
TABLEFS: Enhancing Metadata Efficiency in the Local
File System

Kai Ren, Garth Gibson

CMU-PDL-13-102
REVISED VERSION OF CMU-PDL-12-110

January 2013

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Acknowledgements: This research is supported in part by The Gordon and Betty Moore Foundation, NSF under award, SCI-0430781 and
CCF-1019104, Qatar National Research Foundation 09-1116-1-172, DOE/Los Alamos National Laboratory, under contract number DE-AC52-
06NA25396/161465-1, by Intel as part of the Intel Science and Technology Center for Cloud Computing (ISTC-CC), by gifts from Yahoo!, APC,
EMC, Facebook, Fusion-IO, Google, Hewlett-Packard, Hitachi, Huawei, IBM, Intel, Microsoft, NEC, NetApp, Oracle, Panasas, Riverbed, Sam-
sung, Seagate, STEC, Symantec, and VMware. We thank the member companies of the PDL Consortium for their interest, insights, feedback, and
support.

Keywords: TableFS, File System, File System Metadata, NoSQL Database, LSM Tree

Abstract

Abstract
File systems that manage magnetic disks have long recognized the importance of sequential allocation and large transfer sizes
for file data. Fast random access has dominated metadata lookup data structures with increasing use of B-trees on-disk. Yet our
experiments with workloads dominated by metadata and small file access indicate that even sophisticated local disk file systems
like Ext4, XFS and Btrfs leave a lot of opportunity for performance improvement in workloads dominated by metadata and small
files.
In this paper we present a stacked file system, TABLEFS, which uses another local file system as an object store. TABLEFS
organizes all metadata into a single sparse table backed on disk using a Log-Structured Merge (LSM) tree, LevelDB in our exper-
iments. By stacking, TABLEFS asks only for efficient large file allocation and access from the local file system. By using an LSM
tree, TABLEFS ensures metadata is written to disk in large, non-overwrite, sorted and indexed logs. Even an inefficient FUSE
based user level implementation of TABLEFS can perform comparably to Ext4, XFS and Btrfs on data-intensive benchmarks,
and can outperform them by 50% to as much as 1000% for metadata-intensive workloads. Such promising performance results
from TABLEFS suggest that local disk file systems can be significantly improved by more aggressive aggregation and batching of
metadata updates.

1 Introduction

In the last decade parallel and Internet service file systems have demonstrated effective scaling for high
bandwidth, large file transfers [13, 17, 26, 39, 40, 49]. The same, however, is not true for workloads that are
dominated by metadata and tiny file access [35, 50]. Instead there has emerged a class of scalable small-data
storage systems, commonly called key-value stores, that emphasize simple (NoSQL) interfaces and large
in-memory caches [2, 24, 34].

Some of these key-value stores feature high rates of change and efficient out-of-memory Log-structured
Merge (LSM) tree structures [8, 23, 33]. An LSM tree can provide fast random updates, inserts and deletes
without scarificing lookup performance [5]. We believe that file systems should adopt LSM tree techniques
used by modern key-value stores to represent metadata and tiny files, because LSM trees aggressively ag-
gregate metadata. Moreover, today’s key-value store implementations are “thin” enough to provide the
performance levels required by file systems.

In this paper we present experiments in the most mature and restrictive of environments: a local file
system managing one magnetic hard disk. We used a LevelDB key-value store [23] to implement TABLEFS,
our POSIX-compliant stacked file system, which represents metadata and tiny files as key-value pairs. Our
results show that for workloads dominated by metadata and tiny files, it is possible to improve the perfor-
mance of the most modern local file systems in Linux by as much as an order of magnitude. Our demon-
stration is more compelling because it begins disadvantaged: we use an interposed file system layer [1, 52]
that represents metadata and tiny files in a LevelDB store whose LSM tree and log segments are stored in
the same local file systems we compete with.

2 Background

Even in the era of big data, most things in many file systems are small [10, 29]. Inevitably, scalable systems
should expect the numbers of small files to soon achieve and exceed billions, a known challenge for both the
largest [35] and most local file systems [50]. In this section we review implementation details of the systems
employed in our experiments: Ext4, XFS, Btrfs and LevelDB.

2.1 Local File System Structures

Ext4[27] is the fourth generation of Linux ext file systems, and, of the three we study, the most like tradi-
tional UNIX file systems. Ext4 divides the disk into block groups, similar to cylinder groups in traditional
UNIX, and stores in each block group a copy of the superblock, a block group descriptor, a bitmap describ-
ing free data blocks, a table of inodes and a bitmap describing free inodes, in addition to the actual data
blocks. Inodes contain a file’s attributes (such as the file’s inode number, ownership, access mode, file size
and timestamps) and four extent pointers for data extents or a tree of data extents. The inode of a directory
contains links to a HTree (similar to B-Tree) that can be one or two levels deep, based on a 32 bit hash of
the directory entry’s name. By default only changes to metadata are journaled for durability, and Ext4 asyn-
chronously commits its journal to disk every five seconds. When committing pending data and metadata,
data blocks are written to disk before the associated metadata is written to disk.

XFS[48], originally developed by SGI, aggressively and pervasively uses B+ trees to manage all file
structures: free space maps, file extent maps, directory entry indices and dynamically allocated inodes.
Because all file sizes, disk addresses and inode numbers are 64 bits in XFS, index structures can be large.
To reduce the size of these structures XFS partitions the disk into allocation groups, clusters allocation in
an allocation group and uses allocation group relative pointers. Free extents are represented in two B+
trees: one indexed by the starting address of the extent and the other indexed by the length of the extent, to
enable efficient search for an appropriately sized extent. Inodes contain either a direct extent map, or a B+

1

tree of extent maps. Each allocation group has a B+ tree indexed by inode number. Inodes for directories
have a B+ tree for directory entries, indexed by a 32 bit hash of the entry’s file name. XFS also journals
metadata for durability, committing the journal asynchronously when a log buffer (256 KB by default) fills
or synchronously on request.

