
Cuckoo Linear Algebra

Li Zhou
Carnegie Mellon University

Pittsburgh, PA
lizhou@cs.cmu.edu

David G. Andersen
Carnegie Mellon University

Pittsburgh, PA
dga@cs.cmu.edu

Mu Li
Carnegie Mellon University

Pittsburgh, PA
muli@cs.cmu.edu

Alexander J. Smola
Carnegie Mellon University

Pittsburgh, PA
alex@smola.org

ABSTRACT
In this paper we present a novel data structure for sparse
vectors based on Cuckoo hashing. It is highly memory ef-
ficient and allows for random access at near dense vector
level rates. This allows us to solve sparse `1 programming
problems exactly and without preprocessing at a cost that is
identical to dense linear algebra both in terms of memory
and speed. Our approach provides a feasible alternative to
the hash kernel and it excels whenever exact solutions are
required, such as for feature selection.

Categories and Subject Descriptors
H.1 [Information Systems]: Models and Principles; E.2
[Data]: Data Storage Representations

Keywords
Linear Models; Hashing; Sparse Vectors

1. INTRODUCTION
High dimensional sparse estimation [4] is one of the key

tools in machine learning. It forms the basis of algorithms
for document analysis, bioinformatics, user personalization,
recommendation, and the vast array of Bayesian nonpara-
metric models with their hierarchical and variable data struc-
tures. Unfortunately, these tools require expensive manipu-
lation of sparse vectors. This is particularly costly whenever
the sparsity pattern changes over time, e.g., by insertion of
previously-unseen tokens, user actions, topics, or clusters.
Usually this requires custom-built data structures to ma-
nipulate these events efficiently. In its place we propose the
use of a general-purpose sparse data structure, the Cuckoo
hash, as proposed by [20] with refinements due to [25, 10].
We adapt it for linear algebra and demonstrate its efficacy
for sparse generalized linear models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3664-2/15/08 ...$15.00.
DOI: http://dx.doi.org/10.1145/2783258.2783263.

1.1 Motivation
The motivation for our approach arises from the task of

penalized risk minimization with sparsity penalty. That is,
we are interested in a family of problems of the form

minimize
w

R[w] + λ ‖w‖1 . (1)

For instance, penalized logistic regression follows this tem-
plate. Here R[w] is the empirical risk for a given dataset
{(xi, yi)} with

R[w] =
1

m

m∑
i=1

log(1 + exp(−yi 〈w, xi〉)). (2)

Such problems are common, e.g., in spam filtering and com-
putational advertising [5]. Similar problems arise in the con-
text of sparse decoding where R[w] = Pw for a random inco-
herent projection matrix P , and in the context of web page
tiering [14].

One of the challenges for such high-dimensional problems
is that w is often not simply a vector in Rd with well-defined
dimensionality but rather a sparse vector of (key,value) pairs.
As a result, one either needs to maintain a dictionary dy-
namically or it requires substantial work for preprocessing
the data. In fact, the preprocessing cost can exceed the cost
of solving the problem both in terms of memory footprint
and in terms of computation.

To make matters more concrete, consider the case of (per-
sonalized) spam filtering [24]. In it, each document is repre-
sented as a bag of words. Hence, it is a sparse vector with an
identifier for each unique word w ∈ W. Moreover, for per-
sonalization purposes one computes the tensor product with
the identifier associated with each user u ∈ U . This leads
to a space that is potentially of size |W|× |U|, i.e., given by
the product of the total number of users and words. Typ-
ical commercial e-mail systems support in the order of 100
million users and vocabularies of size 100,000 are not un-
common, thus requiring a 1013 dimensional space. This is
clearly infeasible and unrealistic since most users use only
a significantly smaller set of words and user participation
follows a power law. Hence the set of unique keys is several
orders of magnitude smaller.

One way of solving the associated `1 programming prob-
lem of (1) is to preprocess all data by mapping unique combi-
nations of attributes and user identifiers to integers such as
to form a contiguous list, i.e., to form a perfect hash. This re-
quires sorting all entries, something that is typically accom-

1553

plished by sorting all combinations, e.g., by using MapRe-
duce [8]. Given m observations the cost is O(dm log dm),
where d is the typical number of nonzero terms per docu-
ment (we need to sort all words). Once this is accomplished,
one maps all keys into integers and henceforth analysis pro-
ceeds as usual. This is the approach that LibLinear [11] and
many related algorithms take. An alternative is to build a
nontrivial data structure in memory to dynamically allocate
storage according to the sparsity pattern, as was proposed
by [21] for Latent Dirichlet Allocation. However, this is less
memory-efficient than the above preprocessing step for `1
penalized models.

Unfortunately preprocessing is sometimes impossible with
limited memory. For example when we use string kernels [13]
for protein classification, the memory needed to store the ex-
panded substring data may exceed physical memory. In this
case we need a data structure that supports generating fea-
tures on the fly. Also preprocessing fails whenever we are in
a online setting, that is, new features keep on occurring over
time. Even worse, in a distributed online setting, different
features can be received by different machines and we need
to have a mechanism for reconciling these subsets without
the need for a common key space coordination mechanism
since the latter is likely to be more costly to implement than
solving the original inference problem.

In short, dealing with (key,value) pairs in machine learn-
ing is a nontrivial problem. Distributed, parallel, and online
inference are substantially impeded by having to maintain a
separate data structure for key management. Most impor-
tantly, in cases where the variable space already taxes the
memory footprint of the system, we can ill afford sacrificing
the lion’s share of memory for an auxiliary data structure.

1.2 An Overview of Compact Models
An alternative way to solve the problem exactly without

approximation is to store terms compactly, or to employ
domain specific variable compression. Below we review three
major approaches and discuss their relative merit.

