
File system virtual appliances

MICHAEL ABD-EL-MALEK

May 2010

CMU-PDL-09-109

Dept. of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Thesis committee

Prof. Gregory R. Ganger, Co-Chair (Carnegie Mellon University)

Prof. Michael K. Reiter, Co-Chair (University of North Carolina at Chapel Hill)

Prof. Garth A. Gibson (Carnegie Mellon University)

Dr. Orran Krieger (VMware)

c© 2010 Michael Abd-El-Malek

ii · File system virtual appliances

To my family.

iv · File system virtual appliances

Abstract

Implementing and maintaining file systems is painful. OS functionality is

notoriously difficult to develop and debug, and file systems are more so

than most because of their size and interactions with other OS components.

In-kernel file systems must adhere to a large number of internal OS interfaces.

Though difficult during initial file system development, these dependencies

particularly complicate porting a file system to different OSs or even across

OS versions.

This dissertation describes an architecture that addresses the file system

portability problem. Virtual machines are used to decouple the OS on which

a file system runs from the OS on which user applications run. The file

system is distributed as a file system virtual appliance (FSVA), a virtual

machine running the file system developers’ preferred OS (version). Users

runs their applications in a separate virtual machine, using their preferred

OS (version).

An FSVA design and implementation is described that maintains file

system semantics with few, if any, code changes. This is achieved by sending

all file system operations from the user OS to the FSVA. A unified buffer

cache is maintained by using shared memory between the user OS and FSVA

and by letting the user OS control the FSVA’s buffer cache size. Features such

as resource isolation and security are maintained through a single FSVA-per-

user-OS design. Virtual machine migration is supported by simultaneously

migrating a user OS and FSVA(s), maintaining shared memory mappings

and live migration’s low downtime.

v

vi · File system virtual appliances

Several case studies demonstrate FSVAs’ effectiveness in providing OS-

independent file system implementations. Measurements show that FSVA

overheads on different workloads vary from 0–40%. The main overhead source

is the communication latency between the user OS and FSVA. If a processor

core is dedicated to an FSVA, a power-efficient polling mechanism reduces

the overheads to 0–10%. Alternatively, relaxing the FSVA design goals by

handling the frequent access-control file system checks in the user OS leads to

similar overhead reductions as polling, but without the need for an additional

core.

Acknowledgements

I had a great time in graduate school. This was in large part due to the

wonderful people that I was fortunate enough to interact with.

First and foremost, I cannot thank my advisors Greg Ganger and Mike

Reiter enough. I was lucky to have not one, but two advisors that cared

about my development and research interests, always made time for me,

and were always supportive. They taught me how to identify interesting

problems, develop a solution, evaluate it, and clearly describe it. I enjoyed our

interactions tremendously. I also owe all my knowledge of college basketball

and football to them.

My dissertation grew out of Garth Gibson’s idea of running a file system

in a virtual machine. I thank him for his guidance during this work. Orran

Krieger had many useful insights, encouraging me to view this work as

leveraging multicores and motivating virtual machine-based microkernels.

I was fortunate to work with many great graduate students. Jay Wylie

and Garth Goodson patiently explained distributed systems to me, and

were wonderful mentors during my first two years. Jay continued informally

mentoring even after finishing graduate school, for which I am very grateful.

Matthew Wachs was instrumental to my dissertation: he was the primary

designer and implementor of the unified buffer cache and migration support. I

thank Jim Cipar for his contributions to FSVAs. Karan Sanghi implemented

the NetBSD port in an impressively short time. The Self-* project was a

great learning experience. I especially enjoyed working with Eno Thereska:

our numerous collaborations were fun and Eno always kept focus on the

research problems. I also enjoyed working with John Strunk, Mike Mesnier,

vii

viii · File system virtual appliances

Chuck Cranor, James Hendricks, Shafeeq Sinnamohideen, Raja Sambasivan,

and Andrew Klosterman.

The Parallel Data Lab was a stimulating environment. The annual retreats

and visit days provided a forum with top industry representatives who

provided feedback, interest, and support. I thank Greg Ganger, Garth Gibson,

Bill Courtright and David Nagle for starting and maintaining this wonderful

lab. Karen Lindenfelser, Linda Whipkey, and Joan Digney made the PDL

events flow smoothly, and always provided good conversation. Bill Courtright

had a lot of sage advise on research, industry, startups, and dealing with

people.

My friends in Pittsburgh made life more fun, enriching, and educational.

My first friend in Pittsburgh was Jon: although we significantly differed

in our athletic abilities and shisha fondness, Jon was a fellow Sharp Edge

and scotch aficionado and a great roommate for three years. My close Arab

friends – Hanadie, Mansour, Nick, and Sarah – had a large impact on me

and formed some of my closest friendships. Ashraf, Ippo and Neil made life

much more fun. Mike Merideth introduced me to fine scotch, hi-fi speakers,

and piano concertos – I, but not my wallet, will always be grateful. My

last two years in Pittsburgh were full of pleasant times with Fayyad, Selen

and the Greeks: Panickos, Kiki, Socrates, Panos and Michael. Finally, all of

this would not have been possible if Shreyas Sundaram had not persistently

convinced me to apply to CMU – hopefully he will absolve me of my firstborn

promise.

Last, but not least, my family has always been supportive. Each of them

encouraged me and made all of this possible, in their own special way. I

dedicate this dissertation to them as a small token of appreciation.

Thanks to Chris Behanna (Panasas), Derrick Brashear (OpenAFS), Nitin

Gupta (Panasas), Roger Haskin (GPFS), Sam Lang (PVFS), Rob Ross

(PVFS), and Brent Welch (Panasas) for sharing their file system develop-

ment experience and many anecdotes. Thanks to Ben Pfaff (POFS), Mark

Williamson (XenFS), and Xin Zhao (VNFS) for sharing their code, which

helped me quickly start the FSVA prototype implementation. Adam Penning-

ton provided access to his AFS server. Gregg Economou, Michael Stroucken,

· ix

and Doug Needham installed and maintaining the PDL’s excellent computing

infrastructure.

Thanks to the members and companies of the CyLab Corporate Partners

and the PDL Consortium (including APC, Data Domain, EMC, Facebook,

Google, Hewlett-Packard Labs, Hitachi, IBM, Intel, LSI, Microsoft Research,

NetApp, Oracle, Seagate, Sun Microsystems, Symantec, and VMware) for

their interest, insights, feedback, and support. This material is based on

research sponsored in part by the National Science Foundation, via grants

CNS-0326453 and CCF-0621499, by the Department of Energy, under Award

Number DE-FC02-06ER25767, and by the Army Research Office, under agree-

ment number DAAD19–02–1–0389. Intel and Network Appliance donated

hardware donations that enabled this work.

x · File system virtual appliances

Contents

Figures xv

Tables xvii

1 Introduction 1

1.1 The problem . 1

1.2 Thesis statement . 2

1.3 Dissertation overview . 2

1.4 Contributions . 3

1.5 Outline . 4

2 Background and related work 5

2.1 Terminology . 5

2.2 OS structure and file system implementations 6

2.3 The problem: porting file systems 8

2.3.1 Why porting is difficult 8

2.3.2 Problem manifestation 10

2.3.3 Anecdotal experiences 11

2.4 Current approaches . 13

2.5 Additional related work . 17

3 Architecture 21

3.1 Technology trends . 21

3.1.1 Virtualization . 21

3.1.2 Multicore processors 22

xi

xii · File system virtual appliances

3.2 Architecture overview . 23

3.3 Viability . 26

3.3.1 Interface stability . 26

3.3.2 VMM proliferation . 27

3.3.3 Maintaining performance and the role of multicore

processors . 27

3.3.4 Maintaining OS and virtualization features 28

3.4 Costs and limitations . 28

3.4.1 Administration and support 28

3.4.2 Overhead . 29

3.4.3 Out-of-band state . 30

3.5 Summary . 30

4 Design 33

4.1 Goals . 33

4.2 Design principles . 34

4.2.1 Passing all VFS calls 34

4.2.2 One user VM per FSVA 36

4.2.3 Interface scope . 37

4.2.4 Summary . 38

4.3 Design overview . 38

4.3.1 IPC layer . 40

4.3.2 FSVA interface . 41

4.3.3 Data operations . 42

4.4 Maintaining OS features . 43

4.4.1 Metadata duplication 43

4.4.2 Security and other common VFS features 44

4.4.3 Unified buffer cache 46

4.5 Maintaining virtualization features 49

4.5.1 Performance isolation and resource accounting 49

4.5.2 Migration . 50

Contents · xiii

5 Implementation 53

5.1 Prototype overview . 53

5.2 FSVA interface . 54

5.3 IPC layer . 57

5.3.1 Data transfer . 57

5.3.2 Control notification 58

5.4 Memory mapping . 60

5.5 Unified buffer cache . 62

5.6 Migration . 64

6 Evaluation 67

6.1 Experimental setup . 67

6.2 Case studies: portable file system implementations 68

6.3 Macrobenchmarks . 69

6.4 Microbenchmarks . 74

6.5 Relaxing the “pass all VFS calls” principle 75

6.6 Memory overhead . 79

6.7 Unified buffer cache . 79

6.8 Migration . 81

7 Experiences 83

7.1 Porting experience and expectation for future ports 83

7.2 Lessons for others running a file system in its own VM 87

8 Conclusion 91

8.1 Future work . 92

9 Glossary 95

Bibliography 97

xiv · File system virtual appliances

Figures

2.1 Recreation of the original VFS architecture figure 7

2.2 VFS architecture with explicit interfaces 7

2.3 Three manifestations of the portability problem 11

2.4 User-level file systems via kernel proxy 16

2.5 User-level file systems via NFA loopback 16

3.1 Virtualization using a native VMM 23

3.2 Virtualization using a hosted VMM 23

3.3 FSVA architecture . 25

4.1 Steps in handling a user VFS request 42

4.2 Metadata duplication . 44

4.3 Maintaing common VFS features 45

4.4 Unified buffer cache . 47

5.1 One-way control path and latencies for two IPC types. 61

6.1 NetBSD LFS case study . 69

6.2 Postmark results . 72

6.3 IOzone results . 72

6.4 Linux kernel compilation runtime 73

6.5 Unified buffer cache demonstration 80

xv

xvi · File system virtual appliances

Tables

2.1 Examples of interface syntax changes 12

2.2 Examples of policy and semantic changes 14

4.1 Comparing design decisions and capabilities of file system VMs 39

5.1 Breakdown of FSVA code size 55

5.2 FSVA interface . 56

6.1 IPC microbenchmarks . 76

6.2 VFS microbenchmarks . 76

6.3 VFS operation timers for Linux kernel compilation over ext2 78

9.1 Terminology . 95

xvii

xviii · File system virtual appliances

1 Introduction

1.1 The problem

Implementing and maintaining file systems is painful. OS functionality is

notoriously difficult to develop and debug, and file systems are more so

than most because of their size and interactions with other OS components.

In-kernel file systems must adhere to the OS’s virtual file system (VFS)

interface [52], but that is the easy part. File system implementations also

depend on a large number of internal OS interfaces. For example, a file

system developer must understand the memory allocation, caching, threading,

locking/preemption, networking (for distributed file systems), and device

access (for local file systems) interfaces and semantics. In particular, correctly

handling locking and preemption is notoriously difficult.

Though difficult during initial file system development, these dependencies

particularly complicate porting a file system to different OSs or even OS

versions. While VFS interfaces vary slightly across OSs, the other OS internal

interfaces greatly vary, making porting of file systems painful and effort-

intensive.

In practice, these portability issues require substantial developer effort —

approximately 50% of the effort, in the estimate of some developers (§2.3.3).

In many cases, the porting cost is unjustified, and file system developers

simply forgo OSs that pose too large a hurdle. File system users are then

either forced to change OS (versions) or switch to a file system that is less

suitable to their needs but available in their preferred OS (version).

1

2 · File system virtual appliances

1.2 Thesis statement

This dissertation proposes a new approach for OS-independent file system

implementations. Specifically, the thesis statement is:

Executing a file system in its own virtual machine enables

OS-independent file system implementations by decoupling the

file system OS from the user OS. This decoupling can be efficiently

achieved while maintaining file system, OS, and virtualization

features with few changes to these components.

This dissertation validates the thesis in the following manner:

(1) We describe an architecture that enables OS-independent file system

implementations. We present a design, following this architecture, that

maintains file system, OS, and virtualization features.

(2) We built a working prototype of the design, confirming the feasibility

of the architecture and design.

(3) We present case studies that demonstrate the prototype’s effective-

ness in providing OS-independent file system implementations. We

demonstrate that this can be done efficiently through performance

measurements. We analyze the code changes to demonstrate the small

size of the changes to the file system, OS, and virtual machine monitor.

1.3 Dissertation overview

This dissertation offers a new approach for OS-independent file system

implementations, leveraging virtual machines (VMs) to decouple the OS on

which the file system runs from the OS on which the user applications run.

The file system is distributed as a file system virtual appliance (FSVA), a

pre-packaged virtual appliance [87] loaded with the file system. The FSVA

runs the file system developers’ preferred OS (version), with which they have

performed extensive testing and tuning. Users runs their applications in a

1.4 Contributions · 3

separate VM, using their preferred OS (version). File system-agnostic proxies

in both OSs efficiently pass VFS operations from the user OS to the FSVA

and maintain OS and virtualization features.

Since it runs in a distinct VM, the file system can be used by users who

choose OSs to which it is never ported. The file system is isolated from both

kernel- and user-space differences in user OSs, because it interacts with just

the single FSVA OS version. The result is that users are free to select any

OS of their choice, and file system developers support only the single FSVA

OS. Furthermore, with appropriate design, this architecture can leverage

unmodified legacy file system implementations.

For the FSVA approach to work, the file system-agnostic proxies must

be a “native” part of the OS — they must be maintained across versions by

the OS implementers. The hope is that, because of their small size and value

to a broad range of file system users and developers, OS vendors would be

willing to adopt such a proxy.

1.4 Contributions

This dissertation makes the following contributions:

(1) We propose the FSVA architecture as a solution to the file system

portability problem.

(2) We describe an FSVA design and prototype, implemented for Linux and

NetBSD, that maintains file system, OS, and virtualization features

with few changes to these components. We describe and evaluate a

number of performance optimizations that are necessary for reasonable

performance, and evaluate the prototype’s performance.

(3) We elucidate the design space when separately executing a file system

in a VM. Others have also done so for a variety of reasons (e.g., for

security or to provide virtualization-optimized file systems). We analyze

the major design decisions, discuss common challenges and solutions

(e.g., a unified buffer cache), and highlight common correctness and

performance pitfalls.

4 · File system virtual appliances

(4) We analyze the sources of latency in traditional inter-VM communica-

tion techniques and present a novel energy- and performance-efficient

mechanism.

1.5 Outline

The remainder of this dissertation is organized as follows. Chapter 2 describes

the challenges in porting file systems, current approaches, and related work.

Chapter 3 gives an overview of the FSVA architecture, describes enabling

technology trends, discusses the architecture’s viability, and concludes with

the architecture’s costs and limitations. Chapter 4 overviews the FSVA design

space, lists our design goals, and describes an FSVA design that satisfies

those goals. Chapter 5 details our prototype implementation. Chapter 6

evaluates the prototype along two dimensions. First, using several case

studies, we demonstrate FSVAs’ effectiveness in providing OS-independent

file system implementations. Second, we analyze the FSVA performance

overhead through micro- and macro-benchmarks, and study the efficacy of

various optimizations. Chapter 7 describes our experience in implementing

the prototype for different OSs and virtual machine monitors and provides

lessons for others interested in moving the file system into a dedicated virtual

machine. Chapter 8 concludes and discusses possible feature work.

2 Background and related work

The goal of this dissertation is to enable OS-independent file system im-

plementations. This chapter explains why this is a worthwhile goal and

previous attempts to achieve it. We describe the OS-file system interface,

discuss the difficulties in developing and porting file systems, and provide

anecdotal experience from file system developers on the difficulties of porting

file systems. Existing approaches and their shortcomings are then described.

This chapter ends with a discussion of related work.

2.1 Terminology

Before proceeding, it is necessary to clarify my usage of a few terms.

The term file system is commonly used to refer to data as well as to

the software for accessing and manipulating the data. This dissertation is

concerned with the latter meaning. For brevity, we use file system to refer

to file system software. The terms file system, file system software, and file

system implementation are used interchangeably.

The Unix file system layer has two components: the per-file vnode and

per-file system virtual file system (VFS) layers. A file system must adhere

to both of these interfaces. For brevity, we will collectively refer to both

interfaces as the VFS interface.

The FSVA architecture enables users to access a file system written for a

different OS or a different OS version. To avoid the cumbersome different

OS or OS version or different OS (version) phrases, we use different OS to

encompass both meanings.

5

6 · File system virtual appliances

2.2 OS structure and file system implementations

File system implementations must adhere to internal OS interfaces. This

section provides an overview of the OS-file system interfaces, their design

goals, and their effect on file system development.

File system implementation structure in modern OSs is based on Sun

Microsystems’ virtual file system (VFS) architecture [52]. This architecture

was created to support multiple file system implementations in an OS.

Specifically, Sun Microsystems’ development of the Network File System

(NFS) [69, 84] necessitated kernel changes to simultaneously accommodate

NFS with the local filesystem. Figure 2.1 recreates the VFS architecture block

diagram from the VFS paper [52], illustrating the relationship between file

system implementations and other OS components. File system operations,

originating from either system calls or kernel operations, are sent to the

generic VFS layer. For some operations, the VFS layer can respond without

involving the file system. Otherwise, the VFS layer passes control to the

file system through previously-registered VFS callbacks. The set of all VFS

callbacks forms the VFS interface.

The primary goal of the VFS architecture was to “accommodat[e] mul-

tiple file system implementations within the Sun UNIX kernel” [52]. This

was achieved through two techniques. First, outside the file system layer,

references to specific file system implementations were replaced by references

to the generic VFS layer. Second, in the file system layer, the VFS interface

provided a well-defined interface to file system implementations. In Figure

2.1, these techniques correspond to narrow FS system calls and VFS callbacks

interfaces. The result is a clean encapsulation of file system implementations,

from the kernel’s perspective. The VFS paper concludes that the VFS layer

“has been proven to provide a clean, well defined interface to different file

system implementations” [emphasis added] [52].

But, the interface from file system implementations to the rest of the

kernel was not well-defined. Although the VFS paper’s illustration shows

a thin interface from file systems to the rest of the kernel (Figure 2.1), the

reality is much more complicated. File systems rely on and conform to many

2.2 OS structure and file system implementations · 7

Local FS

Applications

OS

VFS

FS system calls

VFS callbacks

Disk Networking

NFS

Figure 2.1. Recreation of the origi-
nal VFS architecture figure.

FS

Applications

OS

VFS

FS system calls

VFS callbacks

if (...)
open

Buffer and
metadata
caches

Memory
allocation Networking Device

access

Threading LockingCaching

Internal OS
interfaces

Figure 2.2. VFS architecture with
explicit interfaces.

internal OS interfaces and semantics: memory allocation, paging (for memory

mapping), locking, preemption, threading, networking (for distributed file

systems), and device access (for local file systems) interfaces and semantics.

Additionally, file systems depend on internal VFS interfaces, such as common

VFS helper functions and the buffer, inode and directory entry caches [62].

Figure 2.2 expands the file systems’ dependencies to the rest of the kernel.

The large number of dependencies on internal OS interfaces complicates

file system development. To see why, consider the two aspects of interfaces:

syntax and semantics. Quick code inspection and compiler messages aid

in adhering to interfaces’ syntax. In contrast, understanding and adhering

to interfaces’ semantics is much more challenging. For example, correctly

handling kernel locking and preemption is notoriously difficult.

Of course, file system implementations are not unique in their dependency

on internal OS interfaces. Device drivers are also equally affected. But, file

systems have much greater interdependencies with memory management

than device drivers. Also, there are many more interactions and a much

richer interface. This is a result of file systems’ aggressiveness in hiding the

8 · File system virtual appliances

I/O subsystem’s latency. File systems perform extensive caching (e.g., the

buffer, inode and directory entry caches) and frequently use asynchronous

operations (e.g., writeback, distributed file system callbacks).

In summary, file system development is complicated by the dependency

on a large number of internal OS interfaces.

2.3 The problem: porting file systems

Based on user demand, file system developers must port their file system

to different OSs. This section describes the difficulty of porting file system

implementations, discusses three manifestations of this problem, and provides

anecdotal evidence from file system developers.

2.3.1 Why porting is difficult

As described in the previous section, file system implementations are tightly

intertwined with internal OS interfaces. The lack of standardization among

internal OS interfaces significantly complicates porting. Although VFS inter-

faces vary slightly across OSs, the other internal OS interfaces greatly vary,

making file system porting painful and effort-intensive.

From VFS’s introduction, different VFS-like interfaces existed for each

OS. In the 1986 USENIX Summer Conference, Sun’s VFS [52] was followed by

AT&T’s File System Switch [78], which was followed by Digital Equipment’s

Generic File System [80]. In Sun’s VFS paper, Kleiman stated that “Sun is

currently discussing with AT&T and Berkeley the merging of this interface

with AT&T’s File System Switch technology. The goal is to produce a

standard UNIX file system interface.” [52] Later that year, Karels and

McKusick proposed a common filesystem interface [50]. These proposals were

never adopted. Different OSs continue to have different VFS interfaces.

But, in addition to the VFS interface, file systems depend on a myriad of

internal OS interfaces, as described in §2.2. These aspects vary widely across

OSs, and they often vary even across versions of the same OS. Adapting to

such variation is the primary challenge in porting file system implementations.

2.3 The problem: porting file systems · 9

Again, this problem has long been known. In a 1993 paper advocating user-

level file systems, Weber enumerated many differences among different OSs:

locking, read-ahead, syntax, caching (unified versus separate buffer and

page caches), kernel preemptiveness, semantics of per-process read/write

atomicity, threading, memory allocation, networking, and device access [106].

