, but with no particular order specified.

10
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Figure 6: Measured performance of foreground scheduling algorithms. The top three lines represent the external
scheduler using SSTF, SPTF-SW60% and SPTF. The fourth line shows performance when all requests are given immediately
to the Quantum Atlas 10K, which uses its internal scheduling algorithm. The “disk firmware” line exactly overlaps the “SPTF
external” line, simultaneously indicating that the firmware uses SPTF and that the external scheduler makes good decisions.
Linux’s default limit on requests queued at the disk is 15 (plus one outstanding).

When the disk queue is greater than one, the scheduler predicts “completion time” rather than the total
response time of the request. The request completion time includes only mechanical positioning and media
access; it does not include the queue time and bus transfer time. The computation of the completion time
from the measured response times is depicted in Figure 5.

Our evaluation considers three foreground scheduling algorithms: SSTF, SPTF, and SPTF-SW60%.
SSTF is representative of the seek-reducing algorithms used by many external schedulers. Our external
freeblock scheduler has all of the information required to use SPTF, which will yield lower foreground
service and lower rotational latencies than SSTF. SPTF-SWn% was proposed to select requests with both
small total positioning delays and large rotational latency components [13]. It selects the request with the
smallest seek time component among the pending requests whose positioning times are within n% of the
shortest positioning time. Setting n to 60 offers a good trade-off between foreground performance loss and
free bandwidth gain.

5.2 Service time prediction accuracy

Central to all fine-grain scheduling algorithms is the ability to accurately predict service times. Figure 7
shows PDFs of error in the external scheduler’s completion time predictions. For random 4 KB requests,
97.5% of requests complete within 50 us of the scheduler’s prediction. The other 2.5% of requests take one
rotation longer than predicted, because the seek time was slightly underpredicted. We have verified that

11
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Figure 7: PDFs of prediction error for foreground requests. Negative values denote over-estimation, which means
that the scheduler predicted a longer service time than was measured. These show the distribution of differences of our predicted
time versus the actual time. The first graph represents the distribution of errors for the user level foreground workload with
4KB average request size. The second graph shows the distribution of errors of the user level foreground workload with 40KB
average request size. The final graph describes the accuracy of the system in the FreeBSD system running the random small
file read workload.

more localized requests (e.g., random requests within a 50 cylinder range) are predicted equally well.

For random 40 KB requests, 75% are within 150 us. The completion times for larger requests are predicted
less accurately mainly because of variation in the overlap of media transfer and bus transfer. For example,
one request may overlap by 100 us more than expected, which will cause the request completion to occur
100 us earlier than expected. In turn, because completion time is measured from the previous request’s end
time, this extra overlap will usually cause the next request prediction to be 100 us too low. (Recall that
media transfers always end at the same rotational offset, normalizing such errors.) This effect of measuring
completion time explains the symmetry visible in the PDF. Because the prediction errors are due to variance
in bus-related delays rather than media access delays, they do not effect the external scheduler’s effectiveness;
this fact is particularly important for freeblock scheduling, which explicitly tries to create large background
transfers.

The FreeBSD graph shows the prediction error distribution for a workload of 10000 reads of a randomly
chosen 3 KB file. For this workload, the file system was formatted with a 4 KB block size and populated
with 2000 directories each holding 50 files. Even though a file is chosen randomly, the file system access
pattern is not purely random. Because of FFS’s access to metadata that is in the same cylinder group as
the file, some accesses are sequential and to the same track, which can trigger disk prefetching. 76% of all
requests in the FreeBSD workload were correctly predicted within 150 us. 5% of requests, at +800 us, are
due to bus and media overlap mispredictions. There are 4% of +6 ms mispredictions that account for an
extra full rotation. Additional 4% of requests at -7.5 ms misprediction were disk cache hits. Finally, 8% of
the requests are centered around +1.5 and +4.5 ms. These requests immediately follow surprise cache hits
or unexpected extra rotations and are therefore mispredicted.