Hash Kernels: This is the most obvious alternative to Cuckoo
hashing. In fact, if we only care about predictive ac-
curacy rather than the ability to select attributes and
debug the model, then this is a credible alternative
[24]: instead of computing linear functions via

f(x) =
∑
i

wixi (3)

one aims to solve the problem via

fhash(x) =
∑
i

w[h(i)]σ(i)xi. (4)

Here h(i) is a hash function mapping the set of keys i
to some range {1 . . . N} and moreover, σ(i) is a binary
Rademacher hash mapping keys with equal probabil-
ity to {±1}. One may show that in expectation this
construction preserves inner products. Moreover, the
memory footprint is automatically limited to N float-
ing point locations.

Given N storage locations and a set of n + 1 keys it
follows that the probability of a collision is given by

1−
(

1− 1

N

)n
> 1− e−

n
N (5)

That is, the probability for a given memory location to
be free is (1− 1/N). Hence after n insertions it is (1−
1/N)n. Hence, even if we have sufficient memory to
store the keys when preprocessing the data explicitly,
i.e., n = N , it follows that the collision probability is
still 1 − e−1 > 0.63. In other words, approximately
37% of the memory remains unused for storing data.

Moreover, many of the guarantees are specific to inner
products. That is, unless we use this only for comput-
ing 〈w, x〉 rather than, say, nonlinear function classes,
the approximation guarantees may not even be valid.

Conditional Random Sampling is an attractive strat-
egy for computation reduction in dealing with tex-
tual data. It was proposed in [16] to sparsify sparse
vectors even further by subsampling entries efficiently.
In a nutshell, it works as follows: similar to minwise
hashing [6] it applies a random permutation to the key
space and retains the k smallest keys. However, it uses
not only the keys but also their permutation rank to
control for the cardinality of the set.

This strategy limits the memory footprint of the data
x rather than of the parameter vector w. Hence we
can view it as a complementary rather than competing
technique to what we aim to accomplish — a compact
and dynamically adjustable data structure for linear
models.

Suffix Trees: When dealing with string kernels it is possi-
ble to gain additional efficiencies by storing documents
in the form of suffix trees [22, 23]. Denote by s a string
and by s[i : j] its substring starting at position i and
ending at position j. In this case, parsing all training
data into a joint suffix tree allows one to compute a
kernel expansion using weighted substrings. That is,
given weights λx[i:i+τ] ≥ 0 for substrings we compute

k(x, x′) =
∑
i,j,τ

λx[i:i+τ]δ(x[i : i+ τ], x′[j : j + τ]) (6)

in O(|x|+|x′|) time. Moreover we can evaluate any lin-
ear combination of such attributes f(x) =

∑
i,τ wx[i:i+τ]

in O(|x|) time. This is very attractive, provided that
the training set is sufficiently small.

Unfortunately, even the most lightweight implementa-
tion of suffix trees still has a memory footprint of up
to 40 bytes per character, plus storage for the actual
parameter payload. Assuming single precision floating
point numbers this amounts to an overhead of 1000%,
i.e., less than one tenth of the space is used to store
the actual model. Moreover, it is challenging to select
good subsets of attributes. Hence, even for documents,
specialized string kernels are insufficient to address the
problem of high dimensionality.

1.3 Our Contribution
In this paper we propose an alternative to the above strate-

gies that uses Cuckoo hashing as the underlying data struc-
ture. Its benefits are as follows:

• The data structure requires no preprocessing and it
can adapt to new attributes on the fly.

1554

Method Preprocessing Accuracy Memory Speed Incremental Data
Dense Array required exact normal fast no
C++ STL Hash no exact high slow support
Hash Kernel no inexact low fast support
Cuckoo no exact normal fast support

Table 1: Comparison between four methods of dealing with sparse vector in machine learning algorithms.

• It is convenient to use the data structure in various
sparse linear machine learning algorithms, and achieve
a high speed that is close to dense vector structure.

• The data structure is essentially exact. That is, given
n distinct keys, we only need an overhead of 2 + log2 n
bits per memory location to ensure that no collision
occurs, hence the model recovers all attributes exactly.
Moreover, the expected number of collisions increases
gracefully as the metadata decreases.

• The occupancy ratio of the data structure is high, and
can sometimes higher than 90%. In practice we find
that LibLinear [11] with Cuckoo hashing only uses 10%
more memory than with dense vectors.

• The data structure can be used easily in a distributed
optimization setting since it requires no coordination
in terms of key space between encodings on different
machines, even if they receive different keys.

• The data structure can handle novel keys arriving at
runtime, e.g., in an online learning setting, without
the need for maintaining and storing a tokenization
dictionary.

• The data structure is size adaptive. That is, its mem-
ory footprint scales (and resizes) almost linearly with
the number of keys required.

These desirable properties allow us to solve `1 penalized
optimization problems and similar sparsity constrained prob-
lems without preprocessing or approximation, and makes
the data structure an important component for distributed
(online) inference algorithms on sparse vectorial data.

Furthermore, in Table 1 we compare Cuckoo with other
methods in various aspects such speed, memory, accuracy
and abilities.

2. CUCKOO HASHING
To serve as a self-contained description, we briefly overview

the theory and practice of Cuckoo hashing. Since its first
description by Pagh et al. [20], it has received considerable
attention both in theory and practice. At its heart, Cuckoo
hashing relies on on the “power of two choices”: when per-
forming randomized load balancing, being able to choose
between two (nearly random) buckets dramatically reduces
the maximum load on any single bucket.

