
This paper is included in the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-47-2

Open access to the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation is sponsored by

Okapi: Decoupling Data Striping and Redundancy
Grouping in Cluster File Systems

Sanjith Athlur and Timothy Kim, Carnegie Mellon University; Saurabh Kadekodi,
Google; Francisco Maturana and Xavier Ramos, Carnegie Mellon University;

Arif Merchant, Google; K. V. Rashmi and Gregory R. Ganger,
Carnegie Mellon University

https://www.usenix.org/conference/osdi25/presentation/athlur

Okapi: Decoupling Data Striping and Redundancy Grouping in Cluster File
Systems

Sanjith Athlur†∗, Timothy Kim†∗, Saurabh Kadekodi§, Francisco Maturana†,
Xavier Ramos†, Arif Merchant§, K. V. Rashmi†, Gregory R. Ganger†

†Carnegie Mellon University §Google

Abstract
The Okapi cluster file system decouples how data is spread

across disks (data striping) for IO efficiency from how data is
erasure coded together (redundancy grouping) for durability.
Existing systems couple these two mechanisms’ configura-
tions, inducing significant inefficiencies. Decoupling allows
grouping to be configured based on reliability and space ef-
ficiency goals, while simultaneously allowing striping to be
configured based on performance goals. Decoupling also al-
lows redundancy scheme changes from one EC scheme to
another (e.g., to react to data temperature or disk failure rate
changes) to occur without having to re-write data. Evaluation
of an Okapi prototype shows that decoupling can be accom-
plished with <1% increase in metadata size and file manager
memory, and minimal file creation and degraded read resource
increase. Experiments demonstrate that decoupling can im-
prove read throughput by 80% and reduce seeks per second
by up to 70%, without yielding any data reliability, and reduce
the overhead of redundancy transitions by up to 70%.

1 Introduction

Cluster file systems store data of a single file across multi-
ple disks for IO efficiency and use redundancy to provide
fault tolerance [7, 16, 50]. Although many environments use
SSD caches and/or data replication for hot data, most data is
stored via erasure codes on mechanical disks at lower cost-
per-byte [4, 5, 48]. Generally speaking, k-of-n erasure codes
(ECs) compute r = (n− k) parity blocks over k blocks of
data, and then store the n blocks on distinct disks. Such codes
protect data from r failures at a space overhead of n

k .
Most existing systems spread each file’s data across k data

blocks, in units called cells, in a round-robin manner akin
to RAID-4 [17]. This is called “striping”. The size of a data
block is typically 8MB or higher, and the size of a cell is typi-
cally 1MB. A file may consist of one or more of these arrays
of k data blocks. Such striping improves degraded-mode read
performance, decreases tail latencies, reduces buffer sizes for

∗Equal contribution

(a) Coupled: 4-of-6 grouping implies 4-wide striping

(b) Decoupled: 6-of-8 grouping while choosing 4-wide striping

Figure 1: 1a shows a file in a coupled architecture with a 4-of-6 EC scheme
and 4-wide striping. Data is striped across 4 data blocks in a round-robin
fashion as seen by the alternating light and dark colors. Parities are computed
for every 4 data blocks. 1b shows the same file in Okapi’s decoupled archi-
tecture with a 6-of-8 EC scheme and 4-wide striping. Data is striped across 4
data blocks, but parities are computed for every 6 data blocks. See Figures 3
and 4 for detailed examples.

parity computation, and reduces capacity overhead for smaller
files (< k× 8 MB). The above described cell-level striping
is used in Google’s Colossus [25], Lustre [47], Ceph [11],
HDFS [14] and many others [22, 39, 46, 57].

In existing systems, each file’s EC configuration (i.e., the
values of k and r) dictates two decisions: how the file’s data
is spread across storage servers (i.e., data striping) and which
blocks are encoded into the same parities (i.e., redundancy
grouping). Specifically, data is striped over k blocks (stripe
width = k), and those same k blocks (group width = k) are
encoded together to form parities. Fig. 1a shows a file with
4-of-6 scheme where each row of 4 cells from 4 data blocks
D1–D4, D5–D8 and D9–D12 are encoded to form parity cells
(of the same size as data cells) in the two corresponding
parity blocks. Thus, striping and grouping are tightly coupled.
However, forcing stripe width and group width to be equal
creates two fundamental problems: (1) an often too-limited set
of options in a complex trade-off space between performance,
space efficiency, and data reliability; and (2) worst-case re-
encoding IO overhead when new circumstances dictate EC
(grouping) changes.

First, with today’s coupling, a file’s values for k,r signif-
icantly affect its IO performance, space efficiency, and data

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 897

reliability. For instance, wider stripes (e.g., 30–96 wide [23,
25, 28]) allow higher bandwidth for huge sequential IOs, but
can result in higher tail latencies and IO time used (due to ex-
tra seeks) when accessing smaller file ranges (e.g., <100MB),
exacerbating the ever-worsening IO-per-TB-stored bottle-
neck [29]. Simultaneously, wider groups reduce storage over-
head compared to narrower alternatives, such as 6-of-9 [13] or
10-of-14 [43], but increase reconstruction IO and can reduce
data reliability. Many applications desire the performance ben-
efits of narrow striping and storage overhead of wide grouping
(such as video streaming services), or vice-versa. At Google,
we observe many files use group width k > 50 to achieve
space efficiency but suffer consequent IO inefficiencies, and
other files use narrow schemes to reduce reconstruction over-
heads but suffer lower sequential bandwidth.

Second, coupling implies that changing a file’s EC config,
and hence group width (say from k1 to k2), requires re-striping
its data contents. That is, all data units must be read and re-
written (striped across k2 blocks), in addition to writing the
newly computed parities. This overhead grows increasingly
important as grouping changes become more common to re-
duce space overhead as data cools [29, 54], to maintain data
reliability as disks age [25–27], and to address black swan
events. One recent example of the latter at Google was a sud-
den failure rate increase of one disk make/model that dictated
an emergency reduction of group width, overwhelming some
storage clusters with a massive IO burst.

Recent work reported that millions of files transition to
increasingly wider erasure codes every hour in Google clus-
ters [29]. It highlights the massive scale of resulting IO de-
mands and proposes efficient approaches to avoid them. How-
ever, unfortunately the IO savings are unrealizable for many
systems using data striping because of the need for re-striping.

This paper introduces the Okapi cluster file system, which
decouples each file’s data striping configuration from its re-
dundancy grouping configuration, enabling independent tun-
ing. For example, Fig. 1b shows each range (e.g., 32 MB) of
a file’s data being striped over 4 data blocks (D1–D4, D5–D8
and D9–D12) while parities are computed over 6 blocks. And,
if circumstances dictate a redundancy group width change
(e.g., from Fig. 1b’s 6-of-8 to Fig. 1a’s 4-of-6 to increase data
protection), it can be done without changing the stripe width
or re-striping the data.

Achieving this increased flexibility requires careful design
to avoid metadata blowup and minimize file creation and de-
graded read overheads, all without introducing complexities
that might hinder adoptability. First, Okapi curbs metadata
blowup by creating redundancy groups with sequential blocks
of the file, which allows it to infer group constituencies from
the existing stripe mappings instead of maintaining two dif-
ferent metadata structures. Second, Okapi uses partial pari-
ties to bound the client memory required during file creation.
Specifically, when sequentially writing a file, computing par-
ities can require data from multiple stripes containing data

Figure 2: Decoupling improves cluster throughput, disk efficiency and
workload latency. The graphs compare coupled and decoupled architectures
for 8 MB reads on 12-of-15 EC files. While stripes are forced to be 12-
wide in a coupled system, in Okapi, stripe widths could be optimally tuned
independently of the EC scheme. See Sec 6 for detailed experimental setup.

blocks for a given group. Rather than caching all data until
enough is written (which could easily be hundreds of MBs
in wide groups), partial parities computed over accumulated
data are kept instead. Third, Okapi smartly caches data during
degraded-mode reads to limit read amplification.

We describe an implementation of Okapi in HDFS1 to show
how its concepts can be incorporated into an existing DFS
that couples striping and grouping and to enable an apples-to-
apples comparison to a coupled baseline. We note that other
production scalable DFSs (e.g., Ceph, Panasas’s PanFS and
Google’s Colossus) couple in a similar way, and could become
decoupled with similar mechanisms. Experiments comparing
to a coupled architecture with 6-of-9 EC scheme show that
decoupling can increase read throughput by up to 80% (by
reducing seeks by up to 70%) when matching stripe width to
data access patterns, without compromising data reliability or
space efficiency. With wider erasure codes such as 12-of-15
schemes, we observe up to 115% throughput improvement.

Fig. 2 shows a summary of performance benefits of tailor-
ing stripe widths for 8 MB reads to 12-of-15 erasure-coded
files. As a result of better IO efficiency, end-to-end client la-
tency for a Google-derived read-only workload decreases by
36% when each file uses tailored stripe widths. Additionally,
Okapi reduces IO for EC transitions by up to 50% compared
to read–re-encode–write, and by up to 70% when used with
other smart EC-transitioning techniques [29]. Analyzing a
real emergency group width reduction scenario from Google
and long-term disk-adaptive redundancy using failure logs
from Backblaze production cluster confirm 38–45% less IO
required for redundancy changes.

This paper makes five primary contributions. First, it ex-
poses the unnecessary coupling of data striping and redun-
dancy grouping in cluster file systems, analyzing resulting
inefficiencies. Second, it provides insights into hyperscalar
access patterns and workload trends through real-world ap-
plication characteristics, and highlights the timely need to
improve IO efficiency and reduce IO demand. Third, it in-
troduces the decoupled approach, and identifies challenges
in building a decoupled cluster file system—increased meta-
data, expensive file creation and degraded-mode access over-

1HDFS (Hadoop Distributed File System) is a popular open-source DFS,
used in-production by more than 550 companies [10].

898 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

heads. Okapi overcomes them by (1) re-using existing struc-
tures and inferring EC group constituencies, (2) partial par-
ity caching to curb client memory overhead, and (3) data
caching to limit read amplification during degraded-mode
reads. Fourth, it demonstrates that Okapi’s ideas are easily
adoptable in existing DFS by implementing them in HDFS.
Fifth, via comprehensive evaluation on a real (academic) clus-
ter using micro-benchmarks and Google-derived synthetic
workloads, it shows that Okapi increases IO efficiency and
reduces redundancy change costs.