To objectively validate the external scheduler, Figure 6 compares the three external algorithms (SSTF,
SPTF, and SPTF-SW60%) with the disk’s in-firmware scheduler. As expected, SPTF outperforms SPTF-
SW60% which outperforms SSTF, and the differences increase with larger queue depths. The external
scheduler’s SPTF exactly matches the disk’s ORCA scheduler [18] (apparently an SPTF algorithm) indicating
that their decisions are consistent. This consistency is strong evidence of the external scheduler’s accuracy.

5.3 Freeblock scheduling effectiveness

To evaluate the effectiveness of our external freeblock scheduler, we measure both foreground performance
and achieved free bandwidth. We hope to see significant free bandwidth achieved and no effect on foreground
performance.

Figure 8 shows both performance metrics as a function of the freeblock scheduler’s seek conservatism. This
conservatism value is added to (only) the freeblock scheduler’s seek time predictions, reducing the probability
that it will under-estimate a seek time and cause a full rotation when trying to utilize free bandwidth. As
conservatism increases, foreground performance approaches its no-freeblock-scheduling value. Foreground
performance is reduced by <2% at 0.3 ms of conservatism and by <0.6% at 0.4 ms. The corresponding
penalties to achieved free bandwidth are 3% and 10%.
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Figure 8: Foreground and free bandwidth as a function of seek conservatism. The conservatism is only for freeblock
scheduling decisions, which must strive to avoid overly-aggressive predictions that penalize the foreground workload. At 0.3ms,
foreground performance is 1-2% lower. At 0.4ms, foreground performance is 0.2-0.6% lower. Ensuring minimal foreground
impact does come at a cost in achieved free bandwidth.

All three foreground scheduling algorithms are shown in Figure 8. As expected, the highest foreground
performance and the lowest free bandwidth are achieved with SPTF. SSTF’s foreground performance is 13—
15% lower, but it provides for 2.1-2.6x more free bandwidth. SPTF-SW60% achieves over 80% of SSTF’s
free bandwidth with only a 5-6% penalty in foreground performance relative to SPTF, offering a nice option
if one is willing to trade small amounts of foreground performance.

Confirming that external freeblock scheduling is possible, we now address the question of how much of
the potential is lost. Figure 9 compares the free bandwidth achieved by our external scheduler with the
corresponding simulation results, which remain our expectation for in-firmware freeblock scheduling. The
results show that there is a substantial penalty (~35%) for external scheduling, with two sources. The first
source is conservatism; its direct effect can be seen in the steady decline of the simulation line. The second
source is our external scheduler’s inability to safely issue distinct commands to the same track. When we
allow it to do so, we observe unexpected extra rotations, which we believe are caused by a firmware prefetch
algorithm that gets activated. We have verified that, beyond conservatism of 0.3 ms, the vertical difference
between the two lines is almost entirely the result of this limitation; with the same one-request-per-track
limitation, the simulation line is within 2-3% beyond 0.3 ms.

Disallowing distinct freeblock requests on the source or destination tracks prevents two difficulties. First,
it prevents the scheduler from using free bandwidth on the source track, since the previous foreground request
was previously sent to the disk and cannot subsequently be modified. Recall that request merging allows
free bandwidth to be used on the destination track. The source and destination tracks are the only options
that avoid an extra seek. Second, and more problematic, it prevents the scheduler from using free bandwidth
for blocks on both sides of a track’s end. Figure 10 shows a free bandwidth opportunity than spans LBNs
1326-1334 at the end of a track and LBNs 1112-1145 at the beginning of the same track. To pickup the
entire range, the scheduler would need to send one request for 9 sectors starting at LBN 1326 and a second
request for 34 sectors at LBN 1112. The one-request restriction allow only one of the two. In this example,
the smaller range is left unused.

