
Diskmodel

May 17, 2007

1 Overview

1.1 Introduction

Diskmodel is a library implementing mechanical and layout models of modern magnetic disk drives.
Diskmodel models two major aspects of disk operation. The layout module models logical-to-physical
mapping of blocks, defect management and also computes angular offsets of blocks. The mechanical
model handles seek times, rotational latency and various other aspects of disk mechanics.

The implementations of these modules in the current version of Diskmodel are derived from
DiskSim 2.0 [Ganger99]. Disksim 3.0 uses Diskmodel natively. Diskmodel has also been used in a
device driver implementation of a shortest positioning time first disk request scheduler.

1.2 Types and Units

All math in diskmodel is performed using integer arithmetic. Angles identified as points on a
circle divided into discrete units. Time is represented as multiples of some very small time base.
Diskmodel exports the types dm time t and dm angle t to represent these quantities. Diskmodel
exports functions dm time itod, dm time dtoi (likewise for angles) for converting between doubles
and the native format. The time function converts to and from milliseconds; the angle function
converts to and from a fraction of a circle. dm time t and dm angle t should be regarded as opaque
and may change over time. Diskmodel is sector-size agnostic in that it assumes that sectors are
some fixed size but does not make any assumption about what that size is.

1.2.1 Three Zero Angles

When considering the angular offset of a sector on a track, there are at least three plausible candidates
for a “zero” angle. The first is “absolute” zero which is the same on every track on the disk. For
various reasons, this zero may not coincide with a sector boundary on a track. This motivates the
second 0 which we will refer to as 0t (t for “track”) which is the angular offset of the first sector
boundary past 0 on a track. Because of skews and defects, the lowest lbn on the track may not lie
at 0t. We call the angle of the lowest sector on the track 0l (l for “logical” or “lbn”).

1.2.2 Two Zero Sectors

Similarly, when numbering the sectors on a track, it is reasonable to call either the sector at 0t

or the one at 0l “sector 0.” 0t corresponds to directly to the physical location of sectors on a

1

track whereas 0l corresponds to logical layout. Diskmodel works in both systems and the following
function descriptions identify which numbering a given function uses.

1.2.3 Example

Consider a disk with 100 sectors per track, 2 heads, a head switch skew of 10 sectors and a cylinder
switch skew of 20 sectors. (x, y, z) denotes cylinder x, head y and sector z.

LBN 0l PBN 0t PBN
0 (0,0,0) (0,0,0)

...
99 (0,0,99) (0,0,99)
100 (0,1,0) (0,1,10)
101 (0,1,1) (0,1,11)

...
189 (0,1,89) (0,1,99)
190 (0,1,90) (0,1,0)
191 (0,1,91) (0,1,1)
199 (0,1,99) (0,1,9)

Note that a sector is 3.6 degrees wide.

Cylinder Head 0l angle
0 0 0 degrees
0 1 36 degrees
1 0 72 degrees
1 1 108 degrees
2 0 180 degrees

1.3 API

This section describes the data structures and functions that comprise the Diskmodel API.
The dm disk if struct is the “top-level” handle for a disk in diskmodel. It contains a few disk-

wide parameters – number of heads/surfaces, cylinders and number of logical blocks exported by
device – along with pointers to the mechanics and layout interfaces.

1.3.1 Disk-wide Parameters

The top-level of a disk model is the dm disk if struct:

struct dm_disk_if {

int dm_cyls; // number of cylinders

int dm_surfaces; // number of media surfaces used for data

int dm_sectors; // LBNs or total physical sectors (??)

struct dm_layout_if *layout;

struct dm_mech_if *mech;

2

};

All fields of diskmodel API structures are read-only; the behavior of diskmodel after any of
them is modified is undefined. layout and mech are pointers to the layout and mechanical module
interfaces, respectively. Each is a structure containing a number of pointers to functions which
constitute the actual implementation. In the following presentation, we write the functions as
declarations rather than as types of function pointers for readability. Many of the methods take one
or more result parameters; i.e. pointers whose addresses will be filled in with some result. Unless
otherwise specified, passing NULL for result parameters is allowed and the result will not be filled in.