2 Striping and grouping in cluster storage

Large cluster storage systems store exabytes of data on hun-
dreds of thousands of mechanical disks (HDDs) housed in
tens of thousands of servers. Data of a single file is divided
into logically consecutive stripes. Each one of these stripes
spreads its data in the cluster by striping the data across a
number of disks and storing parities computed from that data
grouping on other disks. This section serves to distinguish
between striping and grouping in cluster file systems.

Striping: spreading data and accesses. Cluster storage
systems break files into ranges and spread them among disks
as discussed above. Indeed, most cluster storage systems go
further, striping data among data blocks in a round-robin
fashion within each range at a finer granularity (generally
referred to as a cell or a striping unit) to improve performance
without increasing metadata overheads. The number of data
blocks a stripe spans across is called the stripe width. Fig. 3
shows a 64 MB file with a stripe width of 4 and a cell size of
1 MB. Note that 4 MBs can be read by fetching 1 MB from 4
disks in parallel.

The striping configuration (cell size and stripe width) dic-
tates important aspects of disk efficiency and performance
observed by clients. For every IO, a disk must position the
read/write head (seek plus rotational latency) and then transfer
the data to/from the disk surface. While both consume “disk
time”, a highly constrained and shared resource, only the data
transfer part is useful. Thus, fewer larger transfers are more
efficient, as they amortize positioning time over more use-
ful work. Also, wider stripes can increase tail latency, since
a client request is not complete until all involved disks are
done. But larger transfers do take longer to complete, and thus
can increase latency for clients when cluster load is low (i.e.,
when extra seeks wouldn’t cause queueing delays). Generally,
wider striping can be better at low load and worse at high
loads, with the trade-off being most relevant for mid-sized
requests. We define mid-sized requests as those that access
more than one data cell but not so large that any choice will
involve all disks containing relevant data blocks.

Grouping: erasure-code redundancy. Device failures
are common in exascale cluster storage. Thus, data is stored
redundantly to protect against permanent data loss. While
certain hot data may be replicated, most data is erasure-coded

Figure 3: Coupled Architecture of a striped 64 MB file with 1 MB cells.
Each column of cells is a data block, and data blocks of a stripe are stored on
unique disks. The file consists of two stripes: blue and green. This coupled
file is forced to use 4-wide striping due to using 4-of-6 grouping.

[13] with each group of data blocks encoded into parity blocks
stored on other disks in the cluster (Fig. 3).

When using k-of-n Reed-Solomon erasure codes (EC), each
of the k data blocks are encoded into r = (n−k) parity blocks
such that any k of the n blocks can provide all k data blocks.
Naturally, when possible, a system will read the data blocks
rather than using the parities to reconstruct.

The grouping configuration (k and n) dictates important
aspects of data reliability, capacity efficiency, and reconstruc-
tion overheads. Parities add a capacity overhead of r

k . Un-
surprisingly, more redundancy increases data reliability. In
addition, reconstruction of missing data requires k of the n
blocks of data. The reconstruction costs are therefore directly
proportional to the value of k. In most environments, a lower
bound of r (e.g., 3) is fixed due to factors such as datacenter
makeup or planned maintenance outages [27, 28], while the
group width (k) can vary. Widths like 6 [13] and 10 [43] and
beyond [3] are now common, with 95 and 150 recently being
reported [12, 28]. Data requiring higher reliability or being
stored on more failure-prone disks is usually stored using
narrower groups, accepting higher capacity overhead.

3 Why decouple striping from grouping?

Several factors related to IO efficiency determine the best
stripe width for a given file, while independent factors re-
lated to reliability and space efficiency determine the best
group width. Due to today’s coupled striping and grouping,
applications must choose among limited options (i.e., stripe
width must equal group width) often inducing sub-optimal
configurations for one or both widths. Furthermore, a coupled
architecture forces all data to be re-written when changing EC
schemes, inducing significant IO overheads. Emerging stor-
age hardware trends, insights into datacenter workload access
patterns, and modern redundancy management techniques
further motivate the need for decoupling.

Storage hardware trends. HDDs are becoming denser
without becoming proportionately faster [29]. Due to the
decrease in IO-per-capacity, disk seeks and disk bandwidth are
becoming an increasingly scarce resource. Thus, it becomes
critical to improve both the IO efficiency of workloads (by
tailoring stripe widths) and reduce IO from workloads that
consume high disk bandwidth (e.g., EC transitions).

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 899

To demonstrate the impacts of coupling on IO efficiency,
consider reading 12 MBs of data from a 6-of-9 erasure-coded
file. Assuming 10 ms average positioning time (seek plus
rotation) and sustained 150 MB/s data transfer rate, reading
2 MBs from 6 disks consumes 40% more aggregate disk
time than reading 6 MBs from 2 disks2. To optimize for IO
efficiency, if stripe width is set to 2, the file would need to use
a 2-of-5 redundancy scheme (to be able to sustain 3 failures),
resulting in an unacceptable 2.5× storage overhead.

Hyperscalar workload trends. As hyperscalars store
more total data, the average temperature (popularity) of data
in their storage clusters gets colder. The steady proportion-
ate growth of cold data has promoted the adoption of wide
erasure codes (n≥ 20) [3,28], which offers excellent capacity-
efficiency but suffers from poor IO efficiency. This is espe-
cially true for mid-sized reads (>1 MB and≤≈50 MB) where
reading from wide EC incurs several 1-2 MB IOs, each one
paying heavily in positioning time. At Google, we observe
that such mid-sized requests contribute to 65% of total bytes
read (see Fig. 6a for read-size distribution), which would im-
mensely benefit if stripe widths are tailored to access patterns.

Moreover, we observe several real-world examples of this
tension: (1) user-facing media streaming services want nar-
row stripes for IO efficiency and lower tail latency but wide
groups for capacity efficiency; and (2) big-data processing
workloads favor wide stripes to increase bandwidth for their
large sequential reads but prefer narrow groups to reduce re-
construction costs upon failure. A coupled design locks in
fundamental tensions between performance and capacity.

Redundancy adaptation trends. Recently proposed disk-
adaptive redundancy systems [25–27] improve capacity effi-
ciency by dynamically tailoring data redundancy to changing
disk failure rates. Other systems [29] optimize transition IO
overheads over a file’s lifetime as it cools. However, these
systems all fail to address the implicit degradation of IO ef-
ficiency due to these changes. For e.g., a 10 MB read to a
10-of-13 file after transition incurs a 2× increase in disk seeks
v/s a 10 MB read to the same file in 5-of-8 before transition.

At Google, although the redundancy scheme of a file com-
monly changes throughout its stored life, the file’s access
pattern usually remains constant. We measured request-sizes
of reads to uniformly sampled subset of files across three
large Google storage clusters. Across these clusters, we found
that 64%–94% of the sampled files were accessed using the
exact same read size over a period of 150 days, whereas its
EC scheme changed up to 4 times in the same duration. Fur-
thermore, the per-file read size distribution exhibited very
low variance with most reads heavily concentrated around the
mean. This highlights the opportunity to tailor stripe widths
of a file to improve throughput and resource efficiency. This

26×10ms for positioning plus 80ms of data transfer vs. 2×10ms for
positioning plus 80ms of data transfer. Note that, in each second, each disk
has one second worth of time divided between positioning and data transfer
(and potentially idle time), neither of which get much faster with newer disks.

result is unsurprising as most accesses in exascale cloud en-
vironments are issued by internal services or applications,
which have known access patterns, and not direct user reads.

Increasing EC transitions trends. Transitioning data
from one k-of-n scheme to another has become increasingly
common. At Google, the most common transitions involve
increasing group width for data as it cools. We observe over
100K EC-to-EC file transitions per day, resulting in multiple
petabytes of disk IO every day in large clusters at Google.

Bulk redundancy transitions can also happen in response
to datacenter emergencies. For example, in late 2020, one ex-
ascale cluster observed sudden HDD failures (>4× the usual
rate), triggering an unusually high number of data reconstruc-
tion events. To mitigate the issue, the data was transitioned
from k ≈ 50, which has high reconstruction-IO costs, to a
smaller k (≈15) which is more reconstruction-IO-efficient.

The above redundancy adaptive systems heavily rely on
redundancy transitions for realizing their benefits. These sce-
narios have elevated redundancy transitions to a first-class
operation akin to reads and writes. However, despite the many
optimizations proposed for reducing transition IO in the above
systems [26, 29, 35, 36, 59], they are rendered inconsequen-
tial when files are striped in a coupled architecture since
re-encoding forces re-striping. Not only does this reorgani-
zation make transitions costlier, it also induces unnecessary
IO efficiency problems (i.e., the new stripe width can be less
IO-efficient for the workload) as stated above.

We now present Okapi, a decoupled system that gracefully
tackles the aforementioned trends.

4 Okapi’s Design for Decoupling

The Okapi cluster file system allows independent configura-
tion of data striping and redundancy grouping for each file.
Okapi stripes a file across blocks and encodes blocks into
parities like existing cluster file systems, but does not restrict
group width to equal stripe width. Each file’s contents are
stored in one or more fixed-size blocks. Unlike existing sys-
tems, applications specify stripe width, in addition to group-
ing configuration (k and r). Data is striped MB-by-MB over
each consecutive set of stripe-width blocks in a round robin
fashion, and r parities are computed over each consecutive k
blocks of the same file, no matter how the data is striped. For
performance and durability purposes, Okapi requires blocks
in a stripe and blocks in a group to be stored on unique
nodes/failure domains. As described later in this section, such
a design allows for lower per-file metadata, and curbs file
creation and degraded-mode read access overheads. Fig. 4
illustrates the data layout for 4-wide stripes, but with two
different grouping schemes: 6-of-8 and 3-of-5.

Next we describe key challenges involved with decoupling
and how they are addressed in Okapi.

900 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) 96 MB file with 4-wide stripes and 6-wide groups.

(b) 96 MB file with 4-wide stripes and 3-wide groups.

Figure 4: Decoupled Architecture: A 96 MB file striped 4-wide but shown with two different EC schemes - (a) 6-wide and (b) 3-wide. Each color—green,
blue and red, represents a different stripe. Each 4-wide stripe is composed of 4 data blocks storing 32 MB. A group is composed of consecutive data blocks of the
file, that may cross stripe boundaries. Block x is mapped to stripe d x

stripe width e and group d x
group width e.