2.1 Data Structure
Our work uses the recently proposed “partial-key” Cuckoo

variant [25], which is fast and achieves high (over 90%) table
occupancy. We describe the data structure in two steps: first
by explaining basic associative Cuckoo hashing, and then by
explaining the partial-key variant.

Like all hash tables, a Cuckoo hash table consists of an
array of memory broken into “buckets.” A hash function H
maps a key to be looked up or inserted to to a number in
the range (0, |buckets|).

In the “2,4-Cuckoo” variant of Cuckoo hashing, two hash
functions are applied to keys, producing h1 and h2, and
each bucket contains 4“slots” for individual key/value items.
Each slot can contain any item that maps to that bucket.
The process of searching for an item in a Cuckoo hash table
is simple: Get(key): Compute h1 and h2, retrieve buckets
b1 and b2, and examine the 2× 4 = 8 potential items found
in them. If the key stored in the slot matches the key being
searched for, return the associated value.

The theoretical challenge of Cuckoo hashing is on item
insertion: For key kinsert, if all slots in buckets b1 and b2
are full, then insert selects an item, kvictim in one of these
buckets for displacement. It inserts kinsert in its place. It
then re-inserts kvictim into the alternate bucket for kvictim.
If that alternate bucket is full, the process recurses, displac-
ing yet another key, and so on, until the items have been
successfully inserted. If the process does not succeed within
several hundred displacements, the table is full, and a resize
procedure is invoked. The theory of Cuckoo hashing indi-
cates that this process works with high probability, allows
extremely high table occupancy, and has amortized O(1)
time to insert (though some individual insertions may be
slow).

The partial-key variant permits the table to not store the
full key in the slot. Instead, the table stores only some
number of bits of the (hashed) key. Cuckooing works as
normal. Retrieval, however, may experience false positives:
A slot may appear to contain the desired key when it does
not. For a 2,4 Cuckoo table with 8 possible slots for each
key, a false positive can occur with probability 8

2nbits
, where

nbits is the number of key bits stored in the table.

• We denote by x : I → R the sparse vector referenced
by the index set I.

• s : I →
{

0, 2d − 1
}

is the (hash) signature of i

• h : I →
{

0, 2b − 1
}

is the hash function mapping the
index set into a given range of values given by the hash
vector.

• g := h ◦ s is the hash function mapping between the
alternative locations for a key. Whenever appropriate
we will refer to h1 := h and h2 := hXOR(h ◦ s) as
the alternate hash functions. By construction h1 =
h2 XOR(h ◦ s).

• With some abuse of notation the storage itself is de-

noted by x ∈
(
R,
{

0, 2d − 1
})2b

consisting of tuples of
values and signatures of the keys.

1555

Optimizations for Locality.
Using this mechanism as a building block, we face the chal-

lenge of efficiently implementing sparse vector operations
atop it. A naive use of hash tables as a sparse vector repre-
sentation requires excessive amounts of random access when,
e.g., computing the products of vectors or adding them to-
gether: Because the same key may be stored at different
locations in each hash table, one cannot simply sequentially
traverse both data structures.

In nearly all vector-vector operations, at least one of the
two vectors can be traversed sequentially (i.e., in random key
order, but sequentially through memory). Such a traversal is
fast: modern CPUs have extremely high sequential memory
bandwidth. However, if the values of interest are not stored
in the same order in the second vector (because of cuckooing,
or because they are of different sizes), these values need to
be accessed randomly.

We describe below our algorithms for sparse vector oper-
ations using partial-key Cuckoo hashing. These algorithms
take advantage of two optimizations:

Prefetching: When traversing a vector sequentially, cre-
ate a “pipeline” of k items: x1, x2, x3, . . . , xk. Issue mem-
ory prefetches for items 1, . . . , k before returning to item
x1, . . . , xn to perform the actual operation. While these are
still random memory fetches, this strategy hides the latency
of access to memory, and substantially boosts performance.

First-Biased Insertion: In our Cuckoo hash tables, the
insertion procedure defaults to inserting item x at its first
hash, h1, if a slot is available there. By leaving the table
somewhat more sparse than is required, and by using wider
associativity (e.g., 2,8-Cuckoo), more items can be inserted
into their first-hash location. This will induce a larger sim-
ilarity of memory locality between two same-sized sparse
vectors with many shared items, which can modestly speed
the throughput of, e.g., vector addition.

2.2 Linear Algebra
We now adapt the basic data structure to perform efficient

linear algebra. Our primary focus is on probabilistic Cuckoo
hashing: representations that have a small but nonzero prob-
ability of collision. The operations of primary interest are
inner products 〈w, x〉, vector updates w ← w+δ, and traver-
sal of the nonzero elements of a vector; these are the tools
needed to design linear models. In linear algebra these are
referred to as Level 1 BLAS subroutines [9]. For simplicity
of exposition, we omit from the description the handling of
the (typically four) associative slots per hash bucket. Their
handling is straightforward—simply checking four locations
at a time—and the performance reduction is minimal, be-
cause the slots map to the same CPU cache line. (Four or
eight-way associativity is key to achieving high occupancy.)

2.2.1 Element-wise operations
To compute the ‖x‖pp norm we must scan all entries z[j].
Because summation is commutative, the scan can traverse x
in the order the entries are stored in the Cuckoo hash table:

norm← 0
for j = 0 to 2d − 1 do

norm← norm + |z[j].value|p
end for

Likewise, finding the largest element is order-invariant. Hence
a single pass in the order in which elements are stored in x
suffices.

Cuckoo hashes have the attractive property that any point-
wise operation can be carried out by a simple scan, i.e., in
O(n) time, given n nonzero entries. This is useful, e.g., when
we want to apply the prox operator in algorithms such as
FISTA [3]. There one applies a gradient element-wise to the
entries and subsequently all entries are shrunk back towards
0, hence the name of the algorithm (Fast Iterative Successive
Thresholding).