1.3.2 Layout

The layout interface uses the following auxiliary type:
dm ptol result t appears in situations where a client code provides a pbn which may not exist

on disk as-described e.g. due to defects. It contains the following values:

DM_SLIPPED

DM_REMAPPED

DM_OK

DM_NX

DM SLIPPED indicates that the pbn is a slipped defect. DM REMAPPED indicates that the pbn is a
remapped defect. DM OK indicates that the pbn exists on disk as-is. DM NX indicates that there is no
sector on the device corresponding to the given pbn. When interpreted as integers, these values are
all less than zero so they can be unambiguously intermixed with nonnegative integers e.g. lbns.

The layout module exports the following methods:

dm_ptol_result_t dm_translate_ltop(struct dm_disk_if *,

int lbn,

dm_layout_maptype,

struct dm_pbn *result,

int *remapsector);

Translate a logical block number (lbn) to a physical block number (pbn). remapsector is a result
parameter which will be set to a non-zero value if the lbn was remapped.

The sector number in the result is relative to the 0l zero sector.

dm_ptol_result_t dm_translate_ltop_0t(struct dm_disk_if *,

int lbn,

dm_layout_maptype,

struct dm_pbn *result,

int *remapsector);

Same as dm translate ltop except that the sector in result is relative to the 0t sector.

dm_ptol_result_t dm_translate_ptol(struct dm_disk_if *,

struct dm_pbn *p,

int *remapsector);

3

Translate a pbn to an lbn. remapsector is a result parameter which will be set to a non-zero
value if the pbn is defective and remapped.

The sector number in the operand is relative to the 0l zero sector.

dm_ptol_result_t dm_translate_ptol_0t(struct dm_disk_if *,

struct dm_pbn *p,

int *remapsector);

Same as dm translate ptol except that the sector in the result is relative to the 0t sector.

int dm_get_sectors_lbn(struct dm_disk_if *d,

int lbn);

Returns the number of sectors on the track containing the given lbn.

int dm_get_sectors_pbn(struct dm_disk_if *d,

struct dm_pbn *);

Returns the number of physical sectors on the track containing the given pbn. This may not be
the same as the number of lbns mapped on this track. If the cylinder is unmapped, the return value
will be the number of sectors per track for the nearest (lower) zone.

void dm_get_track_boundaries(struct dm_disk_if *d,

struct dm_pbn *,

int *first_lbn,

int *last_lbn,

int *remapsector);

Computes lbn boundaries for the track containing the given pbn. first lbn is a result parameter
which returns the first lbn on the track containing the given pbn; similarly, last lbn returns the
last lbn on the given track. remapsector returns a non-zero value if the first or last block on the
track are remapped. Note that last lbn - first lbn + 1 may be greater than the number of LBNs
mapped on the track e.g. due to remapped defects.

dm_ptol_result_t dm_seek_distance(struct dm_disk_if *,

int start_lbn,

int dest_lbn);

Computes the seek distance in cylinders that would be incurred for given request. Returns a
dm ptol result t since one or both of the LBNs may be slipped or remapped.

dm_angle_t dm_pbn_skew(struct dm_disk_if *,

struct dm_pbn *);

This computes the starting offset of a pbn relative to 0. The operand is a pbn relative to 0l; the
result is an angle relative to 0. This accounts for all skews, slips, etc.

dm_angle_t dm_get_track_zerol(struct dm_disk_if *,

struct dm_mech_state *);

4

The return value is 0l for the track identified by the second argument. This is equivalent to
calling dm pbn skew for sector 0 on the same track.

dm_ptol_result_t dm_convert_atop(struct dm_disk_if *,

struct dm_mech_state *,

struct dm_pbn *);

Finds the pbn of the sector whose leading edge is less than or equal to the given angle. Returns a
ptol result t since the provided angle could be in slipped space, etc. Both the angle in the second
operand and the sector number in the result pbn are relative to 0l.

dm_angle_t dm_get_sector_width(struct dm_disk_if *,

struct dm_pbn *track,

int num);

Returns the angular width of an extent of num sectors on the given track. Returns 0 if num is
greater than the number of sectors on the track.

dm_angle_t dm_lbn_offset(struct dm_disk_if *, int lbn1, int lbn2);

Computes the angular distance/offset between two logical blocks.

int dm_marshalled_len(struct dm_disk_if *);

Returns the size of the structure in bytes when marshalled.

void *dm_marshall(struct dm_disk_if *, char *);

Marshall this layout struct into the provided buffer. The return value is the first address in the
buffer not written.