4.1 Challenges: decoupling stripes and groups

Increased metadata. Conventionally, EC file metadata con-
tains the redundancy scheme configuration and location in-
formation (list of the disks) for each stripe. In a decoupled
design, the DFS must also track the location information for
each EC group. This additional metadata (usually stored in
main memory) must have a small footprint, as memory is a
valuable resource in any large-scale storage cluster.

Expensive file creation/appends. In a decoupled design,
multiple groups can be incomplete at any given time while
writing a new file, as opposed to just one in conventional
systems. All data of incomplete groups need to be retained
in memory until the parities are computed and flushed to the
disk. This results in an increased client-memory footprint. A
decoupled design must minimize memory requirements, and
reduce unnecessary buffering of large amounts of data.

Increased work during degraded mode reads. During
degraded mode reads, it is necessary to fetch at least k out
of the n chunks from the group, even if they are not directly
requested. This read amplification can be exacerbated in some
decoupled configurations, since contents of stripes accessed is
different from contents of groups required for reconstructing
missing data. Such read amplification due to decoupling must
have minimal impact on cluster throughput and latency.

Adoption-friendly design changes. Large-scale DFS usu-
ally take upwards of ten years to fully mature and become
widely adopted. Proposing a design that warrants a DFS to
be built from ground-up is therefore non-viable. A decoupled
system should introduce straightforward design changes such
that they can be readily incorporated into existing DFS.

4.2 Reducing metadata by inferring groups
Traditionally, DFS maintain the list of stripes that make up
a file, along with the set of nodes where the data and parity
blocks of each stripe can be found. Since stripes and groups
are distinct in Okapi, we now need to maintain location infor-
mation for both components separately, doubling the per-file
metadata, which may be prohibitive.

Since redundancy groups in Okapi are comprised of consec-
utive data blocks, Okapi simply infers the redundancy group
mapping from the existing data stripe mapping based on the
stripe width and the file’s EC scheme. Imagine the data blocks
of a file (across all stripes) sequentially numbered from 1 to X .
Then, data block x is mapped to stripe d x

stripe widthe and group
d x

group widthe within a file. Given the ordered sequence of data
and parity blocks, irrespective of the corresponding stripe
information, Okapi can easily map the ith set of k data blocks
to ith set of r parity blocks using simple modulo operations to
identify redundancy groups of the file. We show the marginal
metadata overhead incurred from using this inference logic in
a live cluster instance in Sec. 6.

4.3 Partial parities for efficient file append
A common client access pattern is to create an EC file, write
sequentially, and never modify the file once it is closed. In-
deed, this access pattern is so dominant that popular DFS
(e.g. HDFS, Ceph, Microsoft Azure) do not support modify
or append operations on EC files [11, 14, 24].

In most DFS, when a file is written in this pattern, the
system will wait to compute parities until all k data cells

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 901

of the row of a group are available. Although the written
cells remain unprotected until the kth cell is received and the
parities are computed and written out, this approach is much
easier and more efficient than stricter durability semantics.
Okapi retains the same semantic to allow for fair comparison
with a coupled system to focus on the effects of decoupling.

To achieve the expected efficiency, the client must keep a
copy of yet-unprotected cells in memory. For instance, con-
sider writing the group shown in Fig. 3. The first 3 cells are
written out to disks but also buffered in client memory until
the 4th cell becomes available to compute the first parity cell
P11(1−4). Using this approach, decoupling can increase the
load on client memory in some configurations. For example,
for 6-of-8 groups with 4-wide striping as shown in Fig. 4a,
the client would need to buffer the first 34 cells in order to
compute the first parities. Okapi mitigates this overhead by
computing intermediate partial parities. Rather than wait-
ing for all data in a redundancy group to be written, Okapi
greedily computes parity blocks with currently available data,
which it keeps in memory instead of the more numerous data
cells. We describe Okapi’s partial parity computation below.

For a k-of-n erasure code, parity blocks for a vector of k
data blocks are computed by using a (n− k)× k generator
matrix. This generator matrix (G(n−k)×k) is simply multiplied
with the data vector (Dk×1) over a Galois Field to produce the
parity vector (P(n−k)×1). For a simple 3-of-5 EC scheme, the
parities are computed as follows:

G2×3×
[
D0 D1 D2

]T
=
[
P0 P1

]T

Okapi breaks this into k independent partial computations.

G2×3×
[
D0 0 0

]T
+ G2×3×

[
0 D1 0

]T
+ G2×3×

[
0 0 D2

]T

=
[
P0 P1

]T

A partial parity block can be computed for every data block
as soon as they become available without needing any of the
other data blocks. For example, for D0

G2×3×
[
D0 0 0

]T
=
[
P′0 P′1

]T

Rather than buffering all the data, Okapi instead buffers par-
tial parities in client memory. Computed partial parity blocks
are then simply added, as they become available, to eventu-
ally form the final parities. Breaking up the computation of
parities by exploiting the associativity of a linear operation
is an optimization that has been used in several prior con-
texts [32, 37, 40, 60]. Okapi re-uses the concept in the write
path to mitigate the overhead introduced by decoupling.

Note that only the final parities are flushed to disk. Storing
partial parities in client memory does not change or compro-
mise the durability guarantees in the case of a client failure. In
a coupled DFS, a client failure triggers a background recovery
process which checks the last stripe in the file and generates
parities if the stripe is under-protected. Similarly in Okapi, the
recovery process checks for any under-protected redundancy
groups and generates new parities for each by reading from
data blocks. The recovery process in Okapi makes no use of
partial parities and maintains the same durability semantics.

Distributed file systems such as HDFS and Okapi can be
modified to support sync-on-write semantic, but doing so
would hurt write performance substantially. Client write la-
tency would not only see the time to receive a response for
data written out to servers but also the time to send new data
to update existing parities. Furthermore, the file system would
need to support atomic read-modify-writes to incrementally
update parities, either via shadow-paging or versioning. The
required functionality and associated overheads would be nec-
essary in systems both with and without decoupling.

4.4 Caching to reduce degraded read cost

If some blocks are unavailable during a read (e.g. due to
a failed disk that is yet to be recovered), they have to be
reconstructed on the fly at the client. Such degraded reads
need to access both the data stripe (for read) and redundancy
group (for reconstruction).

In a normal read operation, the client only reads the re-
quired cells. For degraded reads, at least k of n cells from the
group containing the missing data need to be fetched, which
may not have been read by the client otherwise, causing read
amplification. In certain scenarios, Okapi’s decoupling can in-
crease this read amplification. Consider a 6 MB read in 6-of-8
EC file shown in Fig. 4a. Cells 1-6 need to be accessed (across
two stripe rows). If the first block is missing, Okapi will read
12 MB of total data for on-the-fly recovery. A coupled system,
with 6-wide group, would only read 6 MB. However, such an
increase in read amplification occurs rarely.

For reads requesting less than one stripe row worth of data
(small-sized requests), the degraded mode behaviour remains
unchanged. For larger reads, in particular, reads spanning mul-
tiple stripes of data or an entire file (large sequential requests),
the data required for reconstruction will either have been re-
cently read by the client or will be fetched by subsequent reads.
Okapi exploits this by anticipating a degraded mode read and
caching the required data as it is read to avoid fetching the
same data multiple times, eliminating read amplification.

For other mid-sized requests, although degraded-read per-
formance in decoupled cases can be worse, we find that the
overhead with Okapi’s design is minimal and is an acceptable
trade-off. We quantify these overheads in Sec. 6.4.

4.5 Re-grouping to minimize EC transition IO

EC transitions are commonplace in large-scale storage clus-
ters (Sec. 3). We describe how Okapi’s decoupled design
helps in significantly reducing the IO cost of transitioning.

Storage clusters require sequential data to be written over
consecutive stripes to exploit maximum parallelism and to
ensure maximum disk efficiency while reading any range of
bytes of data. In a coupled system, this strict restriction gets
unnecessarily imposed on redundancy groups too. As a result,

902 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

when transitioning a file from k1-of-n1 to k2-of-n2, conven-
tional file systems are forced to re-stripe the file - read the
entirety of the file’s contents and write them back according
to the new striping layout like a new file. For example, if
the stripe width of the file needs to be changed from 4 to 6
in Fig. 3, almost all the cells need to be moved from their
original disk locations to different disks, incurring significant
disk IO and network overhead.

A decoupled system allows us to instead re-group the file
and change the EC groups without modifying the striping lay-
out. Okapi simply determines which data blocks will make up
the new groups and recomputes new parities for them without
moving any of the data blocks. All data blocks are read, but
only parities (and not data) are re-written. Consecutive sets
of k2 data blocks that may be spread across multiple stripes
of the file are chosen to form C = LCM(k1,k2)/k2 new re-
dundancy groups. The amount of data to read can be further
reduced with smart EC transitioning techniques [29].

In order to ensure maximum durability, the physical blocks
that make up an EC group must exist on disks in different
failure domains. When such re-grouping is performed, new
groups may end up with multiple physical blocks that reside
on disks in the same failure domain. In such situations, Okapi
simply relocates those blocks such that a group is composed
of blocks on distinct disks and incurs the cost of this extra
data movement. However, these overheads can be completely
eliminated by being cognizant of the possibility of redundancy
transitions and allocating data of successive groups of a file
to distinct disks during its creation. Such mindful placement
mechanisms should be straightforward since mechanisms al-
ready exist to form n-wide groups.

4.6 Choosing stripe widths and group widths

Most data in hyperscalars are created and used by large appli-
cations/services that have engineers dedicated to maximizing
their efficiency. Such engineers measure their system in oper-
ation and analyze trade-offs to tune their coupled stripe/group
width configuration to meet desired reliability targets, mini-
mize byte overhead, and achieve needed throughput/latency
and disk-time efficiency [53, 55, 58].