2.2.2 Dot product 〈x, y〉
Computing the dot product requires iterating over all match-
ing nonzero entries of x and y. It suffices to check, for each
non-zero entry in the vector with the fewest entries, whether
that entry matches in the more dense vector. Without loss
of generality, assume that x is more sparse. This algorithm
is the first that uses biased insertion to optimize its retrieval:
When examining item j in vector x, it first tests the equiv-
alent slot j in vector y. These two retrievals are both a
sequential traversal of their respective vectors. If the item is
not found in its primary location, the algorithm will search
its alternate location in y, which requires a random access:

dot← 0
for j = 0 with |x[j].value 6= 0| to 2d − 1 do

if x[j].signature = y[j].signature then
dot← dot + x[j].value · y[j].value

else
h2← h(x[j].signature) XOR j
if x[j].signature = y[h2].signature then

dot← dot + x[j].value · y[h2].value
end if

end if
end for

There is obvious benefit in prefetching whenever the signa-
tures do not match, i.e., whenever

x[j].signature 6= y[j].signature

and whenever x is a shorter vector than y even for

x[j].signature = y[j].signature.

Hence we look up keys in a non-blocking fashion by issuing
a prefetch request, carry on with the current workload and
return to the queued-up terms once they are available. As
before, the total cost is O(min(nx, ny)) since the procedure
must iterate only over the smaller of the two vectors.

2.2.3 Vector addition z = ax+ y

Vector addition is analogous to the dot product, but it
cannot skip non-zero entries in either vector, and requires a
scalar multiplication of every element in x by a.

If y has fewer elements than x, it is best to accomplish the
addition in a separate step. First, set z ← x, and multiply
it by a:

for j = 0 with |z[j].value 6= 0| to 2d − 1 do
z[j].value *= a

end for

And then traverse y (the sparse vector), and add its ele-
ments into z:

for j = 0 with |y[j].value 6= 0| to 2d − 1 do
if z[j].signature = y[j].signature then
z[j].value += y[j].value

else
h2← h(y[j].signature) XOR j

1556

if z[h2].signature = y[j].signature then
z[h2].value += y[j].value

end if
end if

end for

The case where x is more sparse than y is similar, except
that the multiplication and addition can be merged. z is
instead initialized as a copy of y, and the non-zero elements
in x are multiplied by a and pushed into z. While a copy of
a sparse Cuckoo vector is fast (a sequential bulk memcpy),
if the destination vector is one of the source vectors, the
copy step can be omitted, as is done in the BLAS SAXPY
operation.

As before, this can be carried out in linear time, albeit
this time in O(nx+min(ny, ny)) operations due to the point-
wise multiplication x← ax. For stochastic gradient descent
procedures, the number of nonzeros in x is low since we
need to implement w ← w − ηtgt where gt is the gradient
computed e.g., on a given document. As a result the updates
are essentially as fast as performing O(1) random access to
the parameter vector.

3. MACHINE LEARNING ALGORITHMS
The previous two sections motivated the need for a new

data structure and showed how it could be constructed ef-
ficiently. To demonstrate its versatility, we now apply it to
three representative machine learning settings: batch infer-
ence, online inference, and distributed inference.

3.1 Batch Inference
We use LibLinear [11], a popular machine learning pack-

age for solving sparse linear optimization problems, as the
baseline for comparison. In a nutshell, LibLinear solves the
optimization problem (1) with logistic loss function (2) as
risk R[w]. The gradient and Hessian of the risk R[w] can be
written as

∂wR[w] =
1

m

m∑
i=1

−yixi
1 + exp(yi 〈w, xi〉)

∂2
wR[w] =

1

m

m∑
i=1

xix
>
i(

exp
(
1
2
〈w, xi〉

)
+ exp

(
− 1

2
〈w, xi〉

))2
Here we use only the diagonal component of the Hessian
∂2
wR[w] as a preconditioner. This yields the search direction

g =
(
diag∂2

wR[w]
)−1

∂wR[w]. (7)

which is used for line search via

R[w + βg] + λ ‖w + βg‖1 −R[w]− λ ‖w‖1
≤β 〈g, ∂wR[w]〉+ λ[‖w + βg‖1 − ‖w‖1].

Here g is the search direction, β ∈ (0, 1) is the step size and
λ is the regularization constant.

LibLinear implements an improved GLMNET algorithm
analogous to what was summarized above: in its implemen-
tation all features are preprocessed and indexed by integers
for direct memory access. C-style arrays are used to store
features related data such as weight w and gradient ∂wR[w].

Extending LibLinear to Cuckoo hashing is straightfor-
ward: we only need to substitute all feature related C-style
arrays with Cuckoo hash tables. In doing so, the algorithm
can use the original training data directly as input.

3.2 Online Inference
Cuckoo hashing excels particularly when processing vari-

able feature sets in an online fashion. Moreover, it is very
amenable to element-wise operations. Hence we implemented
the follow-the-regularized-leader proximal [18] algorithm (FTRL-
Proximal) using Cuckoo hashing and hash kernels as alter-
native strategies.