1.3.3 Mechanics

The following diagram shows the breakdown of a zero-latency access in our model, and the corre-
sponding definitions of seek time, positioning time and access time.

+-------------------------+------------+----------+---------+----------+

| seek | initial | | add. | |

| headswitch | rotational | xfertime | rot. | xfertime |

| extra settle | latency | | latency | |

+-------------------------+------------+----------+---------+----------+

|---------seektime--------|

|-----------positioning-time-----------|

|------------------------------access-time-----------------------------|

dm_time_t dm_seek_time(struct dm_disk_if *,

struct dm_mech_state *start_track,

struct dm_mech_state *end_track,

int read);

5

Computes the amount of time to seek from the first track to the second track, possibly including
a head switch and additional write settling time. This is only track-to-track so the angles in the
parameters are ignored. read should be nonzero if the access on the destination track is a read and
zero if it is a write; extra write-settle time is included in the result for writes.

int dm_access_block(struct dm_disk_if *,

struct dm_mech_state *initial,

int start,

int len,

int immed);

From the given inital condition and access, it will return the first block on the track to be read.
The access is for len sectors starting at physical sector start on the same track as initial. immed
indicates if this is an “immediate” or “zero-latency” access; if immed is zero, the result will always
be the same as start.

dm_time_t dm_latency(struct dm_disk_if *,

struct dm_mech_state *initial,

int start,

int len,

int immed,

dm_time_t *addtolatency);

This computes the rotational latency incurred from accessing up to len blocks from the track
starting from angle initial and sector start. This will access to the end of the track but not
wrap around; e.g. for a sequential access that starts on the given track and switches to another,
after reaching the end of the first. The return value is the initial rotational latency; i.e. how long
before the media transfer for the first block to be read starts. addtolatency is a result parameter
returning additional rotational latency as defined in the figure above. Note that for non-zero-latency
accesses, addtolatency will always be zero. Also note that for zero latency accesses, the latency is
the amount of time before the media transfer begins for the first sector i.e. the same sector that
would be returned by dm access block().

dm pos time and dm acctime optionally return broken-down components of the result via the
following struct:

struct dm_mech_acctimes {

dm_time_t seektime;

dm_time_t initial_latency;

dm_time_t initial_xfer;

dm_time_t addl_latency;

dm_time_t addl_xfer;

};

For a zero-latency access, the last two fields will always be zero. dm pos time only fills in the
first two fields; dm acctime fills in all 5.

dm_time_t dm_pos_time(struct dm_disk_if *,

6

struct dm_mech_state *initial,

struct dm_pbn *start,

int len,

int rw,

int immed);

Compute the amount of time before the media transfer for len sectors starting at start begins
starting with the disk mechanics in state initial. 0 for rw indicates a write, any other value
indicates a read. A non-zero value for immed indicates a “zero-latency” access. Positioning time
is the same as seek time (including head-switch time and any extra write-settle time) plus initial
rotational latency.

len must be at least 1.

dm_time_t dm_acctime(struct dm_disk_if *,

struct dm_mech_state *initial_state,

struct dm_pbn *start,

int len,

int rw,

int immed,

struct dm_mech_state *result_state);

Estimate how long it will take to access len sectors starting with pbn start with the disk initially
in state initial. 0 for rw indicates a write; any other value indicates a read. A non-zero value
for immed indicates a “zero-latency” access. result state is a result parameter which returns the
mechanical state of the disk when the access completes.

len must be at least 1.
Access time consists of positioning time (above), transfer time and any additional rotational

latency not included in the positioning time, e.g. in the middle of a zero-latency access transfer.
dm acctime ignores defects so it yields a smaller-than-correct result when computing access times

on tracks with defective sectors. This is deliberate as the handling of defects is a high-level controller
function which varies widely.

dm_time_t dm_rottime(struct dm_disk_if *,

dm_angle_t begin,

dm_angle_t end);

Compute how long it will take the disk to rotate from the angle in the first position to that in
the second position.

dm_time_t dm_xfertime(struct dm_disk_if *d,

struct dm_mech_state *,

int len);

Computes the amount of time to transfer len sectors to or from the track designated by the
second argument. This is computed in terms of dm get sector width() and dm rottime() in the
obvious way.