Weber notes that “from a third party point of view there are two major

problems: few vendors have the same VFS interface and few vendors provide

release-to-release source or binary compatibility for VFS modules.” Most

tellingly, he later observes that “the problem is not that any particular VFS

implementation is especially complicated or difficult to understand, but that

too many VFS implementations exist.” [106]

Eight years later, the problem still persisted. In a 2001 paper advocating

user-level file systems, Mazieres describes the difficulty of kernel file system

development: “Developing new Unix file systems has long been a difficult

task. The internal kernel API for file systems varies significantly between

versions of the operating system, making portability nearly impossible. The

locking discipline on file system data structures is hair-raising for the non-

expert.” [61]

In §2.2, we distinguished between two aspects of interfaces: syntax and

semantics. This distinction is helpful in understanding part of the difficulty

of porting file systems. Syntactic differences among internal OS interfaces

can be wrapped inside a file system’s compatibility layer. For example, the

compatibility layer can provide an abstract memory allocator function, hiding

the syntax of each OS’s memory allocator. Syntactic abstraction simplifies

file system porting. By isolating OS-specific interfaces to a fraction of the file

system codebase, the porting cost is reduced to being proportional to the

size of the small compatibility layer, not to the size of the entire file system.

Unfortunately, semantic differences are often not as amenable to ab-

straction. Consider kernel preemptiveness. Porting a file system from a

non-preemptible kernel to a preemptible kernel has wide ramifications to the

file system-wide locking discipline. Thus, unlike syntactic differences, the

porting cost in handling inter-OS semantic differences is proportional to the

entire file system size. Additional examples are in §2.3.3.

10 · File system virtual appliances

2.3.2 Problem manifestation

Porting file systems from one OS to another is difficult, whether the second

OS is a different OS or a different version of the same OS. The relationship

between the two OSs leads to three manifestations of the portability problem.

Inter-OS porting is characterized by porting a file system from one OS to

a different OS. Porting NetBSD’s log-structured file system (LFS) to Linux

is an example.

A less-appreciated file system porting challenge is dealing with intra-OS

version porting. Even when the VFS interface remains constant, internal file

system compatibility rarely exists between one kernel version and the next.

The same issues that plague inter-OS porting also affect intra-OS version

porting. Changes in syntax, locking semantics, memory management, and

preemption practices create differences that require OS version-specific code

in the file system implementation.

Intra-OS version porting takes two forms. In forward porting, a file system

developed for one OS version requires modifications to function in each

subsequent version of that OS. For “native” file systems supported by the

kernel implementers (e.g., ext2 and NFS in Linux), appropriate corrections

are made in the file system as a part of the new kernel version. For third-party

file systems, however, they are not. As each new kernel version is released,

whether as a patch or a complete replacement, the third-party file system

maintainers must figure out what changed, modify their code accordingly,

and provide the new file system version. Because users of the third-party file

systems may be using any of the previously supported OS versions, all must

be maintained and the code becomes riddled with version-specific #ifdefs,

making it increasingly difficult to understand and modify correctly.

Backward porting is the second intra-OS version porting form, in which

a file system developed for the latest OS version must be backported to

support users of a previous OS version who cannot upgrade to the latest OS

version. File system developers performing backward porting face identical

issues as in forward porting. As an example of backward porting, some Linux

vendors have backported ext4, a file system introduced in the 2.6.28 kernel,

2.3 The problem: porting file systems · 11

NetBSD 5

Linux 2.6.28

Porting effort

LFS

Inter-OS
porting

Linux 2.6.18

OpenAFS

Linux 2.6.19

Porting effort

Forward
porting

Linux 2.6.28

Linux 2.6.27

ext4

Porting effort

Backward
porting

Figure 2.3. Three manifestations of the portability problem.

to earlier Linux kernel versions. But, due to the high cost of porting, this

was not comprehensively performed for all prior Linux kernel versions.

Figure 2.3 illustrates the three manifestations of the file system portability

problem. Weber used the terms “VFS portability” and “lock-step release”

to refer to the first two forms [106], respectively, while Skinner and Wong

called them the “compatibility and stability” problems [92]. For brevity, we

will simply use “file system portability” to refer to all three manifestations,

and “different OS” to encompass different OSs as well as different versions

of the same OS.

2.3.3 Anecdotal experiences

To better understand the file system portability problem, we interviewed devel-

opers of four third-party file systems: GPFS [88], OpenAFS (an open-source

implementation of AFS [44]), Panasas DirectFLOW [108], and PVFS [16].

All four file systems have been widely deployed for many years. Because the

inter-OS porting problem is well-known [50, 61, 92, 106], and PVFS and

Panasas DirectFLOW are only available on Linux, we focus on the developers’

12 · File system virtual appliances

Type Description

VFS interface The vector I/O readv and writev VFS callbacks were
replaced with the asynchronous I/O aio read and aio -

write callbacks (2.6.19). sendfile was replaced by
splice (2.6.23).

Virtual memory The interface for the virtual memory page fault handlers,
overridable by a file system, was changed (2.6.23).

Caching The parameters for the kernel cache structure constructors
and destructors were changed (2.6.20).

Structures The per-inode blksize field was removed (2.6.19). The
process task structure no longer contained the thread
pointer (2.6.22).

Header files config.h was removed (2.6.19).

Table 2.1. Examples of interface syntax changes.

experiences with intra-OS porting. Naturally, developers performing inter-OS

porting face all of these issues and more. The file systems are all distributed

file systems; the developers describe their experience in maintaining the

Linux client-side code.

Interface syntax changes. The first changes that a file system developer

encounters in an OS update are interface syntax changes, due to compilation

errors. Table 2.1 contains a representative list, with the corresponding Linux

kernel version in parentheses. Some examples were conveyed by the developers,

and others were gleaned from looking at OpenAFS’s and PVFS’ logs.

Although some of these changes may seem trivial, they are time-consuming

and riddle source code with version-specific #ifdefs that complicate code

understanding and maintenance. Furthermore, every third-party file system

team must deal with each problem as it occurs. Examination of the open-

source OpenAFS and PVFS change logs shows that both file systems contain

fixes for each of these (and many similar) issues.

Policy and semantic changes. Even if interfaces’ syntax remain constant

across OS releases, implementation differences can have subtle effects that are

2.4 Current approaches · 13

difficult to debug. Table 2.2 lists examples of policy and semantic changes.

Because the policy and semantic changes were not documented, each

third-party file system team had to discover them through kernel debugging

and code analysis, and then work around them. Many of these bugs (e.g.,

Write-back, Stack Size, and Locking) manifest themselves much later than

the offending code, greatly complicating debugging.

Overall statistics. To appreciate the magnitude of the problem, consider

the following statistics. Panasas’ Linux portability layer supports over 300

configurations.1 PVFS developers estimate that 50% of their maintenance

effort is spent dealing with Linux kernel issues [54]. The most frequently

revised file in the OpenAFS client source code is the Linux VFS-interfacing

file [71]. An OpenAFS developer estimates that 40% of Linux kernel releases

necessitate an updated OpenAFS release [12].

One may be tempted to brush off the preceding difficulties as Linux-only

anomalies. But, although most pronounced for Linux, with its independent

and decentralized development process, this problem poses challenges for

file system developers targeting any OS. Furthermore, given Linux’s wide

deployment in the server marketplace, this is a real problem faced by third-

party file system developers, as the statistics demonstrate — simply dismissing

it is inappropriate. Finally, these same porting issues are experienced during

inter-OS porting, and a solution that addresses the full file system portability

problem would be attractive.

2.4 Current approaches

User-level file systems. Most OS vendors maintain binary compatibility for

user-level applications across OS releases. As a result, user-level file systems

have been proposed as a solution to the intra-OS porting problem [8, 61, 106].

Additionally, by only using the standard POSIX programming interfaces [30],

1Due to differences among distributions and processor types, Panasas clusters Linux
platforms by a <distribution name, distribution version, processor architecture> tuple.
Currently, Panasas supports 45 Linux platforms. In addition, within each platform, Panasas
has a separate port for each kernel version. The result is over 300 configurations.

14 · File system virtual appliances

Type Description

Memory Pressure Some RedHat Enterprise Linux 3 kernels are not robust
during low memory situations. In particular, the kernels
can block during allocation despite the allocation flags
specifying no blocking. This results in minutes-long de-
lays in dirty data writeback under low memory situations.
RedHat acknowledged the semantic mismatch but did
not fix the issue [77]. A file system vendor was forced to
work around the bug by carefully controlling the num-
ber of dirty pages (via per-kernel-version parameters)
and I/O sizes to the data server (thereby negatively
impacting server scalability).

Write-back Linux uses a write-back control data structure (WBCDS)
to identify dirty pages that need to be written to stable
storage. A file system populates this data structure and
passes it to the generic VFS layer. Linux 2.6.18 changed
the handling of a sparsely-initialized WBCDS, such that
only a single page of a specified range was actually writ-
ten. This caused a file system to mistakenly assume that
all pages were written, resulting in data corruption.

Stack Size RedHat Enterprise Linux kernels often use a smaller ker-
nel stack size (4 K instead of the default 8 K). To avoid
stack overflow, once this was discovered, a file system
vendor used continuations to pass request state across
kernel threads. But, continuations are cumbersome for
developers and complicate debugging. This illustrates
how one supported OS’s idiosyncrasies can complicate
the entire file system, not just the OS-specific compati-
bility layer.

Locking Accessing existing inode fields required the inode lock
to be held, whereas previously no locking was required.

Radix Tree The Linux kernel provides a radix tree library. The 2.6.20
kernel required the least significant bit of stored values be
0, breaking a file system that stored arbitrary integers.

Table 2.2. Examples of policy and semantic changes.

2.4 Current approaches · 15

file system developers can, in theory, simply recompile their unmodified file

system to address inter-OS portability.

User-level file systems are implemented either through a small kernel

module that reflects file system calls into user-space [8, 35, 48, 106, 109] or

through a loopback NFS or CIFS server that leverages existing kernel NFS

or CIFS client support [4, 15, 17, 39, 61]. Figures 2.4 and 2.5 illustrate both

approaches, respectively. The interface between the kernel and user-space file

system affects the file system’s portability and semantics. Using a widely-

supported distributed file system protocol, such as NFS, avoids the need

for additional kernel code. But, this limits file systems’ semantics by the

information (e.g., NFS lacks close callbacks) and control (e.g., NFS’s weak

cache consistency) available to them.

User-level file systems are not sufficient, for several reasons. First, user-

level file systems are unable to accommodate existing kernel-level file system

implementations. Second, user-level file systems still depend on the kernel

to provide low-level services such as device access, networking, and memory

management. Changes to the behavior of these components can still affect a

user-level file system. For instance, Table 2.2’s Memory Pressure example

would not be solved by user-level file systems. Thus, user-level file systems

are not fully isolated from the underlying OS components.

Third, user-level file systems can deadlock because most OSs were not

designed to robustly support a user-level file system in low-memory situa-

tions [61]. Such deadlocks can be avoided by using a purely event-driven

structure, as the SFS toolkit does [61], but at the cost of restricting imple-

menter flexibility. Fourth, user-level file systems provide no assistance with

user-space differences, such as shared library availability and OS configura-

tion file formats and locations, or the use of non-portable OS interfaces (e.g.,

remote memory, as in DAFS [26]).

Despite their disadvantages, user-level file systems are sometimes useful.

They permit quick prototyping and are sufficient in situations where full file

system robustness or portability are not critical. But, user-level file systems

are not a general solution.

Rump allows the execution of unmodified NetBSD kernel file systems in

16 · File system virtual appliances

Proxy

Applications

OS VFS

FS system calls

VFS callbacks

File system

VFS callbacks

Figure 2.4. User-level file systems
via kernel proxy.

NFS

Applications

OS
VFS

FS system calls

VFS callbacks

File system

NFS protocol

Networking

NFS protocol

Figure 2.5. User-level file systems
via NFS loopback.

user-space, by reimplementing the necessary internal OS interfaces in user-

space [49]. This was previously performed by Thekkath et al. to accurately

model storage system performance [99], and was suggested by Yang et al.

but considered too burdensome [110]. Because this approach essentially adds

a library on top of existing user-space support, it suffers from all but the

first of the user-level file system deficiencies. Furthermore, although rump

accommodates unmodified kernel-level file systems, it does so at a cost:

reimplementing the internal OS interfaces that file systems rely on. These

interfaces are much broader than the VFS interface. To achieve inter-OS

operability, this reimplementation must be performed for each OS (version).

Also, conflicts between kernel and user-space interfaces can pose problems.

For example, their NFS server required modification due to conflicts between

the kernel and user-space RPC portmapper and NFS mount protocol daemon.

Language-based approaches. FiST provides a specialized language for

file system developers [111]. The FiST compiler generates OS-specific kernel

modules. Given detailed information about all relevant in-kernel interfaces,

updated for each OS version, FiST could address inter- and intra-OS syntax

2.5 Additional related work · 17

changes. But, FiST was not designed to offer assistance with policy and

semantic changes. These changes can require substantial file system revision

(e.g., Table 2.2’s Stack Size example) and hence cannot be simply isolated

from a file system implementation. Also, a specialized language is unlikely

to be adopted unless it is expressive enough to address all desirable control.

This is far from a solved problem. Furthermore, FiST does not accommodate

existing file system implementations.

Selective availability. Due to the inadequacies of the preceding approaches,

file systems developers fall back on what we refer to as selective availability.

They select particular OS versions to support, use brute force to port their

file system to these OS versions, and simply avoid porting their file system to

other OSs or OS versions. Thus, the file system portability problem results in

a large barrier for those seeking to innovate and wears on those who choose

to do so.

The four file system developers interviewed in §2.3.3 practice selective

availability, to varying extents. Panasas DirectFLOW and PVFS are available

only on Linux, and supported on a subset of Linux kernel versions. GPFS is

available on Linux only for some kernel versions. Users suffer from selective

availability. For example, Argonne National Laboratory uses GPFS and PVFS

for home directories and scientific data, respectively. Selective availability

forces Argonne to use an old Linux kernel that is supported by both file

systems [83]. This causes pain to developers, as they are unable to use newer

Linux features.

2.5 Additional related work

File systems and VMs. Several research projects have explored running

a file system in a VM, for a variety of reasons such as extensibility, sharing,

performance, and security. POFS [76] proposes that virtual machine monitors

should provide a higher-level file system interface to a VM, instead of the

traditional device-like block interface, in order to gain sharing, security,

modularity, and extensibility benefits. XenFS [58] shares a file system VM

among multiple user VMs, in order to share a buffer cache and provide a single

18 · File system virtual appliances

copy-on-write file system image. VNFS [112] optimizes NFS performance

when an NFS client is physically co-located with an NFS server, using shared

memory to enable zero-copy data movement and to allow clients to directly

read the NFS server’s metadata. VPFS [107] builds a trusted storage facility

out of untrusted legacy file systems using microkernels, and Matthews et

al. [59] protect user data in the event of security attacks by storing the data

in an NFS server virtual appliance. VMware Workstation [101] provides a

“Shared Folders” feature to enable a guest VM to access the host OS’s file

system.

The FSVA architecture adapts these ideas to address the file system

portability problem. But, the differing goals lead to different design decisions.

First, user OSs cannot cache data or metadata, since FSVAs are file system-

agnostic conduits to existing file system implementations. To maintain file

system semantics, all user OS VFS calls must be sent to the FSVA. Second,

separate FSVAs are employed for each user VM, to maintain virtualization

features, such as migration and resource accounting, whereas others focus on

using a single file system VM per physical machine to increase efficiency.

FSVAs also maintain OS features such as a unified buffer cache and

VM features such as migration. Providing such features is orthogonal to the

particular client caching and sharing design decisions; other systems can

benefit from the FSVA solution to these problems.

OS structure. The FSVA architecture is an application of microkernel

concepts [2, 42]. Microkernels execute OS components in separate servers.

Doing so allows independent development and flexibility. But, traditional

microkernels require significant changes to OS structure. FSVAs leverage

virtualization to avoid the upfront implementation costs that held back

microkernels.

LeVasseur et al. [57] reuse existing device drivers in different OSs by

running them in a VM. Nooks [98] increases the reliability of commodity

OSs while reusing existing drivers through lightweight kernel protection

domains. Soft devices [104] simplify device-level development by reusing

Xen’s narrow paravirtualized device interface. FSVAs share these approaches’

aim of leveraging existing kernel code and simplifying OS support or reliability.

2.5 Additional related work · 19

In contrast, FSVAs deal with the richer file system interface while retaining

OS and virtualization features.

Software engineering approaches. The software engineering community

has studied the general problem of variability management. Software product

lines [21] are a disciplined approach to finding and reusing common function-

ality (and interfaces) among related products. In a single vendor environment,

or when multiple vendors agree on a common interface, this can be effective.

Unfortunately, different OS vendors (and even different releases of the

same OS) have failed to agree on common and comprehensive internal OS

interfaces. Different design choices and backward compatibility mean that

the differences in OSs’ internal interfaces are here to stay.

Language-based approaches. Padioleau et al. [74] characterize changes

in Linux device drivers due to intra-OS interface changes. While they focus

on device drivers, file systems face similar issues because both components

rely on internal OS interfaces for memory allocation, locking, etc. Based

on this study, Padioleau et al. then developed Coccinelle [73], a program

transformation tool that automatically updates Linux device drivers after

interface changes. While Coccinelle could handle some of the interface syntax

changes that we described, like FiST [111], it would be unable to mitigate

the policy and semantic changes. The latter require much more intrusive file

system changes.

Fast IPC. Dean and Armand describe [25] how the Mach and CHORUS

microkernels achieved high file system performance. Mach aggressively uses

shared memory: clients have read-only access to the file system server memory,

allowing common-case reads to proceed without a context switch to the file

system server. CHORUS avoids Mach’s shared memory usage, since it couples

the file system client and server code. Instead, the file server is executed in

supervisor mode to decrease the context switch overhead. Like CHORUS,

the FSVA architecture avoids directly serving read operations in the user OS,

in order to preserve file system semantics and remain file system-agnostic.

Unlike CHORUS, FSVAs are not executed in supervisor mode, since the

virtual machine monitor (VMM) is already using this privilage level.

20 · File system virtual appliances

User-level Remote Procedure Call [7] reduces local RPC overhead by

avoiding protection boundary crossings. Processes enqueue requests and

responses to a shared memory region and only invoke the kernel if the

other process is not executing. FSVAs similarly avoid VMM scheduling and

synchronous interrupts to achieve fast inter-VM event notification.

Fido [14] enables zero-copy inter-VM data movement through a single

shared address space, in the spirit of single address-space operating sys-

tems [18]. FSVAs avoid data copies by using hypervisor shared memory

hypercalls. Adopting Fido’s single address-space approach would eliminate

the need for the shared memory hypercalls.

3 Architecture

This chapter describes the FSVA architecture. First, we provide background

on two technology trends that enable the architecture. Then, we give an

overview of the FSVA architecture and discuss its viability. The chapter

concludes with a discussion of the architecture’s costs and limitations.

3.1 Technology trends

The FSVA architecture is enabled by two technology trends: virtualization

and multicore processors. Virtualization is a fundamental building block for

the FSVA architecture. Multicore processors enable high performance given

current processor, OS, and virtual machine monitor architectures.

3.1.1 Virtualization

Virtualization is a technique for providing, and possibly sharing, a system or

component interface that is potentially different from the underlying resources’

interface [81, 93]. Depending on the resource, different types of virtualization

are possible; for example, virtualization can occur at the hardware, storage,

network, or process level. In this dissertation, we use virtualization to refer

to hardware-level virtualization: the ability to concurrently execute multiple

OSs on a physical machine [10]. Each OS executes in an isolated virtual

machine (VM), observing a hardware interface that is usually identical to

the underlying hardware interface [81].

Virtualization has a variety of uses. In the 1960s, IBM invented vir-

tualization to time-share mainframes, allowing users to run isolated, and

21

22 · File system virtual appliances

possibly different, OSs [22, 38]. Interest in virtualization was revived in the

late 1990s to serve a similar purpose: efficiently use large shared memory

multiprocessors through simultaneous execution of multiple commodity OSs,

thereby avoiding the need to develop scalable OSs [13]. VMware popular-

ized the use of virtualization for application compatibility, program testing

and development, data isolation, and server consolidation [81]. In addition

to consolidation, virtualization is used in the enterprise for migration (en-

abling load-balancing and scheduled downtime), security sandboxing, fault

tolerance [23], and disaster recovery [32, 63]. On the desktop, virtualization

simplifies software distribution and maintenance [87] and is projected to

be used on 660 million PCs by 2011 [36]. In high performance computing,

virtualization has been proposed to increase developer productivity [45, 65].

Architecturally, there are two virtualization approaches: native (also

known as type 1) or hosted (or type 2). In native virtualization, a virtual

machine monitor (VMM) directly executes on hardware, multiplexing the

physical resources among VMs. In hosted virtualization, a VMM runs as an

ordinary process in a host OS, possibly with kernel-level extensions in the

host OS. The host OS directly executes on hardware, and VMs execute inside

the VMM process. Figures 3.1 and 3.2 illustrate the two architectures. The

two approaches trade off performance, robustness, and ease of deployment.

3.1.2 Multicore processors

A substantial shift in microprocessor architecture has occurred due to phys-

ical limitations, such as heat dissipation, power consumption, and leakage

currents [70]. Vendors, unable to sustain their previous rate of processor clock

frequency increases, are instead adding more processing cores per circuit die,

or chip. In contrast to traditional symmetric multiprocessing architectures,

the multiple cores in a chip multiprocessor have faster interconnects and

share caches [41].

The advent of multicore computing is disruptive for software. The majority

of software applications are single-threaded and rely on the traditional

increases in clock frequency for faster program execution on newer processors.

3.2 Architecture overview · 23

VMM

Hardware

VM
Applications

OS

VM
Applications

OS

Figure 3.1. Virtualization us-
ing a native VMM.

Applications

Hardware

Host OS
VMM

VM
Applications

OS

Figure 3.2. Virtualization us-
ing a hosted VMM.

But, multicores processors change this trend. With future processors unlikely

to see substantial increases in clock frequency, user-perceived performance

improvements must arise from rewriting software to make it parallel [97, 96].

Multithreading, the traditional parallel programming construct, is unlikely to

be the solution, due to programming complexity [97]. Consequently, there is

much research on alternative programming paradigms, such as transactional

memory [43, 55].

Virtualization is likely to play a role in exploiting multicore processors.