Btrfs[22, 37] is the newest and most sophisticated local file system in our comparison set. Inspired by
Rodeh’s copy-on-write B-tree[36], as well as features of XFS, NetApp’s WAFL and Sun’s ZFS[3, 18], Btrfs
copies any B-tree node to an unallocated location when it is modified. Provided the modified nodes can be
allocated contiguously, B-tree update writing can be highly sequential; however more data must be written
than is minimally needed (write amplification). The other significant feature of Btrfs is its collocation of
different metadata components in the same B-tree, called the FS tree. The FS tree is indexed by (inode num-
ber, type, offset) and it contains inodes, directory entries and file extent maps, distinguished by a type field:
INODE ITEM for inodes, DIR ITEM and DIR INDEX for directory entries, and EXTENT DATA REF for
file extent maps. Directory entries are stored twice so that they can be ordered differently: in one the offset
field of the FS tree index (for the directory’s inode) is the hash of the entry’s name, for fast single entry
lookup, and in the other the offset field is the child file’s inode number. The latter allows a range scan of
the FS tree to list the inodes of child files and accelerate user operations such as ls+ stat. Btrfs, by default,
delays writes for 30 seconds to increase disk efficiency, and metadata and data are in the same delay queue.

2.2 LevelDB and its LSM Tree

Inspired by a simpler structure in BigTable[8], LevelDB [23] is an open-source key-value storage library
that features an Log-Structured Merge (LSM) tree [33] for on-disk storage. It provides simple APIs such
as GET, PUT, DELETE and SCAN (an iterator). Unlike BigTable, not even single row transactions are
supported in LevelDB. Because TABLEFS uses LevelDB, we will review its design in greater detail in this
section.

In a simple understanding of an LSM tree, an memory buffer cache delays writing new and changed
entries until it has a significant amount of changes to record on disk. Delay writes are made more durable
by redundantly recording new and changed entries in a write-ahead log, which is pushed to disk periodically
and asynchronously by default.

In LevelDB, by default, a set of changes are spilled to disk when the total size of modified entries
exceeds 4 MB. When a spill is triggered, called a minor compaction, the changed entries are sorted, indexed
and written to disk in a format known as SSTable[8]. These entries may then be discarded by the memory
buffer and can be reloaded by searching each SSTable on disk, possibly stopping when the first match occurs
if the SSTables are searched from most recent to oldest. The number of SSTables that need to be searched
can be reduced by maintaining a Bloom filter[7] on each, but with increasing numbers of records the disk
access cost of finding a record not in memory increases. Scan operations in LevelDB are used to find
neighbor entries, or to iterate through all key-value pairs within a range. When performing a scan operation,
LevelDB first searches each SSTable to place a cursor; it then increments cursors in the multiple SSTables
and merges key-value pairs in sorted order. Major compaction, or simply “compaction”, is the process of
combining multiple SSTables into a smaller number of SSTables by merge sort. Compaction is similar to
online defragmentation in traditional file systems and cleaning in LFS [38].

As illustrated in Figure 1, LevelDB extends this simple approach to further reduce read costs by divid-
ing SSTables into sets, or levels. Levels are numbered starting from 0, and levels with a smaller number
are referenced as “lower” levels. The 0th level of SSTables follows a simple formulation: each SSTable
in this level may contain entries with any key/value, based on what was in memory at the time of its spill.
LevelDB’s SSTables in level L > 0 are the results of compacting SSTables from level L or L− 1. In these
higher levels, LevelDB maintains the following invariant: the key range spanning each SSTable is disjoint
from the key range of all other SSTables at that level and each SSTable is limited in size (2MB by default).

2

L0

L1

L2

Disk

RAM

…..

BF #SSTables <4 BF

BF BF BF <10 MB

<102 MB BF BF

BF

Compaction

….

Mem-Table

Dump

BF = Bloom Filter

Figure 1: LevelDB represents data on disk in multiple SSTables that store sorted key-value pairs. SSTables are grouped
into different levels with lower-numbered levels containing more recently inserted key-value pairs. Finding a specific
pair on disk may search up to all SSTables in level 0 and at most one in each higher-numbered level. Compaction is
the process of combining SSTables by merge sort into higher-numbered levels.

Therefore querying for an entry in the higher levels only need to read at most one SSTable in each level.
LevelDB also sizes each level differentially: all SSTables have the same maximum size and the sum of the
sizes of all SSTables at level L will not exceed 10L MB. This ensures that the number of levels, that is, the
maximum number of SSTables that need to be searched in the higher levels, grows logarithmically with
increasing numbers of entries.

When LevelDB decides to compact an SSTable at level L, it picks one, finds all other SSTables at the
same level and level L+ 1 that have an overlapping key range, and then merge sorts all of these SSTables,
producing a set of SSTables with disjoint ranges at the next higher level. If an SSTable at level 0 is selected,
it is not unlikely that many or all other SSTables at level 0 will also be compacted, and many SSTables at
level 1 may be included. But at higher levels most compactions will involve a smaller number of SSTables.
To select when and what to compact there is a weight associated with compacting each SSTable, and the
number of SSTables at level 0 is held in check (by default compaction will be triggered if there are more than
four SSTables at level 0). There are also counts associated with SSTables that are searched when looking
for an entry, and hotter SSTables will be compacted sooner. Finally, only one compaction runs at a time.

3 TABLEFS

As shown in Figure 2(a), TABLEFS exploits the FUSE user level file system infrastructure to interpose on
top of the local file system. TABLEFS represents directories, inodes and small files in one all encompassing
table, and only writes to the local disk large objects such as write-ahead logs, SSTables, and files whose size
is large.

3.1 Local File System as Object Store

There is no explicit space management in TABLEFS. Instead, it uses the local file system for allocation and
storage of objects. Because TABLEFS packs directories, inodes and small files into a LevelDB table, and
LevelDB stores sorted logs (SSTables) of about 2MB each, the local file system sees many fewer, larger
objects. We use Ext4 as the object store for TABLEFS in all experiments.

Files larger than T bytes are stored directly in the object store named according to their inode number.
The object store uses a two-level directory tree in the local file system, storing a file with inode number I as
“/LargeFileStore/J/I” where J = I ÷10000. This is to circumvent any scalability limits on directory entries
in the underlying local file systems. In TABLEFS today, T , the threshold for blobbing a file is 4KB, which

3

FUSE lib

Large File Store

Metadata Store

VFS

FUSE Kernel Module

Benchmark
Process

TableFS

Kernel

User Space

User Space

Kernel VFS

Local File System

(a)

(b)

LevelDB

Benchmark
Process

Local File System

Figure 2: (a) The architecture of TABLEFS. A FUSE kernel module redirects file system calls from a benchmark
process to TABLEFS, and TABLEFS stores objects into either LevelDB or a large file store. (b) When we benchmark
a local file system, there is no FUSE overhead to be paid.

is the median size of files in desktop workloads [29], although others have suggested T be at least 256KB
and perhaps as large as 1MB [42].