At Google, for instance, engineers for large-scale data
services periodically choose a space-efficient (coupled) EC
scheme for their data that meets their reliability and perfor-
mance SLOs. Reliability SLO is described using MTTDL.
MTTDL, governed by the group width, can be calculated
either analytically (using Markov chains) or experimentally
(using Monte-Carlo simulations) [49]. Meeting the perfor-
mance SLO on the other hand requires careful benchmarking.
This entails generating artificial data using the proposed EC
scheme using the application’s preferred read size distribution.
Average and tail read latencies are then calculated for nor-
mal reads and degraded reads performed by injecting failures.
These reads are performed at normal and high cluster load to

ensure that system performance continues to remain stable.
Okapi can make such selection processes easier in that

a single width choice does not have to satisfy all reliabil-
ity and performance goals. Our experiments indicate that a
stripe width of dmedian read request size

block size e works well in optimiz-
ing throughput and median latency with various group widths
(which can be chosen for reliability), by amortizing seeks
over substantial data transfer (see Sec. 6.5). But, consistent
with current practice, we expect most applications/services
to use benchmarking in configuring their (now-decoupled)
stripe and group widths. We extract salient features from the
aforementioned Google EC scheme selection process into a
generalized strategy:
1. Choose an EC scheme k-of-n. Balance target MTTDL,

byte overhead, and reconstruction costs [17, 20, 26, 27].
2. Record IO patterns. Randomly sample f representative

application files. For each, log read request sizes over a
representative time window that captures typical usage
patterns, such as a full day during steady-state operation.
Many organizations already have well-established observ-
ability infrastructure [51] which can be readily leveraged
to collect and analyze I/O read sizes.

3. For each candidate stripe width x:
(a) Generate test files. Create and write f files with group
width k and stripe width x.
(b) Replay IO logs. Issue the recorded read requests
against test files in the same live cluster environment to cap-
ture realistic performance. Measure per-request latency.
(c) Analyze performance. Measure median, tail latencies.

4. Choose the group and stripe width that satisfies all SLOs
and offers the best balance of read performance (through-
put, median latency, and tail latency) for future files to be
created. Additional metrics such as seek count and write
throughput may also be recorded and taken into account.
There may be no single configuration that is optimal across
all metrics; application engineers make subjective deci-
sions based on which performance aspects are most critical
for their specific use case.

Since IO requests to real, existing application files are sam-
pled to collect the IO logs, access patterns, read size distri-
bution and file size distribution are all inherently captured in
this benchmarking process. If it is infeasible to record IO ac-
cess patterns, or if IO access patterns are known to frequently
change over time (a rare occurrence, see Sec.3), applications
can default to setting stripe width equal to group width, per-
forming no worse than coupled systems.

5 Okapi’s Implementation

Okapi is implemented by modifying the Hadoop Distributed
File System (HDFS). We use existing data structures and
tried-and-tested pipelines as a conscious choice to not hurt
the current performance or integrity of existing mechanisms

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 903

in HDFS3. This section describes how Okapi efficiently de-
couples stripes and groups, and the mechanisms that enable
file read/write, data protection, and EC transitions. We briefly
describe how decoupling can be implemented in few other
popular DFS in Appendix A.

5.1 Simple, efficient decoupling

Traditional HDFS maintains metadata for a stripe of data
blocks and its corresponding set of parity blocks in a data
structure called striped block groups (SBG), which is tracked
as a single entity in the Namenode’s BlockManager.

Metadata. Okapi splits a conventionally coupled SBG into
two structures: a data stripe and a parity group. A data stripe
is a logical ordering of data blocks and a parity group is a set
of parity blocks. This split allows the structures to have a O(1)
lookup time in the BlockManager as they were for SBG’s.

To minimize metadata overheads, Okapi saves 8 bits per
block by eliminating the pointer to the EC policy and lever-
ages the previously unused replication field instead. Addi-
tionally, it ensures sequential ordering of storage information,
removing the need for internal physical block ordering in the
new data structures. To minimize inode metadata, Okapi uses
a single byte (max value=127, easily extendable) to track the
stripe width per file in the header. This approach supports
most widely published schemes to date [28].

Writes. Okapi allows files to be written with any arbitrary
stripe width and EC scheme. It uses partial parities to avoid
buffering large amounts of data between stripes. The partial
parities are stored in a r-wide array of byte buffers, each of
which stores data worth 1 block. This guarantees that the
client will buffer at any point at most block size ·r+cell size ·
k of data. When updating partial parities, Okapi multiplies
only the relevant subsection of the encoding matrix with the
data vectors to eliminate extraneous computation. This aspect
of the implementation ensures that encoding and combining
partial parities is computationally equivalent to encoding full
parities in a single operation.

Normal reads. Normal reads in Okapi work exactly like
in HDFS. Okapi simply looks at data stripes to inform clients
where to read data from, similar to how SBG’s are used, Parity
groups are not needed and remain unused. This ensures that
normal read performance in Okapi is not impacted at all by
decoupling and that no additional necessary computation is
required to retrieve physical block locations.

Degraded reads. A degraded read will infer the redun-
dancy grouping for the failed block to reconstruct missing
data. Okapi’s design prioritizes efficiency and attempts to
re-use any data that was already buffered in from the read
when decoding the corrupt or missing data.

Under-replication detection and recovery. Data stripes
and parity groups are managed in the exact same way as

3Okapi is open-sourced at https://github.com/Thesys-lab/okapi.

SBG’s. Okapi therefore re-uses existing block reporting sys-
tem for under-replication detection, with no loss in perfor-
mance. The BlockManager lazily computes the redundancy
grouping once under-replication is identified using constant
time look-ups and modulo arithmetic.

Efficient and safe EC transitions Okapi computes new
grouping based on the file’s array of data stripes and the
new EC scheme. After the new groups are determined, the
new parity groups are added to the BlocksMap and the new
grouping is sent to the Datanodes using HDFS’s existing EC
recovery pipeline. The new parities are encoded and reported
by the Datanodes, and the old parities are atomically removed
from the Namenode. This ensures that files are protected even
during a transition as the old parity groups are available until
the new parity groups are completed.

6 Evaluation

This section evaluates Okapi and confirms three main take-
aways: (1) configuring a file’s stripe width to match data ac-
cess pattern provides significant IO efficiency improvements
without compromising reliability. (2) decoupling stripe width
from group width significantly reduces the IO required for EC
scheme transitions. (3) Okapi does not introduce significant
metadata, file creation or degraded-read overheads.

6.1 Experimental setup
Both Okapi and coupled experiments run on a 20-node cluster
with one Namenode and 19 Datanodes. Each machine has
a Quad-Core AMD Opteron Processor and 128 GB RAM.
Each Datanode has a 1 TB Ext4 file system atop a 7200 RPM
Hitachi Ultrastar HDD. The physical block size and file IO
buffer size in HDFS are set to 8 MB (default block size at
Google). The underlying Ext4 file system uses a 1 MB block
size, which is the same as the cell size. Cluster nodes are
connected via a 40GbE network. We measure throughput
with DFS-perf [21]. For each workload, we measure aggre-
gate throughput and median, p95, and p99 client request la-
tency. We examine block device IO and disk seek behavior
using blktrace [6] and seekwatcher [33]. We measure IO and
CPU/memory costs by aggregating per-node data exposed by
Ganglia [34]. We compare Okapi’s performance with HDFS
with micro-benchmarks and then with a synthetic trace gener-
ated using read-size distribution drawn from Google’s cluster.

6.2 Decoupling improves IO performance
Our results demonstrate a significant benefit to total cluster
read bandwidth and client latency when configuring the data
striping to be tuned for their specific access patterns, without
impacting factors such as storage overhead, reconstruction
costs, which are controlled by grouping. We first compare read
throughput and IO efficiency across varying access patterns

904 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/Thesys-lab/okapi

(a) Cluster Throughput. (c) Client Median Latency.

(b) Cluster IO Efficiency. (d) Client 95p Latency.
Figure 5: Performance measurements for requests ranging from 2 MB–
48 MB for files grouped 3-of-6, 6-of-9, and 12-of-15 (and thus striped 3-,
6-, and 12-wide respectively for HDFS) and pre-determined stripe width
with 6-of-9 grouping for Okapi. Compared to 6-of-9 coupled configuration,
throughput improves by up to 80% and seeks/sec reduce by up to 70% when
decoupling with similar benefits to median and tail latency.

with/without decoupling. Then, we characterize the benefits of
decoupling in a realistic read-only system workload. Finally,
we show the impact of decoupling on write throughput.

Tuning stripe width improves read performance. We
present cluster and client metrics of a read workload in which
both HDFS and Okapi use 6-of-9 grouping (a popular EC
scheme [13, 27]), which means that both systems have the
same storage overhead. While this forces files in a HDFS
to be striped 6-wide, Okapi faces no such limitation and al-
lows clients to set the file’s striping width based on its most
common access pattern. In addition to 6-of-9 grouping, to
evaluate alternate options, we include results for HDFS when
files are grouped 3-of-6 (half the group width) and 12-of-15
(double the group width).

For our experiments, we benchmark throughput for differ-
ent read sizes in the manner described in Sec. 4.6, and set
stripe width for each read request size to optimize for cluster
throughput and IO efficiency. For example, we use 1-wide
and 6-wide stripes for 8-MB and 48 MB requests respectively.

Okapi provides high throughput at low byte overhead.
Fig. 5a shows total cluster throughput with and without de-
coupling for each access pattern. For the configurations we
examine, Okapi observes up to 80% increase in throughput
and never performs worse than coupled 6-of-9 for any request
size; without sacrificing any space efficiency or durability.
Okapi performs the same as 6-of-9 coupled for only 48 MB
requests, and same as 3-of-6 coupled for only 24 MB requests
which is expected since Okapi’s decision to stripe 6-wide and
3-wide coincides with the coupled cases’ grouping width.

HDFS’s poor throughput for smaller read requests sizes
is a consequence of coupling data stripes and groups. For

(a) Read-sizes. (b) Cluster metrics.