7

dm_time_t dm_headswitch_time(struct dm_disk_if *,

int h1,

int h2);

Returns the amount of time to swith from using the first head to the second.

dm_angle_t dm_rotate(struct dm_disk_if *,

dm_time_t *time);

Returns the angle of the media after time has elapsed assuming the media started at angle 0.

dm_time_t dm_period(struct dm_disk_if *);

Returns the rotational period of the media.

int dm_marshalled_len(struct dm_disk_if *);

Returns the marshalled size of the structure.

void *dm_marshall(struct dm_disk_if *, char *);

Marshalls the structure into the given buffer. The return value is the first address in the buffer
not written.

1.4 Model Configuration

Diskmodel uses libparam to input the following blocks of parameter data:

dm_disk

dm_layout_g1

dm_layout_g1_zone

dm_mech_g1

dm_layout_g2

dm_layout_g2_zone

dm_layout_g4

1.4.1 dm disk

The outer dm disk block contains the top-level parameters which are used to fill in the dm disk if

structure. The only valid value for “Layout Model” is a dm layout g1 block and for “Mechanical
Model,” a dm mech g1 block.

dm disk Block count int required
This specifies the number of data blocks. This capacity is exported by the disk (e.g., to a disk array
controller). It is not used directly during simulation, but is compared to a similar value computed
from other disk parameters. A warning is reported if the values differ.

dm disk Number of data surfaces int required
This specifies the number of magnetic media surfaces (not platters!) on which data are recorded.
Dedicated servo surfaces should not be counted for this parameter.

8

dm disk Number of cylinders int required
This specifies the number of physical cylinders. All cylinders that impact the logical to physical
mappings should be included.

dm disk Mechanical Model block optional
This block defines the disk’s mechanical model. Currently, the only available implementation is
dm mech g1.

dm disk Layout Model block required
This block defines the disk’s layout model.

1.4.2 G1 Layout

The dm layout g1 block provides parameters for a first generation (g1) layout model.

dm layout g1 LBN-to-PBN mapping scheme int required
This specifies the type of LBN-to-PBN mapping used by the disk. 0 indicates that the conventional
mapping scheme is used: LBNs advance along the 0th track of the 0th cylinder, then along the
1st track of the 0th cylinder, thru the end of the 0th cylinder, then to the 0th track of the 1st
cylinder, and so forth. 1 indicates that the conventional mapping scheme is modified slightly, such
that cylinder switches do not involve head switches. Thus, after LBNs are assigned to the last track
of the 0th cylinder, they are assigned to the last track of the 1st cylinder, the next-to-last track of
the 1st cylinder, thru the 0th track of the 1st cylinder. LBNs are then assigned to the 0th track of
the 2nd cylinder, and so on (“first cylinder is normal”). 2 is like 1 except that the serpentine pattern
does not reset at the beginning of each zone; rather, even cylinders are always ascending and odd
cylinders are always descending.

dm layout g1 Sparing scheme used int required
This specifies the type of sparing used by the disk. Later parameters determine where spare space
is allocated. 0 indicates that no spare sectors are allocated. 1 indicates that entire tracks of spare
sectors are allocated at the “end” of some or all zones (sets of cylinders). 2 indicates that spare
sectors are allocated at the “end” of each cylinder. 3 indicates that spare sectors are allocated at
the “end” of each track. 4 indicates that spare sectors are allocated at the “end” of each cylinder
and that slipped sectors do not utilize these spares (more spares are located at the “end” of the
disk). 5 indicates that spare sectors are allocated at the “front” of each cylinder. 6 indicates that
spare sectors are allocated at the “front” of each cylinder and that slipped sectors do not utilize
these spares (more spares are located at the “end” of the disk). 7 indicates that spare sectors are
allocated at the “end” of the disk. 8 indicates that spare sectors are allocated at the “end” of each
range of cylinders. 9 indicates that spare sectors are allocated at the “end” of each zone. 10 indicates
that spare sectors are allocated at the “end” of each zone and that slipped sectors do not use these
spares (more spares are located at the “end” of the disk).

9

dm layout g1 Rangesize for sparing int required
This specifies the range (e.g., of cylinders) over which spares are allocated and maintained. Currently,
this value is relevant only for disks that use “sectors per cylinder range” sparing schemes.

dm layout g1 Skew units string optional
This sets the units with which units are input: revolutions or sectors. The “disk-wide” value set
here may be overridden per-zone. The default unit is sectors.

dm layout g1 Zones list required
This is a list of zone block values describing the zones/bands of the disk.

