
Automated Disk Drive Characterization

Jiri Schindler Gregory R. Ganger

December 1999

CMU-CS-99-176

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

DIXtrac is a program that automatically characterizes the performance of modern disk drives.

This report describes and validates DIXtrac's algorithms, which extract accurate values for over

100 performance-critical parameters in 2 { 6 minutes without human intervention or special hard-

ware support. The extracted data include detailed layout and geometry information, mechanical

timings, cache management policies, and command processing overheads. DIXtrac is validated by

con�guring a detailed disk simulator with its extracted parameters; in most cases, the resulting

accuracies match those of the most accurate disk simulators reported in the literature. To date,

DIXtrac has been successfully used on over 20 disk drives, including eight di�erent models from

four di�erent manufacturers.

1 Introduction

One approach to bridging the performance gap between permanent and volatile storage is to fully

exploit the current level of technology in the most prevalent permanent storage devices, i.e. the hard

disk drives. With detailed knowledge of the underlying technology and its limits, one can achieve

the maximal possible performance while not sacri�cing generality. Therefore, it is advantageous

to obtain as much knowledge about disk drives as possible and to utilize it to aggressively tune

performance.

While detailed models of disk behavior are highly desirable for aggressive scheduling algorithms

[14, 13, 17, 1] and comprehensive system modeling [9], obtaining accurate data from state-of-the-art

disk drives for detailed disk models (e.g., [10, 3, 5]) is at best tedious. Although methodologies

for accurate disk models are well understood [10] and general techniques for on-line extraction of

parameters from SCSI disk drives have been proposed [18, 1], there is no available system for easily

retrieving parameters from a given disk drive.

This paper presents DIXtrac (DIsk eXtraction), a program that can quickly and automatically

characterize disk drives that understand Small Computer System Interface (SCSI) [2]. Without

human intervention, DIXtrac can discover accurate values for over 100 performance-critical param-

eters. It runs on standard Linux 2.2 systems, and requires no special hardware or operating system

support. By automating this process, DIXtrac greatly simpli�es the process of collecting disk drive

characterizations.

Automatic extraction of parameters from disks poses several challenges compared to manual, or

user-assisted, approaches. If the extraction is to be general enough to work for disk drives of di�erent

vendors, it must use methods that will work for all drives and dynamically adapt when extracting

from disks that support only a subset of the the interface features. DIXtrac's extraction algorithms

use only widely-supported interface features and include multiple approaches for discovering many

characteristics. As with any expert system, DIXtrac can only extract parameters and understand

behavior that it knows about ahead of time. DIXtrac's algorithms have now been successfully

tested on 8 disk models from 4 vendors.

Validation experiments show that DIXtrac can quickly and accurately characterize a variety of

disk drives. Most characterizations take less than 3 minutes to complete, with the longest extraction

taking 6 minutes. By con�guring a detailed disk simulator with the extracted values, their accuracy

was empirically validated. In most cases, the DIXtrac-con�gured simulator is comparable to the

1

most accurate disk simulations reported in the literature.

The remainder of the report is organized as follows. Section 2 discusses related work. Section 3

overviews disk drive characterization. Section 4 describes DIXtrac's extraction algorithms. Section

5 details DIXtrac's implementation on Linux. Section 6 quanti�es the extraction time and accuracy

of DIXtrac's characterization of several disk drives.

2 Related Work

Ruemmler &Wilkes [10] present a strong case for detailed disk drive simulators and their use in com-

puter systems research. They identify performance-critical parameters of a disk drive and compare

behavior of a real disk drive to a disk simulator that progressively adds more performance-critical

parameters. As their simulator gets more detailed and takes into account more disk parameters,

its performance more closely approximates the performance of the real disk drive. However, they

do not discuss how they obtained parameters from real disk drives that were used in their models.

The observations made by Ruemmler & Wilkes have been validated by Kotz et al. [5] who built a

detailed simulator of the HP 97560 disk drive.

Ganger et al. have made available a highly-con�gurable disk simulator called DiskSim [3]. The

simulator models several independent parts of the disk drive system: device drivers, busses, con-

trollers, adapters, and disk drives. DiskSim o�ers over 100 parameters for the disk drive module,

though some are dependent on others or meaningful only in certain cases. DIXtrac complements

detailed simulators like DiskSim in that it automatically extracts the necessary parameters from a

SCSI disk drive, allowing them to be fed into DiskSim for later system simulation and/or testing.