FTRL-Proximal algorithm is a sparse online algorithm. It
proceeds as follows: given a sequence of gradients, gt ∈ Rd,
it performs the update

wt+1 = argmin
w

[
〈gt, w〉+

1

2

t∑
s=1

σs ‖w − ws‖22 + λ ‖w‖1

]
where σs is the learning-rate. Using λ > 0, FTRL-Proximal
introduces excellent sparsity. If we store zt−1 = g1:t−1 −∑t−1
s=1 σsws, and let zt = zt−1+gt+(1

ηt
− 1
ηt−1

)wt, then wt+1

is solved in the following closed form on a per-coordinate
bases [19]

wt+1,i =

{
0 if |zt,i| ≤ λ
−ηt(zt,i − sgn(zt,i)λ) otherwise

Note that this operation can be carried out in the Cuckoo
hash space since the problem decomposes into d scalar op-
timization problems. Hence it can be implemented very ef-
ficiently.

3.3 Distributed Inference
Distributed optimization and inference is a prerequisite

for solving large scale machine learning problems. There are
several open source distributed machine learning frameworks
available, such as Parameter Server [15], YahooLDA [1],
GraphLab [17], Petuum[7], Mahout [2], and MLBase [12].
We use the Parameter Server as the motivating example,
but the discussion can be extends to other frameworks as
well.

push pull

server nodes:

worker nodes:

data

scheduler

Figure 1: A simplified architecture of parameter
server [15]

In parameter server, there are three different nodes, which
are shown in Figure 1. The globally shared parameters w
are partitioned and stored in the server nodes. Each worker
node solves a subproblem of R[w] and communicates with
the server nodes in two ways: to push local results such as
gradients or parameter updates to the servers, and to pull
recent parameter (changes) from the servers.

In the distributed environment, preprocessing data locally
in worker node is impossible, because we may assign differ-
ent local indices to the same feature in different work nodes,
and then we can not match them in the server node. Global
data preprocessing, however, requires extensive data com-
munication, which could be a bottleneck of the system.

1557

Dense Array Cuckoo Hash Kernel (N = 27) Hash Kernel (N = 20)
Preprocessing (sec) 514 0 0 0
Data Transformation (sec) 32 122 70 50
Training Time (sec) 2077 1520 2373 370
Total Time (sec) 2623 1643 2444 421
Memory Used (GB) 23 23 30 20
Accuracy 93.22% 93.23% 93.25% 90.96%
Feature Reconstruction 0.8777 0.8773 0.2638 0.0052

Table 2: Comparison of dense array, Cuckoo, and hash kernel with bit length N = 20 and N = 27 on LibLinear
with CTR dataset. The best results are colored by Red and the second best by Green.

To implement the FTRL-Proximal algorithm discussed in
the previous section on parameter server, we implemented
a Cuckoo hashing based server nodes to handle feature keys
pushed by the worker nodes. Therefore we can get rid of the
expensive global preprocessing.

4. EXPERIMENTS
We use the sparse logistic regression discussed in Sec-

tion 1.1 as the benchmark algorithm. We evaluate Cuckoo
linear algebra in the following three settings discussed in Sec-
tion 3: batch inference, online inference, and distributed in-
ference. The Cuckoo linear algebra implementation is based
on libcuckoo library1.

To evaluate the performance, we use two binary classifi-
cation datasets. The first one is a DNA dataset from the
Pascal Large Scale Learning Challenge2. Each instance in
the dataset is represented by an ASCII string of length 200
with symbols {A, C, G, T}. There are 50 million training in-
stances and 1 million validation instances. As the labels are
extremely unbalanced (a positive/negative ratio of 0.0028),
we use Area Under the Curve (AUC) as our metric.

The second dataset is an anonymous online advertising
click-through rate (CTR) dataset. In this dataset each in-
stance is a display of an ad, and the label is 1 if it is clicked
by a user and 0 otherwise. For single machine experiments
we sampled about 8.3 million instances and 100 million fea-
tures, and for distributed experiments we sampled about 20
million instances and 200 million features. Each feature is
represented by a 64-bit signature. Since this dataset can-
not be used by LibLinear directly, we first do preprocess-
ing to map feature signatures to continuous indices. Note,
however, this dataset can be used directly by Cuckoo linear
algebra and hash kernel.

All experiments were carried on a university cluster. Each
machine is equipped with one Intel Xeon E5620 2.4GHz
CPU, 64GB memory, and 1 Gigabyte Ethernet. All com-
pared methods are implemented by C/C++ and compiled
with GCC 4.8.

4.1 Batch Inference
Setup. In this experiment we compare the following three
methods.

LibLinear: LibLinear uses a dense array implementation.
Consequently, before invoking LibLinear, the data must
be preprocessed. We wrote an additional preprocess-
ing function to map the tokens or the 64-bit signatures

1https://github.com/efficient/libcuckoo
2http://largescale.ml.tu-berlin.de/

of the features to continuous integer indices and build
the mapping dictionary.

Cuckoo: We substituted all feature related dense arrays in
LibLinear with Cuckoo hash tables. To keep IO times
comparable we represent feature keys by 64-bit signa-
tures.

Hash Kernels: As a second alternative, we implemented
a hash kernel for LibLinear. That is, we hash fea-
ture keys at random into bins as described in Eq. (4):
Hashing the 64-bit keys to b bits when reading train-
ing data from disk, multiplying them with a random
(Rademacher) hash. In other words, we hash into an
N = 2b dimensional space. After that we invoke Li-
bLinear’s `1 logistic regression procedure to train the
model.

We evaluated these three methods on the CTR dataset.
For each method, we report the time, memory consump-
tion, and feature reconstruction. The feature reconstruction
is measured by the Jaccard similarity. In other words, we
first obtained a baseline model from LibLinear, then we ran
each method several times and compared the nonzero entries
between the baseline model and the model of each method.
Denote the nonzero feature sets of two model by A and B,
the Jaccard similarity between these two model is

JS(A,B) =
|A ∩B|
|A ∪B| . (8)

We ran each method 10 times and reported the average Jac-
card similarity. The results are shown in Table 2 3.