Safe and flexible resource sharing, provided by virtualization, can enable

high utilization of multicore processors. Specifically, in contrast to OS-level

resource multiplexing, virtualization’s narrow interface ensures strict iso-

lation between applications running in different VMs. Virtualization also

allows different applications to use different OSs. Furthermore, virtualization

eliminates the need to develop highly scalable OSs that exploit multicore

parallelism.

3.2 Architecture overview

The FSVA architecture leverages virtualization to solve the file system

portability problem. A file system implementation runs in a virtual machine

(VM) executing the file system developer’s preferred OS. We refer to the file

system VM as a File System Virtual Appliance (FSVA). User applications

24 · File system virtual appliances

run in a user’s preferred OS, possibly in a VM. File system-agnostic proxies

in both OSs translate to/from a common VFS interface, using efficient VMM

communication primitives. The proxies also maintain OS and virtualization

features such as a unified buffer cache and migration, respectively. Figure 3.3

illustrates the FSVA architecture. The FSVA design space and a specific

design point are explored in Chapter 4. This chapter discusses the generic,

high-level FSVA architecture.

By decoupling of the user OS1 from the file system OS, the FSVA

architecture addresses the compatibility challenges discussed in §2.3. A file

system developer implements his file system in a single OS version without

concern for users’ particular OSs. The file system is isolated from both kernel-

and user-space differences in user OSs, because it interacts with just the

single FSVA OS version. Policy and semantic issues like the poor handling

of memory pressure and write-back (Table 2.1) can be addressed by simply

not using such a kernel in the FSVA — the file system developer can choose

an OS to suit the file system, rather than being forced to work with a

user’s chosen OS. Similarly, users are free to choose any OS (version). Thus,

the FSVA approach handles all three forms of the file system portability

problem (§2.3.2).

For the FSVA approach to work, the user OS and FSVA proxies must

be a “native” part of the OS — they must be maintained across versions

by the OS vendors. The hope is that, because of their small size and value

to a broad range of file system users and developers, OS vendors would be

willing to adopt such a proxy. FUSE [35], a proxy for user-level file systems,

has been integrated into Linux, NetBSD, and OpenSolaris, and we envision

a similar adoption path.

FSVAs do not preclude file system developers from porting their file

systems to different OSs. Indeed, they might still do so to get new features,

for improved performance, or for OS bug fixes. But, FSVAs enable such

porting to occur at the developers’ pace, not at the users’ pace. Developers

1The file system running in the FSVA may be a client component of a distributed
file system. To avoid client/server ambiguities, we use user and FSVA to refer to the file
system user and VM executing the file system, respectively.

3.2 Architecture overview · 25

User VM FSVA

VMM

FS applications

FSVA proxy

File systemUser OS proxy

VFS

Applications
FS sys calls

VFS calls VFS callsFSVA IPCs

Figure 3.3. FSVA architecture. A file system and its (optional) management
applications run in a dedicated VM. File system-agnostic proxy running in
the user OS and FSVA pass VFS calls via an efficient inter-VM IPC layer.

can skip porting to most OSs and select a new stable OS (version) when

desired.

The FSVA architecture borrows aspects from VFS, user-level file systems,

microkernels, and virtual appliances. In the spirit of VFS, the FSVA interface

isolates file systems from the user OS and vice versa, but only more so. Similar

to user-level file systems, a small file system-agnostic proxy is maintained in

the kernel. But, instead of a user-level process, the proxy allows the file system

to be implemented in a dedicated VM. This leverages legacy file system

implementations and provides stronger isolation from user OSs, overcoming

the policy and semantic challenges described in §2.3. Like microkernels,

FSVAs enable independent, flexible OS development. But, virtualization

enables the virtual appliance software distribution model [87], avoiding

microkernels’ OS rearchitecture cost.

The FSVA architecture is independent of specific virtualization archi-

tectures. Consequently, the user OS may be executing either in a VM (if a

native VMM is used) or directly on hardware (if a hosted VMM is used).

The rest of this dissertation will use the generic term user OS to represent

either scenario. In contrast, the file system OS always executes in a VM.

To reflect our prototype, figures use the native VMM architecture. Some of

the features we describe are only applicable for native virtualization. For

example, hosted virtualization does not support migration of the host OS.

26 · File system virtual appliances

Hence, our discussion of migration is only applicable for native virtualization.

3.3 Viability

For the FSVA architecture to be viable, four issues must be addressed. First,

the FSVA interface must be stable, to avoid a repeat of the original problem of

supporting changing interfaces. Second, only a few VMMs can be realistically

supported by OS vendors, and the proxies should have minimal dependencies

on the VMM to facilitate porting across VMMs. Third, FSVA performance

must be reasonably close to native “in-kernel” file systems. Fourth, OS and

VMM features must be maintained. Addressing the first two issues encourages

OS vendor adoption, while solving the latter two encourages user adoption.

This section discusses these issues, and describes how technology trends and

appropriate design mitigate them.

3.3.1 Interface stability

For the FSVA approach to succeed, the FSVA interface (consisting of op-

erations such as read and data structures such as inodes) must be stable.

Otherwise, FSVAs would merely shift the location of the changing-interfaces

problem: from file system developers supporting different OSs to OS vendors

supporting different FSVA interfaces.

Towards that end, we designed a minimal VFS-like FSVA interface

(§4.3.2). A VFS-like interface ensures interface stability because inter-OS

differences tend to occur in internal OS implementation (e.g., memory man-

agement) rather than application interfaces (§2.3). The popularity of the

POSIX [30] interface has led to a standard set of file system system calls that,

in turn, has led to a small-ish number of VFS primitives that are common

across OSs. Therefore, inter-OS differences are likely to be encapsulated in

the proxies and the generic VFS-like interface ought to be unaffected.

NFS provides a successful model of a constant file system interface that

has enjoyed wide OS support — though, as discussed in §2.4, it is inadequate

for our purposes.

3.3 Viability · 27

3.3.2 VMM proliferation

The user OS and FSVA proxies depend on the VMM interface. Specifically,

the proxies’ IPC layer depends on the VMM’s shared memory and event

notification interfaces. Consequently, a proliferation of VMMs could make

it difficult for OS vendors to support the proxies for every VMM. Two

factors mitigate this. First, there are only a few widely-used VMMs: KVM,

VMware, Xen, and Microsoft dominate the marketplace [46, 47]. Second, the

VMM-specific code is a small portion of the proxies — about a quarter of

the code (§5.1) — and is self-contained beneath very simple interfaces.

In our experience, porting the proxies from the Xen VMM [6] to the

VMware Workstation VMM [102] was relatively straightforward, especially

compared to porting the FSVA proxy from Linux to NetBSD (§7).

3.3.3 Maintaining performance and the role of multicore processors

For the FSVA architecture to be practical, its performance overhead must

be minimal. Although the performance-overhead sources and mitigating

approaches are discussed in detail in §5.3, we now briefly describe the role of

multicore processors, given their significant role in making the architecture

viable.

FSVA performance overhead stems from the IPC layer. There are two

components to an IPC layer: data transfer and control transfer. The overhead

of data transfer is negligible when shared memory is used (§5.3). In contrast,

control transfer costs dominate the FSVA performance overhead.

Multicore processors enable fast FSVA performance by decreasing the

control transfer cost. Specifically, by simultaneously executing the user OS

and FSVA on different cores, inter-VM control transfer is transformed to

the faster operation of inter-core signaling. This avoids expensive VM and

thread context switches (§5.3).

Thus, widespread multicore availability is an enabling technology trend

for FSVAs. Of course, extra cores do not come for free — especially in a virtu-

alized environment, due to server consolidation. The extra core requirement

may be alleviated by gang scheduling a user VM with its FSVA(s) only during

28 · File system virtual appliances

file system-intensive periods [33, 72]. But, in general, the FSVA architecture

leverages the multicore trend to enable efficient portable file systems. Others

have also advocated using extra cores to enable or simplify software (e.g.,

for software security checks [68] or dynamic code instrumentation [19]).

3.3.4 Maintaining OS and virtualization features

Executing file systems in a separate VM requires careful design in order to

maintain OS features. For example, caching is an integral aspect of OSs, often

playing a critical role in application performance. Consequently, FSVAs must

maintain modern unified buffer caches, among other OS features. Similarly,

FSVAs must maintain virtualization features such as migration, performance

isolation, and accounting. Users rely on these virtualization features. They

cannot be disrupted by FSVAs.

Chapter 4 explores the consequences of the FSVA architecture on these

features, and describes a practical design that maintains them.

3.4 Costs and limitations

The previous section discussed FSVA viability issues that are mitigated by

technology trends or solved through appropriate design. In contrast, this

section describes architectural costs and limitations that cannot be eliminated.

They are intrinsic to the use of virtualization. Although we discuss these

issues in relation to FSVAs, they are not specific to file systems: they arise

whenever OS or application functionality is separated and executed in a

virtual appliance.

3.4.1 Administration and support

FSVAs incur administration and support costs. From a user perspective,

FSVAs require users to administer “extra” VMs. This includes allocating

network addresses, provisioning storage, and deciding on appropriate VM

resources (e.g., number of CPUs and memory size). From a developer per-

spective, FSVAs require file system developers to support the FSVA OS.

3.4 Costs and limitations · 29

For example, security vulnerabilities in an FSVA require prompt developer

updates.

Fortunately, administration and support costs of virtual appliances are

offset by their benefits in simplifying software distribution and configura-

tion [86, 87]. Although users must administer an extra VM, they are no

longer responsible for complex software installations. Furthermore, users

are free to choose any OS, without being limited by their file system’s OS

requirements.

Although developers are forced to provide OS support, the decoupling of

the user OS and virtual appliance OS allows developers to select robust and

secure OSs, such as server or embedded OSs. Furthermore, this cost is offset

by the savings of not supporting diverse user OSs.

3.4.2 Overhead

The FSVA architecture adds memory and performance overhead. FSVAs

introduce memory overhead due to the additional FSVA OS’s memory

footprint. The extra memory usage can be reduced by only including OS

components required by the file system. Furthermore, because the OS executes

in a VM, it does not directly access hardware and can thus avoid including

most drivers, which often form a significant part of the OS memory footprint.

Sending the user OS VFS operations across an inter-VM IPC layer has an

intrinsic performance overhead. VFS operations must be translated to/from

a common FSVA protocol, and the IPC layer must transfer data and control

between the user OS and the FSVA. Furthermore, as explained in the next

chapter, FSVA design decisions necessary for maintaining unmodified file

systems’ semantics aggravate this overhead. Additionally, virtualization adds

some overhead. Our design exploits shared memory and multicore processors

to reduce the IPC layer’s data and control transfer overhead, respectively.

Although performance and memory overhead can be reduced, they cannot

be completely eliminated. But, they need not be eliminated. Relinquishing

performance and memory resources for increased developer productivity is

a recurring theme in computer science. Whether the costs are acceptable

30 · File system virtual appliances

depends on the workload and performance requirements. The evaluation

chapter explores these overheads.

3.4.3 Out-of-band state

There is a fundamental limitation to the FSVA approach. By executing in

a separate OS from the user OS, a file system can no longer transparently

access out-of-band state such as arbitrary user OS memory or files. The user

and FSVA proxies only transfer generic, file system-agnostic VFS state. As

an example of out-of-band state, consider an ioctl2 that includes pointers.

Although the user OS proxy can transfer the opaque ioctl data to the FSVA,

the embedded pointers would be invalid in the different FSVA address space.

Another example is NFSv4 and OpenAFS’ use of Kerberos authentication [67].

With Kerberos, a user runs a program to obtain credentials; the credentials

are then stored in /tmp on a per-process-group basis. The NFSv4 VFS

handlers retrieve those Kerberos credentials by accessing the /tmp files. With

FSVAs, the file systems observe a different /tmp namespace, effectively hiding

the user’s Kerberos credentials3.

There is no general solution to the out-of-band state problem. The use of

a separate OS for the file system, an intrinsic part of the FSVA architecture,

causes the out-of-band state problem. File system cooperation is necessary for

transferring this state. Fortunately, most file systems do not have out-of-band

state. Furthermore, for file systems with out-of-band state, the code for the

extra state transfer is minimal.

3.5 Summary

The FSVA architecture leverages virtualization to enable portable file system

implementations. By decoupling the file system OS from the user OS, FSVAs

2The Unix ioctl system call allows applications to send file-system-specific commands
and data to a file system.

3At first blush, executing the Kerberos authentication program in the FSVA would
solve this problem, since the credentials would be in the same /tmp namespace as the file
system. However, this approach is not transparent to users, and would require an additional
mechanism to map from the user OS’s users IDs to the FSVA OS credentials.

3.5 Summary · 31

free file system developers from having to support different OSs. A combina-

tion of technology trends and careful design make this architecture viable.

Although this architecture has some performance overhead and requires

additional administration, we argue that these costs are outweighed by its

ability to provide portable file systems.

32 · File system virtual appliances

4 Design

This chapter describes our design goals and principles used to achieve these

goals. It then details an FSVA design.

4.1 Goals

Chapter 3 described the high-level FSVA architecture, in which a file system

runs in its own VM. But, this architecture permits a number of different

designs, each following from a different set of design goals. This chapter

describes an FSVA design intended to achieve the following goals derived

from our desire to demonstrate FSVA viability (§3.3) and encourage FSVA

adoption.

No file system changes To simplify adoption and deployment, file system

developers should not have to modify their file system to run in an

FSVA. This also accommodates legacy file system implementations.

Generality The FSVA interface should be OS- and file system-agnostic.

It should not make assumptions about OS internals or file system

behavior.

Minimal OS and VMM changes The user OS and FSVA proxies should

require few changes to OSs. Similarly, any VMM changes should be

minimal.

Maintain OS and virtualization features Applications should not be

aware of the FSVA separation. Existing OS features (e.g., a unified

33

34 · File system virtual appliances

buffer cache, memory mapping) and virtualization features (e.g., migra-

tion, performance isolation, resource accounting) must be maintained.

Efficiency Use of FSVAs should impose minimal overheads.

These goals encourage three forms of FSVA adoption. The first two

goals encourage adoption by file system developers, knowing that the OS-

maintained proxies will work for them without being required to change their

file system. The third goal encourages adoption by OS and VMM vendors,

by simplifying the development and maintenance of the proxies. The last

two goals encourage adoption by users, by maintaining performance and

semantics.

There is tension among some of the preceding goals. For example, effi-

ciency favors caching file system state in the user OS; but, doing so would

require file system changes in order to maintain file systems semantics (§4.2.1),

which goes against our no-file-system-changes goal. Our first priority was to

encourage FSVA adoption by OS and file system vendors, through minimizing

the number of OS and file system changes.

4.2 Design principles

This section discusses three major design aspects: caching, FSVA sharing, and

the scope of the FSVA interface. The preceding goals lead to a corresponding

FSVA design principle for each aspect.

4.2.1 Passing all VFS calls

Design principle: in order to maintain file system semantics for

unmodified file systems, the user OS proxy must send all VFS

operations to the FSVA.

The performance overhead of inter-VM IPCs (see §3.3.3 and §5.3) can

be mitigated by caching file system state at the user OS. Data and/or

metadata (e.g., inode attributes, directory entries, access control checks) can

be cached. Such caching eliminates the expensive VM and/or thread control

transfers (§5.3) for operations that hit the user OS cache; for example, see §6.5.

4.2 Design principles · 35

Furthermore, for data operations (i.e., ordinary and memory-mapped reads

and writes), caching can eliminate shared memory hypercalls — synchronous

software traps from a VM to the VMM. Note that this type of caching is

orthogonal to the caching performed by the file system in the FSVA.

If a user OS caches file system state, then a callback scheme or cache

invalidation protocol will be required. To see why, consider a distributed file

system in which the read VFS handler checks for up-to-date data.1 A user

OS proxy that caches data would occasionally return stale results. Similarly,

some file systems update a file’s access time on a read operation. User OS

caching would bypass the FSVA’s file system read handler and, thus, break

the file system semantics.

Write-back caching in the user OS can also cause problems. Many file

systems carefully manage write-back policies to improve performance and

achieve correctness. If the user OS performed write-back caching without

giving control to the FSVA, the file system would lose this control and

users would face issues such as the Memory Pressure and Write-Back issues

described in Table 2.2. Such user OS proxy write-back would also break

consistency protocols, like NFS, that require write-through for consistency

or reliability.

To permit user OS caching while maintaining file system semantics, file

systems must be modified to support a callback or cache invalidation scheme.

But, file system modifications may not be desirable or feasible, especially

for legacy file system implementations. Thus, although caching can improve

efficiency, it hinders the ability to accommodate unmodified, arbitrary file

systems. Other systems that execute a file system in its own VM, such as

POFS [76], VPFS [107], and XenFS [58], have allowed caching in user OSs —

but they implement a specialized virtualization-optimized file system. Our

FSVA design, however, has a different goal: maintaining file system semantics

for unmodified file system implementations. Instead of caching in the user

OS, the FSVA design attempts to achieve efficiency through fast inter-VM

IPC (§3.3.3, §5.3).

1NFS’s 30-second staleness check is an example.

36 · File system virtual appliances

4.2.2 One user VM per FSVA

Design principle: in order to maintain OS and virtualization fea-

tures with minimal changes to the OS and VMM, each user OS

has a dedicated FSVA.

A fundamental FSVA design decision is whether to share an FSVA among

multiple user VMs2. A single FSVA serving multiple user VMs provides

sharing benefits. Metadata and data that are common among multiple user

VMs are “automatically” shared, effectively increasing cache utilization.

Indeed, this sharing capability is the primary motivation behind XenFS’s

single file system VM approach [58]. For stateful distributed file systems, the

number of server network connections, open file handles, and cache consistency

callbacks can be reduced, increasing server scalability, and greater batching

opportunities exist.

There is a well-known tension between sharing and isolation [9, 53, 100],

and the sharing opportunities provided by a shared FSVA design do not

come for free. Implementing a unified buffer cache between a user VM and

an FSVA is complicated when an FSVA is shared (§4.4.3). Additionally, a

single FSVA impedes the preservation of virtualization features. For example,

virtualization’s effectiveness in providing performance isolation among user

VMs is lost due to performance crosstalk [56, 9] in a shared FSVA. OS-

transparent VM migration is no longer possible — an FSVA with shared file

system state cannot be migrated without adversely affecting other user VMs.

These difficulties are described in more detail in the following sections (see

the ends of §4.4.3, §4.5.1, and §4.5.2).

As in the case for caching in the user OS, file systems and OSs can be

changed to permit a shared FSVA while maintaining OS and virtualization

features. But, this is undesirable given our design goal of preserving file system,

OS, and virtualization features for unmodified file systems. Consequently, we

have adopted a 1–to–n mapping from user VMs to FSVAs. Our experience has

been that it is simpler and more fitting with our goals to involve the file system

2The decision to share an FSVA is only relevant when there are multiple user OSs. This
occurs only for native VMMs (§3.1.1). Thus, when discussing FSVA sharing, we use the
more specific term user VM rather than the generic user OS label.

4.2 Design principles · 37

with sharing, rather than involve the file system and OS with preserving a

unified buffer cache and VM migration and resource accounting [1]. Note

that the sharing opportunities lost by a single FSVA per user OS design

are relative to a shared FSVA design, not to traditional “native” in-kernel

file systems. In other words, compared to a native in-kernel file system, our

FSVA design does not reduce sharing.

This design decision exacerbates the FSVA memory overhead: an extra

OS is required for every user VM. Fortunately, since file system vendors

are likely to only use a small subset of the OS, and they distribute a single

FSVA, it is feasible for them to fine-tune the OS leading to a small OS

image. Nevertheless, this FSVA design choice may not be appropriate for

environments with severe memory pressure. §6.6 quantifies the memory

overhead.

4.2.3 Interface scope

Design principle: in order to encourage OS vendor adoption of

the user OS and FSVA proxies, each major OS type (e.g., Unix,

Windows) will have its own FSVA interface.

Ideally, a single FSVA would support any and all user OSs. This would

enable a file system developer to support only one OS: their FSVA’s OS.

Unfortunately, semantic mismatches exist between some OSs’ file system

interfaces. For example, Unix and Windows differ in file naming, permission

semantics [105], locking granularity, and directory notifications. Consequently,

an unmodified Unix file system would not provide Windows users with the

full Windows file system semantics.

It may be possible to create a superset FSVA interface that supports

both Windows and Unix users. Perhaps the proxies could hide the semantic

differences from the file system. For example, NetApp storage appliances

support both Unix and Windows clients by implementing an internal interface

that is a superset of NFS and CIFS [31].

However, a “universal” FSVA interface would significantly complicate

the user OS and FSVA proxies. The proxies would need to translate from/to

38 · File system virtual appliances

a complicated one-size-fits-all FSVA interface that may be different from the

underlying OS’s VFS interface. This is beyond this dissertation’s scope.

Our design eschews a “universal” FSVA interface. Rather, we envision

a single FSVA interface for every “OS type.” This dissertation focuses on

an FSVA interface for Unix OSs. We believe an FSVA that services most

Unix OSs is possible: the popularity of POSIX [30] interface support in

Unix has led to a standard set of file system system calls that, in turn, has

led to a small-ish number of VFS primitives that are common across OSs.

Thus, inter-OS VFS interface differences are likely to be minor, and can be

encapsulated in the proxies.

4.2.4 Summary

The preceding design principles reflect our preference for minimizing FSVA

adoption effort by file system and OS vendors and for maintaining OS and

virtualization features. Different preferences would lead to different goals

and, subsequently, different designs. Table 4.1 contrasts the FSVA design

with related systems.

We preferred minimizing file system changes over performance. If file

system vendors have an opposite preference, caching in user OSs may be more

appropriate, leading to higher performance. Furthermore, maintaining virtu-

alization features was an important goal for us. But, in some environments,

such as high performance computing (HPC), VM migration and performance

isolation are not required. A shared FSVA would be more appropriate in

those environments. Similarly, specialized HPC environments may not require

maintaining OS features such as a unified buffer cache or memory mapping;

this would lead to simpler proxies.

For the remainder of this dissertation, the term “FSVA” will refer to the

design point specified by the preceding design principles.