Talagala et al. extract disk geometries, mechanical overheads and layout parameters using

microbenchmarks consisting of only read and write requests [16]. By timing requests with progres-

sively increasing request strides, they determine the various parameters. Unlinke DIXtrac, their

approach is independent of the disk's interface and thus works for potentially any disk. However,

as a consequence, their approach is only able to determine a small subset of parameters and does

so with less precission than DIXtrac.

Via a combination of interrogative and empirical extraction techniques, Worthington et al.

describe how to retrieve parameters for several disk drives [18]. Interrogative extraction uses the

wealth of SCSI command options to determine information, or just hints, about geometry, format,

and caches. Empirical techniques measure response times for sequences of read and write requests.

2

Using di�erent sequences, various performance critical parameters can be extracted. With these

techniques, they were able to extract parameters for a set of disk drives.

Using similar techniques, Aboutabl et al. describe the extraction of many of the same disk

parameters [1]. Their work focuses on extracting and using disk parameters for real-time prediction

of disk service times. To make the disk more predictable, its cache is disabled. The extraction is

validated against a real disk.

As with previous work, DIXtrac determines most disk characteristics by measuring the per-

request service times for speci�c test vectors of READ and WRITE commands. While DIXtrac

uses some of the techniques outlined in previous work [18], it di�ers in several ways. First and

foremost, the entire parameter extraction process is automated, which requires a variety of changes.

Second, DIXtrac includes a simple expert system for interactively discovering a disk's layout and

geometry. Third, DIXtrac's extraction techniques for cache parameters account for advances in

current disk drives.

3 Characterizing Disk Drives

To completely characterize a disk drive, one must describe the disk's geometry and layout, me-

chanical timings, cache parameters and behavior, and all command processing overheads. Thus,

the characterization of a disk consists of a list of performance-critical parameters and their values.

Naturally, such a characterization makes implicit assumptions about the general functionality of a

disk. For example, DIXtrac assumes that data are stored in �xed-size sectors laid out in concentric

circles on rotating media.

To reliably determine most parameters, one needs a detailed disk map that identi�es the physical

location of each logical block number (LBN) exposed by the disk interface. Constructing this disk

map requires some mechanism for determining the physical locations of speci�c LBNs. Using this

disk map, appropriate test vectors consisting of READ and WRITE commands can be sent to the

disk to extract various parameters. For many parameters, such as mechanical delays, test vectors

must circumvent the cache. If the structure and behavior of the cache is known, the actual test

vector can be preceded with requests that set the cache such that the test vector requests will

access the media. While it is possible to devise such test vectors, it is more convenient and more

eÆcient if the cache can be turned o�.

Therefore, to accurately characterize a disk drive, there exists a set of requirements that the disk

3

interface must meet. First, it must be possible to determine disk's geometry either experimentally

or from manufacturer's data. Second, it must be possible to read and write speci�c LBNs (or

speci�c physical locations). Also, while it is not strictly necessary, it is very useful to be able

to temporarily turn o� the cache. With just these capabilities, DIXtrac can determine the 100+

performance-critical parameters expected by the proven DiskSim simulator.

DIXtrac currently works for SCSI disks [2], which ful�ll the three listed requirements. First, the

Translate option of the SEND DIAGNOSTIC and RECEIVE DIAGNOSTIC commands translates

a given LBN to its physical address on the disk, given as a <cylinder,head,sector> tuple. SCSI also

provides the READ DEFECT LIST command, which gives the physical locations of all defective

sectors. With these two commands, DIXtrac can create a complete and accurate disk map. Second,

the SCSI READ and WRITE commands take a starting LBN and a number of consecutive blocks to

be read or written, respectively. Third, the cache can usually be enabled and disabled by changing

the Cache Mode Page with the SCSI MODE SELECT command. The validation results in Section 6

show that these are suÆcient for DIXtrac.

4 DIXtrac Characterization Algorithms

DIXtrac's disk characterization process can be divided into four logical steps. First, complete layout

information is extracted and a disk map is created. The information in the disk map is necessary for

the remaining steps, which involve issuing sequences of commands to speci�c physical disk locations.