Speed. We first observe that the preprocessing step for
LibLinear with dense array takes about 500 seconds, which
is roughly 20% of the total running time. In the preprocess-
ing step we need to read all the training data, construct a
feature vocabulary, map features to continuous indices and
then write the whole training data to the disk. Both map-
ping and disk IO are time consuming.

The next step is data transformation, which transforms
the sparse training matrix from row-major format into column-
major format. Taking the advantage of continuous indices,
LibLinear with dense array uses the least time.

In the following training part, it is quite surprising that
Cuckoo outperforms the dense array implementation. The
reason are twofold: first, the time complexity for accessing

3In the process of our evaluation, we discovered and fixed
several memory leaks in LibLinear. As a result, the ver-
sion of LibLinear we use for evaluation uses, without any
algorithmic changes, 30% less memory than the originally-
released version [11].

1558

https://github.com/efficient/libcuckoo
http://largescale.ml.tu-berlin.de/

Maximum length of substring = 16
Method AUC Time (sec) Memory (GB)
Cuckoo 0.7671 32259.9 30
STL Hash 0.7671 63201.0 46.5
Hash Kernel (N=27) 0.7604 10923.9 3
Dense Array - - 460*

Maximum length of substring = 14
Method AUC Time (sec) Memory (GB)
Cuckoo 0.7668 26173.1 7
STL Hash 0.7668 46363.1 12
Hash Kernel (N=27) 0.7554 9145.5 3
Dense Array - - 460*

Table 3: Comparison of all methods on the online FTRL algorithm with DNA dataset. (*estimated values).

an element in Cuckoo hash table is O(1), and with well op-
timized technologies such as prefetching as we mentioned
before, the performance of Cuckoo hashing is close to dense
array. Second, the structural optimization used by Cuckoo
hash table induces an more compact representation of sparse
vectors and therefore improves the sparse locality. A sim-
ilar results can be observed from hash kernel: A small bit
length (N = 20) is almost 5 times faster than a large bit
length (N = 27), since the 20-bit hash kernel fits into L3
cache and has better sparse locality.

Memory. In terms of memory, Cuckoo used about the
same memory as LibLinear. The reason is that Cuckoo hash
table can have an occupancy ratio greater than 90%, so its
memory consumption is almost the same as a dense array.
On the other hand, hash kernel with a small bit length can
effectively compress the weight and therefore used less mem-
ory than others.

Accuracy. When comparing model performance, Lib-
Linear, Cuckoo and hash kernel (N = 27) provided nearly
the same accuracy. This is reasonable since LibLinear and
Cuckoo linear algebra both provide exact solution, and when
N = 27, hash kernel’s key space is slightly larger than the
number of features in the dataset (100 million, or about
226.5). Unfortunately, with this accuracy, hash kernel was
slower than Cuckoo and consumed more memory than both
Cuckoo and dense array. For N = 20, hash kernel was
the fastest within the four methods, took only 421 seconds,
and consumed only 23 GB memory. However, the accuracy
dropped significantly to 90.96%.

Feature Reconstruction. One very useful attribute of
`1 regularizer is feature selection, therefore feature recon-
struction is also an important merit. The reconstruction
rate of LibLinear is 0.8777, which is less than 1 because the
`1 regularizer does not guarantee unique solution and the
inference algorithm (GLMNET) is a randomized method.
The reconstruction rate of Cuckoo is 0.8773, which is nearly
identical to LinLinear, indicating that Cuckoo has perfect
feature reconstruction ability. The results of hash kernel is
0.2638 for N = 27 and 0.0052 for N = 20, which is signifi-
cantly worse. Note that even though 27-bit hash kernel used
more memory than dense array, the unavoidable conflict de-
stroys the reconstruction.

In summary, Cuckoo linear algebra is comparable with
the dense array in terms of memory consumption, accuracy,
and feature reconstruction while it is faster than the latter.
Hash kernel, on the other hand, can trade off between the

memory/speed and accuracy, however it cannot win on both
sides. In addition, it sacrifices the interpretability.

4.2 Online Inference
Setup. In the online inference experiment, we generated

the features on the fly. In particular, we used the DNA
dataset and chose the substrings of the original DNA strings
as features. In keeping with substring kernels of [13] we in-
stantiated all substrings of length 1 to 16, that is, 3,080
substrings per string. On average each string has 2,477 dis-
tinct substrings, and the total number of distinct substrings
in the dataset is about 800 million. Each of these terms was
weighted exponentially according to its length

s→ (. . . γτs[i : i+ τ] . . .) for γ = 0.95. (9)

In other words, long strings are penalized further.
Using the DNA dataset we simulated the situation where

there are a huge number of potential features and generating
a vocabulary for preprocessing would be infeasible. On the
other hand, both Cuckoo hashing and hash kernel can sup-
port generating features during the training phase without
a vocabulary.

Figure 2 shows that the number of unique features in-
creases exponentially with the maximum substring length.
With maximum length equals to 16, 800 million features are
generated.

Besides Cuckoo linear algebra and hash kernel, we added
an implementation with C++ STL hash for reference. Fig-
ure 3 shows the memory footprint required to store all the
features as the maximum substring length increases from 1
to 16. As we can see, with 800 million features, dense ar-
ray consumed only 12 GB memory, which is the least among
the three. This is reasonable since dense array does not have
any overhead storing these features. With the benefit of high
occupancy ratio, Cuckoo hash table consumed only 18 GB
memory while STL hash table consumed more than 32 GB
memory. Also, on average Cuckoo hash table consumed half
as much as the memory used by STL Hash as the number
of feature increased.