Figure 6: Read performance for a realistic read-only workload. 6a shows
the distribution of read-sizes >1 MB and ≤48 MB for erasure-coded files in
Google’s production storage cluster. 6b shows throughput and seek count for
a trace of read requests pulled from the distribution in 6a.

example, a file is generally chosen to be written in 6-of-9
to provide a certain level of space efficiency. However, 6-
wide striping for a 4 MB client read suffers from request
fan-out and poor IO efficiency as it splits into four 1 MB disk
reads, an unfortunate consequence of a decision made with
only grouping in mind. A naive solution would be to ignore
grouping and blindly choose a narrower group width, say 3-
of-6. Not only does this increase storage overhead by 2×, but
also the 3-wide striping still loses between 6–34% throughput
compared to Okapi. Note that coupled 3-of-6 exhibits greater
cluster throughput than coupled 6-of-9 for requests up to
24 MB, but eventually performs worse for larger requests
since 3-of-6 requires an extra round-trip to Datanodes to
retrieve data past the first data stripe, making 6-of-9 more
favorable in these cases. If storage capacity dictates files must
be grouped wider, say 12-of-15, then the coupled cluster loses
up to half its bandwidth. Moreover, note that by decoupling,
it is still possible to achieve 12-of-15 space efficiency while
meeting the same IO performance.

Okapi reduces seeks dramatically. Fig. 5b shows the ben-
efits in cluster’s total seeks per second. Okapi promotes user’s
ability to choose a stripe width that maximizes sequential IO,
thereby reducing the spindle usage by as much as 70% be-
tween Okapi and coupled 6-of-9. By tuning the stripe width to
be suited for smaller sized reads, clients maximize sequential
IO and enable disks to spend less time on seeks and more time
on data transfer. The drastic reduction in total seeks promotes
greater disk bandwidth, even when disk utilization is constant.
Moreover, Okapi minimizes the variance in seeks/sec across
different read sizes, reducing peak usage by up to 60% which
significantly reduces resource provisioning costs.

Okapi lowers client response time. Fig. 5c shows Okapi
provides a substantial reduction in median latency compared
to both 3-of-6 and 6-of-9. This is a consequence of both im-
proved cluster throughput and minimizing the fan-out effect.
A similar, albeit less significant trend is observed in the 95th
percentile latencies (Fig. 5d).

Okapi requires no compromises! Okapi does not sacri-
fice space efficiency or durability for these improvements. For
example, to achieve the same read performance while main-
taining durability for 16 MB reads in HDFS, the file would

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 905

Figure 7: Performance and resource efficiency of file accesses as they
transition to wider EC schemes over their lifetimes. Figure shows seeks/s
and throughput observed for 16 MB file reads, first when files are in a 3-way
replicated format, second in 5-of-8 and then in 10-of-13 EC scheme.

need to be written in 2-of-5, which has worse space efficiency
than 2-way replication. On the other hand, to achieve the
same read performance while maintaining space efficiency in
HDFS, the file would need to be written in 2-of-3, which has
insufficient durability. Even when comparing against coupled
3-of-6, which has the same space efficiency as 2-way repli-
cation, most access patterns still perform noticeably worse
than when decoupled. A coupled architecture simply cannot
achieve the best of both worlds as Okapi can by decoupling
these independent decisions.

Okapi enhances performance for a realistic workload.
In this experiment, we measure the read performance in a
testbed environment for a workload that uses the read-size
distribution of EC files in a production storage cluster at
Google as shown in Fig. 6a. We compare cluster performance
in decoupled and coupled architectures while executing the
same set of random-reads. In this scenario, we use 64 client
threads each performing 10K reads. All files conservatively
use a 6-of-9 grouping, although today’s average EC group
is typically wider for space efficiency. Since IO efficiency
decreases for mid-sized requests with wider groups, we expect
that in practice, the coupled case would actually perform
worse than shown in our experiments for this workload.

Fig. 6b shows throughput, seeks/s, and end-to-end run com-
pletion time for a realistic read-only workload. Okapi shows a
55% increase in sustained throughput (MB/s) and 65% fewer
number of total seeks (35% decrease in seeks/s) due to smarter
striping decisions. Note that most read requests in Fig. 6a are
smaller than 12 MB, a range of read-sizes that finds the most
benefit from decoupling as seen in Fig. 5a. Despite both clus-
ters running identical traces, Okapi’s clients completed their
work 36% faster than the HDFS’s clients. The increase in
throughput and decrease in end-to-end run-time shows how
a decoupled storage cluster could handle both bursty and ex-
tended client traffic better than a coupled architecture.

Okapi maintains IO efficiency despite EC transitions.
Morph [29] improves EC transition overheads but overlooks
the impact on resource efficiency of accesses to such files. Ac-
cesses to same files post-transition to wider EC schemes result
in poor IO efficiency. Unlike coupled systems, Okapi remains
unaffected by EC transitions. We duplicate their experiment

Figure 8: IO cost to transition 1 GB 6-of-9 files to varying target EC
schemes. Left shows measured disk and network IO cost to transition to
wider grouping schemes and then back to 6-of-9. Right shows calculated
disk IO cost to transition to wider schemes.

of file EC lifetime transitions from replication to 5-of-8 to 10-
of-13 and measure throughput and seeks consumed for 16 MB
read accesses to 25000 files in each phase of the file’s lifetime.
Okapi is able to achieve better throughput, uses 2× fewer
seeks/s and achieves predictable performance and resource
efficiency as shown in Fig. 7. This issue is further exacerbated
in Disk Adaptive Redundant storage clusters, since even hot
files can be transitioned to wider schemes, which directly
impacts the latencies of user facing applications.

Okapi’s benefits improve with median seek distance.
The experimental setup has each disk filled with about 315
GB out of 1 TB of disk space. As the disk becomes more full,
the median rotational and positioning latency would likely
increase, further emphasizing the impact of each seek and
making the reduction of seeks-per-second even more signifi-
cant to cluster throughput.

6.3 Decoupling reduces EC transition IO
Redundancy transitions are common and have varying degrees
of urgency and bandwidth/compute requirements. This sub-
section quantifies this benefit for three major sources of transi-
tions and then experimentally compares Okapi’s re-grouping
to a coupled system’s read-re-encode-write (RRW).

1. Making groups wider as data cools. Large storage
clusters perform hundreds-of-thousands of transitions per day.
Most of these transitions increase group widths to increase
space efficiency for data that has cooled (in terms of access
frequency). Okapi can reduce the IO required for such tran-
sitions by up to 50%. For example, for 100K 30 MB file
transitions from 6-of-9 to 30-of-33 in a day, RRW would re-
quire 6.3 PB of total IO (5×6×100K = 3 PB of data read,
3 PB of data write and 300 TB of parity write). Regrouping
in Okapi only requires 3.3 PB IO for the same transitions.

2. Urgent transitions to address emergencies. Sec. 3
describes an emergency bulk transition situation at Google
caused by a sudden increase in the failure rate of a particular
disk model. To avoid future reconstruction IO overload, all
high-k data on those disks were transitioned to use narrower
groups (k ≈ 50 to k ≈ 15).

Suppose 66% of the data was in ≈50-wide groups on

906 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

≈90K disks in the cluster.4 Disks had an average capacity of
8 TB and capacity utilization of ≈75%. Transitioning to a
15-of-18 scheme using RRW requires 784.08 PB of transition
IO (356.4 PB of data read5, 356.4 PB of data re-write, and
71.28 PB of parity write). Assuming a 100 MB/s sustained
disk bandwidth, with a 5% IO budget for EC transitions, 90K
disks can transition at the rate of 90000×5 = 450000 MB/s
= 0.43 TB/s. It would require over 21 days to transition all
784.08 PB without violating the IO budget. Even if we com-
mission the entire cluster to perform transitions, with each
disk issuing transition IO at 100 MB/s, it would take over 1 en-
tire day! In contrast, Okapi incurs an IO traffic of 427.68 PB
(45% less) for transitioning via regrouping, i.e. 12 days to
complete without violating the 5% IO budget, and <14 hours
if the entire cluster was commissioned.

3. Adapting group widths to disk failure rates. Disk-
adaptive redundancy (DARE) systems use file transitions to
maximize space efficiency based on observed disk failure
rates, saving ≈ 20% of disk capacity [25–27]. As with other
transition causes, Okapi reduces the IO required.

We simulate DARE for a production storage cluster (Back-
blaze [2]) over a period of 6 years to evaluate the transition
costs of re-grouping versus RRW. Data is arranged into files,
represented by an ordered array of redundancy groups, and
the policies for reacting to failures and AFR changes were
adopted from previous work [25]. When a group is marked for
transition, the file that it is part of (and hence all groups part
of the file) are transitioned together as described in Sec. 4.5.

The simulation showed that Okapi reduces mean disk tran-
sition IO cost by approximately 38%. This reduction is lower
than earlier examples because it includes IO for block relo-
cation to ensure that all blocks within each group are dis-
tributed across different failure domains even after transitions
(Sec. 4.5). This overhead can be avoided by being cognizant
of such potential re-groupings during file creation, and by
placing blocks of adjacent groups of a file across different
failure domains. We did not make any assumptions about
failure domains in our simulation, placed blocks of a group
randomly assuming each disk to be a separate failure domain.

Further, storage clusters typically rate limit background
tasks like file EC transitions to prevent interference with fore-
ground IO operations. However, these IO limits are sometimes
violated for urgent transitions during risk of data loss. Assum-
ing a 5% daily IO limit for EC transitions [26], we observe
that RRW approach results in almost twice as many disks
violating this IO cap when compared to Okapi.
Measured transition savings in Okapi. Okapi’s regrouping
approach for redundancy transitions is more efficient than the
traditional RRW approach used in HDFS. In this experiment,
we transition a 6-of-9 1GB file to wider groups and then back
to 6-of-9. Fig. 8 (left) shows disk and network IO incurred in
the two systems as measured in our experimental cluster setup.

4Although we cannot give the exact numbers, these are representative.
590000×8×0.75×0.66 TB = 356.4 PB

(a) Heap percentage (b) Byte overhead per file.

Figure 9: Calculated (a) total Java heap allocation overhead in the Namen-
ode for decoupling 200 MB 6-of-9 files and measured (b) byte overhead of
200 MB files in the BlocksMap (bottom) and INodeMap (top) for increasing
group widths. Metadata overhead decreases with increasing stripe and group
width, eventually converging at very wide groups in both data structures.

Limited by available cluster size, we calculate results for
transitions to wider groups analytically. Fig. 8 (right) shows
calculated disk IO traffic for transitioning the same 6-of-9
1GB file using Okapi versus RRW.