4.3 Design overview

Our FSVA design is based on the architecture described in §3.2. A file

system executes in its own VM that runs the preferred OS of the file system

4.3 Design overview · 39

S
y
st

e
m

U
se

r
O

S
S

h
a
re

s
F

il
e

sy
st

e
m

M
a
in

ta
in

s
M

a
in

ta
in

s
M

a
in

ta
in

s
c
a
ch

in
g

F
S

V
M

sc
o
p

e
F

S
se

m
a
n
ti

c
s

U
B

C
V

M
M

fe
a
tu

re
s

P
O

F
S

[7
6
]

Y
es

Y
es

S
in

gl
e

F
S

Y
es

N
o

N
o

X
en

F
S

[5
8
]

Y
es

Y
es

S
in

gl
e

F
S

Y
es

N
o

N
o

V
N

F
S

[5
8]

Y
es

Y
es

N
F

S
Y

es
N

o
Y

es
(w

it
h

m
in

o
r

ch
a
n

g
es

)

V
P

F
S

[1
07

]
Y

es
N

o
A

rb
it

ra
ry

F
S

N
o

N
o

n
/a

(m
ic

ro
ke

rn
el

)

V
M

w
a
re

W
or

k
st

a
ti

o
n

Y
es

n
/a

A
rb

it
ra

ry
F

S
N

o
N

o
n

/
a

S
h

ar
ed

F
ol

d
er

s
[1

0
1]

(h
os

te
d

V
M

M
)

(h
o
st

ed
V

M
M

)

F
S

V
A

N
o

N
o

A
rb

it
ra

ry
F

S
Y

es
Y

es
Y

es

T
ab

le
4.

1.
C

om
p
ar

in
g

d
es

ig
n

d
ec

is
io

n
s

an
d

ca
p
ab

il
it

ie
s

of
fi
le

sy
st

em
(F

S
)

V
M

s.
T

h
e

F
S
V

A
d
es

ig
n

is
th

e
on

ly
on

e
th

a
t

m
a
in

ta
in

s
a

u
n

ifi
ed

b
u

ff
er

ca
ch

e,
v
ir

tu
a
li

za
ti

o
n

fe
a
tu

re
s,

a
n

d
fi

le
sy

st
em

se
m

a
n
ti

cs
fo

r
a
rb

it
ra

ry
fi

le
sy

st
em

s.
P

O
F

S
[7

6]
a
n

d
X

en
F

S
[5

8
]

im
p

le
m

en
t

a
sp

ec
ia

li
ze

d
v
ir

tu
a
li

za
ti

o
n

-o
p

ti
m

iz
ed

fi
le

sy
st

em
;

th
ey

d
o

n
o
t

su
p

p
o
rt

a
rb

it
ra

ry
fi

le
sy

st
em

s.
V

N
F

S
[5

8]
o
p

ti
m

iz
es

N
F

S
a
cc

es
s

fo
r

N
F

S
cl

ie
n
ts

p
h
y
si

ca
ll

y
co

lo
ca

te
d

w
it

h
a

se
rv

er
;

th
e

st
at

el
es

s
N

F
S

n
at

u
re

al
lo

w
s

th
e

V
N

F
S

la
ye

r
to

si
m

p
ly

re
cr

ea
te

al
l

N
F

S
co

n
n
ec

ti
on

s
on

a
m

ig
ra

ti
on

,
th

u
s

p
re

se
rv

in
g

th
a
t

v
ir

tu
a
li

za
ti

o
n

fe
a
tu

re
.

R
es

o
u

rc
e

a
cc

o
u

n
ti

n
g

a
n
d

p
er

fo
rm

a
n

ce
is

o
la

ti
o
n

a
re

n
o
t

a
ff

ec
te

d
b
y

V
N

F
S

a
n
y

m
o
re

th
a
n

if
th

e
N

F
S

o
p

er
a
ti

o
n

s
w

en
t

th
ro

u
g
h

th
e

lo
ca

l
n

et
w

o
rk

in
g

la
y
er

.
V

M
w

a
re

W
o
rk

st
a
ti

o
n

S
h
a
re

d
F

o
ld

er
s

[1
0
1
]

an
d

V
P

F
S

[1
0
7
]

ar
e

th
e

on
ly

ot
h

er
sy

st
em

s
th

at
su

p
p

or
t

ar
b

it
ra

ry
fi

le
sy

st
em

s,
b
u

t
b

ot
h

sy
st

em
s

p
er

fo
rm

ca
ch

in
g

in
th

e
u

se
r

O
S

;
th

is
fa

il
s

to
p

re
se

rv
e

th
e

fi
le

sy
st

em
se

m
an

ti
cs

.

40 · File system virtual appliances

developers. Users run their applications in a separate OS, possibly in a

VM, using their preferred OS. File system-agnostic proxies in both OSs

efficiently pass VFS operations from the user OS to the FSVA and maintain

OS and virtualization features. Furthermore, our FSVA design is based on

the three design principles described in the preceding section: all user OS

VFS operations are sent to the FSVA (i.e., there is no caching in the user

OS), FSVAs are not shared among user OSs, and there is an FSVA for each

major OS type (e.g., Unix, Windows).

The user OS proxy registers as a file system in the user OS. Application

system calls or background VFS operations (e.g., writeback) invoke the

proxy’s VFS handlers. The majority of the proxy’s VFS handlers are simple:

they encode the VFS operation and its arguments into an OS-independent

format, perform an IPC to the FSVA, wait for a response, decode the response,

and reply to the user OS with the FSVA’s result. On receiving a request, the

FSVA proxy decodes it, sends it to the file system, encodes and sends the

file system’s response to the user OS proxy. As discussed in §4.2.1, all user

OS VFS operations are sent to the FSVA in order to preserve file system

semantics. By synchronously waiting for the FSVA response, just like the

caller would do if the file system was local, the user OS proxy maintains file

system behavior.

4.3.1 IPC layer

Our IPC3 layer closely mirrors the Xen [6] block and network drivers’ IPC lay-

ers. The IPC layer performs two tasks: data transfer and control notification.

Data is transferred using an asynchronous ring buffer residing in a shared

memory region. The ring buffer, split into equally-sized slots, contains two

producer-consumer queues: one for requests and one for responses. The two

queues consist of equally-sized slots. The user OS proxy enqueues operations

to the request queue, which are then dequeued by the FSVA proxy. Responses

are handled in a reverse manner: the FSVA proxy enqueues responses to the

3Strictly speaking, an IPC layer provides communication between processes, not VMs.
But, both cases contain similar protection boundary crossings and thus share a similar
structure. Consequently, we use the traditional IPC label.

4.3 Design overview · 41

response queue, which are then dequeued by the user OS proxy. Figure 4.1

illustrates the IPC ring. Multiple outstanding VFS operations at the user

OS can lead to multiple requests in the IPC ring. To avoid deadlocks like

those described in Table 2.2, the proxies do not perform memory allocations

in the IPC path.

The Xen IPC layers use inter-VM software interrupts to signal pending

requests and responses. To achieve low IPC latency, our IPC layer also

supports using dedicated CPU cores in order to avoid VM and thread

switches. Details are in §5.3.

There are two control advantages to the asynchronous ring buffer struc-

ture. First, the single-reader single-writer structure enables non-blocking

synchronization between the user OS and the FSVA [66]. Writers limit the

number of enqueued requests/responses, ensuring that the two queues occupy

distinct slots on the ring. Second, it allows out-of-order responses from the

FSVA. This flexibility permits low latency when multiple outstanding re-

quests have significantly different latencies (e.g., an in-cache getattr versus

an out-of-cache read).

The majority of IPCs are triggered by the user OS. However, because

FSVA pages that are memory-mapped in the user OS may be invalidated

in the FSVA (e.g., due to cache consistency callbacks or FSVA file system

applications), the FSVA proxy may need to trigger a synchronous IPC to the

user OS. Consequently, our IPC layer consists of two rings: one ring allows

IPCs from the user OS to the FSVA, and the other ring allows IPCs in the

reverse direction.

4.3.2 FSVA interface

The FSVA interface consists of the common Unix VFS operations, based

on an examination of the Linux, NetBSD, and OpenSolaris VFS interfaces.

Most Unix OSs have similar VFS interfaces, both in the operation types (e.g.,

open, create, write) and state (e.g., file descriptors, inodes and directory

entries). Consequently, the Unix VFS interfaces are similar and differences

can be normalized by the proxies. In addition to the VFS operations, the

42 · File system virtual appliances

User OS FSVA

FSVA proxy

File systemUser OS proxy

VFS
VFS call VFS call

IPC ring

1
2

3 4 5

6
7

8

Figure 4.1. This figure illustrates the sequence of operations and data move-
ment for handling a user OS VFS operation. The red numerals indicate the
sequence. Note that data operations (e.g., read) require more steps in order
to share memory between VMs.

FSVA interface includes calls to support a unified buffer cache and migration.

Table 5.2 lists the FSVA interface.

What has been left out of the FSVA interface is notable: virtual memory

interactions, data and metadata caching, device access, memory allocation,

locking, preemption policy, and threading. It is precisely these aspects that

change most across OSs (versions) and cause the most grief for file system

developers (§2.3). The spartan FSVA interface supports the hope that it can

remain constant among OSs and across OS revisions. The FSVA interface

does not constrain the functionality of the user OSs or the file system. OS

developers are free to change internal OS interfaces and implementation, as

long as they maintain the proxies.

4.3.3 Data operations

To avoid unnecessary data copies, VFS data operations require special

handling in the user and FSVA proxies. Modern OSs provide multiple file

I/O interfaces: ordinary read and write calls, direct I/O, asynchronous

I/O, and memory-mapped I/O. We describe the use of shared memory for

ordinary I/O; the other I/O interfaces have similar implementations.

For ordinary read and write operations, an application provides the OS

with a buffer that will receive or provide the data, respectively. To preserve

4.4 Maintaining OS features · 43

file system semantics, every read and write call is handled in the FSVA,

bypassing the user OS’s generic read/write handlers and buffer cache. In

order to avoid memory copies, the application buffer is mapped into the

FSVA’s address space. The user proxy uses the VMM’s shared memory

facility to grant the FSVA access to the application buffer pages. The FSVA

proxy then maps those pages into its address space. Thus, the file system

implementation transparently accesses the application buffer.

4.4 Maintaining OS features

This section describes how user OS features are maintained, despite the file

system executing in a separate VM.

4.4.1 Metadata duplication

Many OS components, outside the VFS layer, directly access generic file

system metadata, such as inodes or directory entries. For example, an OS’s

program-loading module interacts with programs’ open file descriptors and

inodes. To preserve the ability to execute programs stored in an FSVA file

system, the user OS proxy creates this metadata in the user OS. The FSVA

will also contain metadata, to support the FSVA OS and file system. Thus,

metadata exists in both the user OS and the FSVA OS. Note that the user OS

metadata is minimal: the user OS proxy creates basic inodes and directory

entries, but any file system-specific “extra” metadata (e.g., block allocation

maps) is stored only in the FSVA. This follows from the file system-agnostic

FSVA design — the proxies are not aware of file system-specific metadata.

The user OS’s caching is a read- and write-through functionality-

supporting cache. Although read-only and mutating VFS operations are

always handled in the FSVA, the cache enables existing user OS features

such as memory mapping and file system-based process execution that directly

access file system metadata to continue working.

Metadata duplication can be avoided through invasive OS changes that

wrap all metadata access in the user OS and perform corresponding IPCs.

From a software engineering standpoint, this is how it should work. But,

44 · File system virtual appliances

User OS FSVA

execve(/foo)

Attributes
Parent inode

/foo inode
Attributes
Parent inode
Direct blocks
Indirect blocks
...

/foo inode
Cylinder groups
Block allocation map
Inode bitmap
Inode table
...

/ FS ext3 data

Figure 4.2. Metadata is duplicated between the user OS and FSVA OS, to
maintain user OS functionality. The user OS proxy creates generic metadata
structures in the user OS. File system-specific metadata, shown underlined
for a Linux ext3 file system example, is only kept in the FSVA OS.

practically, this would complicate the adoption of the user OS proxy by OS

vendors. Given that inodes and directory entries are small data structures, we

opted for duplication. As described in §4.4.3, data blocks are not duplicated.

For distributed file systems with cache consistency callbacks, a user OS

might contain stale metadata. For example, a cache consistency callback can

update the FSVA’s file’s attributes. But, this inconsistency will not be visible

to user applications. OSs already call into the file system in response to

application operations that require up-to-date metadata. This will cause the

user OS proxy to perform an IPC to the FSVA in order to retrieve up-to-date

metadata.

4.4.2 Security and other common VFS features

The VFS layer contains file system-agnostic features, such as permission

checks, security auditing, and directory notifications. It also performs some

locking on behalf of the file system VFS handlers. In contrast with the VFS

layer interface, these features vary widely across OSs.

Maintaining the user OS’s security checks and policies is required in order

to preserve application semantics. Most Unix OSs perform access control

in the VFS layer, above the file system. Since the user OS proxy sits below

4.4 Maintaining OS features · 45

User OS

User OS proxy

VFS

Applications
FS sys calls

VFS calls

Auditing
Directory notifications

Locking
Permission checks

FSVA

FSVA proxy

VFS

FS applications
FS sys calls

Auditing
Directory notifications

Locking
Permission checks

File system
VFS calls

Figure 4.3. The VFS layer contains file system-agnostic features such as
permission checks, auditing and directory notifications and performs some
locking on behalf of the VFS handlers. These features continue to function
with FSVAs, because the user OS proxy is underneath the VFS layer stack.
The FSVA proxy avoids duplicating this functionality by directly calling the
file system’s VFS handlers.

the VFS layer, the existing VFS security checks continue to work. In the

FSVA, the proxy directly calls into the file system, thereby bypassing the

FSVA OS’s security checks. In contrast to generic OS security checks, file

system-specific security features, such as Kerberos authentication [67], may

require extra effort, as discussed in §3.4.3.

Other common VFS features are similarly unaffected by FSVAs, because

the user OS proxy is underneath the VFS layer stack.

In different FSVA designs, executing a file system in a VM provides

security properties by enforcing a narrow interface from/to the file system

(e.g., [107, 59]). This dissertation does not explore this avenue: our FSVA

design relies on mutual trust between the user VM and FSVA. For example,

the user VM is trusted by the FSVA to correctly identify users and to store

security credentials such as Kerberos tickets. Similarly, the FSVA is trusted

by the user OS to return the appropriate file system responses.

46 · File system virtual appliances

4.4.3 Unified buffer cache

Managing a computer’s limited physical memory is an essential OS function.

In particular, the majority of memory is typically used by two OS compo-

nents4: virtual memory and file systems. The virtual memory cache consists

of application code and data pages (i.e., program stack and heap). The file

system caches largely consist of data blocks (the buffer cache), as well as

metadata. Because metadata is duplicated between the two OSs (§4.4.1), the

file system cache we are concerned with is the buffer cache.

Early Unix OSs had separate virtual memory and file system caches. This

had data and control disadvantages. First, disk blocks were duplicated in

both caches. Second, the lack of a single eviction policy led to suboptimal

cache partitioning. Unified buffer caches (UBCs) (also known as page caches)

fix both problems [37, 91]. A single cache stores both virtual memory pages

and file system data, avoiding copies and enabling a single eviction policy.

An analogous problem exists for FSVAs: separate caching between the

user OS and FSVA OS. User applications run in the user OS; therefore, the

virtual memory cache exists in the user OS. The file system runs in the

FSVA; therefore, the buffer cache exists in the FSVA. Without extensive OS

changes, we cannot coalesce the two OSs’ caches into a single cache — the

OSs have different data structures and expect exclusive access to hardware

(e.g., per-page access and dirty bits). Instead, we maintain the illusion of an

inter-VM unified buffer cache by using shared memory (to avoid data copies)

and by loosely coupling the two caches (to obtain a single eviction policy).

The user OS and FSVA proxies maintain this illusion with minor changes to

the FSVA OS and no changes to the user OS.

FSVAs avoid unnecessary data duplication by using the VMM’s shared

memory facilities. There are two types of data operations to consider: ordinary

and memory-mapped. Ordinary read and write operations are always sent

to the FSVA (§4.3.3). Because the user OS is not involved in executing these

4In memory-constrained systems, such as embedded systems or high performance
computing, paging is unavailable. Virtual memory is carefully managed and pinned in
physical memory. Consequently, these systems lack a virtual memory cache. This section
assumes paging is enabled and hence a virtual memory cache exists.

4.4 Maintaining OS features · 47

User OS FSVA

read(/foo) mmap(/bar)

FS cache

File Block #

/bar 0
/bar 1
/foo 0
/foo 2

FS cache

File Block #

/bar 0
/bar 1

Pages

/foo 2
/foo 0

Figure 4.4. A unified buffer cache between the user OS and FSVA avoids data
block duplication and enables a single eviction policy. To support memory-
mapped I/O, the user OS proxy maps the relevant FSVA pages into the
user OS address space. Ordinary data operations do not require similar page
mappings, because the operations are always executed in the FSVA. Ghost
entries in the user OS (shown with a null pointer) are used to track the
corresponding FSVA page’s access frequency without an associated page
mapping.

operations, the user OS caches do not contain the corresponding data blocks.

Therefore, ordinary data operations do not create duplicate data blocks in

the user OS and FSVA. Inter-VM shared memory enables the FSVA file

system to directly copy data from/to the application buffer in the user OS. In

contrast, memory-mapped I/O and program execution5 require the presence

of data blocks in the user OS’s cache — the page fault handling code that

lazily reads in data blocks requires the relevant data blocks to be in the user

OS cache. To avoid duplication of data blocks, the user OS proxy maps the

FSVA pages that contain the data blocks into the user OS’s address space.

Figure 4.4 illustrates the two situations.

Providing a single eviction policy enables optimal sizing of the two

VMs’ memory, based on the combination of the virtual memory workload in

5Most Unix OSs lazily page-in a program’s code pages. From a caching perspective,
this is effectively memory-mapped I/O.

48 · File system virtual appliances

the user OS and the buffer cache workload in the FSVA. However, this is

complicated because each OS observes different types of memory allocation

and accesses. On one hand, because applications execute in the user OS, the

user OS allocates virtual memory pages and observes their access behavior.

On the other hand, since I/O is performed in the FSVA (both in response to

user requests and due to latent file system activities such as readahead and

writeback), the FSVA allocates file system buffer pages and observes their

access behavior.

FSVAs bridge this semantic gap by informing one OS of the other OS’s

memory allocations and accesses. To support multiple FSVAs and to preserve

the user OS’s cache eviction policy, we chose to inform the user OS of the

FSVA’s file system memory allocations and accesses. Thus, the user OS

controls the eviction policy.

The FSVA proxy registers callbacks with the FSVA buffer cache’s alloca-

tion and access routines. When the FSVA proxy observes that a new page

is inserted into the buffer cache, it makes a hypercall to grow the FSVA

memory size by a single page6. On every IPC response to the user OS, the

FSVA proxy piggybacks page allocation and access information. On receiving

a page allocation message, the user OS proxy makes a hypercall to shrink the

user VM, thereby balancing the memory usage among the VMs. In addition,

the user OS proxy adds a ghost page [29, 64, 75] entry to its cache. A ghost

page is a cache entry that lacks a physical backing page. Ghost pages are

used as a placeholder in the user OS to track the corresponding FSVA buffer

page’s access frequency. Figure 4.4 illustrates ghost entries.

On receiving a page access message, the user OS proxy updates the ghost

page’s recency in the user OS’s cache. When memory pressure later causes

the user OS to evict this ghost page, the user OS proxy grows the user VM

by a page and the FSVA proxy shrinks the FSVA by a page. The net result

is a coupling of the two OSs’ unified buffer caches and a single inter-VM

cache eviction policy, controlled by the user OS.

6To support memory ballooning [103], VMMs provide hypercalls that grow and shrink
a VM’s memory size.

4.5 Maintaining virtualization features · 49

Ballooning [103] is orthogonal to our inter-VM unified buffer cache tech-

nique. It is primarily a mechanism for changing a VM’s memory size; the

VMM contains heuristics for a global optimization of VMs’ memory sizes. In

contrast, our inter-VM unified buffer cache maintains the existing user OS

cache eviction policy while coupling the user VM and the FSVA.

Our design choice of a single FSVA per user VM (§4.2.2) greatly sim-

plifies the inter-VM unified buffer cache design. In a shared FSVA design,

concurrent user requests and latent file system operations (e.g., readahead

and writeback) complicate proper attribution of page allocations and accesses

to the corresponding user. The FSVA OS and the file system would require

many modifications to ensure proper attribution.

4.5 Maintaining virtualization features

The FSVA design preserves virtualization features. Our design decision of not

sharing an FSVA among multiple user VMs maintains inter-VM performance

isolation and resource accounting. Although VM migration also benefits from

this design decision, additional work in the proxies is required.

4.5.1 Performance isolation and resource accounting

Virtualization provides coarse-grained physical resource sharing among users.

This enables inter-VM performance isolation and accurate resource account-

ing. These features are important in utility computing.

Sharing an FSVA among multiple user VMs would disrupt performance

isolation among VMs. For example, heavy activity (e.g., opening a large

number of files) by one user VM would affect the performance of other user

VMs. Modifying the FSVA OS and file system to avoid performance crosstalk

is quite challenging [56, 9]. Our single user VM per FSVA design avoids

introducing these problems at this level.

FSVA resource usage should be charged to the user VM, to continue

allowing an administrator to set a single coarse-grained resource policy for

user VMs. Logically, the user VM and its FSVAs form a single unit for the

purpose of resource accounting.

50 · File system virtual appliances

Associating only a single user VM per FSVA simplifies resource accounting.

If multiple VMS share an FSVA, the VMM would not be able to map FSVA

resource utilization to user VMs. Instead, the FSVA would itself have to

track per-user resource usage and inform the VMM. For shared block or

network driver VMs [34], tracking per-user resource usage is viable, owing

to the small number of requests types and their fairly regular costs [40].

But, FSVAs provide a much richer interface to users: there are many VFS

operation types, and an operation can have significantly varying performance

costs (e.g., cache hits versus misses). Latent OS work (e.g., writeback) further

complicates OS-level resource accounting. Thus, our design of one user VM

per FSVA simplifies resource accounting by leveraging the VMM’s existing

coarse accounting mechanisms.