In our implementation of Cuckoo hash table, we allocate
the slots as power of 2, so if the number of features exceed
2k, we reallocate 2k+1 slots. On average Cuckoo hash table
consumed 1.7 times more memory than dense array, however
if the number of features is less than and close to 2k, then
the occupancy ratio of Cuckoo hash table is high and the
memory usage is close to dense array. For example, when the
number of feature is about 450 million, Cuckoo hash table

1559

max length of substring
8 10 12 14 16

#
fe

a
tu

re
s

10
4

10
5

10
6

10
7

10
8

10
9

Figure 2: The number of unique features versus the
maximum length of substring on dataset DNA.

#features
×10

8
0 2 4 6 8

m
e

m
o

ry
 (

M
B

)

×10
4

0

0.5

1

1.5

2

2.5

3

3.5

STL Hash
Cuckoo Hash
Dense Array

Figure 3: Comparison of the memory usage among
all methods by different the number of features.

consumed about 9 GB memory and dense array consumed
about 6.8 GB memory, while STL hash table consumed 2
times more.

Varying maximal substring length. We compared
these methods by varying the maximum substring length.
The results when maximum length equals to 14 and 16 are
shown in Table 3. As can be seen, preprocessing on this
dataset is impossible: on average each instance has 2,477
features, and assume each feature is encoded as a 32-bit
integer, then it takes about 460 GB to store all these 50
million training instances, so it cannot be fitted into the
memory and trained with LibLinear.

The accuracy of Cuckoo and STL Hash are similar, how-
ever, Cuckoo uses 40% less memory and is 1.7 times faster
than the STL hash implementation. Hash kernel can reduce
the memory footprint and time further, however it loses ac-
curacy.

Limited memory or time. We evaluated the accuracy
of these methods under maximum allowable memory con-
straints by varying the maximum substring length. Figure
4 shows the results. Given the same memory constraint,
Cuckoo was more memory efficient and can store more fea-
tures than STL hash, therefore it obtained higher accuracy.
We also varied the bit length of the hash kernel, and re-
ported the best results on different substring length. Using
small bit length, the superiority of hash kernel allows it to
process more features and therefore was comparable with
the STL hash. However, when using a larger bit length it
performed worse.

Next, we evaluated these methods under maximum allow-
able time constraints with substring length fixed to 16. The
results is shown in Figure 5. Cuckoo outperformed STL hash
as it is faster and able to process more examples. It is worth
noting that hash kernel is comparable with Cuckoo, the rea-
son is that hash kernel also has a constant time complexity
and thus can process more examples in the given time to
compensate the loss due to feature conflict.

In summary, both Cuckoo, STL hash and hash kernel sup-
port generating features on the fly and thus online inference.

STL Hash Cuckoo Hash Kernel
AUC 0.6705 0.6705 0.6682

Table 4: AUC of distributed FTRL-Proximal algo-
rithm with 6 server nodes and 12 worker nodes and
CTR dataset.

However Cuckoo is more CPU and memory efficient than
STL hash and it provides exact solution, thus under a fixed
memory constraint or time constraint greater than 1600 sec-
onds, Cuckoo outperformed both STL Hash and hash kernel
and achieved the highest AUC.

4.3 Distributed Inference
Setup. We use the parameter server [15] as our machine

learning framework to examine Cuckoo linear algebra in the
distributed inference. We directly modified the built-in im-
plement of FTRL-Proximal algorithm in parameter server.
In other words, we substituted the STL hash used by the
server node with Cuckoo linear algebra and hash kernel in
our experiments.

We fixed the number of machines to 6, and each machine
has 2 workers. This configuration can fully utilize the com-
putational power. We varied the number of server nodes
between 1 and 12. Decreasing the number of server nodes
will increase the workload of each server. For hash kernel,
we fix the bit length to 24.

Vary the number of server nodes. Experiment results
are shown in Figure 6. Compared with STL hash implemen-
tation, Cuckoo reduced the total training time of the whole
system by more than 30% when the server nodes are more
than 2. The significant performance boost also indicates
that the server nodes are the bottleneck of the parameter
server. In terms of memory, Cuckoo used 25% less mem-
ory than STL hash when the number of server is 3 or 6,
and with Cuckoo we can serve all workers with only 1 or 2
server nodes, while the STL hash implementation ran out of
memory.

1560

memory upper bound (GB)

10
-2

10
-1

10
0

10
1

10
2

A
U

C

0.745

0.75

0.755

0.76

0.765

0.77

Cuckoo

STL Hash

Hash Kernel

Figure 4: AUC under different memory constraints
by varying the maximum length of substring from 1
to 16. We also varied the bit length of hash kernel
and reported the best results on all substring length.

time upper bound (seconds)

10
2

10
3

10
4

A
U

C

0.68

0.7

0.72

0.74

0.76
Cuckoo

STL Hash

Hash Kernel

Figure 5: AUC under different time constraints by
fixing the maximum length of substring to 16.

servers

1 2 3 6 12

ti
m

e
 (

s
e

c
o

n
d

s
)

0

200

400

600

800

1000

1200

STL Hash

Cuckoo

Hash Kernel

servers

1 2 3 6 12

m
e

m
o

ry
 (

G
B

)

10
-1

10
0

10
1

10
2

STL Hash

Cuckoo

Hash Kernel

Figure 6: Comparison of time and memory by varying the number of server nodes in the parameter server.
Note that when the number of servers is 1 or 2, the STL hash implementation ran out of memory.