3.2 Table Schema

TABLEFS’s metadata store aggregates directory entries, inode attributes and small files into one LevelDB
table with a row for each file. To link together the hierarchical structure of the user’s namespace, the rows of
the table are ordered by a 128-bit key consisting of the 64-bit inode number of a file’s parent directory and
a 64-bit hash value of its filename string (final component of its pathname). The value of a row contains the
file’s full name and inode attributes, such as inode number, ownership, access mode, file size and timestamps
(struct stat in Linux). For small files, the file’s row also contains the file’s data.

Figure 3 shows an example of storing a sample file system’s metadata into one LevelDB table.

Key Value
<0,hash(home)> 1, “home”, struct stat

<1,hash(foo)> 2, “foo”, struct stat

<1,hash(bar)> 3, “bar”, struct stat

<2,hash(apple)> 4, “apple”, hard link

<2,hash(book)> 5, “book”, struct stat,
inline small file(<4KB)

<3,hash(pear)> 4, “pear”, hard link

<4,null> 4, struct stat, large file
pointer (> 4KB)

Le
xi

co
gr

ap
hi

c
or

de
r

bar

pear
book

/

home

foo

apple

0

32

1

45

Figure 3: An example illustrates table schema used by TABLEFS’s metadata store. The file with inode number 4 has
two hard links, one called “apple” from directory foo and the other called “pear” from directory bar.

All entries in the same directory have rows that share the same first 64 bits of their table key. For
readdir operations, once the inode number of the target directory has been retrieved, a scan sequentially
lists all entries having the directory’s inode number as the first 64 bits of their table key. To resolve a

4

single pathname, TABLEFS starts searching from the root inode, which has a well-known inode number (0).
Traversing the user’s directory tree involves constructing a search key by concatenating the inode number
of current directory with the hash of next component name in the pathname. Unlike Btrfs, TABLEFS does
not need the second version of each directory entry because the entire attributes are returned in the readdir
scan.

3.3 Hard Links

Hard links, as usual, are a special case because two or more rows must have the same inode attributes and
data. Whenever TABLEFS creates the second hard link to a file, it creates a separate row for the file itself,
with a null name, and its own inode number as its parent’s inode number in the row key. As illustrated in
Figure 3, creating a hard link also modifies the directory entry such that each row naming the file has an
attribute indicating the directory entry is a hard link to the file object’s inode row.

3.4 Scan Operation Optimization

TABLEFS utilizes the scan operation provided by LevelDB to implement readdir() system call. The scan
operation in LevelDB is designed to support iteration over arbitrary key ranges, which may require searching
SSTables at each level. In such a case, Bloom filters cannot help to reduce the number of SSTables to search.
However, in TABLEFS, readdir() only scans keys sharing the common prefix — the inode number of the
searched directory. For each SSTable, an additional Bloom filter can be maintained, to keep track of all
inode numbers that appear as the first 64 bit of row keys in the SSTable. Before starting an iterator in an
SSTable for readdir(), TABLEFS can first check its Bloom filter to find out whether it contains any of the
desired directory entries. Therefore, unnecessary iterations over SSTables that do not contain any of the
requested directory entries can be avoided.

3.5 Inode Number Allocation

TABLEFS uses a global counter for allocating inode numbers. The counter increments when creating a new
file or a new directory. Since we use 64-bit inode numbers, it will not soon be necessary to recycle the
inode number of deleted entries. Coping with operating systems that use 32 bit inode numbers may require
frequent inode number recycling, a problem beyond the scope of this paper and addressed by many file
systems.

3.6 Locking and Consistency

LevelDB provides atomic insertion of a batch of writes but does not support atomic row read-modify-write
operations. The atomic batch write guarantees that a sequence of updates to the database are applied in
order, and committed to the write-ahead log atomically. Thus the rename operation can be implemented
as a batch of two operations: insert the new directory entry and delete the stale entry. But for operations
like chmod and utime, since all of an inode’s attributes are stored in a single key-value pair, TABLEFS
must read-modify-write attributes atomically. We implemented a light-weight locking mechanism in the
TABLEFS core layer to ensure correctness under concurrent access.

3.7 Journaling

TABLEFS relies on LevelDB and the local file system to achieve journaling. LevelDB has its own write-
ahead log that journals all updates to the table. LevelDB can be set to commit the log to disk synchronously

5

or asynchronously. To achieve a consistency guarantee similar to “ordered mode” in Ext4, TABLEFS forces
LevelDB to commit the write-ahead log to disk periodically (by default it is committed every 5 seconds).

3.8 TABLEFS in the Kernel

A kernel-native TABLEFS file system is a stacked file system, similar to eCryptfs [14, 52], treating a second
local file system as an object store, as shown in Figure 4(a). An implementation of a Log-Structured Merge
(LSM) tree [33] used for storing TABLEFS in the associated object store, such as LevelDB [23], is likely
to have an asynchronous compaction thread that is more conveniently executed at user level in a TABLEFS
daemon, as illustrated in Figure 4(b).

For the experiments in this paper, we bracket the performance of a kernel-native TABLEFS (Figure
4(a)), between a FUSE-based user-level TABLEFS (Figure 4(b)) with no TABLEFS function in the ker-
nel and all of TABLEFS in the user level FUSE daemon) and an application-embedded TABLEFS library,
illustrated in Figure 4(c).

VFS

User Space

(a)

Application

Kernel
TableFS

Disk

(b)

FUSE Object Store
(e.g. Ext4)

TableFS

Disk
Object Store
(e.g. Ext4)

(c)

Application

TableFS

Disk

Object Store
(e.g. Ext4)

Application

Figure 4: Three different implementations of TABLEFS: (a) the kernel-native TABLEFS, (b) the FUSE version of
TABLEFS, and (c) the library version of TABLEFS. In the following evaluation section, (b) and (c) are presented to
bracket the performance of (a), which was not implemented.

TABLEFS entirely at user-level in a FUSE daemon is unfairly slow because of the excess kernel cross-
ings and scheduling delays experienced by FUSE file systems [6, 46]. TABLEFS embedded entirely in the
benchmark application as a library is not sharable, and unrealistically fast because of the infrequency of
system calls. We approximate the performance of a kernel-native TABLEFS using the library version and
preceding each reference to the TABLEFS library with a write(“/dev/null”, N bytes) to account for the sys-
tem call and data transfer overhead. N is chosen to match the size of data passed through each system call.
More details on these models will be discussed in Section 4.3.