The Zones parameter is a list of zone blocks each of which contains the following fields:

dm layout g1 zone First cylinder number int required
This specifies the first physical cylinder in the zone.

dm layout g1 zone Last cylinder number int required
This specifies the last physical cylinder in the zone.

dm layout g1 zone Blocks per track int required
This specifies the number of sectors (independent of logical-to-physical mappings) on each physical
track in the zone.

dm layout g1 zone Offset of first block float required
This specifies the physical offset of the first logical sector in the zone. Physical sector 0 of every
track is assumed to begin at the same angle of rotation. This may be in either sectors or revolutions
according to the “Skew units” parameter.

dm layout g1 zone Skew units string optional
Default is sectors. This value overrides any set in the surrounding layout block.

dm layout g1 zone Empty space at zone front int required
This specifies the size of the “management area” allocated at the beginning of the zone for internal
data structures. This area can not be accessed during normal activity and is not part of the disk’s
logical-to-physical mapping.

dm layout g1 zone Skew for track switch float optional
This specifies the number of physical sectors that are skipped when assigning logical block numbers
to physical sectors at a track crossing point. Track skew is computed by the manufacturer to
optimize sequential access. This may be in either sectors or revolutions according to the “Skew
units” parameter.

10

dm layout g1 zone Skew for cylinder switch float optional
This specifies the number of physical sectors that are skipped when assigning logical block numbers
to physical sectors at a cylinder crossing point. Cylinder skew is computed by the manufacturer
to optimize sequential access. This may be in either sectors or revolutions according to the “Skew
units” parameter.

dm layout g1 zone Number of spares int required
This specifies the number of spare storage locations – sectors or tracks, depending on the sparing
scheme chosen – allocated per region of coverage which may be a track, cylinder, or zone, depending
on the sparing scheme. For example, if the sparing scheme is 1, indicating that spare tracks are
allocated at the end of the zone, the value of this parameter indicates how many spare tracks have
been allocated for this zone.

dm layout g1 zone slips list required
This is a list of lbns for previously detected defective media locations – sectors or tracks, depending
upon the sparing scheme chosen – that were skipped-over or “slipped” when the logical-to-physical
mapping was last created. Each integer in the list indicates the slipped (defective) location.

dm layout g1 zone defects list required
This list describes previously detected defective media locations – sectors or tracks, depending upon
the sparing scheme chosen – that have been remapped to alternate physical locations. The elements
of the list are interpreted as pairs wherein the first number is the original (defective) location and
the second number indicates the replacement location. Note that these locations will both be either
a physical sector number or a physical track number, depending on the sparing scheme chosen.

1.4.3 G1 Mechanics

The dm mech g1 block provides parameters for a first generation (g1) mechanical model.

dm mech g1 Access time type string required
This specifies the method for computing mechanical delays. Legal values are constant which
indicates a fixed per-request access time (i.e., actual mechanical activity is not modeled),
averageRotation which indicates that seek activity should be modeled but rotational latency is
assumed to be equal to one half of a rotation (the statistical mean for random disk access) and
trackSwitchPlusRotation which indicates that both seek and rotational activity should be mod-
eled.

dm mech g1 Constant access time float optional
Provides the constant access time to be used if the access time type is set to constant.

11

dm mech g1 Seek type string required
This specifies the method for computing seek delays. Legal values are the following: linear indicates
that the single-cylinder seek time, the average seek time, and the full-strobe seek time parameters
should be used to compute the seek time via linear interpolation. curve indicates that the same three
parameters should be used with the seek equation described in [Lee93] (see Section 1.5.1). constant
indicates a fixed per-request seek time. The Constant seek time parameter must be provided. hpl
indicates that the six-value HPL seek equation values parameter (see below) should be used with
the seek equation described in [Ruemmler94] (see below). hplplus10 indicates that the six-value
HPL seek equation values parameter (see below) should be used with the seek equation described
in [Ruemmler94] for all seeks greater than 10 cylinders in length. For smaller seeks, use the 10-value
First ten seek times parameter (see below) as in [Worthington94]. extracted indicates that a
more complete seek curve (provided in a separate file) should be used, with linear interpolation used
to compute the seek time for unspecified distances. If extracted layout is used, the parameter Full
seek curve (below) must be provided.