Second, mechanical parameters such as seek times, rotational speed, head switch overheads, and

write settling times are extracted. Third, the cache management policies are determined. Fourth,

command processing and block transfer overheads are measured. Since these overheads rely on

information from all three of the prior steps, they must be extracted last. The remainder of this

section details the algorithms used for each of these steps.

4.1 Layout Extraction

Generally, in a modern disk drive, sectors of host data are physically organized as concentric circles

(called tracks) on each usable surface of the drive's stack of platters. There is a distinct read/write

head for each surface, and the set of tracks equidistant from the disk center is called a cylinder.

Di�erent disks have di�erent numbers of surfaces, di�erent numbers of tracks per surface, and

di�erent numbers of sectors per track. Further, the number of sectors per track often varies from

4

one group (or zone) of cylinders to another, exploiting the larger circumferences of the cylinders

farther from the center.

In addition to di�erences in physical storage con�gurations, the algorithms used for mapping

the logical block numbers (LBNs) exposed by the SCSI interface to physical sectors of magnetic

media vary from disk model to disk model. A common approach places LBNs sequentially around

the topmost and outermost track, then around the next track of the same cylinder, and so on until

the outermost cylinder is full. The process repeats on the second outermost cylinder and so on

until the locations of all LBNs have been speci�ed. This basic approach is made more complex by

the many di�erent schemes for spare space reservation and the mapping changes (e.g., reallocation)

that compensate for defective media regions. Additionally, the �rmware of some disks reserves part

of the storage space for its own internal use.

DIXtrac's approach to disk geometry and LBN layout extraction experimentally characterizes

a given disk by comparing observations to known layout characteristics. To do this, it requires

two things of the disk interface: an explicit mechanism for discovering which physical locations are

defective, and an explicit mechanism for translating a given LBN to its physical cylinder, surface

and sector (relative to other sectors on the same track). As described in Section 3, SCSI disk drives

provide these interfaces.

DIXtrac accomplishes layout extraction in several steps, which progressively build on knowledge

gained in earlier steps. First, it discovers the basic physical geometry characteristics (e.g., numbers

of LBNs, cylinders and surfaces) by translating random and targeted LBNs. Second, it �nds out

where any media defects are located. Third, explicitly avoiding defective regions, it �gures out the

sparing scheme (e.g., the allocation of spare sectors) used and the locations of any space reserved

by the �rmware. Fourth, it determines the boundaries and number of sectors per track for each

zone. Fifth, the remapping mechanism used for each defective sector is identi�ed.1

Steps 3{5 all exploit the regularity of geometry and layout characteristics to eÆciently zero-in

on the parameter values, rather than translating every LBN. DIXtrac identi�es the spare space

reservation scheme by determining the answers to a number of questions, including \Does each

track in a cylinder have the same number of sectors?", \Does one cylinder within a set have too

few sectors than can be explained by defects?", and \Does the last cylinder of a zone have too few

1Remapping approaches used in modern disks include slipping, wherein the LBN-to-physical location map is

modi�ed to simply skip the defective sector, and remapping, wherein the LBN that would be located at the given

sector is instead located elsewhere but other mappings are unchanged. Most disks will convert to slipping whenever

they are formatted via the SCSI FORMAT command.

5

sectors?". By combining these answers, DIXtrac decides which known scheme the disk uses; so far,

we have observed eight di�erent approaches: spare tracks per zone, spare sectors per track, spare

sectors per cylinder, spare sectors per group of cylinders, spare sectors per zone, spare sectors at the

end of the disk, and combinations of spare sectors per cylinder (or group of cylinders). The zone

information is determined by simply counting the sectors on tracks as appropriate. The remapping

scheme used for each defect is determined by back-translating the LBN that should be mapped to

it (if any) and then determining to where it has been moved.

DIXtrac uses built-in expertise to discover disks' algorithms for mapping data on the disk in

order to make the characterization eÆcient in terms of both space and time. An alternate approach

would be to simply translate each LBN and maintain a complete array of these mappings. However,

this is much more expensive, generally requiring over 1000X the time and 300X the result space.

The price paid for this eÆciency is that DIXtrac successfully characterizes only those geometries

and LBN layouts that are within its knowledge base. While this knowledge base is broad and

growing, it is not in�nite and cannot anticipate all future directions taken by industry.