We observe almost 50% decrease in disk and network IO
across all transitions with Okapi. This decrease stems primar-
ily from reduction in bytes written to disk. Note that Morph
sees the same transition IO traffic as coupled in Fig. 8. Al-
though Morph uses Convertible Codes to reduce IO overheads
by computing new parities from old parites, it only helps when
cell-striping is disabled; otherwise, re-striping the file neces-
sitates rewriting it. Okapi overcomes the need to re-write file
data, which can be combined with Morph to further reduce
transition overheads by up to 70%.

Okapi uses slightly more disk than network IO. Okapi
schedules new parity encoding on a target Datanode, so some
new parities need not traverse the network. HDFS’s RRW
implementation instead does this on a client, in part because
it must re-write the file data in addition to the new parities.

Okapi shows memory and compute savings. We com-
pare memory and CPU utilization for the Namenode and
client by performing 20 concurrent 200 MB EC transitions.
With RRW, the client buffers file data in memory before writ-
ing to DFS and then clears its cache. With regrouping, the
client uses no extra memory to make an RPC call. In Okapi,
CPU utilization does not exceed 5.7% compared to 13.5% in
HDFS, with ≈75% reduction of average CPU utilization.

6.4 Quantifying decoupling overhead

Namenode metadata memory overhead. We measure the
memory footprint of decoupling by analyzing Java heap
dumps on the Namenode process in Okapi and HDFS with
6-wide striped, 6-of-9 grouped 200 MB files. Fig. 9a depicts
the metadata difference in total heap allocation. HDFS, by
default, allocates 2% of the total Java heap to the BlocksMap

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 907

Figure 10: Measured (left) write throughput of files with stripe width equals
group width in Okapi and HDFS and (right) decoupled write throughput of
files in Okapi with varying stripes and EC schemes.

and 1% to the INodeMap. Okapi compensates for the increase
in block objects by allocating 2.52% and 1.22%, respectively,
for a collective heap usage increase of 0.74%. This increase
allows Okapi to maintain the same number of objects and
files in the cluster as conventional DFS with less than a 1%
increase in overall Java heap usage.

Fig. 9b presents the memory footprint in the Namenode
data structures per file. Okapi uses less than 1 KB per file
in the BlocksMap and 170 B per file in the INodeMap, a
respective 26% and 22% increase from their former values.
These values shrink with wider groups as there are fewer
blocks per file and, therefore, less overhead per block object.
For example, if files were grouped 12-of-15 as opposed to
6-of-9, the overhead decreases to 20% and 18% respectively.
These measurements reflect a reasonable increase in metadata
per-byte which only improves with wider grouping schemes.

Minimal impact of decoupling on write throughput.
Fig. 10 (left) shows write throughput across various EC
schemes when stripe width equals group width. Despite the
slight additional complexity in Okapi’s decoupled write logic,
we do not observe any noticeable decrease to write throughput
between HDFS and Okapi.

Fig. 10 (right) compares write throughput with different
stripe widths across varying EC schemes. There is no notice-
able difference in performance as a direct result of decoupling.
6-of-9 grouping achieves the same write throughput with both
6-wide (coupled) and 8-wide striping (decoupled) despite the
fact that 8-wide striping uses partial parities to compute the
final parities. This result is consistent with Okapi’s implemen-
tation, which guarantees the same number of linear operations
to compute the final parities, regardless of stripe width.

Further, we observe a small increase in write throughput
across all EC schemes as a result of increasing stripe width.
A wider stripe can leverage a greater degree of parallelism
when writing large amounts of data. However, we find that the
difference in throughput across EC schemes can be primarily
attributed to the amount of write amplification.

Client write memory overhead. Okapi uses partial pari-
ties to avoid buffering copious amounts of data in memory to
write a complete group (Sec. 4.3). Fig. 11 shows the mem-
ory overhead when striping 6-wide with varying grouping

schemes in a decoupled case and when striping/grouping 6-
wide in HDFS. With decoupling, naive buffering of client data
to eventually compute final parities requires clients to buffer
up to 150 MB at 20-of-23. With partial parities, clients buffer
at most an acceptable 25 MB.

In fact, the write memory overhead of Okapi with par-
tial parities eventually converges with and passes (i.e., less
memory required) coupled schemes beginning from 25-of-28
grouping. In conventional HDFS, the entire stripe of data must
be buffered, even for extremely large groups, so the memory
overhead scales with group width. With partial parities, how-
ever, the overhead is capped at r ·block size+1.

However, when stripe width is greater than group width,
in certain instances, it is more cost-effective to opt out of
partial parities. This is because buffering all unprotected data
cells is more economical than buffering partial parities of
size r ·block size. Okapi can dynamically determine at run-
time whether to employ partial parities based on striping and
grouping configuration.

Degraded mode read overhead. We show, both analyti-
cally and empirically, that degraded read overheads are mini-
mal. Fig. 12 (left) quantifies the average read amplification
and (mid) the average number of disks read during degraded-
mode reads using 12-wide groups across varying stripe and
read request sizes (assuming that reads can be made at any
cell-aligned file offset with equal probability).

Case (1) when stripes are wider than groups. The read
amplification is minor (3.23% worse on average for 18-wide
stripes; and 4% better for 24-wide stripes). Although it may
appear that the expected number of disks read is higher, the
cause is the wider stripes(a conscious choice by file writer)—
the number of additional disks read in degraded-mode is very
small (2.73% more disks than coupled 18-wide groups).

Case (2) when groups are wider than stripes. Although
read-amplification is higher in Okapi, probability of degraded-
mode reads is proportionately lower (since fewer disks are ac-
cessed). The impact on total cluster throughput is hence com-
mensurately lower. In addition, the required data is fetched
from fewer disks (implying fewer seeks and higher IO effi-
ciency), further amortizing the impact on cluster throughput.

Fig. 12 (right) experimentally compares single-failure de-
graded read latency for 6-of-9 EC files for Okapi (3-wide and
12-wide stripes) with coupled system (6-wide stripes). For
small-sized (1 MB) and large sequential (96 MB) degraded-
mode reads, Okapi observes no hit in performance. For mid-
sized requests (24 MB), Okapi performs 33% worse with
3-wide stripes due to reading 2× more data. Note, however,
that degraded reads occur half as often with 3-wide stripes
than with 6-wide stripes. Okapi performs 16% worse with 12-
wide stripes, because it is a poor stripe width for the given (24
MB) access pattern—it performs worse than 6-wide striping
even for 24 MB non-degraded mode reads (see Fig. 5). Worst-
case read amplification, and hence tail latency, may be worse
in some striping configurations though the average read am-

908 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 11: Maximum memory overhead
during file creation for varying group
widths. For coupled, we set stripe width =
group size (k). For decoupled, we set stripe
width = 6.

Figure 12: Expected total data read (left) and disks accessed (mid) during degraded reads for group width=12
and varying stripe sizes, with single block failures. The dotted lines refer to coupled configurations. Measured
degraded read latency (right) for 6-of-9 files across stripe widths for three read sizes. Okapi’s degraded-reads for
24 MB are 33% worse with 3-wide (but occurs half as often), 16.6% worse with 12-wide (due to poor stripe
width choice).

plification remains consistent. Benchmarking the stripe/group
choices (Sec. 4.6) can help avoid unacceptable overheads.

6.5 Choosing group and stripe widths

This section follows the benchmarking process from Sec. 4.6
and presents performance results for 12 MB and 24 MB
read requests under different cluster loads, for degraded-
mode, and for different variances in request sizes. Based
on our experiments, we recommend a stripe width of
(dmedian read request size

block size e) for optimizing cluster throughput and
median latency. However, it may be sub-optimal for tail la-
tency in some cases, such as with lots of degraded-mode reads.
Application engineers must make a subjective trade-off based
on which metric (e.g., throughput, median or tail latency) is
most critical for their use case.

Fig. 13a shows throughput and 99th percentile tail latency
for 12 MB reads to 6-of-9 erasure-coded files for four stripe
widths (1,2,3 and 6) under different cluster loads. As de-
scribed, the recommended stripe width of d 12

8 e = 2 maxi-
mizes throughput and minimizes median, p95, p99 tail laten-
cies by reducing disk seeks and improving disk efficiency.
For instance, under heavy load, stripe width of 2 yields
≈40% higher throughput than a coupled configuration (stripe
width=6) and achieves 6.8% lower 99% tail latency.

Tail latencies grow with more degraded-mode reads, and
degraded-mode reads with decoupled stripe/group widths can
cause even greater read amplification and higher latencies.
Fig. 13a shows throughput and tail latency for 12 MB reads
when one of the nineteen disks has failed. Even in this extreme
scenario, where 5% of the disks have failed, the recommended
stripe width continues to be the best for throughput, median
and p95 latencies, but p99 tail latencies are ≈9% worse than
coupled. For latency-sensitive applications, the engineer may
choose to stripe 6-wide, accepting ≈16.6% lower throughput
to avoid a 9% increase to the tail. Another acceptable trade-
off might be to use 1-wide stripes, which exhibit 1.6% higher

p99 latency than 6-wide stripes, but only incurs 7% hit in
throughput compared to 1-wide stripes.

We make similar observations with 24 MB requests in
Fig. 13b. As with 12 MB reads, we find that the recommended
stripe width of of d 24

8 e= 3 consistently maximizes through-
put across load levels. For optimizing p99 latencies, 6-wide
stripes generally turn out to be the best.

Fig. 14 shows throughput and latency when request sizes
vary under heavy load. We assume request sizes to be nor-
mally distributed. We consider two access patterns, 12 MB
and 24 MB, and vary standard deviation of request sizes
(bounded between 0.5 MB and the file size) to files to study
the performance impact. We observe that the recommended
stripe widths consistently achieve the highest throughput al-
though the improvements over other widths decrease with
increasing variance. While the recommended stripe widths
minimize p50 and p95 latencies, the best configuration for
p99 latencies can vary depending on the variance in request-
size. When request sizes follow a uniform distribution (a
rare occurrence, see Sec.3), we observe little difference in
performance with different stripe widths.

Although we used 8 MB blocks in our experiments, we
observe similar trends for block sizes as large as 128 MB.
Note that the performance trade-offs will vary depending
on cluster setups, software implementations, HDD models,
disk capacity utilization, stragglers among many other factors.
To find optimal configurations, one must benchmark their
applications in their clusters as described in Sec. 4.6.