Hash kernel, on the other handle, has similar speed as
Cuckoo. It can further reduce the memory requirement as
expected. However, it decreased the accuracy. Table 4 shows
the AUC achieved by these three methods. As can be seen,
Cuckoo is comparable with STL hash, and outperforms hash
kernel by .2% AUC. Due to the commercial importance of
ads click prediction, even an .1% improvement brings signif-
icant revenue improvement for the whole company.

As a summary, Cuckoo linear algebra is a perfect sub-
stitute for hash table used by distributed machine learning
frameworks to improve both CPU and memory efficiency.

5. CONCLUSION
In this paper we proposed to use Cuckoo hash as the un-

derlying data structure for sparse vectors. It is highly mem-
ory efficient and allows for random access at near dense

vector level rates. We defined linear algebra operations
based on this representation, and showed it can be easily
applied to various machine learning algorithms, including
batch inference, online inference, and distributed inference.
We demonstrated its efficacy by comparing with commonly
used methods, such as dense array with data preprocess-
ing, standard STL hash, and hash kernel with different bit
length. The experimental results showed that Cuckoo lin-
ear algebra outperform the others either in speed/memory,
accuracy or both.

Acknowledgments.
The authors thank Paul Bradley, Tyler Johnson, and Car-
los Guestrin for inspiring discussions and experimental in-
vestigation in the context of hash kernels and sparsity and

1561

Quoc Le regarding optimization. Parts of this work were
supported by grants from Google and Amazon.

6. REFERENCES
[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy,

and A. J. Smola. Scalable inference in latent variable
models. In Proceedings of The 5th ACM International
Conference on Web Search and Data Mining
(WSDM), 2012.

[2] Apache Foundation. Mahout project, 2012.
http://mahout.apache.org.

[3] A. Beck and M. Teboulle. A fast iterative
shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences,
2(1):183–202, 2009.

[4] P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous
analysis of lasso and dantzig selector. Annals of
Statistics, 37(4), 2008. Comment: Noramlization
factor corrected.

[5] A. Z. Broder. Computational advertising and
recommender systems. In P. Pu, D. G. Bridge,
B. Mobasher, and F. Ricci, editors, Conference on
Recommender Systems, RecSys, pages 1–2. ACM,
2008.

[6] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. Journal of Computer and System
Sciences, 60(3):630–659, 2000.

[7] W. Dai, J. Wei, X. Zheng, J. K. Kim, S. Lee, J. Yin,
Q. Ho, and E. P. Xing. Petuum: A framework for
iterative-convergent distributed ml. arXiv preprint
arXiv:1312.7651, 2013.

[8] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1), 2004.

[9] J. J. Dongarra, J. D. Croz, S. Hammarling, and R. J.
Hanson. An extended set of fortran basic linear
algebra subprograms. ACM Transactions on
Mathematical Software, 14:18–32, 1988.

[10] B. Fan, D. G. Andersen, and M. Kaminsky. The

cuckoo filter: ItâĂŹs better than bloom. USENIX
;login:, 2013.

[11] R.-E. Fan, J.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, Aug. 2008.

[12] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith,
M. J. Franklin, and M. I. Jordan. Mlbase: A
distributed machine-learning system. In CIDR, 2013.

[13] C. Leslie, E. Eskin, and W. S. Noble. The spectrum
kernel: A string kernel for SVM protein classification.
In Proceedings of the Pacific Symposium on
Biocomputing, pages 564–575, Singapore, 2002. World
Scientific Publishing.

[14] G. Leung, N. Quadrianto, A. J. Smola, and
K. Tsioutsiouliklis. Optimal web-scale tiering as a flow
problem. In NIPS, pages 1333–1341, 2010.

[15] M. Li, D. G. Andersen, J. Park, A. J. Smola,
A. Amhed, V. Josifovski, J. Long, E. Shekita, and
B. Y. Su. Scaling distributed machine learning with
the parameter server. In OSDI, 2014.

[16] P. Li, K. Church, and T. Hastie. Conditional random
sampling: A sketch-based sampling technique for
sparse data. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 873–880. MIT Press,
Cambridge, MA, 2007.

[17] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A new
parallel framework for machine learning. In Conference
on Uncertainty in Artificial Intelligence, 2010.

[18] B. McMahan. Follow-the-regularized-leader and mirror
descent: Equivalence theorems and l1 regularization.
In International Conference on Artificial Intelligence
and Statistics, pages 525–533, 2011.

[19] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
and D. Golovin. Ad click prediction: a view from the
trenches. In KDD, 2013.

[20] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[21] A. J. Smola and S. Narayanamurthy. An architecture
for parallel topic models. In Very Large Databases
(VLDB), 2010.

[22] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249–260, 1995.

[23] S. V. N. Vishwanathan and A. J. Smola. Fast kernels
for string and tree matching. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural
Information Processing Systems 15, pages 569–576.
MIT Press, Cambridge, MA, 2003.

[24] K. Weinberger, A. Dasgupta, J. Attenberg,
J. Langford, and A. J. Smola. Feature hashing for
large scale multitask learning. In L. Bottou and
M. Littman, editors, International Conference on
Machine Learning, 2009.

[25] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G.
Andersen. Scalable, high performance ethernet
forwarding with cuckooswitch. In Proceedings of the
ninth ACM conference on Emerging networking
experiments and technologies, pages 97–108. ACM,
2013.

1562

http://mahout.apache.org

	Introduction
	Motivation
	An Overview of Compact Models
	Our Contribution

	Cuckoo Hashing
	Data Structure
	Linear Algebra
	Element-wise operations
	Dot product "426830A x,y "526930B
	Vector addition z = ax + y

	Machine Learning Algorithms
	Batch Inference
	Online Inference
	Distributed Inference

	Experiments
	Batch Inference
	Online Inference
	Distributed Inference

	Conclusion
	References