4.5.2 Migration

Migration is an important virtualization feature, providing high availability

during scheduled downtime and enabling load balancing. VMMs support

migration of unmodified OSs. Furthermore, live migration minimizes VM

downtime through background state copying before a VM is suspended and

restored [20].

If a migrating VM relies on another VM for a driver, the migrating VM’s

driver connection is reestablished to the driver VM in the new physical

host [34]. This is relatively simple since driver VMs are (mostly) stateless

and provide idempotent operations.

FSVAs complicate migration. In contrast to driver VMs, FSVAs po-

tentially contain state on behalf of a user VM, and the FSVA interface

is non-idempotent. There are three possible approaches to dealing with

migration [28]: either the user VM and its FSVA could be simultaneously

migrated, the user VM could continue communicating with the FSVA at the

original physical host, or a new FSVA could be created at the new host and

populated with migrated file system state. Our use of shared memory and

desire to maintain memory mapping support preclude the second option,

as conventional networking cannot efficiently support these features. The

4.5 Maintaining virtualization features · 51

third option is also undesirable, because it requires file system cooperation

in migrating internal state (such as extra metadata or cache consistency

callbacks for distributed file systems) to the new FSVA; this would break

our design goal of no file system changes.

To support migration for unmodified file systems, we migrate an FSVA

along with its user VM. This approach exploits VM migration’s existing

ability to transparently move VMs. Because some file system operations are

non-idempotent, care must be taken to preserve exactly-once semantics (§5.6).

Another complication is that shared memory pages (e.g., for the IPC ring

and memory-mapped I/O) will likely have different physical page mappings

after migration. To address these two issues, the user OS and FSVA proxies

transparently restore the shared memory mappings and retransmit any

pending requests and responses that were lost during the IPC layer teardown.

Moreover, we retain live migration’s low downtime by synchronizing the two

VMs’ background transfer and suspend/resume phases.

Having only a single user OS per FSVA simplifies migration. In contrast, a

shared FSVA would require file system involvement in migrating private state

belonging to the specific user OS being migrated. Additionally, for stateful

distributed file systems, the server would need to support a client changing its

network address. This would likely require server modifications. By migrating

the unshared FSVA, our approach exploits the existing migration feature of

retaining network addresses, thereby avoiding server changes.

52 · File system virtual appliances

5 Implementation

To demonstrate the feasibility of and to evaluate the FSVA architecture

and design, we implemented an FSVA prototype. This chapter details the

implementation of this prototype.

5.1 Prototype overview

We implemented an FSVA prototype using the Xen [6] virtualization platform.

Xen was chosen because of its efficiency and source code availability. User

VMs and FSVAs execute as unprivileged VMs. To demonstrate intra-OS file

system portability, we implemented the user OS and FSVA proxies for two

Linux kernel versions: 2.6.18 (released in September 2006) and 2.6.28 (released

in December 2008). To demonstrate inter-OS file system portability, we also

implemented the FSVA proxy for NetBSD 5.99.5 — that port currently is

full-featured except for migration support. Linux and NetBSD were chosen

because of their mature Xen support.

The user OS and FSVA proxies are largely implemented as self-contained

kernel modules. But, several changes to the Linux and NetBSD kernels were

necessary to support memory-mapping (§5.4) and a unified buffer cache (§5.5).

In total, the Linux changes constituted less than 100 source lines of code

(SLOC), as measured by SLOCCount [24]. The majority of these changes

enable a user OS to memory-map FSVA pages. Consequently, because our

NetBSD implementation only supports an FSVA proxy, the core NetBSD

kernel changes were only 4 SLOC. The small size of the Linux and NetBSD

kernel changes reflects the efficacy of the FSVA design in maintaining file

system and OS features with minimal OS changes.

53

54 · File system virtual appliances

Xen was modified in four ways. First, 295 SLOC were added to “domain

0”’s1 user-level migration code to enable atomic migration of two VMs while

preserving the low downtime of live migration (§5.6). Second, 42 SLOC

were added to the core Xen kernel to implement our new IPC notification

mechanism (§5.3). Third, 91 SLOC were added to user-level scripts to enable

system administrators in “domain 0” to create connections between user VMs

and FSVAs. Fourth, a single-line change was necessary to support memory-

mapping after migration (§5.4). Note that the first two modifications are not

FSVA-specific: they permit atomic migration of any VM pair and provide a

new type of inter-VM control notification, respectively.

The Linux user OS and FSVA proxies contain ∼4700 and ∼3500 SLOC,

respectively. Of the sum, ∼900 belong to the unified buffer cache code and

∼400 support migration. Thus, the majority of the proxies’ code supports

the core operation of transferring and handling VFS operations. Supporting

the unified buffer cache and migration does not overly complicate the imple-

mentation. The NetBSD FSVA proxy contains ∼3100 SLOC — it is smaller

than the Linux FSVA proxy because it currently lacks migration support.

Table 5.1 lists the FSVA code breakdown. As a reference point, the Linux

NFSv3 client code is ∼13,000 SLOC.

5.2 FSVA interface

The majority of VFS operations have a simple implementation structure.

The user OS proxy’s VFS handler finds a free slot on the IPC ring, encodes

the operation and its arguments in a generic format, and signals the FSVA

of a pending request via an event notification (§5.3.2). Upon receiving the

notification, the FSVA proxy decodes the request and calls the file system’s

corresponding VFS handler. Responses are handled in a reverse fashion.

Table 5.2 lists the FSVA interface’s operations. Most of the IPCs corre-

spond to VFS calls such as mount, getattr, and read. As described below,

1“Domain 0” is a privileged Xen VM. It is the only VM in which administrative
operations such as creation and deletion of VMs can be executed.

5.2 FSVA interface · 55

Core IPC UBC Migration Total

Interface definition 512 512

Linux user OS
Kernel module 2701 1372 399 202 4674
OS changes 89 89

Linux FSVA
Kernel module 2011 881 472 163 3527
OS changes 10 10

NetBSD FSVA
Kernel module 2009 504 546 3059
OS changes 4 4

Xen
Core VMM 42 1 43
User-level 91 295 386

Total 6810 3402 1431 661 12304

Table 5.1. Per-component source lines of code counts for various FSVA func-
tionality. Blank entries indicate that a component did not include any code for
that functionality. Core refers to the bulk of the FSVA code that intercepts
and encodes VFS operations (at the user OS) and decodes and implements
them (at the FSVA). Core also includes memory-mapping support.

there is also an IPC to support migration and two IPCs to support a unified

buffer cache.

File identification was a surprisingly challenging aspect of the implemen-

tation. Identifying files using their full pathname on every IPC is inefficient

due to the extra path lookups. Initially, we used inode numbers as a unique

file identifier and relied on internal Linux kernel functions for translating

an inode number to an inode. But, the Linux kernel removed this map-

ping function after the Linux 2.6.18 kernel, posing problems for our Linux

2.6.28 kernel port. We then attempted to use the existing VFS handlers

that encode/decode an opaque file handle; they are provided to support

exporting a file system over NFS. However, only a minority of file systems

support this optional interface. Finally, we used FSVA pointers to in-memory

56 · File system virtual appliances

Type Operations

Mount mount, unmount

Metadata
getattr, setattr, create, lookup, dentry validate

mkdir, rmdir, link, unlink, rename, truncate

readdir, symlink, readlink, dirty inode, write inode

File ops open, release, seek

Data read, write, map page, unmap page

Misc. flush, fsync, permission

File ID dentry release

UBC invalidate page, evict page

Migration restore grants

Table 5.2. FSVA interface. Most of the calls correspond to VFS operations,
with the exception of three IPCs that support migration and a unified buffer
cache.

directory entries as file identifiers. This mechanism works for all file systems

but requires careful reference counting.

When an FSVA proxy handles a lookup operation, the resulting direc-

tory entry’s reference count is incremented. (We use directory entries, not

inodes, because directory entries disambiguate between hard links.) The user

OS proxy treats the FSVA directory entry pointer as an opaque identifier.

Incrementing the FSVA directory entry’s reference count ensures that the

directory entry is not garbage collected while the user OS proxy holds a

pointer to the directory entry. When the user OS proxy drops its reference to

the directory entry (either because of metadata cache pressure or because the

file is deleted), the user OS proxy informs the FSVA proxy that it is safe to

decrement the corresponding reference count. These notifications are usually

piggybacked on IPC requests. If there are too many queued notifications, the

user OS proxy sends a synchronous dentry release IPC.

To enable inter-operability between 32- and 64-bit OSs, we use compiler

directives to ensure 32-bit IPC structure alignment. There is no need for

XDR functions [94] as the two VMs share the same endianness. Due to

5.3 IPC layer · 57

idiosyncrasies in 32-bit Linux’s “high memory” implementation [5] and Xen’s

shared memory facility, we can only map pages between VMs that are in

the low memory region. This places a limit on the number of shared pages

between VMs if one of them is 32-bit. We believe Xen can be modified to

remove this limitation, but we have not done so.

5.3 IPC layer

To maintain isolation between VMs, Xen does not allow arbitrary VMs

to communicate with each other. A system administrator must first allow

inter-VM communication in “domain 0”. Consequently, we modified the

“domain 0” management console scripts to support installing and removing

connections between a user VM and an FSVA. When a connection is initiated,

the user OS and FSVA proxies set up an IPC layer: a shared memory region

(containing the I/O ring of requests and responses) and an event notification

channel (for inter-VM signaling). This IPC layer closely resembles Xen’s

block and network drivers’ IPC layers [6].

5.3.1 Data transfer

There are two types of application I/O: ordinary read/write and memory-

mapped read/write. For ordinary I/O, the application provides a user-space

buffer. The user OS proxy creates a sequence of grants for each page in the

application buffer — each grant covers only one page — using Xen’s shared

memory facility. No hypercalls are involved in this operation: the user OS

proxy writes its intention in a shared memory region with Xen. The grants

are then passed in the IPC request structure. In turn, the FSVA proxy maps

the grants into the FSVA address space using a single hypercall, calls the file

system to perform the I/O directly to/from the buffer, unmaps the grants

using a hypercall, and sends the I/O response to the user. The user OS proxy

can then destroy the grants. As an optimization, if less than 4 KB of data

is read or written, data is copied back and forth using trampoline buffers —

pages that are shared during proxy initialization — because the cost of the

58 · File system virtual appliances

shared memory hypercalls is not amortized over the small access size (see

§6.4).

Memory mapped I/O is handled in a similar fashion, except that the

roles of grant issuer and user are reversed. When an application memory

access causes the OS page fault handler to request a data page from the

file system, the user OS proxy performs a map page IPC to the FSVA. In

response, the FSVA proxy calls the file system to bring the relevant page

into the FSVA buffer cache, pins the page in memory, and returns a grant

for the page in the IPC response. The user OS proxy then maps that grant

into its buffer cache using a hypercall. Once the user OS unmaps the page,

the user OS proxy queues an FSVA notification to unmap the page. These

notifications are piggybacked on future IPC requests. If there are too many

queued notifications, the user OS proxy performs a synchronous unmap page

IPC. Note that, because the file system in the FSVA allocates the data page,

this reversal of grant issuer/user roles is necessary.

5.3.2 Control notification

Our design goal of supporting unmodified file systems does not come for

free. It forces all VFS calls to be sent to the FSVA, thereby increasing

inter-VM IPC frequency. In turn, FSVA performance is highly dependent on

the IPC layer’s performance. We now discuss the overheads associated with

the traditional Xen IPC mechanism and describe a mitigating technique.

There are two components to an IPC: data transfer and control transfer.

Data transfer is fast (less than 1µs) because requests and responses are

small2 and are stored in a shared memory region. Control transfer has two

elements: 1) inter-VM signaling and 2) VM- and OS-level scheduling and

context switching. If the user VM and FSVA are concurrently executing

on different cores, then VM-level scheduling and context switching can be

avoided. But, inter-VM signaling must still be performed as well as OS-level

scheduling and context switching, as we now describe.

2Requests and responses are 512 bytes, including piggybacked notifications.

5.3 IPC layer · 59

The standard Xen mechanism for inter-VM signaling employs event

channels [6]. During IPC layer creation, two VMs create an event channel and

transfer the event channel identifier in an out-of-band channel. Subsequently,

when a VM wishes to notify another VM of an IPC request/response, it

performs a “send event” hypercall. This hypercall sends a software interrupt to

the destination VM. If the VM is not currently executing or has masked that

interrupt, the interrupt is marked in its pending interrupts mask. Otherwise,

an inter-processor interrupt (IPI) is sent to the CPU executing the other

VM.

Upon receiving an IPI, the CPU invokes the OS’s interrupt handler.

This causes a thread context switch: the current processor state must be

saved before executing the interrupt handler thread. In most Unix OSs, the

interrupt handler typically masks off other interrupts and cannot sleep. Thus,

the interrupt handler does not execute general-purpose kernel code that may

block. So, the event channel interrupt handler signals a worker thread that

then actually handles the operation. This requires a second thread context

switch. On our servers running Linux 64-bit x86, a thread context switch

costs ∼3.5µs (§6.4). Thus, a one-way inter-VM signal costs 7µs in thread

switch times. Inter-VM signaling adds an additional ∼2µs each way — for

the “send event” hypercall and its corresponding IPI.

The Xen event channel mechanism was designed for I/O devices, in

which a two-way IPC signaling overhead of 18µs is insignificant compared to

hardware access latencies. But, this overhead is too high for FSVAs: many

VFS operations (e.g., getattr, permission) execute in less than 1µs.

When multiple processors are available, a well-known technique for reduc-

ing IPC cost is to use polling as a signaling mechanism [7]. We implemented

a polling version of our IPC layer, in which a worker thread busy-spins

on a shared memory location waiting for notification of a request/response

notification. This avoids both thread context switches as well as the inter-VM

signaling cost (i.e., the “send event” hypercall and IPI). As a result, the

null IPC latency drops from 21µs to 4µs (§6.4). But, polling is energy-

inefficient during idle periods: the CPU core is continuously monitoring a

shared memory address.

60 · File system virtual appliances

Fortunately, x86 processors include instructions that provide polling-like

latency with events-like energy-efficiency. These instructions were introduced

to avoid this type of polling for inter-process synchronization. The monitor

and mwait instructions put a processor core in low-energy mode until a write

occurs to a specific memory address. We used these instructions to implement

a new inter-VM notification mechanism. Because these are privileged instruc-

tions, we added a new hypercall to wrap these instructions. Our mwait-based

IPC has similar latency to the polling IPC (§6.4), with a slight increase due

to the cost of a hypercall. Figure 5.1 illustrates the events- and mwait-based

IPC mechanisms.

5.4 Memory mapping

Memory-mapped I/O avoids the memory copies associated with ordinary

read/write calls. To allow user OS applications to memory-map FSVA pages

(thus avoiding data duplication), we had to add several hooks to the Linux

page fault handling code. These hooks were required because Xen would

normally block the user OS’s attempt at setting a page table pointer to

point to another VM’s pages. Our generic hooks enable a file system (in this

case, the user OS proxy) to execute the Xen hypercall for setting/clearing

user-space page table entries that point to another VM’s pages.

When the user OS memory-maps FSVA pages, care must be taken to

ensure that the FSVA does not invalidate those pages. The pages will not

be invalidated through eviction, because the FSVA proxy pins the page in

memory during the memory map IPC. Thus, normally, the user OS will

unmap the shared page before it can be invalidated in the FSVA (say, due

to eviction or file deletion). However, in some rare cases, the FSVA may

trigger a page invalidation. For example, a cache consistency callback might

invalidate a page. To prevent a segmentation fault in the user OS, we added

a hook to the page invalidation routine in the FSVA OS. If an invalidated

page is memory-mapped in the user OS, the FSVA proxy synchronously

requests the user OS to unmap the page. To simplify our implementation,

5.4 Memory mapping · 61

VMM

User OS FSVA

Worker

IPC ring

1

2

Interrupt handler

Copy req

Send event
0.3us

0.2us

3 Send IPI 1.8us 4 Receive IPI

Worker Interrupt handler

5 Switch to
interrupt
handler
3.5us

to ring

6 Switch to
interrupt
handler
3.5us

(a) IPC control notification using Xen event channels.

VMM

User OS FSVA

Worker

IPC ring

1

4

Interrupt handler

Copy req

Wait for response

0.3us

0.2us

5 mwait for response 3 mwait for request

Worker Interrupt handler

to ring
2 Write to mem

0.2us

(b) IPC control notification using our new mwait hypercall.

Figure 5.1. One-way control path and latencies for two different IPC notifi-
cation mechanisms: Xen even channels and our new mwait hypercall. Event
channels require an inter-processor interrupt as well as two thread switches,
for each direction in the IPC. In contrast, the mwait-based IPC avoids these
operations: when the source VM writes to a specific shared memory location,
the destination VM immediately returns from the Xen mwait hypercall into
the worker thread.

62 · File system virtual appliances

we avoided placing these “reverse” IPCs on the existing IPC layer. Instead,

a separate “reverse IPC layer” supports IPCs that originate in the FSVA.

5.5 Unified buffer cache

To maintain a unified buffer cache, the user OS proxy must be notified of

FSVA buffer cache allocations and accesses. We added hooks to Linux and

NetBSD to inform the FSVA proxy of these events. When either event occurs,

the FSVA proxy queues a notification. The notifications are piggybacked

on IPC responses. But, there is a limit to how many notifications can be

piggybacked on each fixed-sized IPC response. Therefore, during periods of

high FSVA buffer cache activity, the user OS proxy performs synchronous

IPCs to drain the queued unified buffer cache notifications.

Linux allocates buffer cache pages in only one function, simplifying the

capture of page allocation events. For page access events, there are two

ways in which a page is marked as accessed. First, when a file system

or the generic VFS code looks up a page in the buffer cache, the search

function automatically marks the page as accessed by placing it on an “active

pages” list. We added a hook to this mechanism. Second, the hardware

memory controller sets the page accessed bit for page table entries when

their corresponding page is accessed. This mechanism is necessary for virtual

memory pages in order to capture page-access information for arbitrary pages

that get accessed outside the buffer cache. Periodically, Linux scans the page

table entries to update whether a page is on the “active pages” or “inactive

pages” list. Because this is performed only periodically, it can cause the

user OS to have stale page access information. But, all FSVA accesses of file

system pages pass through the buffer cache search functions, so we ignore the

second case in Linux FSVAs. (Application access to memory-mapped files

will cause the user OS’s, not the FSVA’s, page table entries to be updated.)

Capturing page allocation events in NetBSD is similar to Linux: only

one function performs buffer cache allocations. We added a hook to that

function. In contrast, NetBSD captures page access frequency differently

from Linux. NetBSD lacks a “page accessed” callback in its buffer cache

5.5 Unified buffer cache · 63

accesses. As a result, NetBSD solely relies on the periodic scans of page table

entries’ page-accessed bit. Unlike in Linux, the NetBSD FSVA proxy is thus

forced to add a hook to this routine. As described above, relying on the

periodic page-access-bit scans leads to the user OS receiving slightly stale

page access information. A Linux user OS connected to a NetBSD FSVA

may over-aggressively evict buffer cache pages because it lacks up-to-date

page-access information.

During startup, OSs allocate bookkeeping structures for every physical

memory page. Because the FSVA’s memory footprint can grow almost to the

size of the initial user OS, we create the FSVA with this maximum memory

size. This ensures that the FSVA creates bookkeeping structures for all the

pages that it may access. After the OS startup completes, the FSVA proxy

returns most of this memory to the VMM.

A subtle unified buffer cache side-effect is that decreasing the number of

FSVA free pages affects the dirty page writeback rate. Specifically, the rate

of dirty page writeback increases as the amount of free memory decreases. To

maintain the same writeback performance, we modified the Linux writeback

policy such that when Linux is functioning as an FSVA, the writeback rate

depends on the user OS’s number of free pages; this value is piggybacked on

every request. Because our performance evaluation only uses Linux OSs, we

did not make a similar modification to NetBSD.

Although the majority of FSVA memory allocations occur in the buffer

cache, FSVA metadata allocations (e.g., for inodes and directory entries)

must lead to an increase in the FSVA memory size. Otherwise, memory

pressure will cause the FSVA OS to evict buffer cache pages, decreasing

performance. Consequently, the FSVA proxy continuously monitors the size

of the Linux “slab” — where metadata is allocated — and grows (shrinks)

the FSVA as the slab grows (shrinks). The change in slab size is piggybacked

on IPC responses, and the user OS changes its size accordingly. OSs handle

page-access notification and eviction differently for metadata pages than

data pages. As a result, to simplify our implementation, our metadata

allocation mechanism lacks eviction backpressure from the user OS. Because

our performance evaluation only uses Linux OSs, we did not make a similar

64 · File system virtual appliances

modification to NetBSD.

5.6 Migration

There are two migration facilities in Xen. Ordinary migration consists of

saving a VM’s memory image in the source host, suspending the VM, trans-

ferring the state to the destination host, and resuming that image in the

destination host. Live migration [20] minimizes downtime by transferring

the majority of a VM’s memory image in the background, while the VM

executes in the source host. After sufficient memory copying is performed,

Xen suspends the VM, copies the remaining pages to the destination host,

and resumes the VM.

Migrating a user-FSVA VM pair requires some care, due to the pres-

ence of shared memory mappings and in order to preserve live migration’s

low downtime. A user-FSVA VM pair is migrated like a single VM with

three modifications. First, the two VMs’ memory images are simultaneously

transferred, maintaining the low unavailability of Xen’s live migration by

synchronizing the background transfer stage. Second, the user-FSVA IPC

layer and the shared memory mappings must be reestablished. Third, in-flight

requests and responses that were affected by the migration are resent.

We modified Xen’s migration facility to atomically transfer two VMs’

memory images. To maintain live migration’s low downtime, the background

transfer of the two memory images and the suspend/resume events are

synchronized. For example, if the FSVA’s memory image is larger than the

user VM, we delay the suspension of the user VM until the FSVA is ready

to be suspended. This preserves the minimal suspend time for the user VM.

Because the user VM depends on the FSVA, the user VM is suspended first

and restored second.

When a VM is resumed, its IPC layers to other VMs are broken. Thus,

the user OS and FSVA proxies must reestablish their IPC layer. This involves

recreating the shared-memory ring and communication channels. In addition,

shared memory mappings must also be reestablished. A shared memory

mapping in Xen depends on the two VMs’ numerical IDs and the physical

5.6 Migration · 65

page addresses. After migration completes, these values will likely be different.