4 Evaluation

4.1 Evaluation System

We evaluate our TABLEFS prototype on Linux desktop computers equipped as follows:

6

Linux Ubuntu 12.10, Kernel 3.6.6 64-bit version
CPU AMD Opteron Processor 242 Dual Core
DRAM 16GB DDR SDRAM
Hard Disk Western Digital WD2001FASS-00U0B0

SATA, 7200rpm, 2TB
Random Seeks 100 seeks/sec peak
Sequential Reads 137.6 MB/sec peak
Sequential Writes 135.4 MB/sec peak

We compare TABLEFS with Linux’s most sophisticated local file systems: Ext4, XFS, and Btrfs. Ext4
is mounted with “ordered” journaling to force all data to be flushed out to disk before its metadata is commit-
ted to disk. By default, Ext4’s journal is asynchronously committed to disks every 5 seconds. XFS and Btrfs
use similar policies to asynchronously update journals. Btrfs, by default, duplicates metadata and calculates
checksums for data and metadata. We disable both features (unavailable in the other file systems) when
benchmarking Btrfs to avoid penalizing it. Since the tested filesystems have different inode sizes (Ext4 and
XFS use 256 bytes and Btrfs uses 136 bytes), we pessimistically penalize TABLEFS by padding its inode
attributes to 256 bytes. This slows down TABLEFS doing metadata-intensive workloads significantly, but it
still performs quite well.

4.2 Data-Intensive Macrobenchmark

We run two sets of macrobenchmarks on the FUSE version of TABLEFS, which provides a full featured,
transparent application service. Instead of using a metadata-intensive workload, emphasized in the previous
and later sections of this paper, we emphasize data-intensive work in this section. Our goal is to demonstrate
that TABLEFS is capable of reasonable performance for the traditional workloads that are often used to test
local file systems.

Kernel build is a macrobenchmark that uses a Linux kernel compilation and related operations to
compare TABLEFS’s performance to the other tested file systems. In the kernel build test, we use the Linux
3.0.1 source tree (whose compressed tar archive is about 73 MB in size). In this test, we run four operations
in this order:

• untar: Untar the source tarball;

• grep: Grep “nonexistent pattern” over all of the source tree;

• make: Run make inside the source tree;

• gzip: Gzip the entire source tree.

After compilation, the source tree contains 45,567 files with a total size of 551MB.
Table 1 shows the average runtime of three runs of these four macro-benchmarks using Ext4, XFS,

Btrfs and TABLEFS-FUSE. Summing the operations, TABLEFS-FUSE is about 20% slower, but it is also
paying significant overhead caused by moving all data through the user-level FUSE daemon and the kernel
twice, instead of only through the kernel once, as illustrated in Figure 4. Table 1 also shows that the
degraded performance of Ext4, XFS, and Btrfs when they are accessed through FUSE is about the same as
TABLEFS-FUSE.

Postmark was designed to measure the performance of a file system used for e-mail, and web based
services [20]. It creates a large number of small randomly-sized files between 512B and 4KB, performs a
specified number of transactions on them, and then deletes all of them. Each transaction consists of two sub-
transactions, with one being a create or delete and the other being a read or append. The configuration used

7

for these experiments consists of two million transactions on one million files, and the biases for transaction
types are equal. The experiments were run against TABLEFS-FUSE with the available memory set to be
1400 MB, too small to fit the entire datasets in memory.

78315	
72702	

45206	 43093	 41252	 40391	 35835	 31038	

0	

20000	

40000	

60000	

80000	

100000	

Total	 Trasac4on	 Time	
Ti
m
e	
(s
ec
on

ds
)	

Ext4	 Btrfs	 XFS	 TableFS-‐FUSE	

Figure 5: The elapsed time for both the entire run of Postmark and the transactions phase of Postmark for the four
tested file systems.

3831	

13	 13	

186	

10416	

23	 23	

496	

5405	

24	 24	

1480	 1278	

32	 32	

249	

1	

10	

100	

1000	

10000	

100000	

Crea0on	 Read	 Append	 Dele0on	

Th
ro
ug
hp

ut
	 (o

ps
/s
ec
)	

Ext4	 Btrfs	 XFS	 TableFS-‐FUSE	

Figure 6: Average throughput of each type of operation in Postmark benchmark.

Figure 5 shows the Postmark results for the four tested file systems. TABLEFS outperforms other tested
file systems by at least 23% during the transctions phase. Figure 6 gives the average throughput of each type
of operations individually. TABLEFS runs faster than the other tested filesystems for read and append, and
runs slower for the creation and deletion. In LevelDB, deletion is implemented by inserting entries with a
deletion flag. The actual deletion is delayed until compaction procedure reclaims the deleted entries. Such
an implementation is not as efficient as XFS and Ext4 for Postmark workloads, because XFS and Ext4 can
reclaim deleted inodes whose inode numbers are continuous in a range more efficiently.

Untar Grep Make Gzip
Ext4 45 11 10132 1001
Btrfs 44 12 10187 996
XFS 44 11 10149 999
TABLEFS-FUSE 53 16 12083 1062
Ext4+FUSE 53 13 12107 1075
Btrfs+FUSE 52 14 12194 1066
XFS+FUSE 52 13 12163 1068

Table 1: The elapsed time in seconds for unpacking, searching building and compressing the Linux 3.0.1 kernel
package.

8

4.3 TABLEFS-FUSE Overhead Analysis

To understand the overhead of FUSE in TABLEFS-FUSE, and estimate the performance of an in-kernel
TABLEFS, we ran a micro-benchmark against TABLEFS-FUSE and TABLEFS-Library ((b) and (c) in Figure
4). This micro-benchmark creates one million zero-length files in one directory starting with an empty file
system. The amount of memory available to the evaluation system is 1400 MB, almost enough to fit the
benchmark in memory.

Figure 7 shows the total runtime of the experiment. TABLEFS-FUSE is about 3 times slower than
TABLEFS-Libary.

120	 120	

40	

0	

50	

100	

150	

Ti
m
e	
(s
ec
on

ds
)	

TableFS-‐FUSE	 TableFS-‐Sleep	 TableFS-‐Library	

Figure 7: The elapsed time for creating 1M zero-length files on three versions of TABLEFS (See Figure 4)
.

Figure 8 shows the total disk traffic gathered from the Linux proc file system (/proc/diskstats) during
the test. Relative to TABLEFS-Library, TABLEFS-FUSE writes almost as twice as many bytes to the disk,
and reads almost 100 times as much. This additional disk traffic results from two sources: 1) under a slower
insertion rate, LevelDB tends to compact more often; and 2) the FUSE framework populates the kernel’s
cache with its own version of inodes, competing with the local file system for cache memory.