dm mech g1 Average seek time float optional
The mean time necessary to perform a random seek

dm mech g1 Constant seek time float optional
For the “constant” seek type (above).

dm mech g1 Single cylinder seek time float optional
This specifies the time necessary to seek to an adjacent cylinder.

dm mech g1 Full strobe seek time float optional
This specifies the full-strobe seek time (i.e., the time to seek from the innermost cylinder to the
outermost cylinder).

dm mech g1 Full seek curve string optional
The name of the input file containing the seek curve data. The format of this file is described below.

dm mech g1 Add. write settling delay float required
This specifies the additional time required to precisely settle the read/write head for writing (after a
seek or head switch). As this parameter implies, the seek times computed using the above parameter
values are for read access.

dm mech g1 Head switch time float required
This specifies the time required for a head switch (i.e., activating a different read/write head in order
to access a different media surface).

dm mech g1 Rotation speed (in rpms) int required
This specifies the rotation speed of the disk platters in rpms.

12

dm mech g1 Percent error in rpms float required
This specifies the maximum deviation in the rotation speed specified above. During initialization, the
rotation speed for each disk is randomly chosen from a uniform distribution of the specified rotation
speed ± the maximum allowed error. This feature may be deprecated and should be avoided.

dm mech g1 First ten seek times list optional
This is a list of ten floating-point numbers specifying the seek time for seek distances of 1 through
10 cylinders.

dm mech g1 HPL seek equation values list optional
This is a list containing six numbers specifying the variables V1 through V6 of the seek equation
described in [Ruemmler94] (see below).

1.4.4 G2 Layout

The dm layout g2 block provides parameters for a second generation (g2) layout model.

dm layout g2 Layout Map File string required
dm layout g2 Zones list required

The Zones parameter is a list of zone blocks each of which contains the following fields:

dm layout g2 zone First cylinder number int required
This specifies the first physical cylinder in the zone.

dm layout g2 zone Last cylinder number int required
This specifies the last physical cylinder in the zone.

dm layout g2 zone First LBN int required
The first LBN in this zone.

dm layout g2 zone Last LBN int required
The first LBN in this zone.

dm layout g2 zone Blocks per track int required
This specifies the number of sectors (independent of logical-to-physical mappings) on each physical
track in the zone.

dm layout g2 zone Zone Skew float optional
This specifies the physical offset of the first logical sector in the zone. Physical sector 0 of every
track is assumed to begin at the same angle of rotation. This may be in either sectors or revolutions
according to the ”Skew units” parameter.

13

dm layout g2 zone Skew units string optional
Default is sectors. This value overrides any set in the surrounding layout block.

dm layout g2 zone Skew for track switch float optional
This specifies the number of physical sectors that are skipped when assigning logical block numbers
to physical sectors at a track crossing point. Track skew is computed by the manufacturer to
optimize sequential access. This may be in either sectors or revolutions according to the ”Skew
units” parameter.

dm layout g2 zone Skew for cylinder switch float optional
This specifies the number of physical sectors that are skipped when assigning logical block numbers
to physical sectors at a cylinder crossing point. Cylinder skew is computed by the manufacturer
to optimize sequential access. This may be in either sectors or revolutions according to the ”Skew
units” parameter.

1.4.5 G3 Layout

G3 is obscolete and no longer supported.

1.4.6 G4 Layout

The dm layout g4 block provides parameters for a fourth generation (g4) layout model.

dm layout g4 TP list required
s0, sn, spt Low and high sectors. Physical SPT. Assumes sectors uniformly spaced around the track.

dm layout g4 IDX list required
The outer list has one list for each OP. The per OP list is a list of pat insts: lbn, cyl, runlen,
cylrunlen, len, cyllen, childtype, child childtype is RECT or OP child is the index into either the
Rects or OP list. Len is the size of child. runlen is how much space this ent covers, RLEs if runlen
¿ len The last pat is the ”top-level” pattern.

dm layout g4 Slips list required
List of slipped locations lbn, len.

dm layout g4 Remaps list required
LBN, len, c, h, s, spt Multi-layer/piecewise/foo...

1.5 Seek Equation Definitions

1.5.1 Lee’s Seek Equation

seekT ime(x) =

{

0 : ifx = 0
a
√

x − 1 + b(x − 1) + c : ifx > 0
,where

14

x is the seek distance in cylinders,
a = (−10minSeek + 15avgSeek − 5maxSeek)/(3

√
numCyl),

b = (7minSeek − 15avgSeek + 8maxSeek)/(3numCyl), and
c = minSeek.