Consequently, all shared memory mappings between the two VMs must be

reestablished. To support this operation, the FSVA proxy maintains a list of

all shared memory pages. After the user VM is resumed, the user OS proxy

performs a restore grants IPC to retrieve this list from the FSVA. The

user OS proxy leverages Xen’s batched hypercall support to speed up the

reestablishment of the shared memory pages.

After a user VM is resumed, applications may attempt to access a memory-

mapped page whose mapping has not yet been restored. This would cause

a segmentation fault. To avoid this race, we made a single-line change to

the Xen migration code to zero-out user VM page table entries that point

to another VM. So, application attempts to access the page will cause an

ordinary page fault into user OS, and the user OS proxy will block the

application until the page’s mapping is reestablished.

Because the user-FSVA IPC layer is broken during migration, in-flight

requests and responses must be resent. To enable retransmission, the user

OS retains a copy of each request until it receives a response. To ensure

exactly-once IPC semantics, unique request IDs are used and the FSVA proxy

maintains a response cache. The ID is a function of the request’s position

in the IPC ring. Data operations are assumed to be idempotent and hence

the response cache does not contain data blocks. The FSVA proxy garbage

collects a response upon receiving a new request with an ID matching the

cached response’s original request’s position on the IPC ring.

66 · File system virtual appliances

6 Evaluation

This section evaluates our FSVA prototype. First, it describes examples

of using FSVAs to address file system portability. Second, it quantifies

the performance and memory overheads of our FSVA prototype. Third, it

illustrates the efficacy of the inter-VM unified buffer cache and migration

support.

6.1 Experimental setup

Experiments are performed on a dual quad-core 1.86 GHz Xeon E5320 ma-

chine with 8 GB of memory, a 10K rpm 146 GB Seagate Cheetah ST3146755SS

disk connected to a Fusion MPT SAS adaptor, and a 1 Gb/s Broadcom NetX-

treme II BCM5708 Ethernet NIC. The NFS server is a single quad-core

1.86 GHz Xeon E5320 machine with 4 GB of memory, a 10K rpm 73 GB

Seagate Cheetah ST373455SS disk using the same Fusion SAS adaptor and

Broadcom NIC, running the Linux in-kernel NFSv3 server implementation.

Xen 3.4-unstable was used. Linux VMs run 64-bit the Debian “testing”

distribution, with either our modified 2.6.18 kernel (based on the Xen-

maintained Linux kernel tree) or our modified 2.6.28 kernel (based on the

vanilla Linux repository). We compiled the Linux kernels with gcc 4.3.3,

without debugging symbols or checks. NetBSD VMs run 64-bit NetBSD

5.99.5, compiled with gcc 4.1.3 with debugging symbols enabled.

By default, the ext2 and ext3 file systems randomly allocate block groups

for top-level directories. This caused significant variance in our results — as

much as 15% across runs. To avoid this variance, we used the ext2 and ext3

67

68 · File system virtual appliances

oldalloc mount option; this forces a deterministic, but slower, block group

allocation algorithm.

When running benchmarks on a local file system, the file system used a

108 GB raw disk partition. The NFS server exported an 18 GB ext2 partition

(mounted with the oldalloc option).

Unless otherwise noted, each VM was given 2 GB of memory. For FSVA

experiments, the inter-VM unified buffer cache allowed us to specify a total

of 2 GB for both the user VM and the FSVA; the user-FSVA VM pair do

not benefit from extra caching.

6.2 Case studies: portable file system implementations

The efficacy of the FSVA architecture in addressing the file system portability

problem is demonstrated with two case studies: one inter-OS and one intra-

OS.

Linux user using NetBSD LFS. Linux does not include a log-

structured file system [82] (LFS) implementation. There are stale third-party

in-kernel and user-level implementations, but they are either unstable, not

full-featured, or have not been ported to modern Linux kernel versions.

NetBSD includes an in-kernel LFS implementation, derived from Seltzer’s

FreeBSD LFS re-implementation [89]. Using an FSVA, a Linux 2.6.28 user

OS can use the unmodified NetBSD LFS implementation (see Figure 6.1).

The user-level LFS cleaner also does not require modifications; it runs in the

NetBSD FSVA.

We ran a random I/O benchmark in the Linux user OS, using a 200 MB

test file and a 512 byte write unit size. When running over the NetBSD LFS

FSVA, the benchmark achieved 19.4 MB/s. In contrast, when running over a

Linux ext3 FSVA, the benchmark only achieved 0.44 MB/s. Such improved

random write performance is the hallmark of the LFS approach. FSVAs

enable Linux users with such workloads to benefit from LFS’s efficiency

without forcing them to switch to NetBSD or developers to port LFS to

Linux.

6.3 Macrobenchmarks · 69

User VM

Applications

Linux 2.6.28

Fe
do

ra
 9

FSVA

LFS cleaner

Ne
tB

SD

LFS

Xen

NetBSD 5.99.5

Figure 6.1. NetBSD LFS case study.

Linux 2.6.18 user using Linux 2.6.28 ext4fs. The Linux 2.6.28

kernel (released in December 2008) includes a new local file system: ext4.

In contrast to its widely-used ext3 predecessor, ext4 adds extents, delayed

allocation, and journal checksumming.

Using FSVAs, a user OS running a Linux 2.6.18 kernel (released in

September 2006) can use a Linux 2.6.28 ext4 FSVA. Compared to ext3,

the ext4 FSVA provided over a 4 X improvement in Postmark performance;

the Postmark benchmark is described in the next subsection. Thus, FSVAs

enable a user with a two year-old Linux kernel to gain the benefits of ext4

immediately, without being forced to upgrade.

6.3 Macrobenchmarks

To quantify FSVA overheads, we use three file system-intensive macrobench-

marks: Postmark, IOzone, and a Linux kernel compilation. To focus on FSVA

overheads, both the user OS and the FSVA used an identical OS: Linux with

a 2.6.28 kernel. Otherwise, differences in internal OS policies add variables to

the comparisons. For example, eviction and writeback policies are different

in the 2.6.18 and 2.6.28 kernels, and NetBSD performs fewer permission

VFS calls than Linux due to its whole-pathname name cache, in contrast to

Linux’s per-pathname-component name cache. Using the same OS version

in the user OS and FSVA avoids having these policy and implementation

differences muddle our analysis.

70 · File system virtual appliances

The macrobenchmarks were executed over four file systems: ext2, ext3,

NFS, and ReiserFS. Six system configurations were used. “baremetal” denotes

the OS running directly on the hardware without a VMM. “domU” denotes

the OS running as a paravirtualized Xen guest. In both cases, the file system

executes “natively” in the OS kernel. “FSVA-same-core” denotes an FSVA

sharing the same CPU core as the user VM and using Xen event channels for

signaling (§5.3.2); each IPC involves two VM context switches. In the next

three configurations, the user OS and FSVA are executed on separate cores,

and we explore the performance of our three different signaling mechanisms.

“FSVA-diff-core-events” uses Xen event channels, “FSVA-diff-core-polling”

uses polling, and “FSVA-diff-core-mwait” uses our new mwait-based inter-VM

signaling hypercall (§5.3.2).

Of the six system configurations, we are most interested in the per-

formance difference between “domU” and “FSVA-diff-core-mwait”. This

difference is the FSVA architecture’s overhead when both VMs concurrently

execute on different cores. We envision a VMM scheduler that gang-schedules

both VMs during file system-intensive periods. We are also interested in

the performance difference between “baremetal” and “domU”; this is the

performance overhead of virtualization. We expect processor, VMM, and OS

improvements to decrease this overhead over time, as virtualization continues

its increasing adoption.

Each experiment was run three times; means and standard deviations

are shown. Before each experiment, the file system partition was reformatted

and caches were flushed.

Postmark. The Postmark benchmark measures performance for small

file workloads akin to e-mail and newsgroup servers [51]. It measures the

number of transactions per second, where a transaction is either a file create

or delete, paired with either a file read or append. Files are created with

randomly-varying sizes varying from 500 bytes to 9.77 KB. Appends use

access sizes that randomly vary from 1 byte to the file size. Reads access the

entire file. Default parameters were used, except for benchmark sizing: we

increased the benchmark size to 50,000 files, 50,000 transactions, and 224

subdirectories.

6.3 Macrobenchmarks · 71

Figure 6.2 shows that the use of virtualization and polling- or mwait-

based IPCs results in less than a 10% performance reduction for FSVAs, for

all tested file systems except ext2. Virtualization introduces a 10% overhead

in ext2. FSVAs, using polling- or mwait-based IPC, introduce an additional

7% overhead when compared to a native in-kernel ext2 system. The lack of

journaling in ext2 gives it the fastest absolute performance and thus Xen

and FSVA overheads are more prominent.

For NFS, all configurations exhibit less than 4% reduction. For the local

file systems, though, the non-polling/mwait FSVAs suffer more overhead.

For ReiserFS, there is a 6.7% slowdown when going from baremetal to

virtualization, and an additional 6.9% overhead for the single-core and

events-based IPC FSVA configurations. For ext2 and ext3, the single-core and

events-based IPC configurations introduce 21–24% reductions in throughput

compared to the domU system. This high overhead is due to the high

frequency and cost of FSVA IPCs when polling/mwait are not used. Thus,

separate cores and polling/mwait is essential for achieving low overheads

during in-cache file system-intensive operation.

IOzone. The IOzone benchmark supports a wide range of sequen-

tial/random workloads [27]. We used IOzone to measure sequential I/O

performance. A 10 GB file was sequentially written and read, using 64 KB

record sizes. Because the file was much larger than the VM memory size, the

numbers reflect out-of-cache performance.

Figure 6.3 shows that for all file systems, there was less than 2.5%

difference among the various configurations. These results indicate that

virtualization and the use of FSVAs do not impact streaming I/O throughput,

even when the user VM and FSVA share a single CPU core. This supports

our hypothesis that the need for multiple cores can be avoided for out-of-

cache operation, in which the FSVA overhead is hidden by device access

time (§8.1).

Linux kernel build. This benchmark consists of building the Linux

2.6.28 kernel. The kernel archive was copied to the file system, unarchived,

and compiled. Approximately 1000 source files were compiled for our specific

kernel configuration.

72 · File system virtual appliances

ext2 ext3 NFS ReiserFS0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

66
0.

7

28
8.

3

50

10
9.

3

59
2.

7

27
4.

3

50
.7

10
0.

3

47
3

21
1

49
.3

95
.3

46
4

21
4.

7

52

93
.356
4

25
8.

7

48
.7 98

54
7

24
9.

3 50 98

Postmark

N
or

m
al

iz
ed

 tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Baremetal
domU
FSVA−same−core
FSVA−diff−core−events
FSVA−diff−core−polling
FSVA−diff−core−mwait

Figure 6.2. Postmark results, normalized to domU.

ext2 ext3 NFS ReiserFS0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

84
.5

80
.3

59
.3

80
.9

84
.6

79
.4

59
.8

80
.2

84
.1 79 60
.5

79
.8

84
.2

78
.9

60
.1

80

82
.8

79
.1

58
.3

78
.8

84
.2

79
.1

59
.3

79
.4

IOzone

No
rm

al
ize

d
th

ro
ug

hp
ut

 (M
B/

s)

Baremetal
domU
FSVA−same−core
FSVA−diff−core−events
FSVA−diff−core−polling
FSVA−diff−core−mwait

Figure 6.3. IOzone results, normalized to domU.

6.3 Macrobenchmarks · 73

ext2 ext3 NFS ReiserFS0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

60
3

60
9 17

22

60
2

71
4

71
7

18
85

70
9

10
07

10
24

23
17 89

010
05

10
20

23
24

10
11

74
7

75
7

19
82

75
1

75
7

76
5

19
89

75
7

Linux kernel compilation
N

or
m

al
iz

ed
 ru

nt
im

e
(s

)

Baremetal
domU
FSVA−same−core
FSVA−diff−core−events
FSVA−diff−core−polling
FSVA−diff−core−mwait

Figure 6.4. Linux kernel compilation runtime, normalized to domU.

Figure 6.4 shows the results. Virtualization adds substantial overhead

(6–18%) to the Linux kernel compilation. We suspect that frequent program

execution (for the custom Linux build scripts and compiler invocations) leads

to many memory-management hypercalls that cause this overhead.. When

using FSVAs, the overhead varies significantly based on the configuration.

With a separate CPU core and polling or mwait, the overhead is ≤7%. For

the single CPU core and the no-polling configurations, 20%–40% slowdowns

occur. The culprit for these slowdowns is frequent permission IPCs. For

example, for the ext3 case, permission IPCs account for 60% of the 9,177,610

IPCs. For all file systems tested, the permission VFS handler is very simple:

it calls the generic OS access control handler that compares the Unix user

ID with the file owner ID and mode permission. Our design decision to pass

all VFS calls (§4.2.1) highlights the IPC overhead for such simple IPCs.

Executing the permission checks in the user OS would significantly reduce

this overhead, as discussed in §6.5.

74 · File system virtual appliances

6.4 Microbenchmarks

To understand the causes of the FSVA overhead, we used high-precision

processor cycle counters to measure two sets of operations: IPC layer costs

and VFS microbenchmarks.

Table 6.1 lists the IPC layer costs, showing the medians of ten runs.

Before explaining the performance of the different IPC types, it is necessary

to first describe the building block operations. A “null hypercall” measures

the round-trip cost of a VM-VMM call: it has similar cost to an OS system

call. The “send event” operation refers to sending a notification to another

VM using Xen’s event channels.

There are four costs to sharing a memory page between VMs. First, the

source VM creates a grant that covers the page. Second, the destination

VM makes a “map grant” hypercall. Third, to remove the shared memory

mapping, the destination VM makes an “unmap grant” call. Fourth, the

source VM destroys the grant. Note that it is more efficient to “share” up

to five 4 K pages through memory copies over a dedicated staging area

than through using shared memory (4 us versus 4.75 us). However, for larger

transfer sizes, the grant mechanism is faster due to amortization of the

hypercall cost.

A traditional Xen IPC requires two event notifications, each consisting

of an inter-processor interrupt (IPI) and two thread switches (§5.3.2). Those

four operations correspond to 18µs of the 21.21µs null IPC latency we

observed. The remainder of the IPC latency goes towards locking the shared

IPC ring, copying the request and response data structures onto the ring,

and other miscellaneous operations.

When inter-VM signaling is performed using polling or our new mwait

hypercall, the null IPC latency drops to 4.04µs and 4.34µs, respectively. The

extra latency for the mwait-based IPC is due to the cost of the hypercall

that wraps the privileged mwait instruction. Note that, when the two VMs

are pinned to the same core, Xen avoids sending an IPI and only performs a

VM context switch, leading to a slightly faster IPC (16.70µs versus 21.21µs).

6.5 Relaxing the “pass all VFS calls” principle · 75

(The OS thread switches still occur because the OS still executes its interrupt-

handling routine once the VM is scheduled.)

Polling and mwait achieve a 4× reduction in IPC latency compared to

the traditional Xen IPC. This improvement is significant for fast and frequent

VFS operations such as in-cache metadata lookups.

Table 6.2 shows VFS operation latencies, run over ext2 for the system

configurations described in §6.3. The results are the mean of 100 consecu-

tive runs over an in-cache workload. Most VFS operations suffer signficant

slowdowns when running over the FSVA due to the IPC layer costs. For

example, a getattr has a latency of 0.09us in a native file system, 26.25 us

when the user OS and FSVA share a core, and 5.65 us when dedicated cores

and mwait are used. Thus, even with dedicated cores, there is still a factor of

50 X latency increase. This is unavoidable: the ext2 getattr handler simply

copies a file’s attributes (that are already in memory), and so the operation

is very fast. The IPC layer cannot approach this level of performance.

Fortunately, in many file system workloads the disk is accessed, either

for logging or because the data does not fit in memory. Disk access latencies

dwarf the IPC layer overhead. Thus, the macrobenchmarks in §6.3 suffer an

overhead of 0%–40%, not 5000%.

6.5 Relaxing the “pass all VFS calls” principle

Our design goal of maintaining file system semantics for unmodified file

system implementations forces all VFS calls to be sent to the FSVA (§4.2.1).

This leads to a high frequency of IPCs in which the IPC latency dominates

the VFS operation’s cost, significantly affecting application performance. The

macrobenchmark results in §6.3 demonstrate that reasonable performance

can be achieved if a processor core is dedicated to the FSVA, enabling low

inter-VM IPC latency (§5.3.2). But, dedicating a core to the FSVA may not

always be feasible or desirable. This section explores the effect of relaxing

the “pass all VFS calls” requirement.

When the user VM and FSVA execute on the same core, the highest

overhead in the macrobenchmarks results occurred for the Linux kernel

76 · File system virtual appliances

Operation Latency (µs)

Null hypercall 0.24
Send event (hypercall+IPI) 2.09
Create grant 0.21
Destroy grant 0.36
Map grant 1.99
Unmap grant 2.19
4 KB memcpy 0.80
Thread switch 3.52

Null IPC (same-core, event) 16.70
Null IPC (diff-core, event) 21.21
Null IPC (diff-core, polling) 4.04
Null IPC (diff-core, mwait) 4.34

Table 6.1. IPC layer latencies.

Operation domU FSVA FSVA FSVA FSVA
same-core diff-core diff-core diff-core

events polling mwait

create 2.20 22.24 31.24 6.95 7.89
getattr 0.09 26.25 28.50 4.61 5.65
lookup 19.70 40.45 53.45 19.89 25.68
mkdir 742.60 783.0 730.8 777.0 746.0
open 0.08 18.05 27.20 4.90 5.61
permission 0.10 20.40 29.82 6.22 6.97
read (4 KB) 2.24 31.59 36.57 9.35 10.32
release 0.17 19.36 29.72 5.10 5.91
rename 1.50 21.03 32.09 6.95 7.69
rmdir 1.14 23.32 28.13 5.66 6.49
setattr 0.22 22.62 28.25 4.84 5.46
unlink 0.88 20.56 29.67 6.07 6.99
write (4 KB) 4.30 31.21 39.04 11.37 12.24

Table 6.2. VFS operation latencies in (µs).

6.5 Relaxing the “pass all VFS calls” principle · 77

compilation over ext2 and ext3. Compared to the native file system (“domU”),

the FSVA overhead was 40%. To understand the source of this overhead,

Table 6.3 lists the per-VFS operation IPC counters and timers for the ext2

run. Of the 9,177,610 IPCs, 60% are permission IPCs, and 53% of the user

OS proxy time is accounted for by permission IPCs.

The ext2 permission handler calls the generic OS access control function,

which compares the Unix user ID with the file owner ID and mode permission.

Given the simplicity of this check, the IPC overhead dwarfs the VFS operation

execution time. Fortunately, the Unix access control check is common to all

Unix OSs. Thus, for ext2, we can eliminate the permission IPCs because

the user OS permission handler is sufficient.

With the permission IPC eliminated — the user OS proxy calls the user

OS generic permission handler — the Linux kernel compilation benchmark

overhead over ext2 is reduced from 40% to 11% when the user VM and FSVA

share a processor core.1 This performance improvement demonstrates that

relaxing our design principle of passing all VFS calls can alleviate the need

to dedicate a processor core to the FSVA. Although this requires file system

modifications (e.g., to indicate that a user OS VFS handler is sufficient or

to add cache invalidation handlers if user OS caching is permitted), the

performance improvements make this worthwhile.

In addition to avoiding the permission IPC, Table 6.3 shows that sig-

nificant, though lesser, performance improvements can also be gained by

caching data (read), metadata (getattr), and delaying or batching user OS

calls (release – the close file VFS handler). However, in contrast to the

permission IPC, this would require more extensive file system changes and

will not have as significant of an impact as avoiding the permission IPC.

1This overhead is lower than the overhead calculated by subtracting the permission

timer in the user OS proxy (185s; see Table 6.3) from the original time (1007s; see
Figure 6.4). We suspect that this is due to a reduction in TLB and other processor cache
misses resulting from a decrease in the number of IPCs and, thus, the number of VM
context switches.

78 · File system virtual appliances

Operation Total time (s) Count

permission 185.42 5663803
read 30.99 557061
release 28.38 776795
getattr 24.90 784716
open 23.62 776795
write 19.82 158261
mkdir 13.44 1892
llseek 7.43 161621
readlink 4.39 130155
lookup 1.40 37455
create 1.35 30848
readdir 1.07 8293
unlink 0.95 30846
setattr 0.89 27436
ubc flush 0.76 12100
map 0.62 15835
rmdir 0.09 1892
rename 0.06 1773
write inode 1.1×10−3 27
dentry release 6.2×10−4 4
symlink 9.4×10−5 2

Table 6.3. Per-VFS operation elapsed time and frequency counters for the
Linux kernel compilation benchmark over ext2.

6.6 Memory overhead · 79

6.6 Memory overhead

FSVA memory overhead has two components: memory for the FSVA OS

image and memory for duplicated metadata. The particular values for this

memory overhead vary depending on the particular OS image and the amount

of metadata in use. As concrete examples, we report the memory overhead

when running the macrobenchmarks reported in §6.3.

The Linux 2.6.28 FSVA uses 72 MB of memory for the OS image. Our

FSVA proxy sets aside 64 MB of memory for an initial extra reservation. Then,

during benchmark execution, we observed 112–136 MB of additional memory

allocated for metadata. Thus, the total memory overhead was 248–272 MB.

FSVA memory overhead can be reduced in two ways. First, the FSVA

Linux kernel configuration can be fine-tuned to remove functionality that is

unnecessary for an FSVA. For benchmarking purposes, we used the same

Linux 2.6.28 kernel for all experiments. But, when running as a Xen par-

avirtualized VM and only supporting a limited application (the file system),

the FSVA kernel can be trimmed down. Second, as described in the §5.5,

we currently do not put pressure on the size of the metadata allocated in

the FSVA. Improvements to our unified buffer cache implementation could

trigger metadata eviction in the FSVA.

6.7 Unified buffer cache

To demonstrate the efficacy of our inter-VM unified buffer cache, we ran an

experiment with an application alternating between file system and virtual

memory activity. The total memory for the user VM and FSVA is 1 GB.