3495	 3530	
1504	

492	 46	 29	

12299	 12349	

5122	
7276	

724	 703	
0	

2000	
4000	
6000	
8000	
10000	
12000	
14000	

TableFS-‐FUSE	 TableFS-‐Sleep	 TableFS-‐Library	

Di
sk
	 T
ra
ffi
c	
in
	 M

B	
an

d	
O
ps
	

DiskWriteBytes(MB)	 DiskReadBytes(MB)	

DiskWriteRequests	 DiskReadRequests	

Figure 8: Total disk traffic associated with Figure 7

To illustrate the first point, we show LevelDB’s compaction process during this test in Figure 9. Figure
9 shows the total size of SSTables in each Level over time. The compaction process will move SSTables
from one level to the next level. For each compaction in Level 0, LevelDB will compact all SSTables with
overlapping ranges (which in this benchmark will be almost all SSTables in level 0 and 1). At the end of
a compaction, the next compaction will repeat similar work, except the number of level 0 SSTables will be
proportional to the data insertion rate. When the insertion rate is slower (Figure 9(a)), compaction in Level 0
finds fewer overlapping SSTables than TABLEFS-Library (Figure 9(b)) in each compaction. In Figure 9(b),
the level 0 size (blue line) exceeds 20MB for much of the test, while in 9(a) it never exceeds 20MB after the
first compaction. Therefore, LevelDB does more compactions to integrate the same arriving log of changes
when insertion is slower.

To negate the different compaction work, we deliberately slow down TABLEFS-Library to run at the
same speed as TABLEFS-FUSE by adding sleep 80ms every 1000 operations (80ms was empirically derived

9

to match the run time of TABLEFS-FUSE). This model of TABLEFS is called TABLEFS-Sleep and is shown
in Figure 8 and 9 (c). TABLEFS-Sleep causes almost the same pattern of compactions as does TABLEFS-
FUSE and induces about the same write traffic (Figure 8). But unlike TABLEFS-FUSE, TABLEFS-Sleep
can use more of the kernel page cache to store SSTables than TABLEFS-FUSE. Thus, as shown in Figure 8,
TABLEFS-Sleep writes the same amount of data as TABLEFS-FUSE but does much less disk reading.

To estimate TABLEFS performance without FUSE overhead, we use TABLEFS-Library to avoid double
caching and perform a write(“/dev/null”, N bytes) on every TABLEFS invocation to model the kernel’s
system call and argument data transfer overhead. This model is called TABLEFS-Predict and is used in the
following sections to predict metadata efficiency of a kernel TABLEFS.

0 20 40 60 80 100 120
Time (Seconds)

0

20

40

60

80

100

120

140

160

180

T
o
ta

l
S
iz

e
 o

f
S
S
T
a
b
le

s
(M

B
)

Level-0

Level-1

Level-2

Level-3

(a) TABLEFS-FUSE

0 5 10 15 20 25 30 35 40
Time (Seconds)

0

20

40

60

80

100

120

140

160

180

T
o
ta

l
S
iz

e
 o

f
S
S
T
a
b
le

s
(M

B
)

Level-0

Level-1

Level-2

Level-3

(b) TABLEFS-Library

0 20 40 60 80 100 120
Time (Seconds)

0

20

40

60

80

100

120

140

160

180

T
o
ta

l
S
iz

e
 o

f
S
S
T
a
b
le

s
(M

B
)

Level-0

Level-1

Level-2

Level-3

(c) TABLEFS-Sleep

Figure 9: Changes of total size of SSTables in each level over time during the creation of 1M zero-length files for three
TABLEFS models. TABLEFS-Sleep illustrates similar compaction behavior as does TABLEFS-FUSE.

4.4 Metadata-Intensive Microbenchmark

Metadata-only Benchmark

In this section, we run four micro-benchmarks of the efficiency of pure metadata operations. Each micro-
benchmark consists of two phases: a) create and b) test. For all four tests, the create phase is the same:

• *a) create: In “create”, the benchmark application generates directories in depth first order, and then
creates one million files in the appropriate parent directories in a random order, according to a realistic
or synthesized namespace.

10

The test phase in the benchmark are:

• 1b) null: In test 1, the test phase is null because create is what we are measuring.

• 2b) query: This workload issues one million read or write queries to random (uniform) files or direc-
tories. A read query calls stat on the file, and a write query randomly does either a chmod or utime to
update the mode or the timestamp attributes.

• 3b) rename: This workload issues a half million rename operations to random (uniform) files, moving
the file to another randomly chosen directory.

• 4b) delete: This workload issues a half million delete operations to randomly chosen files.

The captured file system namespace used in the experiment was taken from one author’s personal
Ubuntu desktop. There were 172,252 directories, each with 11 files on average, and the average depth of
the namespace is 8 directories. We also used the Impressions tool [4] to generate a ”standard namespace”.
This synthetic namespace yields similar results, so its data is omitted from this paper. Between the create
and test phase of each run, we umount and re-mount local filesystems to clear kernel caches. To test out-of-
RAM performance, we limit the machine’s available memory to 350MB which does not fit the entire test in
memory. All tests were run for three times, and the coefficient of variation is less than 1%.

Figure 10 shows the test results averaged over three runs. The create phase of all tests had the same
performance so we show it only once. For the other tests, we show only the second, test phase. Both
TABLEFS-Predict and TABLEFS-FUSE runs are almost 2 to 3 times faster than the other local file systems
in all tests.

65	
23	 31	 26	

156	

53	 29	 46	

191	

49	 33	 47	

469	

85	 80	 105	

541	

91	 99	 116	

0	

100	

200	

300	

400	

500	

600	

Create	 Query	 	 	 	 	 	 	
(50%R+50%W)	

Rename	 Delete	

Th
ro
ug
hp

ut
	 (o

ps
/s
ec
on

d)
	

Workloads	

Ext4	 Btrfs	 XFS	 TableFS-‐FUSE	 TableFS-‐Predict	

Figure 10: Average throughput during four different workloads for five tested systems.

Figure 11 shows the total number of disk read and write requests during the query workload, the test
in which TABLEFS has the least advantage. Both versions of TABLEFS issue many fewer disk writes,
effectively aggregating changes into larger sequential writes. For read requests, because of bloom filtering
and in-memory indexing, TABLEFS issues fewer read requests. Therefore TABLEFS’s total number of disk
requests is smaller than the other tested file systems.