In order to avoid an extra rotation when accessing consecutive blocks across a track or cylinder

boundary, disks implement track and cylinder skew. The skew must be suÆciently large to give

enough time for the head switch or seek. With the cache disabled, the track and cylinder skew for

each zone can be determined by issuing two WRITE commands to two consecutive blocks located

on two di�erent tracks or cylinders. The response time of the second request is measured and the

value of track or cylinder skew is obtained as

Skew =
TWrite2 � sectors per track

Tone revolution

4.2 Disk Mechanics Parameters

DIXtrac extracts mechanical timings with techniques detailed previously in the literature [18].

These techniques are described here for completeness.

The central technique for extraction of these parameters is to measure the minimum time

between two request completions, called the MTBRC. As described in [18], MTBRC(X;Y)

denotes the minimum time between the completions of requests of type X and Y . Finding the

minimum time is an iterative process in which the inter-request distance is varied until the minimal

time is observed, e�ectively eliminating rotational latency for request Y . An MTBRC value is a

sum of several discrete service time components, and the individual components can be isolated via

algebraic manipulations as described below.

6

Head Switch Time. To access sectors on a di�erent surface, a disk must switch on the

appropriate read/write head. The time for head switch includes changing the data path and re-

tracking (i.e., adjusting the position of the head to account for inter-surface variations). The head

switch time can be computed from two MTBRCs:

MTBRC1 = Host Delay1 +Command +Media Xfer + Bus Xfer + Completion

MTBRC2 = Host Delay2 +Command + Head Switch +Media Xfer + Bus Xfer + Completion

to get

Head Switch = (MTBRC2 �Host Delay2)� (MTBRC1 �Host Delay1)

This algorithm measures the e�ective head switch (i.e., the time not overlapped with command

processing or data transfer). Therefore the value may not be physically exact, but is appropriate

for disk models and schedulers [18].

Seek Times. To access data blocks, disk drives mechanically move a set of arms equipped with

read and write heads. Before accessing blocks on a speci�c track, the arm and its heads have to be

positioned over that track. This arm movement is called a seek. To extract seek times, DIXtrac uses

the SEEK command that, given a logical block number, positions the arm over the track with that

block. Extracted seek time for distance d consists of measuring 5 sets of 10 inward and 10 outward

seeks from a randomly chosen cylinder. Seek times are measured for seeks of every distance between

1 and 10 cylinders, every 2nd distance up to 20 cylinders, every 5th distance up to 50 cylinders,

every 10th distance up to 100 cylinders, every 25th distance up to 500 cylinders, and every 100th

seek distance beyond 500 cylinders. Seek times can also be extracted using MTBRCs, though

using SEEK is much faster. For disks that do not implement SEEK (although all of the disks we

used did), DIXtrac measures MTBRC(1-sector write, 1-sector read) and MTBRC(1-sector write,

1-sector read incurring k-cylinder seek). The di�erence between these two values represents the

seek time for k cylinders.

Write Settle Time. Before starting to write data to the media after a seek or head switch, most

disks allow extra time for �ner position veri�cation to ensure that the write head is very close to the

center of the track. The write settle time can be computed from head switch and a pair ofMTBRCs:

MTBRC1(one-sector-write, one-sector-write on the same track) and MTBRC2(one-sector-write,

one-sector-write on a di�erent track of the same cylinder). The two MTBRC values are the sum of

7

head switch and write settle. Therefore, the head switch is subtracted from the measured time to

obtain e�ective write settle time. As with head switch overhead, the value indicates settling time

not overlapped with any other activity. If the extracted value is negative, it indicates that write

settling completely overlaps with some other activity (e.g., command processing, bus transfer of

data, etc.)

Rotational Speed. DIXtrac measures rotation speed via MTBRC(1-sector-write, same-

sector-write). In addition, the nominal speci�cation value can generally be obtained from the

Geometry Mode Page using the MODE SENSE command.

4.3 Cache Parameters

Current SCSI disk drive controllers typically contain 512 KB to 2 MB of RAM. This memory is used

for various purposes: as working memory for �rmware, as a speed-matching bu�er, as a prefetch

bu�er, as a read cache, or as a write cache. The prefetch bu�er and read/write cache space is

typically divided into a set of circular bu�ers, called segments. The cache management policies

regarding prefetch, write-back, etc. vary widely among disk models.