5.4 CPU overhead

To quantify the CPU overhead of freeblock scheduling, we measured the CPU load on FreeBSD for the random
small file read workload under three conditions. First, we established a base-line for CPU utilization by
running unmodified FreeBSD with its default C-LOOK scheduler. Second, we measured the CPU utilization
when running our foreground scheduler only. Third, we measured the CPU utilization when running both
the foreground and freeblock schedulers.

The CPU utilization for unmodified FreeBSD was 5.1%. The CPU utilization of the workload running
with our foreground scheduler was 5.4%. Therefore, with negligible overhead (of 0.3%), we are able to run
an SPTF scheduler. The average utilization of the system running both the foreground and the freeblock
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Figure 9: Achieved free bandwidth as a function of conservatism. The line labeled simulation shows the expected free
bandwidth obtained from our simulated, in-firmware freeblock scheduler operating at the given level of conservatism. The line
labeled simulation no track shows a case when the simulated freeblock scheduler does not put a freeblock request on the same
track as a foreground request, mimicking a major limitation of our external scheduler. The line labeled external scheduler shows
the actual measured free bandwidth obtained from a disk by our freeblock scheduler implementation.

Figure 10: Limitation of external scheduler. This diagram illustrates a case where the potential free bandwidth spans
the start/end of a track. In this case, a single contiguous LBN range doe not cover the potential in free bandwidth. Two
requests are needed to gather all of the free bandwidth, one to LBN 1326 and one to LBN 1112. Since our scheduler can only
send one free bandwidth request per track, the system will select the range from LBNs 1112-1145. This wastes the potential
bandwidth from LBNs 1326-1334.

schedulers was 14.1%. Subtracting the base line CPU utilization of 5.1% when running the workload we
gives an 8% overhead of freeblock scheduling. In future work, we expect algorithm refinements to reduce
this CPU overhead substantially.

Comparing the foreground and free bandwidths for the SPTF-SW60% scheduler in Figure 8 for a con-
servatism of 0.4 ms, the modest increase of 8% in CPU is justified by a 6x increase in disk bandwidth
utilization.

6 Related Work

Before the standardization of abstract disk interfaces, like SCSI and IDE, fine-grained request scheduling
was done outside of disk drives. Since then, most external schedulers have used less-detailed seek-reducing
algorithms, such as C-LOOK and Shortest-Seek-First. Even these are only approximated by treating LBNs
as cylinder numbers [27].

Recently, several research groups [1, 3, 5, 6, 23, 25, 28] have developed software-only external schedulers
that support fine-grained algorithms, such as Shortest-Positioning-Time-First. Our foreground scheduler
borrows its structure, its rotational position detection approach, and its use of conservatism from these
previous systems. Our original pessimism regarding the feasibility of freeblock scheduling outside the disk
also came from these projects — their reported experiences suggested conservatism values that are too large
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to allow effective freeblock scheduling. Also, some only functioned well on old disks, for large requests, or
with the on-disk cache disabled. We have found that effective external freeblock scheduling requires the
additional refinements described in Section 3, particularly the careful use of command queueing and the
merging of same-track requests.

This paper and its related work section focus mainly on the challenge of implementing freeblock scheduling
outside the disk. Lumb et al. [13] discuss work related to freeblock scheduling itself.

7 Summary

Refuting our original pessimism, this paper demonstrates that it is possible to build an external freeblock
scheduler. From outside the disk, our scheduler can replace many rotational latency delays with useful
background media transfers; further, it does this with almost no increase (less than 2%) in foreground
service times. Achieving this goal required greater accuracy than could be achieved with previous external
SPTF schedulers, which our scheduler achieves by exploiting the disk’s command queueing features. For
background disk scans, over 3.1 MB/s of free bandwidth (15% of the disk’s total media bandwidth) is
delivered, which is within 65% of the simulation predictions of previous work.

Given previous pessimism that external freeblock scheduling was feasible, achieving 65% of the potential
is a major step. However, our results also indicate that there is still value in exploring in-firmware freeblock
scheduling.
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