Scan Queries

In addition to point queries such as stat, chmod and utime, range queries such as readdir are important meta-
data operations. To test the performance of readdir, we modify the micro-benchmark to perform multiple
readdir operations in the generated directory tree. To show the tradeoffs involved in embedding small files,
we create 1KB files (with random data) instead of zero byte files. For the test phase, we use the following
three operations:

11

71	

93	

284	

456	

512	

2,096	

2,122	

3,039	

2,817	

8,725	

0	 5000	 10000	

TableFS-‐Predict	

TableFS-‐FUSE	

Btrfs	

XFS	

Ext4	

Number	 of	 Disk	 Requests	 (Thousands)	

Disk	 Read	 Disk	 Write	

Figure 11: Total number of disk read/write requests during 50%Read+50%Write query workload for five tested
systems.

• 5b) readdir: The benchmark application performs readdir() on 100,000 randomly picked directories.

• 6b) readdir+stat: The benchmark application performs readdir() on 100,000 randomly picked direc-
tories, and for each returned directory entry, performs a stat operation. This simulates “ls -l”.

• 7b) readdir+read: Similar to readdir+stat, but for each returned directory entry, it reads the entire
file (if returned entry is a file) instead of stat.

1050	

2230	
3390	 2965	

5970	
6820	

1600	

3320	

8120	

1830	 2140	 2470	

1190	 1640	
1950	

0	

2000	

4000	

6000	

8000	

10000	

readdir	 readdir+stat	 readdir+read	

To
ta
l	 R

un
*m

e	
(S
ec
on

ds
)	

Workloads	

Ext4	 Btrfs	 XFS	 TableFS-‐FUSE	 TableFS-‐Predict	

Figure 12: Total run-time of three readdir workloads for five tested file systems.

Figure 12 shows the total time needed to complete each readdir workload (the average of three runs).
In the pure readdir workload, TABLEFS-Predict is slower than Ext4 because of read amplification, that is,
for each readdir operation, TABLEFS fetches directory entries along with unnecessary inode attributes and
file data. However, in the other two workloads when at least one of the attributes or file data is needed,
TABLEFS is faster than Ext4, XFS, and Btrfs, since many random disk accesses are avoided by embedding
inodes and small files.

Benchmark with Larger Directories

Because the scalability of small files is of topical interest [50], we modified the zero-byte file create phase
to create 100 million files (a number of files rarely seen in the local file system today). In this benchmark,
we allowed the memory available to the evaluation system to be the full 16GB of physical memory.

Figure 13 shows a timeline of the creation rate for four file systems. In the beginning of this test, there
is a throughput spike that is caused by everything fitting in the cache. Later in the test, the creation rate
of all tested file systems slows down because the non-existence test in each create is applied to ever larger

12

on-disk data structures. Btrfs suffers the most serious drop, slowing down to 100 operations per second at
some points.

TABLEFS-FUSE maintains a more steady performance with an average speed of more than 2,200
operations per second and is 10 times faster than all other tested file systems.

All tested file systems have throughput fluctuations during the test and the behavior of TABLEFS’s
throughput is the smoothest than others. This kind of fluctuation might be caused by on disk data structure
maintenance. In TABLEFS, this behavior is caused by compactions in LevelDB, in which SSTables are
merged and sequentially written back to disk.

0 100 200 300 400 500 600
Time (Minutes)

102

103

104

105

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

TableFS-FUSE

Btrfs

Ext4

XFS

Figure 13: Throughput during the first 650 minutes while creating 100 million zero-length files. We only graph the
time until TABLEFS-FUSE finished inserting all 100 million zero-length files, because the other file systems were much
slower. TABLEFS-FUSE is almost 10X faster than the other tested file systems in the later stage of this experiment.
The data is sampled in every 10 seconds and smoothed over 100 seconds. The veritical axis is shown on a log scale.

Solid State Drive Results

TABLEFS reduces disk seeks, so you might expect it to have less benefit on solid state drives, and you’d be
right. We applied the “create-query” microbenchmark to a 120GB SATA II 2.5in Intel 520 Solid State Drive
(SSD). Random read throughput is 15,000 IO/s at peak, and random write throughput peaks at 3,500 IO/s.
Sequential read throughput peaks at 245MB/sec, and sequential write throughput peaks at 107MB/sec. Btrfs
has a “ssd” optimization mount option which we enabled.

Figure 14 shows performance averaged over three runs of the create and query phases. In comparison
to Figure 10, all results are about 10 times faster. Although TABLEFS is not the fastest, although TABLEFS-
Predict is comparable to the fastest. Figure 15 shows the total number of disk requests and disk bytes moved
during the query phase. Although TABLEFS achieves fewer disk writes, it reads much more data from SSD
than XFS and Btfs. For use with solid state disks, LevelDB should be optimized differently, perhaps using
SILT-like indexing [24], or VT-Tree compaction stitching [46].

5 Related Work

File system metadata is structured data, a natural fit for relational database techniques. However, because of
their large size, complexity and slow speed, file system developers have long been reluctant to incorporate
traditional databases into the lower levels of file systems [32, 47]. Modern stacked file systems often expand

13

5747	

186	

3802	

1477	

3698	

1063	

3125	

935	

5249	

1242	

0	

2000	

4000	

6000	

8000	

Create	 Query	

Th
ro
ug
hp

ut
	 (o

ps
/s
ec
on

d)
	 Ext4	 Btrfs	 XFS	 TableFS-‐FUSE	 TableFS-‐Predict	

Figure 14: Average throughput in the create and query workloads on an Intel 520 SSD for five tested file systems.

32	

34	

425	

434	

490	

2035	

2075	

1751	

2382	

35578	

0	 10000	 20000	 30000	 40000	

TableFS-‐Predict	

TableFS-‐FUSE	

XFS	

Btrfs	

Ext4	

Number	 of	 Disk	 Requests	

DiskReadRequests	 DiskWriteRequests	

(a) Disk Requests

4457	

4445	

3717	

3223	

3910	

132873	

162167	

10815	

9304	

139142	

0	 50000	 100000	 150000	 200000	

TableFS-‐Predict	

TableFS-‐FUSE	

XFS	

Btrfs	

Ext4	

Total	 Disk	 Traffic	 (MB)	

DiskReadBytes(MB)	 DiskWriteBytes(MB)	

(b) Disk Bytes

Figure 15: Total number of disk requests and disk bytes moved in the query workload on an Intel 520 SSD for five
tested file systems.

on the limited structure in file systems, hiding structures inside directories meant to represent files [6, 14,
15, 21, 52], even though this may increase the number of small files in the file system. In this paper, we
return to the basic premise, file system metadata is a natural fit for table-based representation, and show that
today’s lightweight data stores may be up to the task. We are concerned with an efficient representation of
huge numbers of small files, not strengthening transactional semantics [16, 19, 25, 41, 46, 51].