Both VMs are created with 1 GB of memory. After the user and FSVA kernel

modules are loaded, the FSVA returns most of its memory to Xen, thereby

limiting the overall memory usage to slightly over 1 GB.

Figure 6.5 shows the amount of memory each VM consumes. Starting

with a cold cache, the application reads a 900 MB file through memory-

mapped I/O. This causes the FSVA’s memory size to grow to 900 MB, plus

its overhead. The application then allocates 800 MB of memory and touches

80 · File system virtual appliances

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 100 200 300 400 500

RA
M

 (M
B)

Time (s)

FSVA
User

Total

st
ar

t U
BC

read 900 MB
from file

use 800 MB of
anonymous pages

read 500 MB
from file

Figure 6.5. Unified buffer cache demonstration. This figures shows the
amount of memory consumed by the user and FSVA VMs. As applications
shift their memory access pattern between file system and virtual memory
usage, the unified buffer cache dynamically allocates memory among the two
VMs while maintaining a constant total memory allocation.

these pages, triggering Linux’s lazy memory allocation. As the allocation

proceeds, the user VM evicts the clean file system pages to make room for

the virtual memory pressure. These evictions trigger UBC IPCs to the FSVA

that return memory to the user VM. Initially, Linux batches the evictions,

causing the non-linear drop in the beginning of the second phase.

In the third phase, the application performs a 500 MB ordinary read from

a file. This requires file system pages to stage the data being read. Because

the application still contains an 800 MB allocation, and swapping is turned

off for this experiment, the virtual memory pages cannot be evicted. The

result is that only the remaining memory (just over 200 MB) can be used to

stage reads; the unified buffer cache constrains the FSVA to this size. Page

eviction batching is responsible for the dips in the figure.

This experiment demonstrates the effectiveness of our unified buffer cache

implementation in two ways. First, a single eviction policy (in the user VM)

based on virtual memory and file system cache usage is preserved. Second,

the combined memory usage of the two VMs stays constant.

6.8 Migration · 81

6.8 Migration

To evaluate the FSVA’s effect on unavailability during live migration, we

wrote a simple benchmark that continuously reads a memory-mapped file.

Every microsecond, the benchmark reads one byte and sends a UDP packet

containing that byte to another machine. The second machine logs the packet

arrival times, providing an external observation point for measuring the

slowdown introduced by migrating the user-FSVA VM pair.

To establish baseline live migration performance, we ran our benchmark

against the root NFS filesystem of a single VM with 512 MB of memory.

During live migration, the unavailability period was 0.29 s. We then repeated

this test against the same file system exported from an FSVA to a user VM.

The two VMs’ memory allocation was set to 512 MB plus the overhead of the

FSVA’s operating system, which was approximately 92 MB. Unavailability

increased to 0.51 s. This increase is caused by the extra OS pages that

must be copied during the suspend phase and the overhead of restoring our

IPC layer and shared memory pages. We believe this overhead is relatively

independent of the overall memory size. But, we were unable to run migration

experiments with larger memory footprints due to limitations in the size of

Xen’s preallocated shadow page tables that are used during migration.

82 · File system virtual appliances

7 Experiences

This chapter describes our experiences in implementing the FSVA prototype.

It describes the changes to the FSVA interface that occurred during FSVA

ports and discusses our expectations for future ports. It also describes

implementation pitfalls for others interested in running a file system in its

own VM.

7.1 Porting experience and expectation for future ports

For the FSVA approach to succeed, the FSVA interface must be stable.

Earlier, we argued that a minimal VFS-like FSVA interface can remain stable

while supporting different Unix OSs, because inter-OS differences tend to

occur in internal OS implementation (e.g., memory management) (§3.3.1).

This section describes the effects of porting the FSVA prototype to different

OSs and VMMs on the FSVA interface, and our expectation for future ports.

In particular, the salient question is whether the FSVA interface remains

stable across ports to new OSs or new OS versions. If not, FSVAs merely

shift the original changing-interfaces problem, and OS vendors will not likely

adopt the user OS and/or the FSVA proxies.

The initial FSVA prototype was implemented using the Linux 2.6.18

kernel. The FSVA proxy was then ported to Linux 2.6.25, followed by a port

of the user OS proxy to Linux 2.6.25. Subsequently, both proxies tracked the

Linux 2.6.26, 2.6.27, and 2.6.28 kernel releases. In addition, Karan Sanghi

implemented1 the FSVA proxy for NetBSD 5.99.5 [85]. Together, the Linux

1Porting the proxies across different OS versions requires relatively minor changes. In
contrast, porting the proxies to a different OS requires a complete rewrite due to the

83

84 · File system virtual appliances

and NetBSD ports provide insight into the viability of a stable FSVA interface

across intra-OS and inter-OS ports, respectively.

Porting the Linux FSVA proxy from the 2.6.18 kernel to the 2.6.25 led to a

significant change in how files are identified. In our initial implementation, we

used inode numbers to identify files. On response to a lookup operation, the

FSVA proxy would return the file’s inode number. The user OS proxy would

pass the inode number to the FSVA proxy in future requests, and the FSVA

proxy would retrieve the corresponding file by calling the generic VFS inode-

number-to-inode mapping function. But, this function was removed after the

Linux 2.6.18 kernel release. This forced us to change how files are identified:

we switched to using pointers to FSVA in-memory data structures (§5.2).

The resulting FSVA interface made fewer requirements from the FSVA OS:

instead of requiring the FSVA OS to provide an inode-number-to-inode

mapping function, we relied on using data structure addresses. Subsequent

ports to the Linux 2.6.26–2.6.28 kernels as well as to NetBSD demonstrated

the genericness of our new file identification mechanism. Thus, although the

port from Linux 2.6.18 to 2.6.25 led to an FSVA interface change, this was

a “one-off” interface generalization to fix a naive initial design assumption.

Intuitively, given that the current file identification only relies on data

structure memory addresses, the new mechanism will work for any OS.

Porting the Linux user OS proxy from Linux 2.6.18 to 2.6.25–2.6.28

required no FSVA interface changes. Although changes occurred in internal

Linux interfaces – for example, the syntax of internal caches and VFS

handlers that support memory-mapping changed – we were able to address

these changes in the the user OS proxy without affecting the FSVA interface.

This validates our intra-OS FSVA interface stability argument (§3.3.1).

Implementing the FSVA proxy for NetBSD led to two changes to the FSVA

interface. First, the initial FSVA prototype assumed that the user OS and

FSVA share the same size for the directory entries returned by the readdir

system call. However, the POSIX standard specifies that the data structure

size is OS-specific [30]. Consequently, we revised the FSVA interface such

substantial differences among internal OS interfaces. We stress this difference in porting
effort by referring to an inter-OS FSVA port as a new implementation.

7.1 Porting experience and expectation for future ports · 85

that the user OS passes its directory entry size in the readdir operation [85].

Second, because NetBSD delegates directory entry caching to the file system,

in contrast to Linux which performs directory entry caching in the generic

VFS layer, the FSVA lookup interface changed. Specifically, in our initial

FSVA interface, a negative lookup result, indicating a file’s nonexistence,

returned a valid directory entry pointer. This reflected the semantics of the

Linux generic lookup behavior. In contrast, the generic NetBSD lookup

function returns a null pointer. Consequently, for VFS operations that may

refer to the result of a previous negative lookup operation, such as create,

NetBSD requires the filename to be provided, in contrast to Linux in which

a pointer to the negative directory entry is passed. The FSVA interface was

modified to pass a directory entry pointer if one was returned by a previous

lookup; otherwise, the filename was passed.

Although the NetBSD port required two FSVA interface changes, we again

argue that these changes reflect “one-off” initial Linux-specific assumptions.

In particular, almost any non-Linux port would have exposed the directory

entry size issue. Additionally, the differences in referring to negative directory

entries have long been known [50]: a careful study of earlier attempts at a

universal VFS interface would have exposed the issue. Thus, we argue that

the FSVA interface will converge to a stable universal interface after a small

number of OS ports expose initial OS-specific assumptions.

To understand the effect of future OS ports on the FSVA interface, we

studied the Solaris VFS interface [60]. Path lookup in Solaris is very similar

to NetBSD — the file system is responsible for managing the directory entry

cache and negative directory entries. Given that the NetBSD port required

significant FSVA interface changes to handle pathname lookup, we expect that

a Solaris port would not affect FSVA file identification. Furthermore, although

Solaris has several VFS calls that implement reader/write inode locking, we

believe that a Solaris user OS proxy could implement these operations locally

without involving the FSVA. This would leave the FSVA interface unaffected.

Note that our single user OS per FSVA design ensures that no other OS

would be accessing these inodes. In terms of data structures, Linux, NetBSD,

and Solaris all share very similar inode data structures. Although the Solaris

86 · File system virtual appliances

directory entry size is different from Linux, our NetBSD-port fix for passing

the user OS directory entry size in the readdir operation handles Solaris.

Overall, we believe that our NetBSD port sufficiently generalized our FSVA

interface such that a Solaris port would require no changes to the FSVA

interface.

Our FSVA design eschewed a single FSVA interface for both Unix and

Windows OSs. We argued that separate FSVA interfaces for Unix and

Windows would encourage OS vendor adoption by simplifying the user OS

and FSVA proxies (§4.2.3). Nevertheless, we now describe our expectations

if a single FSVA interface was used for both Unix and Windows.

Several papers describe porting Unix research file systems to Windows.

For example, Coda was ported to Windows 95/98/NT [11], Arla (an AFS

clone) was ported to Windows NT [3], and the Secure File System was

ported to Windows NT [79]. These ports demonstrate that a Unix file system

can retain its semantics for Windows clients. This is not surprising because

Unix has a smaller file system interface than Windows (e.g., Windows allows

access control lists and byte-range locking). Consequently, we expect that a

Windows user OS proxy implementation is unlikely to require changes to the

FSVA interface.

In contrast, allowing Unix user OSs to access Windows FSVA is likely to

require FSVA interface changes. The FSVA interface must support Windows’

rich access control lists, fine-grained locking, directory notifications, and

different naming schemes. Unix applications could access these features

through FSVA-specific ioctls. Furthermore, Unix FSVA proxies would need

to implement these now-standard FSVA features to support Windows users,

complicating Unix FSVA proxies.

In addition to maintaining a stable interface across OS ports, interface

stability across different VMM ports is also important. We briefly describe

our experience in porting the Linux user OS and FSVA proxies from Xen to

VMware Workstation; full details are in Saurabh Shah’s Masters report [90].

Although differences exist among Xen’s and VMware’s bootstrapping pro-

tocols (e.g., VM discovery) and interfaces (e.g., shared memory hypercalls),

these differences are easily localized in the user OS and FSVA proxies. As a

7.2 Lessons for others running a file system in its own VM · 87

result, the FSVA interface was not changed during the VMware port.

7.2 Lessons for others running a file system in its own VM

Several other research projects have explored running a file system in its own

VM, for a variety of reasons such as extensibility [76], performance [58, 112],

and security [59, 107]. Regardless of the motivation and specific design choices,

there are common pitfalls when running a file system in its own VM. These

issues caught us by surprise. As warning to others, we describe three issues:

memory-mapped I/O, unified buffer cache, and performance comparisons.

To support memory-mapped I/O, Unix OSs have a VFS handler that

read a file system page into memory. In the Linux user OS proxy, this VFS

handler maps the relevant FSVA page into the user OS’s address space using

VMM shared-memory hypercalls (§5.3.1). Application-level memory map

system calls do not typically involve the file system; once the file system

reads a page into the OS address space, the OS is responsible for setting

user-level page table pointers to refer to the relevant page.

Xen requires a special hypercall to allow user-level page table pointers to

refer to another VM’s page. Consequently, our prototype required several

changes to the Linux virtual memory subsystem to allow user-level memory-

mapped I/O to point to an FSVA page. We added hooks to the existing OS

“set page table pointer” routines that enabled the user OS proxy to make the

special Xen hypercall. These changes were responsible for the majority of

the Linux OS changes (Table 5.1). Furthermore, almost every port to a new

Linux kernel release broke this functionality due to changes in the virtual

memory subsystem. By far, fixing this functionality was the most challenging

aspect of porting the user OS proxy to a new Linux kernel version. On the one

hand, we were pleased that the fixes never affected the FSVA interface. On

the other hand, we usually spent several days debugging obscure page table

pointer errors. Note that this issue may be Xen- or paravirtualization-specific.

Memory is a scarce resource. To make the best use of memory, a unified

buffer cache avoids data duplication and optimally divides memory between

the file system buffer cache and the virtual memory page cache [37, 91]. But,

88 · File system virtual appliances

when a file system runs in its own VM, the existing unified buffer cache

functionality is broken (§4.4.3). None of the previous systems addressed

this problem, leading to increased memory usage. Furthermore, although

VMM-based page deduplication [103] avoids data duplication, it does not

enable a single eviction policy2.

This dissertation describes an inter-VM unified buffer cache implementa-

tion that requires few OS changes (Table 5.1). Our design is not FSVA-specific;

other file system VMs can use our approach. Furthermore, although our

design dedicates an FSVA for each user OS (§4.2.2), our unified buffer cache

design will mostly work even in a shared FSVA: each user OS can maintain

its own eviction policy. In a shared file system VM design, it will be necessary

to recognize which user OS is responsible for page additions and accesses

in the file system VM. We expect that tagging directory entries with the

corresponding user OS identifier should be sufficient.

It is important to accurately measure the performance overhead of file

system VMs: high overhead can affect a system’s viability. Unfortunately,

our initial FSVA performance measurements were flawed. We compared

FSVA performance with native file systems as soon as we observed a correct

macrobenchmark execution — as judged by the benchmark running to

completion and/or generating the correct output. But, this approach fails

to take into account the performance overhead of VFS operations that were

mistakenly not sent to the FSVA. For example, our initial user OS proxy

neglected to send the permission VFS call, used for access control, to the

FSVA. NFS often performs network operations in response to a permission

check. Consequently, this led to FSVA performance incorrectly exceeding

native file system performance.

To catch overlooked VFS IPCs, we added counters to all VFS operations.

This allowed us to compare, say, how many times the NFS permission VFS

handler executed when running a benchmark over an NFS FSVA and over

a native NFS. Yet, FSVA NFS performance still unexpectedly exceeded

native NFS performance. The culprit was our neglect to pass certain OS flags

2When the user OS evicts a page, the VMM breaks the deduplication, leaving the file
system VM with a copy of a page that should be evicted from memory.

7.2 Lessons for others running a file system in its own VM · 89

for the open and create operations. When these flags were set, the NFS

handlers perform multiple network operations during a single VFS operation.

Thus, counting VFS operations was insufficient. We switched to performing

network-level protocol traces for NFS and counting block-level reads/writes

for local file systems.

90 · File system virtual appliances

8 Conclusion

FSVAs offer a solution to the file system portability problem, leveraging the

virtualization and multicore processor technology trends. A file system is

developed for one OS and bundled with it in a preloaded VM. Users run their

preferred OS and use the FSVA like any other file system. The file system is

isolated from both kernel- and user-space differences in user OSs, because

it interacts with just the single FSVA OS version. In contrast to previous

approaches, FSVAs accommodate existing file system implementations and

provide more robust isolation from the user OS.

We presented an FSVA design with minimal performance overheads

and no visible semantic changes for the user. File system semantics are

maintained without file system modifications, thus supporting legacy file

systems implementations. OS and virtualization features, such as a unified

buffer cache and VM migration, are maintained, thus encouraging user

adoption.

An FSVA prototype demonstrates efficient performance using multicore

processors. Case studies and other experiments demonstrate that the FSVA

approach works for a range of unmodified file system implementations across

distinct OSs. Few changes are made to the OS and VMM, thus encouraging

vendor adoption.

For the FSVA approach to be viable, the user OS and FSVA proxies

must be maintained by OS vendors. Our design encourages vendor adoption

through design principles that simplify the proxies’ implementation and

ensure a stable FSVA interface.

91

92 · File system virtual appliances

8.1 Future work

Our design goal of supporting unmodified file systems comes with a cost: it

prevents caching in the user OS. This leads to higher performance overhead.

Although multicore processors mitigate this overhead, this increases resource

utilization. An auto-negotiation scheme can simultaneously accommodate

unmodified legacy file system implementations and provide more efficient

operation for FSVA-optimized file systems by reducing the number of IPCs.

For example, adding an optional cache invalidation protocol to the FSVA

interface may alleviate the need for multicore processors even during in-cache

file system-intensive operation. Similarly, file systems could indicate that a

user OS VFS handler can directly handle an operation (see §6.5).

Adaptive gang-scheduling can maintain efficient performance, without

requiring constant gang-scheduling of the user OS and FSVA. A VMM- or

proxy-based scheduler can detect in-cache file system-intensive operation and

gang-schedule a user OS and its FSVA(s). During light file system usage or

out-of-cache file system operation (in which the IPC latency is dwarfed by

device access time), the user OS and FSVA can be scheduled on the same

processor core [33, 72].

Although inter-VM control transfer and notification is the FSVA per-

formance bottleneck, there is a significant cost to frequent shared memory

hypercalls. Given the trust model between the two OSs, a shared address

space is appropriate and avoids the overheads of shared memory hypercalls

and the resulting TLB flushes. Fido [14] implements a single address space

among an arbitrary number of VMs; we can borrow its techniques.

A stable FSVA interface is crucial for encouraging OS vendor adoption.

Our port to different Linux kernel versions and NetBSD required some

changes to the FSVA interface. But, we believe that the FSVA interface is

converging to a stable interface. Porting the proxies to other Unix OSs, such

as AIX or Solaris, will demonstrate FSVA interface stability. Similarly, a

Windows port will shed light on whether a universal FSVA interface is viable

or if an FSVA interface for each major OS is more appropriate.

FSVAs execute file system implementations separately from the rest of the

8.1 Future work · 93

user OS. This is in the spirit of the Mach multi-server vision [95]. But, FSVAs

exploit virtualization to reduce the significant upfront effort traditionally

imposed by microkernels. This separation does not have to be confined to

just file systems. For example, networking stacks and device drivers would

benefit from this separation, delivering the promises of microkernels: greater

implementation flexibility and more robust OSs [76].

To encourage the separation of OS components into VMs, two software

and hardware changes are required. First, VMMs should treat a set of VMs

as a single logical unit. This provides efficiency (e.g., a single address-space,

appropriate for this trust model, can eliminate data copying and/or shared

memory hypercalls) and maintains virtualization features (e.g., preserving

migration support without OSs’ involvement). Second, processors and VMMs

should provide low-latency inter-VM communication primitives (e.g., §5.3.2).

This avoids efficiency being an obstacle to fine-grained OS-component sepa-

ration.

94 · File system virtual appliances

9 Glossary

Term Definition

FS File system
FSVA File system virtual appliance
IPI Inter-processor interrupt
Hypercall A synchronous software traps from a VM to the VMM
Hypervisor See VMM
SLOC Source lines of code
UBC Unified buffer cache
VFS Virtual File System
VM Virtual machine
VMM Virtual machine monitor

Table 9.1. Terminology

95

96 · File system virtual appliances

Bibliography

[1] Abd-El-Malek, M., Wachs, M., Cipar, J., Ganger, G. R., Gibson,

G. A., and Reiter, M. K. 2008. File system virtual appliances: Third-

party file system implementations without the pain. Tech. Rep. CMU-

PDL-08-106, Carnegie Mellon University Parallel Data Lab. May.

[2] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R.,

Tevanian, A., and Young, M. 1986. Mach: A new kernel foundation for

UNIX development. In USENIX Annual Technical Conference. USENIX

Association, Berkeley, CA, 93–112.

[3] Ahltorp, M., Hrnquist-strand, L., and Westerlund, A. 2000.

Porting the Arla file system to Windows NT. In Workshop on Management

and Administration of Distributed Environments.

[4] Almeida, D. 1999. FIFS: A Framework for Implementing User-Mode

File Systems in Windows NT. In Conference on USENIX Windows NT

Symposium. USENIX Association, Berkeley, CA, 13–13.

[5] Amit Shah. 2009. Feature: High Memory In The Linux Kernel —

KernelTrap. http://kerneltrap.org/node/2450.

[6] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,

A., Neugebauer, R., Pratt, I., and Warfield, A. 2003. Xen and

the art of virtualization. In Symposium on Operating Systems Principles.

ACM Press, New York, NY, 164–177.

97

http://kerneltrap.org/node/2450

98 · File system virtual appliances

[7] Bershad, B. N., Anderson, T. E., Lazowska, E. D., and Levy,

H. M. 1991. User-level interprocess communication for shared memory

multiprocessors. ACM Transactions on Computer Systems 9, 2, 175–198.

[8] Bershad, B. N. and Pinkerton, C. B. 1988. Watchdogs: Extending

the UNIX File System. In USENIX Annual Technical Conference. USENIX

Association, Berkeley, CA, 267–275.

[9] Black, R., Barham, P. T., Donnelly, A., and Stratford, N. 1997.

Protocol Implementation in a Vertically Structured Operating System. In

IEEE Conference on Local Computer Networks. IEEE Computer Society,

Washington, DC, 179–188.

[10] Borden, T. L., Hennessy, J. P., and Rymarczyk, J. W. 1989.

Multiple operating systems on one processor complex. IBM Systems

Journal 28, 1, 104–123.

[11] Braam, P. J., Callahan, M. J., Satyanarayanan, M., and

Schnieder, M. 1999. Porting the Coda File System to Windows. In

ATEC ’99: Proceedings of the annual conference on USENIX Annual

Technical Conference. USENIX Association, Berkeley, CA, 30–30.

[12] Brashear, D. Personal communication. 2008.

[13] Bugnion, E., Devine, S., Govil, K., and Rosenblum, M. 1997.

Disco: running commodity operating systems on scalable multiprocessors.

ACM Transactions on Computer Systems 15, 4, 412–447.

[14] Burtsev, A., Srinivasan, K., Radhakrishnan, P., Bairavasun-

daram, L. N., Voruganti, K., , and Goodson, G. R. 2009. Fido:

Fast Inter-Virtual-Machine Communication for Enterprise Appliances. In

USENIX Annual Technical Conference. USENIX Association, Berkeley,

CA.

[15] Callaghan, B. and Lyon, T. 1989. The automounter. In USENIX

Annual Technical Conference. USENIX Association, Berkeley, CA, 43–51.