7 Related Work

Data striping and redundancy grouping have long histories in
data storage, beginning in the context of disk arrays [8, 15].
Most disk array configurations couple striping and grouping,
such as by using an n-of-n+1 RAID5 scheme, with the stripe-
unit choice being a target of optimization [9,44]. One notable
exception [19] proposed using parity (grouping) without data

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 909

(a) 12 MB reads

(b) 24 MB reads

Figure 13: Throughput (top) and p99 latency (bottom) for (a) 12 MB reads
and (b) 24 MB reads to 6-of-9 EC files with stripe widths 1, 2, 3 and 6 for
different cluster loads, during normal-mode read operation (left) and during
degraded-mode read operation induced by disk failure (right).

striping, an extreme form of decoupling the two.
In both research [1,18,22] and production [13,24,42,47,57,

61], DFSs couple stripes and groups. Various research efforts
have proposed approaches to tune the striping+grouping con-
figuration based on access patterns and data *-ability goals,
given the trade-offs created by the coupling [53, 55, 58].

Many blob/object stores [24, 38, 41] pack several small
objects into a single large file, which is in turn striped/erasure
coded across disks. These systems decouple the user’s view
and filesystem’s view of how data is stored to avoid small-file
inefficiencies. This is orthogonal to Okapi’s decoupling of
stripe and group widths of the resulting large file to improve
read efficiency and decrease EC transition overheads.

The prevalent architecture used by hyperscalers (e.g.,
Google, Microsoft, Facebook) and HPC (e.g., PanFS, Lustre,
HDFS) involves the DFS layer managing both striping and
grouping. But one could conceivably build a DFS that stripes
data across blocks stored in a block-storage layer that sepa-
rately uses parities to protect groups of blocks. This decouples
stripes and groups by having each layer manage one of them.
The closest example we can think of is Frangipani-atop-Petal,

Figure 14: Throughput and p99 latency for reads to 6-of-9 erasure-coded
files with different stripe widths as variance in request sizes increases. We
consider two access patterns, where requests are normally distributed around
(1) 12 MB (left) and (2) 24 MB (right), and vary standard deviation on x-axis.

where Frangipani [52] was a DFS that stored file contents in
blocks stored in the Petal [31] replication-based (k=1) block
store. However, such an architecture is not adopted by any of
the popular DFSs due to its complexity when using EC (k>1)
and the fact that it does not allow file-level control for impor-
tant choices like EC configuration and data placement, all of
which are key elements of modern DFS. Okapi retains the ben-
efits of the current DFS architecture while allowing per-file,
independent tuning of striping and grouping configurations.

8 Conclusion

Existing DFSs couple data striping and redundancy grouping,
resulting in IO performance inefficiencies due to limited op-
tions in a complex trade-off space as well as high re-encoding
IO overhead . Okapi overcomes these problems by decoupling
stripes and groups. The design is simple and adoption-friendly.
Experiments confirm significant improvement in IO perfor-
mance (throughput, seeks and latency) and IO reduction for
redundancy transitions.

9 Acknowledgements

We thank our shepherd and the anonymous reviewers for
their invaluable feedback. We extend special thanks to Larry
Greenfield, Mustafa Uysal, and numerous other researchers
and engineers at Google. This research is generously sup-
ported in part by NSF grants CNS1956271, CNS1901410,
and CAREER 1943409, by a Sloan Foundation Fellowship,
and by a VMware Systems Research Award. We also thank
the members and companies of the PDL consortium (Ama-
zon, Bloomberg, Datadog, Google, Honda, Intel, Jane Street,
LayerZero Research, Meta, Microsoft, Oracle, Oracle Cloud
Infrastructure, Pure Storage, Salesforce, Samsung, Western
Digital) for their interests, insights, feedback, and support.

910 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Thomas E Anderson, Michael D Dahlin, Jeanna M
Neefe, David A Patterson, Drew S Roselli, and Ran-
dolph Y Wang. Serverless network file systems. In
Proceedings of the fifteenth ACM symposium on Operat-
ing systems principles, pages 109–126, 1995.

[2] Backblaze. Disk Reliability Dataset. https://www.
backblaze.com/b2/hard-drive-test-data.html,
2013-2018.

[3] Backblaze. Erasure coding used by Backblaze. https:
//www.backblaze.com/blog/reed-solomon/, 2013-
2018.

[4] Eric Brewer. Spinning Disks and Their Cloudy Future.
https://www.usenix.org/node/194391, 2018.

[5] Eric Brewer, Lawrence Ying, Lawrence Greenfield,
Robert Cypher, and Theodore T’so. Disks for data cen-
ters. Technical report, Google, 2016.

[6] Alan D Brunelle. Block I/O layer tracing: blktrace. HP,
Gelato-Cupertino, CA, USA, 57, 2006.

[7] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-
wat Srivastav, Jiesheng Wu, Huseyin Simitci, et al. Win-
dows Azure storage: a highly available cloud storage
service with strong consistency. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 143–157, 2011.

[8] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H
Katz, and David A Patterson. Raid: High-performance,
reliable secondary storage. ACM Computing Surveys
(CSUR), 26(2):145–185, 1994.

[9] Peter M Chen and David A Patterson. Maximizing
performance in a striped disk array. In Proceedings of
the 17th annual international symposium on Computer
Architecture, pages 322–331, 1990.

[10] HG Data. Apache hadoop hdfs insights. URL
https://discovery.hgdata.com/product/apache-hadoop-
hdfs, 2024.

[11] Erasure Code Ceph Documentation. https:
//docs.ceph.com/docs/master/rados/
operations/erasure-code/, 2019.

[12] Facebook. VAST Erasure Coding. https://vastdata.
com/blog/introducing-rack-scale-resilience,
2020.

[13] Daniel Ford, François Labelle, Florentina I Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie

Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2010.

[14] Apache Software Foundation. HDFS Erasure
Coding. https://hadoop.apache.org/docs/
r3.0.0/hadoop-project-dist/hadoop-hdfs/
HDFSErasureCoding.html, 2017.

[15] Gregory R Ganger, Bruce L Worthington, Robert Y Hou,
and Yale N Patt. Disk arrays: high-performance, high-
reliability storage subsystems. Computer, 27(3):30–36,
1994.

[16] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google
File System. In ACM SIGOPS Operating Systems Re-
view, volume 37, pages 29–43. ACM, 2003.

[17] Garth A Gibson. Redundant disk arrays: Reliable, par-
allel secondary storage. The MIT Press, 1992.

[18] Garth A Gibson, David F Nagle, Khalil Amiri, Jeff But-
ler, Fay W Chang, Howard Gobioff, Charles Hardin,
Erik Riedel, David Rochberg, and Jim Zelenka. A cost-
effective, high-bandwidth storage architecture. ACM
SIGOPS operating systems review, 32(5):92–103, 1998.

[19] Jim Gray, Bob Horst, and Mark Walker. Parity striping
of disk arrays: Low-cost reliable storage with acceptable
throughput. In VLDB, volume 90, pages 148–161, 1990.

[20] Kevin M Greenan, James S Plank, and Jay J Wylie.
Mean time to meaningless:{MTTDL}, markov mod-
els, and storage system reliability. In 2nd Workshop on
Hot Topics in Storage and File Systems (HotStorage 10),
2010.

[21] Rong Gu, Qianhao Dong, Haoyuan Li, Joseph Gonzalez,
Zhao Zhang, Shuai Wang, Yihua Huang, Scott Shenker,
Ion Stoica, and Patrick PC Lee. DFS-PERF: A scalable
and unified benchmarking framework for distributed
file systems. EECS Dept., Univ. California, Berkeley,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-2016-133,
2016.

[22] John H Hartman and John K Ousterhout. The Zebra
striped network file system. ACM Transactions on Com-
puter Systems (TOCS), 13(3):274–310, 1995.

[23] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick PC
Lee, Weichun Wang, and Wei Chen. Exploiting com-
bined locality for {Wide-Stripe} erasure coding in dis-
tributed storage. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), pages 233–248,
2021.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 911

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://www.usenix.org/node/194391
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://vastdata.com/blog/introducing-rack-scale-resilience
https://vastdata.com/blog/introducing-rack-scale-resilience
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

[24] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus,
Brad Calder, Parikshit Gopalan, Jin Li, Sergey Yekhanin,
et al. Erasure Coding in Windows Azure Storage. In
USENIX Annual Technical Conference (ATC), 2012.

[25] Saurabh Kadekodi, Francisco Maturana, Sanjith Ath-
lur, Arif Merchant, KV Rashmi, and Gregory R Ganger.
Tiger: Disk-Adaptive redundancy without placement re-
strictions. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages
413–429, 2022.

[26] Saurabh Kadekodi, Francisco Maturana, Suhas Ja-
yaram Subramanya, Juncheng Yang, KV Rashmi, and
Gregory Ganger. Pacemaker: Avoiding heart attacks in
storage clusters with disk-adaptive redundancy. In Pro-
ceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation, 2020.

[27] Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger.
Cluster storage systems gotta have HeART: improving
storage efficiency by exploiting disk-reliability hetero-
geneity. In USENIX File and Storage Technologies
(FAST), 2019.

[28] Saurabh Kadekodi, Shashwat Silas, David Clausen, and
Arif Merchant. Practical Design Considerations for
Wide Locally Recoverable Codes (LRCs). In 21st
USENIX Conference on File and Storage Technologies
(FAST 23), pages 1–16, 2023.

[29] Timothy Kim, Sanjith Athlur, Saurabh Kadekodi, Fran-
cisco Maturana, Dax Delvira, Arif Merchant, Gregory R
Ganger, and KV Rashmi. Morph: Efficient file-lifetime
redundancy management for cluster file systems. In
ACM Symposium on Operating Systems Principles
(SOSP), 2024.

[30] Spencer Kimball. roadmap: Blob storage.
https://github.com/cockroachdb/cockroach/
issues/243#issuecomment-73365370, 2015.

[31] Edward K Lee and Chandramohan A Thekkath. Petal:
Distributed virtual disks. In Proceedings of the seventh
international conference on Architectural support for
programming languages and operating systems, pages
84–92, 1996.

[32] Xiaolu Li, Zuoru Yang, Jinhong Li, Runhui Li,
Patrick PC Lee, Qun Huang, and Yuchong Hu. Re-
pair pipelining for erasure-coded storage: Algorithms
and evaluation. ACM Transactions on Storage (TOS),
17(2):1–29, 2021.