Early file systems stored directory entries in a linear array in a file and inodes in simple on-disk tables,
separate from the data of each file. Clustering within a file was pursued aggressively, but for different files
clustering was at the granularity of the same cylinder group. It has long been recognized that small files can
be packed into the block pointer space in inodes [30]. C-FFS [12] takes packing further and clusters small
files, inodes and their parent directory’s entries in the same disk readahead unit, the track. A variation on
clustering for efficient prefetching is replication of inode fields in directory entries, as is done in NTFS[9].
TABLEFS pursues an aggressive clustering strategy; each row of a table is ordered in the table with its parent
directory, embedding directory entries, inode attributes and the data of small files. This clustering manifests
as adjacency for objects in the lower level object store if these entries were created/updated close together
in time, or after compaction has merge sorted them back together.

Beginning with the Log-Structured File System (LFS)[38], file systems have exploited write alloca-
tion methods that are non-overwrite, log-based and deferred. Variations of log structuring have been imple-
mented in NetApp’s WAFL, Sun’s ZFS and BSD UNIX [3, 18, 45]. In this paper we are primarily concerned
with the disk access performance implications of non-overwrite and log-based writing, although the poten-
tial of strictly ordered logging to simplify failure recovery in LFS has been emphasized and compared to
various write ordering schemes such as Soft Updates and Xsyncfs [28, 31, 44]. LevelDB’s recovery provi-
sions are consistent with delayed periodic journalling, but could be made consistent with stronger ordering
schemes. It is worth noting that the design goals of Btrfs call for non-overwrite (copy-on-write) updates

14

to be clustered and written sequentially[37], largely the same goals of LevelDB in TABLEFS. Our mea-
surements indicate, however, that the Btrfs implementation ends up doing far more small disk accesses in
metadata dominant workloads.

Partitioning the contents of a file system into two groups, a set of large file objects and all of the
metadata and small files, has been explored in hFS[53]. In their design large file objects do not float as
they are modified, while the metadata and small files are log structured. TABLEFS has this split as well,
with large file objects handled directly by the backing object store, and metadata updates approximately log
structured in LevelDB’s partitioned LSM tree. However, TABLEFS does not handle disk allocation, relying
entirely on the backing object store to handle large objects well.

Log-Structured Merge trees [33] were inspired in part by LFS, but focus on representing a large B-tree
of small entries in a set of on-disk B-trees constructed of recent changes and merging these on-disk B-trees
as needed for lookup reads or in order to merge on-disk trees to reduce the number of future lookup reads.
LevelDB [23] and TokuFS [11] are LSM trees. Both are partitioned in that the on-disk B-trees produced
by compaction cover small fractions of the key space, to reduce unnecessary lookup reads. TokuFS names
its implementation a Fractal Tree, also called streaming B-trees[5], and its compaction may lead to more
efficient range queries than LevelDB’s LSM tree because LevelDB uses Bloom filters[7] to limit lookup
reads, a technique appropriate for point lookups only. If bounding the variance on insert response time
is critical, compaction algorithms can be more carefully scheduled, as is done in bLSM[43]. TABLEFS
may benefit from all of these improvements to LevelDB’s compaction algorithms, which we observe to
sometimes consume disk bandwidth injudiciously (See Section 4.3).

Recently, VT-trees [46] were developed as a modification to LSM trees to avoid always copying old
SSTable content into new SSTables during compaction. These trees add another layer of pointers so new
SSTables can point to regions of old SSTables, reducing data copying but requiring extra seeks and eventual
defragmentation.

6 Conclusion

File systems for magnetic disks have long suffered low performance when accessing huge collections of
small files because of slow random disk seeks. TABLEFS uses modern key-value store techniques to pack
small things (directory entries, inode attributes, small file data) into large on-disk files with the goal of
suffering fewer seeks when seeks are unavoidable. Our implementation, even hampered by FUSE over-
head, LevelDB code overhead, LevelDB compaction overhead, and pessimistically padded inode attributes,
performs as much as 10 times better than state-of-the-art local file systems in extensive metadata update
workloads.

References

[1] FUSE. http://fuse.sourceforge.net/.

[2] Memcached. http://memcached.org/.

[3] ZFS. http://www.opensolaris.org/os/community/zfs.

[4] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Generating realistic im-
pressions for file-system benchmarking. In Proccedings of the 7th conference on File and storage
technologies (FAST), 2009.

15

http://fuse.sourceforge.net/
http://memcached.org/
http://www.opensolaris.org/os/community/zfs

[5] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel, Bradley C. Kusz-
maul, and Jelani Nelson. Cache-oblivious streaming B-trees. In Proceedings of the nineteenth annual
ACM symposium on Parallel algorithms and architectures (SPAA), 2007.

[6] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski, James Nunez, Milo Polte,
and Meghan Wingate. PLFS: a checkpoint filesystem for parallel applications. In Proceedings of the
ACM/IEEE conference on Supercomputing, 2009.

[7] B.H. BLOOM. Space/time trade-offs in hash coding with allowable errors. Communication of ACM
13, 7, 1970.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a distributed storage system for
structured data. In Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, 2006.

[9] H. Custer. Inside the windows NT file system. Microsoft Press, 1994.

[10] Shobhit Dayal. Characterizing HEC storage systems at rest. In Carnegie Mellon University, Technical
Report CMU-PDL-08-109, 2008.

[11] John Esmet, Michael Bender, Martin Farach-Colton, and Bradley Kuszmaul. The TokuFS streaming
file system. Proceedings of the USENIX conference on Hot Topics in Storage and File Systems, 2012.

[12] Gregory R. Ganger and M. Frans Kaashoek. Embedded inodes and explicit grouping: Exploiting disk
bandwidth for small files. In Proceedings of the annual conference on USENIX Annual Technical
Conference, 1997.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. In Proceedings of
the 19th ACM symposium on Operating systems principles, 2003.

[14] Michael Austin Halcrow. eCryptfs: An Enterprise-class Encrypted Filesystem for Linux. Proc. of the
Linux Symposium, Ottawa, Canada, 2005.