Bibliography · 99

[16] Carns, P. H., Ligon III, W. B., Ross, R. B., and Thakur, R.

2000. PVFS: A Parallel File System for Linux Clusters. In Annual Linux

Showcase and Conference. USENIX Association, Atlanta, GA, 317–327.

[17] Cate, V. 1992. Alex-A global file system. In USENIX File System

Workshop. USENIX Association, Berkeley, CA.

[18] Chase, J. S., Levy, H. M., Feeley, M. J., and Lazowska, E. D.

1994. Sharing and protection in a single-address-space operating system.

ACM Transactions on Computer Systems 12, 4, 271–307.

[19] Chen, S., Falsafi, B., Gibbons, P. B., Kozuch, M., Mowry, T. C.,

Teodorescu, R., Ailamaki, A., Fix, L., Ganger, G. R., Lin, B.,

and Schlosser, S. W. 2006. Log-based architectures for general-purpose

monitoring of deployed code. In Workshop on Architectural and System

Support for Improving Software Dependability. ACM Press, New York, NY,

63–65.

[20] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach,

C., Pratt, I., and Warfield, A. 2005. Live migration of virtual ma-

chines. In Symposium on Networked Systems Design and Implementation.

USENIX Association, Berkeley, CA, 273–286.

[21] Clements, P. and Northrop, L. 2001. Software product lines: prac-

tices and patterns. Addison-Wesley, Boston, MA.

[22] Creasy, B. 1981. The origin of the vm/370 time-sharing system. IBM

Systems Journal 25, 5, 483–490.

[23] Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson,

N., and Warfield, A. 2008. Remus: high availability via asynchronous

virtual machine replication. In Symposium on Networked Systems Design

and Implementation. USENIX Association, Berkeley, CA, 161–174.

[24] David A. Wheeler. 2009. SLOCCount. http://www.dwheeler.com/

sloccount.

http://www.dwheeler.com/sloccount
http://www.dwheeler.com/sloccount

100 · File system virtual appliances

[25] Dean, R. W. and Armand, F. 1992. Data Movement in Kernelized

Systems. In Workshop on Micro-Kernels and Other Kernel Architectures.

USENIX Association, 243–261.

[26] DeBergalis, M., Corbett, P., Kleiman, S., Lent, A., Noveck,

D., Talpey, T., and Wittle, M. 2003. The Direct Access File System.

In Conference on File and Storage Technologies. USENIX Association,

175–188.

[27] Don Capps and William Norcott. 2009. IOzone. http://www.

iozone.org.

[28] Douglis, F. and Ousterhout, J. K. 1991. Transparent Process

Migration: Design Alternatives and the Sprite Implementation. Software -

Practice and Experience 21, 8, 757–785.

[29] Ebling, M., Mummert, L., and Steere, D. 1994. Overcoming the

Network Bottleneck in Mobile Computing. In Workshop on Mobile Com-

puting Systems and Applications. IEEE Computer Society, Washington,

DC.

[30] Eifeldt, H. 1997. POSIX: a developer’s view of standards. In USENIX

Annual Technical Conference. USENIX Association, Berkeley, CA, 24–24.

[31] Eisler, M., Corbett, P., Kazar, M., Nydick, D. S., and Wagner,

C. 2007. Data ONTAP GX: a scalable storage cluster. In Conference on

File and Storage Technologies. USENIX Association, Berkeley, CA, 23–23.

[32] Fabian, P., Palmer, J., Richardson, J., Bowman, M., Brett, P.,

Knauerhase, R., Sedayao, J., Vicente, J., Koh, C.-C., and Rungta,

S. August 10, 2006. Virtualization in the Enterprise. Intel Technology

Journal 10, 3, 227–242.

[33] Feitelson, D. G. and Rudolph, L. 1992. Gang Scheduling Perfor-

mance Benefits for Fine-Grain Synchronization. Journal of Parallel and

Distributed Computing 16, 306–318.

http://www.iozone.org
http://www.iozone.org

Bibliography · 101

[34] Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Warfield, A.,

and Williamson, M. 2004. Reconstructing I/O. Tech. rep., University

of Cambridge, Computer Laboratory. August.

[35] FUSE. 2009. FUSE: filesystem in userspace. http://fuse.

sourceforge.net.

[36] Gartner, Inc. 2009. Gartner Says Virtualization Will Be the Highest-

Impact Trend in Infrastructure and Operations Market Through 2012.

http://www.gartner.com/it/page.jsp?id=638207.

[37] Gingell, R. A., Moran, J. P., and Shannon, W. A. 1987. Virtual

Memory Architecture in SunOS. In USENIX Summer Conference. USENIX

Association, Berkeley, CA, 81–94.

[38] Goldberg, R. 1974. Survey of Virtual Machine Research. Com-

puter 7, 6, 34–45.

[39] Gschwind, M. K. 1994. Ftp access as a user-defined file system.

SIGOPS Operating Systems Review 28, 2, 73–80.

[40] Gupta, D., Cherkasova, L., Gardner, R., and Vahdat, A. 2006.

Enforcing performance isolation across virtual machines in Xen. In Inter-

national Conference on Middleware. Springer-Verlag New York, Inc., New

York, NY, 342–362.

[41] Hammond, L., Nayfeh, B. A., and Olukotun, K. 1997. A single-chip

multiprocessor. Computer 30, 9, 79–85.

[42] Hansen, P. B. 1970. The Nucleus of a Multiprogramming System.

Communications of the ACM 13, 4, 238–241.

[43] Herlihy, M. and Moss, J. E. B. 1993. Transactional memory: archi-

tectural support for lock-free data structures. In International Symposium

on Computer Architecture. ACM Press, New York, NY, 289–300.

[44] Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A.,

Satyanarayanan, M., Sidebotham, R. N., and West, M. J. 1988.

http://fuse.sourceforge.net
http://fuse.sourceforge.net
http://www.gartner.com/it/page.jsp?id=638207

102 · File system virtual appliances

Scale and performance in a distributed file system. ACM Transactions on

Computer Systems 6, 1, 51–81.

[45] Huang, W., Liu, J., Abali, B., and Panda, D. K. 2006. A case

for high performance computing with virtual machines. In International

Booktitle on Supercomputing. ACM Press, New York, NY, 125–134.

[46] IDC. 2008a. Server Virtualization Now Firmly Embedded in Euro-

pean Organizations. http://www.idc.com/getdoc.jsp?containerId=

prUK21327108.

[47] IDC. 2008b. Virtualization Continues to See Strong Growth

in Second Quarter. http://www.idc.com/getdoc.jsp;jsessionid=

FT0ISDWWAPJ4SCQJAFDCFFAKBEAVAIWD?containerId=prUS21473108.

[48] Kantee, A. 2007. puffs - Pass-to-Userspace Framework File System.

In Asia BSD Conference.

[49] Kantee, A. 2009. Rump File Systems: Kernel Code Reborn. In

USENIX Annual Technical Conference. USENIX Association, Berkeley,

CA.

[50] Karels, M. and McKusick, M. 1986. Towards a Compatible Filesys-

tem Interface. In Proceedings of the European UNIX Users Group Meeting.

481–496.

[51] Katcher, J. 1997. PostMark: A New File System Benchmark. Tech.

Rep. TR3022, Network Appliance. October.

[52] Kleiman, S. R. 1986. Vnodes: an architecture for multiple file system

types in Sun Unix. In USENIX Summer Conference. USENIX Association,

Berkeley, CA, 238–247.

[53] Lampson, B. W. 1984. Hints for Computer System Design. IEEE

Software 1, 1, 11–28.

[54] Lang, S. and Ross, R. Personal communication. 2008.

http://www.idc.com/getdoc.jsp?containerId=prUK21327108
http://www.idc.com/getdoc.jsp?containerId=prUK21327108
http://www.idc.com/getdoc.jsp;jsessionid=FT0ISDWWAPJ4SCQJAFDCFFAKBEAVAIWD?containerId=prUS21473108
http://www.idc.com/getdoc.jsp;jsessionid=FT0ISDWWAPJ4SCQJAFDCFFAKBEAVAIWD?containerId=prUS21473108

Bibliography · 103

[55] Larus, J. and Rajwar, R. 2007. Transactional Memory (Synthesis

Lectures on Computer Architecture). Morgan & Claypool Publishers.

[56] Leslie, I. M., Mcauley, D., Black, R., Roscoe, T., Barham,

P. T., Evers, D., Fairbairns, R., and Hyden, E. 1996. The De-

sign and Implementation of an Operating System to Support Distributed

Multimedia Applications. IEEE Journal of Selected Areas in Communica-

tions 14, 7, 1280–1297.

[57] LeVasseur, J., Uhlig, V., Stoess, J., and Gotz, S. 2004. Unmod-

ified device driver reuse and improved system dependability via virtual

machines. In Symposium on Operating Systems Design and Implementation.

USENIX Association, Berkeley, CA, 17–30.

[58] Mark Williamson. 2009. XenFS. http://wiki.xensource.com/

xenwiki/XenFS.

[59] Matthews, J. N., Herne, J. J., Deshane, T. M., Jablonski, P. A.,

Cherian, L. R., and McCabe, M. T. 2005. Data Protection and Rapid

Recovery From Attack With A Virtual Private File Server and Virtual

Machine Appliances. In International Conference on Communication,

Network and Information Security. IASTED, Calgary, AB, 170–181.

[60] Mauro, J. and McDougall, R. 2006. Solaris Internals (2nd Edition).

Prentice Hall, Upper Saddle River, NJ.

[61] Mazieres, D. 2001. A toolkit for user-level file systems. In USENIX

Annual Technical Conference. USENIX Association, Berkeley, CA.

[62] McKusick, M. K., Bostic, K., Karels, M. J., and Quarterman,

J. S. 1996. The design and implementation of the 4.4BSD operating system.

Addison Wesley Longman Publishing Co., Inc., Redwood City, CA.

[63] McLaughlin, L. January, 2008. Virtualization in the Enterprise Survey:

Your Virtualized State in 2008. CIO Magazine.

http://wiki.xensource.com/xenwiki/XenFS
http://wiki.xensource.com/xenwiki/XenFS

104 · File system virtual appliances

[64] Megiddo, N. and Modha, D. S. 2003. ARC: A Self-Tuning, Low Over-

head Replacement Cache. In Conference on File and Storage Technologies.

USENIX Association, Berkeley, CA, 115–130.

[65] Mergen, M. F., Uhlig, V., Krieger, O., and Xenidis, J. 2006. Vir-

tualization for high-performance computing. SIGOPS Operating Systems

Review 40, 2, 8–11.

[66] Michael, M. M. and Scott, M. L. 1996. Simple, fast, and practical

non-blocking and blocking concurrent queue algorithms. In Symposium on

Principles of distributed computing. ACM Press, New York, NY, 267–275.

[67] Neuman, B. C. and Ts’o, T. Sep. 1994. Kerberos: an authentication

service for computer networks. IEEE Communications 32, 9, 33–38.

[68] Nightingale, E. B., Peek, D., Chen, P. M., and Flinn, J. 2008.

Parallelizing security checks on commodity hardware. In Conference on

Architectural Support for Programming Languages and Operating Systems.

ACM Press, New York, NY, 308–318.

[69] Nowicki, B. 1989. NFS: Network File System Protocol specification.

RFC 1094, Sun Microsystems, Inc. http://www.ietf.org/rfc/rfc1094.

txt; accessed May 2009.

[70] Olukotun, K. and Hammond, L. 2005. The Future of Microprocessors.

Queue 3, 7, 26–29.

[71] OpenAFS. 2009. OpenAFS repository. http://www.openafs.org/

frameset/cgi-bin/cvsweb.cgi/openafs/.

[72] Ousterhout, J. K. 1982. Scheduling techniques for concurrent sys-

tems. In Conference on Distributed Systems. IEEE Computer Society,

Washington, DC, 22–30.

[73] Padioleau, Y., Lawall, J., Hansen, R. R., and Muller, G. 2008.

Documenting and Automating Collateral Evolutions in Linux Device

Drivers. In Eurosys. ACM Press, New York, NY, 247–260.

http://www.ietf.org/rfc/rfc1094.txt
http://www.ietf.org/rfc/rfc1094.txt
http://www.openafs.org/frameset/cgi-bin/cvsweb.cgi/openafs/
http://www.openafs.org/frameset/cgi-bin/cvsweb.cgi/openafs/

Bibliography · 105

[74] Padioleau, Y., Lawall, J. L., and Muller, G. 2006. Understanding

collateral evolution in linux device drivers. In EuroSys. ACM Press, New

York, NY, 59–71.

[75] Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D.,

and Zelenka, J. 1995. Informed prefetching and caching. In Symposium

on Operating Systems Principles. ACM Press, New York, NY, 79–95.

[76] Pfaff, B. 2007. Improving Virtual Hardware Interfaces. Ph.D. thesis,

Stanford.

[77] RedHat. 2004. Bug 111656: In 2.4.20.-20.7 memory module, rebal-

ance laundry zone() does not respect gfp mask GFP NOFS. https:

//bugzilla.redhat.com/show_bug.cgi?id=111656.

[78] Rifkin, A., Forbes, M., Hamilton, R., Sabrio, M., Shah, S.,

and Yueh, K. 1986. RFS Architectural Overview. In USENIX Summer

Conference. USENIX Association, Berkeley, CA, 248–259.

[79] Rimer, M. S. 1999. The Secure File System Under Windows NT. M.S.

thesis, Massachusetts Institute of Technology.

[80] Rodriguez, R., Koehler, M., and Hyde, R. 1986. The Generic File

System. In USENIX Summer Conference. USENIX Association, Berkeley,

CA, 260–269.

[81] Rosenblum, M. 2004. The Reincarnation of Virtual Machines.

Queue 2, 5, 34–40.

[82] Rosenblum, M. and Ousterhout, J. K. 1992. The design and

implementation of a log-structured file system. ACM Transactions on

Computer Systems 10, 1, 26–52.

[83] Ross, R. June 2008. Personal communication. Argonne National

Laboratory.

[84] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon,

B. 1985. Design and implementation of the Sun Network Filesystem.

https://bugzilla.redhat.com/show_bug.cgi?id=111656
https://bugzilla.redhat.com/show_bug.cgi?id=111656

106 · File system virtual appliances

In USENIX Summer Conference. USENIX Association, Berkeley, CA,

119–130.

[85] Sanghi, K. 2009. Implementing File System Virtual Appliances in

NetBSD. M.S. thesis, Carnegie Mellon University.

[86] Sapuntzakis, C., Brumley, D., Chandra, R., Zeldovich, N.,

Chow, J., Lam, M. S., and Rosenblum, M. 2003. Virtual Appliances

for Deploying and Maintaining Software. In LISA: Conference on System

administration. USENIX Association, Berkeley, CA, 181–194.

[87] Sapuntzakis, C. and Lam, M. S. 2003. Virtual appliances in the

collective: a road to hassle-free computing. In HotOS. USENIX Association,

Berkeley, CA, 10–10.

[88] Schmuck, F. and Haskin, R. 2002. GPFS: A Shared-Disk File

System for Large Computing Clusters. In Conference on File and Storage

Technologies. USENIX Association, Berkeley, CA, 19.

[89] Seltzer, M., Bostic, K., Mckusick, M. K., and Staelin, C. 1993.

An implementation of a log-structured file system for UNIX. In USENIX

Annual Technical Conference. USENIX Association, Berkeley, CA, 1–18.

[90] Shah, S. 2009. Porting File System Virtual Appliances to VMware.

M.S. thesis, Carnegie Mellon University.

[91] Silvers, C. 2000. UBC: an efficient unified I/O and memory caching

subsystem for NetBSD. In USENIX Annual Technical Conference. USENIX

Association, Berkeley, CA, 54–54.

[92] Skinner, G. C. andWong, T. K. 1993. “Stacking” Vnodes: a progress

report. In USENIX Annual Technical Conference. USENIX Association,

161–174.

[93] Smith, J. E. and Nair, R. 2005. The Architecture of Virtual Machines.

Computer 38, 5, 32–38.

Bibliography · 107

[94] Srinivasan, R. 1995. XDR: External Data Representation Standard.

RFC 1832, Sun Microsystems. http://www.ietf.org/rfc/rfc1832.txt;

accessed July 2009.

[95] Stevenson, J. M. and Julin, D. P. 1995. Mach-US: UNIX on generic

OS object servers. In USENIX Annual Technical Conference. USENIX

Association, Berkeley, CA, 10–10.

[96] Sutter, H. 2005. The free lunch is over: A fundamental turn toward

concurrency in software. Dr. Dobb’s Journal 30, 3.

[97] Sutter, H. and Larus, J. 2005. Software and the Concurrency

Revolution. Queue 3, 7, 54–62.

[98] Swift, M. M., Bershad, B. N., and Levy, H. M. 2005. Improving

the reliability of commodity operating systems. ACM Transactions on

Computer Systems 23, 1, 77–110.

[99] Thekkath, C. A., Wilkes, J., and Lazowska, E. D. 1994. Tech-

niques for file system simulation. Software—Practice & Experience 24, 11,

981–999.

[100] Verghese, B., Guptag, A., and Rosenblum, M. 1998. Performance

isolation: Sharing and isolation in shared-memory multiprocessors. In

Conference on Architectural Support for Programming Languages and

Operating Systems. ACM Press, New York, NY, 181–192.

[101] VMWare. 2009a. Using Shared Folders. http://www.vmware.com/

support/ws5/doc/ws_running_shared_folders.html.

[102] VMWare. 2009b. VMware Workstation, Run Multiple OS, Desktop

Operating Systems, Virtual PC. http://www.vmware.com/products/ws.

[103] Waldspurger, C. 2002. Memory resource management in VMware

ESX server. In Symposium on Operating Systems Design and Implemen-

tation. USENIX Association, Berkeley, CA, 181–194.

http://www.ietf.org/rfc/rfc1832.txt
http://www.vmware.com/support/ws5/doc/ws_running_shared_folders.html
http://www.vmware.com/support/ws5/doc/ws_running_shared_folders.html
http://www.vmware.com/products/ws

108 · File system virtual appliances

[104] Warfield, A., Hand, S., Fraser, K., and Deegan, T. 2005.

Facilitating the development of soft devices. In USENIX Annual Technical

Conference. USENIX Association, Berkeley, CA, 22–22.

[105] Watson, A., Benn, P., and Yoder, A. G. 2001. Multiprotocol

Data Access: NFS, CIFS, and HTTP. Tech. rep., Network Appliance.

September.

[106] Webber, N. 1993. Operating system support for portable filesystem

extensions. In USENIX Annual Technical Conference. USENIX Associa-

tion, Berkeley, CA, 219–228.

[107] Weinhold, C. and Härtig, H. 2008. VPFS: building a virtual

private file system with a small trusted computing base. In Eurosys. ACM

Press, New York, NY, 81–93.

[108] Welch, B., Unangst, M., Abbasi, Z., Gibson, G., Mueller, B.,

Small, J., Zelenka, J., and Zhou, B. 2008. Scalable performance

of the Panasas parallel file system. In Conference on File and Storage

Technologies. USENIX Association, Berkeley, CA, 1–17.

[109] Welch, B. B. and Ousterhout, J. K. 1989. Pseudo-file-systems.

Tech. Rep. UCB/CSD-89-499, EECS Department, University of CA, Berke-

ley. Apr.

[110] Yang, J., Sar, C., Twohey, P., Cadar, C., and Engler, D.

2006. Automatically generating malicious disks using symbolic execution.

In IEEE Symposium on Security and Privacy. IEEE Computer Society,

Washington, DC, 243–257.

[111] Zadok, E. and Nieh, J. 2000. FiST: A language for stackable file

systems. In USENIX Annual Technical Conference. USENIX Association,

Berkeley, CA, 55–70.

[112] Zhao, X., Prakash, A., Noble, B., and Borders, K. 2006. Improv-

ing Distributed File System Performance in Virtual Machine Environments.

Tech. Rep. CSE-TR-526-06, University of Michigan. September.

	Title
	Contents
	Figures
	Tables
	1 Introduction
	1.1 The problem
	1.2 Thesis statement
	1.3 Dissertation overview
	1.4 Contributions
	1.5 Outline

	2 Background and related work
	2.1 Terminology
	2.2 OS structure and file system implementations
	2.3 The problem: porting file systems
	2.3.1 Why porting is difficult
	2.3.2 Problem manifestation
	2.3.3 Anecdotal experiences

	2.4 Current approaches
	2.5 Additional related work

	3 Architecture
	3.1 Technology trends
	3.1.1 Virtualization
	3.1.2 Multicore processors

	3.2 Architecture overview
	3.3 Viability
	3.3.1 Interface stability
	3.3.2 VMM proliferation
	3.3.3 Maintaining performance and the role of multicore processors
	3.3.4 Maintaining OS and virtualization features

	3.4 Costs and limitations
	3.4.1 Administration and support
	3.4.2 Overhead
	3.4.3 Out-of-band state

	3.5 Summary

	4 Design
	4.1 Goals
	4.2 Design principles
	4.2.1 Passing all VFS calls
	4.2.2 One user VM per FSVA
	4.2.3 Interface scope
	4.2.4 Summary

	4.3 Design overview
	4.3.1 IPC layer
	4.3.2 FSVA interface
	4.3.3 Data operations

	4.4 Maintaining OS features
	4.4.1 Metadata duplication
	4.4.2 Security and other common VFS features
	4.4.3 Unified buffer cache

	4.5 Maintaining virtualization features
	4.5.1 Performance isolation and resource accounting
	4.5.2 Migration

	5 Implementation
	5.1 Prototype overview
	5.2 FSVA interface
	5.3 IPC layer
	5.3.1 Data transfer
	5.3.2 Control notification

	5.4 Memory mapping
	5.5 Unified buffer cache
	5.6 Migration

	6 Evaluation
	6.1 Experimental setup
	6.2 Case studies: portable file system implementations
	6.3 Macrobenchmarks
	6.4 Microbenchmarks
	6.5 Relaxing the ``pass all VFS calls'' principle
	6.6 Memory overhead
	6.7 Unified buffer cache
	6.8 Migration

	7 Experiences
	7.1 Porting experience and expectation for future ports
	7.2 Lessons for others running a file system in its own VM

	8 Conclusion
	8.1 Future work

	9 Glossary
	Bibliography