[33] Chris Mason. Seekwatcher. URL http://oss. oracle.
com/˜ mason/seekwatcher, 2008.

[34] Matt Massie, Bernard Li, Brad Nicholes, Vladimir Vuk-
san, Robert Alexander, Jeff Buchbinder, Frederiko Costa,
Alex Dean, Dave Josephsen, Peter Phaal, et al. Monitor-
ing with Ganglia: tracking dynamic host and application
metrics at scale. " O’Reilly Media, Inc.", 2012.

[35] Francisco Maturana and KV Rashmi. Convertible codes:
new class of codes for efficient conversion of coded data
in distributed storage. In 11th Innovations in Theoretical
Computer Science Conference (ITCS 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[36] Francisco Maturana and KV Rashmi. Convertible
codes: Enabling efficient conversion of coded data in
distributed storage. IEEE Transactions on Information
Theory, 68(7):4392–4407, 2022.

[37] Subrata Mitra, Rajesh Panta, Moo-Ryong Ra, and
Saurabh Bagchi. Partial-parallel-repair (ppr). In Pro-
ceedings of the Eleventh European Conference on Com-
puter Systems. ACM, 2016.

[38] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,
Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva
Shankar, Viswanath Sivakumar, Linpeng Tang, et al. f4:
Facebook’s warm blob storage system. In Proc. of
USENIX OSDI, pages 383–398, 2014.

[39] Michael Ovsiannikov, Silvius Rus, Damian Reeves, Paul
Sutter, Sriram Rao, and Jim Kelly. The quantcast file sys-
tem. Proceedings of the VLDB Endowment, 6(11):1092–
1101, 2013.

[40] Lluis Pamies-Juarez, Anwitaman Datta, and Frederique
Oggier. Rapidraid: Pipelined erasure codes for fast
data archival in distributed storage systems. In 2013
Proceedings IEEE INFOCOM, pages 1294–1302. IEEE,
2013.

[41] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul
Sikaria, Pavel Zakharov, Abhinav Sharma, Mike Shuey,
Richard Wareing, Monika Gangapuram, Guanglei Cao,
et al. Facebook’s tectonic filesystem: Efficiency from
exascale. In 19th USENIX Conference on File and
Storage Technologies (FAST 21), pages 217–231, 2021.

[42] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. A So-
lution to the Network Challenges of Data Recovery in
Erasure-coded Distributed Storage Systems: A Study on
the Facebook Warehouse Cluster. In USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage),
2013.

[43] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. A hitch-
hiker’s guide to fast and efficient data reconstruction in

912 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/cockroachdb/cockroach/issues/243#issuecomment-73365370
https://github.com/cockroachdb/cockroach/issues/243#issuecomment-73365370

erasure-coded data centers. ACM Special Interest Group
on Data Communication (SIGCOMM), 2014.

[44] AL Narasimha Reddy and Prithviraj Banerjee. A study
of parallel disk organizations. ACM SIGARCH Com-
puter Architecture News, 17(5):40–47, 1989.

[45] Howard Gobioff Sanjay Ghemawat and Shun-Tak Le-
ung. The google file system. pages 1–2, 2003.

[46] Frank Schmuck and Roger Haskin. {GPFS}: A {Shared-
Disk} file system for large computing clusters. In
Conference on file and storage technologies (FAST 02),
2002.

[47] Philip Schwan et al. Lustre: Building a file system for
1000-node clusters. In Proceedings of the 2003 Linux
symposium, volume 2003, pages 380–386, 2003.

[48] Seagate. The digitization of the world from
edge to core. https://www.seagate.com/
files/www-content/our-story/trends/files/
idc-seagate-dataage-whitepaper.pdf, 2018.

[49] Zhirong Shen, Yuhui Cai, Keyun Cheng, Patrick PC Lee,
Xiaolu Li, Yuchong Hu, and Jiwu Shu. A survey of the
past, present, and future of erasure coding for storage
systems. ACM Transactions on Storage, 21(1):1–39,
2025.

[50] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
Robert Chansler, et al. The Hadoop distributed file
system. In IEEE/NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST), 2010.

[51] Benjamin H Sigelman, Luiz André Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a large-
scale distributed systems tracing infrastructure. 2010.

[52] Chandramohan A Thekkath, Timothy Mann, and Ed-
ward K Lee. Frangipani: A scalable distributed file
system. In Proceedings of the sixteenth ACM sympo-
sium on Operating systems principles, pages 224–237,
1997.

[53] Eno Thereska, Michael Abd-El-Malek, Jay J Wylie,
Dushyanth Narayanan, and Gregory R. Ganger. In-
formed data distribution selection in a self-predicting
storage system. In IEEE International Conference on
Autonomic Computing (ICAC), 2006.

[54] Zizhong Wang, Haixia Wang, Airan Shao, and Dong-
sheng Wang. An adaptive erasure-coded storage scheme
with an efficient code-switching algorithm. In Proceed-
ings of the 49th International Conference on Parallel
Processing, pages 1–11, 2020.

[55] Hakim Weatherspoon and John D Kubiatowicz. Erasure
coding vs. replication: A quantitative comparison. In
International Workshop on Peer-to-Peer Systems, pages
328–337. Springer, 2002.

[56] Sage A Weil, Scott A Brandt, Ethan L Miller, and Carlos
Maltzahn. CRUSH: Controlled, scalable, decentralized
placement of replicated data. In ACM / IEEE High Per-
formance Computing Networking, Storage and Analysis
(SC), 2006.

[57] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A
Gibson, Brian Mueller, Jason Small, Jim Zelenka, and
Bin Zhou. Scalable performance of the Panasas parallel
file system. In FAST, volume 8, pages 1–17, 2008.

[58] Jay J Wylie, Mehmet Bakkaloglu, Vijay Panduran-
gan, Michael W Bigrigg, Semih Oguz, Ken Tew, Cory
Williams, Gregory R Ganger, and Pradeep K Khosla.
Selecting the right data distribution scheme for a surviv-
able storage system. Technical report, Technical Report
CMU-CS-01-120, Sch. of Computer Science, Carnegie
Mellon . . . , 2001.

[59] Qiaori Yao, Yuchong Hu, Liangfeng Cheng, Patrick PC
Lee, Dan Feng, Weichun Wang, and Wei Chen.
Stripemerge: Efficient wide-stripe generation for large-
scale erasure-coded storage. In 2021 IEEE 41st Inter-
national Conference on Distributed Computing Systems
(ICDCS), pages 483–493. IEEE, 2021.

[60] Mi Zhang, Qiuping Wang, Zhirong Shen, and Patrick PC
Lee. Pocache: Toward robust and configurable straggler
tolerance with parity-only caching. Journal of Parallel
and Distributed Computing, 167:157–172, 2022.

[61] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno
Thereska, and Dushyanth Narayanan. Does erasure cod-
ing have a role to play in my data center. Microsoft
research MSR-TR-2010, 52, 2010.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 913

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

Supplemental material for Okapi
The appendix is not peer-reviewed.

A Okapi can be easily adopted by other DFS

Most publicly-described distributed file systems, both open-
source and proprietary, that we are aware of couple data stripes
and redundancy groups. Okapi’s design for decoupling is
applicable to and beneficial for all distributed file systems that
stripe their files. We describe below the coupled design of
a few other contemporary distributed file systems, and show
that Okapi’s ideas can be adopted into their system.

Colossus File System (Google). The architecture of Colos-
sus File System (Google’s distributed file system) is similar to
that of HDFS. A k.r erasure-coded file stripe maintains r par-
ity chunks for k (group width) data chunks. The data within
the stripe is broken into small (typically 1MB) blocks which
are spread across the k (stripe width) disks in round robin
fashion [30]. The metadata of the file comprises of the list of
file segments, and a mapping of the file segments to chunk lo-
cations, which indicate where each of k+ r chunks are stored
in the storage cluster [45], just like in HDFS. Okapi’s design
can therefore be directly adopted into Colossus.

Panasas File System. Data is stored in objects that are
spread across Object Storage Devices (OSDs). Files are
striped across objects in a RAID-5 layout. Note that all RAID
layouts inherently couple stripes and groups. In RAID-5, one
parity chunk is maintained for three data chunks, and each

row of blocks is spread across three chunks. Similar to HDFS,
per-file metadata stores the storage map. The storage map
maintains the striping strategy and location information for
each object of the stripe. Okapi’s design can therefore be
directly adopted into Panasas.

Ceph. The reliability and layout of a file is dictated by EC
profiles in Ceph. A profile, among other things, is defined
by number of data chunks (k), number of parity chunks (m)
and the stripe unit size. The stripe units refers to the logically
contiguous pieces of data that get spread across the k data
chunks in a round-robin fashion.

Unlike HDFS, which stores the mapping of chunk to node
locations for each group, Ceph uses CRUSH [56], a near-
uniform hashing function, to compute the locations of the
chunks of an erasure-coded group. For an erasure-coded
stripe/group of a file, CRUSH uses the file inode number
and the index of the stripe (within a file) to compute k+m
unique node locations to store the chunks. Each chunk in a
group (for durability), as well each chunk in a stripe (for
optimal parallelism) must exist on a unique node. Since
stripes and groups are no longer the same in Okapi, the
algorithm must be modified to ensure node locations are
unique across both stripes as well as groups. A naive way
to achieve this is to use the existing CRUSH function to find
l = LCM(stripewidth,k +m) unique nodes. All chunks in
each of the l/stripe_width stripes and l/group_width nodes
will then be on unique nodes.

914 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Striping and grouping in cluster storage
	Why decouple striping from grouping?
	Okapi's Design for Decoupling
	Challenges: decoupling stripes and groups
	Reducing metadata by inferring groups
	Partial parities for efficient file append
	Caching to reduce degraded read cost
	Re-grouping to minimize EC transition IO
	Choosing stripe widths and group widths

	Okapi's Implementation
	Simple, efficient decoupling

	Evaluation
	Experimental setup
	Decoupling improves IO performance
	Decoupling reduces EC transition IO
	Quantifying decoupling overhead
	Choosing group and stripe widths

	Related Work
	Conclusion
	Acknowledgements
	Okapi can be easily adopted by other DFS