[15] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. A file is not a file: understanding the I/O behavior of Apple desktop applications. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, 2011.

[16] R. Haskin, Y. Malachi, W. Sawdon, and G. Chan. Recovery management in quicksilver. In Proceedings
of the Eleventh ACM Symposium on Operating System Principles, 1987.

[17] HDFS. Hadoop file system. http://hadoop.apache.org/.

[18] Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS file server appliance. In
USENIX Winter Technical Conference, 1994.

[19] Aditya Kashyap. File system extensibility and reliability using an in-kernel database. Master Thesis,
Computer Science Department, Stony Brook University, 2004.

[20] Jeffrey Katcher. Postmark: A new file system benchmark. In NetApp Technical Report TR3022, 1997.

[21] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting storage for smartphones. In Proceed-
ings of the 10th USENIX conference on File and Storage Technologies, 2012.

16

http://hadoop.apache.org/

[22] Jan Kra. Ext4, BTRFS, and the others. In Proceeding of Linux-Kongress and OpenSolaris Developer
Conference, 2009.

[23] LevelDB. A fast and lightweight key/value database library. http://code.google.com/p/

leveldb/.

[24] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT: a memory-efficient,
high-performance key-value store. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, 2011.

[25] Barbara Liskov and Rodrigo Rodrigues. Transactional file systems can be fast. Proceedings of the
11th ACM SIGOPS European Workshop, 2004.

[26] Lustre. Lustre file system. http://www.lustre.org/.

[27] Avantika Mathur, Mingming Cao, and Suparna Bhattacharya. The new Ext4 lesystem: current status
and future plans. In Ottawa Linux Symposium, 2007.

[28] Marshall Kirk McKusick and Gregory R. Ganger. Soft updates: A technique for eliminating most
synchronous writes in the fast filesystem. Proceedings of the annual conference on USENIX Annual
Technical Conference, FREENIX Track, 1999.

[29] Dutch T. Meyer and William J. Bolosky. A study of practical deduplication. In Proceedings of the 9th
USENIX Conference on File and Storage Technologies, 2011.

[30] Sape J. Mullender and Andrew S. Tanenbaum. Immediate files. SoftwarePractice and Experience,
1984.

[31] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn. Rethink the sync.
ACM Transactions on Computer Systems, Vol.26, No.3 Article 6, 2008.

[32] Michael A. Olson. The design and implementation of the Inversion file system. In USENIX Winter
Technical Conference, 1993.

[33] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-structured merge-tree
(LSM-tree). Acta Informatica, 1996.

[34] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel Rosenblum. Fast
crash recovery in RAMCloud. In Proceedings of the 23rd ACM symposium on Operating systems
principles, 2011.

[35] Swapnil Patil and Garth Gibson. Scale and concurrency of GIGA+: File system directories with
millions of files. In Proceedings of the 9th USENIX Conference on File and Storage Technologies,
2011.

[36] Ohad Rodeh. B-trees, shadowing, and clones. Transactions on Storage, 2008.

[37] Ohad Rodeh, Josef Bacik, and Chris Mason. BRTFS: The Linux B-tree Filesystem. IBM Research
Report RJ10501 (ALM1207-004), 2012.

[38] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured file
system. In Proceedings of the thirteenth ACM symposium on Operating systems principles, 1991.

17

http://code.google.com/p/leveldb/
http://code.google.com/p/leveldb/
http://www.lustre.org/

[39] Robert Ross and Robert Latham. PVFS: a parallel file system. In Proceedings of the ACM/IEEE
conference on Supercomputing, 2006.

[40] Frank B. Schmuck and Roger L. Haskin. GPFS: A shared-disk file system for large computing clusters.
In Proceedings of the 1st USENIX conference on File and storage technologies, 2002.

[41] Russell Sears and Eric A. Brewer. Stasis: Flexible transactional storage. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation, 2006.

[42] Russell Sears, Catharine Van Ingen, and Jim Gray. To BLOB or Not To BLOB: Large Object Storage
in a Database or a Filesystem? Microsoft Technical Report, 2007.

[43] Russell Sears and Raghu Ramakrishnan. bLSM: a general purpose log structured merge tree. Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, 2012.

[44] Margo Seltzer, Gregory Ganger, Kirk McKusick, Keith Smith, Craig Soules, and Christopher Stein.
Journaling versus soft updates: Asynchronous meta-data protection in file systems. Proceedings of the
annual conference on USENIX Annual Technical Conference, 2000.

[45] Margo I. Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin. An implementation of a
log-structured file system for UNIX. USENIX Winter Technical Conference, 1993.

[46] Pradeep Shetty, Richard Spillane, Ravikant Malpani, Binesh Andrews, Justin Seyster, and Erez Zadok.
Building workload-independent storage with VT-Trees. In Proccedings of the 11th conference on File
and storage technologies (FAST), 2013.

[47] Michael Stonebraker. Operating System Support for Database Management. Commun. ACM, 1981.

[48] Adam Sweeney. Scalability in the XFS file system. In Proceedings of the 1996 annual conference on
USENIX Annual Technical Conference, 1996.

[49] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small, Jim Zelenka,
and Bin Zhou. Scalable performance of the panasas parallel file system. In Proceedings of the 6th
USENIX conference on File and Storage Technologies, 2008.

[50] Ric Wheeler. One billion files: pushing scalability limits of linux filesystem. In Linux Foudation
Events, 2010.

[51] CHARLES P. WRIGHT, RICHARD SPILLANE, GOPALAN SIVATHANU, and EREZ ZADOK. Ex-
tending ACID Semantics to the File System. ACM Transactions on Storage, 2007.

[52] Erez Zadok and Jason Nieh. FiST: A Language for Stackable File Systems. Proceedings of the annual
conference on USENIX Annual Technical Conference, 2000.

[53] Zhihui Zhang and Kanad Ghose. hFS: A hybrid file system prototype for improving small file and
metadata performance. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems, 2007.

18

	Introduction
	Background
	Local File System Structures
	LevelDB and its LSM Tree

	TableFS
	Local File System as Object Store
	Table Schema
	Hard Links
	Scan Operation Optimization
	Inode Number Allocation
	Locking and Consistency
	Journaling
	TableFS in the Kernel

	Evaluation
	Evaluation System
	Data-Intensive Macrobenchmark
	TableFS-FUSE Overhead Analysis
	Metadata-Intensive Microbenchmark

	Related Work
	Conclusion