1.5.2 The HPL Seek Equation

Seek distance Seek time
1 cylinder V6

<V1 cylinders V2 + V3 *
√

dist
>=V1 cylinders V4 + V5 * dist

, where dist is the seek distance in cylinders.

If V6 == −1, single-cylinder seeks are computed using the second equation. V1 is specified in
cylinders, and V2 through V6 are specified in milliseconds.

V1 must be a non-negative integer, V2 . . . V5 must be non-negative floats and V6 must be either
a non-negative float or −1.

Format of an extracted seek curve

An extracted seek file contains a number of (seek-time,seek-distance) data points. The format
of such a file is very simple: the first line is

Seek distances measured: <n>

where <n> is the number of seek distances provided in the curve. This line is followed by <n> lines
of the form <distance>, <time> where <distance> is the seek distance measured in cylinders, and
<time> is the amount of time the seek took in milliseconds. e.g.

Seek distances measured: 4

1, 1.2

2, 1.5

5, 5

10, 9.2

2 Installation

To Build Diskmodel:
1. build libparam and libtrace
2. edit .paths in the diskmodel source directory to reflect where you built libparam and libtrace
3. ’make’ in the diskmodel directory

3 Typical use with libparam

’make all’ sets up include and lib subdirectories such that you may use

-I$(DISKMODEL_PREFIX)/include

15

with the preprocessor and

#include<diskmodel/dm.h>

etc. Similarly,

-L$(DISKMODEL_PREFIX)/lib -ldiskmodel

with the linker where DISKMODEL PREFIX is the top-level source directory where you built diskmodel.
1. register diskmodel libparam modules with libparam. e.g.

#include <diskmodel/modules/modules.h>

for(i = 0; i <= DM_MAX_MODULE; i++) {

lp_register_module(dm_mods[i]);

}

2. use lp loadfile() to load a model file
3. use lp instantiate() to instantiate a model from the input file. The result of the instanti-

ation is a struct dm disk if *

e.g. struct dm disk if *disk = lp instantiate(...);

4. Access methods through d. e.g. dm time t seektime = d->mech->dm seek time(...)

References

[Ganger93] G. Ganger, Y. Patt, “The Process-Flow Model: Examining I/O Performance from the
System’s Point of View”, ACM SIGMETRICS Conference, May 1993, pp. 86–97.

[Ganger93a] G. Ganger, B. Worthington, R. Hou, Y. Patt, “Disk Subsystem Load Balancing: Disk
Striping vs. Conventional Data Placement”, Hawaii International Conference on System Sci-
ences, January 1993, pp. 40–49.

[Ganger94] G. Ganger, B. Worthington, R. Hou, Y. Patt, “Disk Arrays: High Performance, High
Reliability Storage Subsystems”, IEEE Computer, Vol. 27, No. 3, March 1994, pp. 30–36.

[Ganger95] G. Ganger, “System-Oriented Evaluation of Storage Subsystem Performance”, Ph.D.
Dissertation, CSE-TR-243-95, University of Michigan, Ann Arbor, June 1995.

[Ganger95a] G. Ganger, “Generating Representative Synthetic Workloads An Unsolved Problem”,
Computer Measurement Group (CMG) Conference, Decemeber 1995, pp. 1263–1269.

[Ganger98] G. Ganger, B. Worthington, Y. Patt, “The DiskSim Simulation Environment Version
1.0 Reference Manual”, Technical Report CSE-TR-358-98, University of Michigan, Ann Arbor,
February 1998.

[Ganger99] G. Ganger, B. Worthington, Y. Patt, “The DiskSim Simulation Environment Version
2.0 Reference Manual”, December 1999.

[Holland92] M. Holland, G. Gibson, “Parity Declustering for Continuous Operation in Redundant
Disk Arrays”, ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, October 1992, pp. 23–35.

16

[HP91] Hewlett-Packard Company, “HP C2247 3.5-inch SCSI-2 Disk Drive – Technical Reference
Manual”, Edition 1, Draft, December 1991.

[HP92] Hewlett-Packard Company, “HP C2244/45/46/47 3.5-inch SCSI-2 Disk Drive Technical Ref-
erence Manual”, Part Number 5960-8346, Edition 3, September 1992.

[HP93] Hewlett-Packard Company, “HP C2490A 3.5-inch SCSI-2 Disk Drives, Technical Reference
Manual”, Part Number 5961-4359, Edition 3, September 1993.

[HP94] Hewlett-Packard Company, “HP C3323A 3.5-inch SCSI-2 Disk Drives, Technical Reference
Manual”, Part Number 5962-6452, Edition 2, April 1994.

[Karedla94] R. Karedla, J. S. Love, B. Wherry, “Caching Strategies to Improve Disk System Per-
formance”, IEEE Computer, Vol. 27, No. 3, March 1994, pp. 38–46.

[Lee91] E. Lee, R. Katz, “Peformance Consequences of Parity Placement in Disk Arrays”, ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, 1991, pp. 190–199.

[Lee93] E. Lee, R. Katz, “An Analytic Performance Model of Disk Arrays”, ACM Sigmetrics Con-
ference, May 1993, pp. 98-109.

[NCR89] NCR Corporation, “NCR 53C700 SCSI I/O Processor Programmer’s Guide”, 1989.

[NCR90] NCR Corporation, “Using the 53C700 SCSI I/O Processor”, SCSI Engineering Notes, No.
822, Rev. 2.5, Part No. 609-3400634, February 1990.

[NCR91] NCR Corporation, “Class 3433 and 3434 Technical Reference”, Document No. D2-0344-A,
May 1991.

[Otoole94] J. O’Toole, L. Shrira, “Opportunistic Log: Efficient Installation Reads in a Reliable Stor-
age Server”, USENIX Symposium on Operating Systems Design and Implementation (OSDI),
November 1994, pp. 39–48.

[Ousterhout85] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, J. Thompson, “A
Trace-Driven Analysis of the UNIX 4.2 BSD File System”, ACM Symposium on Operating
System Principles, 1985, pp. 15–24.

[Rosenblum95] M. Rosenblum, S. Herrod, E. Witchel, A. Gupta, “Complete Computer Simulation:
The SimOS Approach”, IEEE Journal of Parallel and Distributed Technology, Winter 1995, pp.
34-43.

[Ruemmler93] C. Ruemmler, J. Wilkes, “UNIX Disk Access Patterns”, Winter USENIX Conference,
January 1993, pp. 405–420.

[Ruemmler94] C. Ruemmler, J. Wilkes, “An Introduction to Disk Drive Modeling”, IEEE Computer,
Vol. 27, No. 3, March 1994, pp. 17–28.

[Satya86] M. Satyanarayanan, Modeling Storage Systems, UMI Research Press, Ann Arbor, MI,
1986.

17

[Schindler99] J. Schindler, G. Ganger, “Automated Disk Drive Characterization”, Technical Report
CMU-CS-99-176, Carnegie Mellon University, December 1999.

[Seagate92] Seagate Technology, Inc., “SCSI Interface Specification, Small Computer System Inter-
face (SCSI), Elite Product Family”, Document Number 64721702, Revision D, March 1992.

[Seagate92a] eagate Technology, Inc., “Seagate Product Specification, ST41600N and ST41601N
Elite Disc Drive, SCSI Interface”, Document Number 64403103, Revision G,

[Thekkath94] C. Thekkath, J. Wilkes, E. Lazowska, “Techniques for File System Simulation”, Soft-
ware – Practice and Experience, Vol. 24, No. 11, November 1994, pp. 981–999.

[Worthington94] B. Worthington, G. Ganger, Y. Patt, “Scheduling Algorithms for Modern Disk
Drives”, ACM SIGMETRICS Conference, May 1994, pp. 241–251.

[Worthington95] B. Worthington, G. Ganger, Y. Patt, J. Wilkes, “On-Line Extraction of SCSI Disk
Drive Parameters”, ACM SIGMETRICS Conference, May 1995, pp. 146–156.

[Worthington95a] B. Worthington, “Aggressive Centralized and Distributed Scheduling of Disk Re-
quests”, Ph.D. Dissertation, CSE-TR-244-95, University of Michigan, Ann Arbor, June 1995.

[Worthington96] B. Worthington, G. Ganger, Y. Patt, J. Wilkes, “On-Line Extraction of SCSI Disk
Drive Parameters”, Technical Report, University of Michigan, Ann Arbor, 1996, in progress.

18