The extraction of each cache parameter follows the same approach: construct a hypothesis and

then validate or disprove it. Testing most hypotheses consists of three steps. First, the cache

is polluted by issuing several random requests of variable length, each from a di�erent cylinder.

The number of random requests should be larger that the number of segments in the cache. This

pollution of the cache tries to minimize the e�ects of adaptive algorithms and to ensure that the

�rst request in the hypothesis test will propagate to the media. Second, a series of cache setup

requests are issued to put the cache into a desired state. Finally, the hypothesis is tested by

issuing one or more requests and determining whether or not they hit in the cache. In its cache

characterization algorithms, DIXtrac assumes that a READ or WRITE cache hit takes at most

1/4 of the full revolution time. This value has been empirically determined to provide fairly robust

hit/miss categorizations, though it is not perfect (e.g., it is possible to service a miss in less than

1/4 of a revolution). Thus, the extraction algorithms are designed to explicitly or statistically avoid

the short media access times that cause miscategorization.

4.3.1 Basic Parameters

DIXtrac starts cache characterization by extracting four basic parameters. Given the results of these

basic tests, the other cache parameters can be e�ectively extracted. The four basic hypotheses are:

8

Cache discards block after transferring it to the host. Do a one-block READ followed

immediately by READ of the same block. If the second READ command takes more than 1/4 of

a revolution to complete, then it is a miss and the cache does not keep the block in cache after

transferring it to the host.

Disk prefetches data to the bu�er after reading one block. Issue a READ to block n

immediately followed by a READ to block n+ 1. If the second READ command completion time

is more than 1/4 of a revolution, then it is a cache miss and the disk does not prefetch data after

read. This test assumes that the bus transfer and host processing time will cause enough delay to

incur a \miss" and a subsequent one rotation delay on reading block n+1 if the disk were to access

the media.

WRITEs are cached. Issue a READ to block n immediately followed by a WRITE to the

same block. If the WRITE completion time is more than 1/4 of a revolution, then the disk does

not cache WRITEs.

READs hit on data placed in cache by WRITEs. Issue a WRITE to block n followed by

a READ of the same block. If the READ completion time is more that 1/4 of a revolution, then

the READ is a cache miss and READ hits are not possible on written data stored in cache.

4.3.2 Cache Segments

Number of read segments. Set the hypothesized number of segments to some number N (e.g.

N = 64). First, pollute the cache as described above. Second, issue N READs to the �rst logical

block LBNk of N distinct cylinders, where 1 � k � N . Third, probe the contents of the cache.

If the disk retains the READ value in the cache after transferring it to the host, issue N READs

to LBNk; otherwise, if the disk prefetches blocks after a READ, issue N READs to LBNk + 1.

If any of the READs take longer than 1/4 of a revolution, assume that a cache miss occurred.

Decrement N and repeat the procedure again. If all READs were cache hits, the cache uses at least

N segments. In that case, increment N and repeat the algorithm.

Using binary search, the correct value of N is found. DIXtrac also determines if the disk cache

uses an adaptive algorithm for allocating the number of segments by keeping track of the upper

boundaries during the binary search. If an upper boundary for which there has been both a miss

and a hit is encountered, then the cache uses an adaptive algorithm and the reported value may

be incorrect.

DIXtrac's algorithm for determining the number of segments assumes that a new segment is

9

allocated for READs of sectors from distinct cylinders. It also assumes that every disk's cache

either retains the READ block in cache or uses prefetching. Both assumptions have held true for

all tested disks.

Number of write segments. DIXtrac counts write segments with the same basic algorithm

as for read segments, simply replacing the READ commands with WRITEs. Some disks allow

sharing of the same segment for READs and WRITEs. In this case, the number of write segments

denotes how many segments out of the total number (which is the number of read segments) can

be also used for caching WRITEs. For disks where READs and WRITEs do not share segments,

simply adding the two numbers gives the total number of segments.

Size of a segment. Choose an initial value for the segment size S (e.g., the number of sectors

per track in a zone). If the cache retains cached values after a transfer to the host, issue N READs

of S blocks each starting at LBNk, where N is the previously determined number of read segments.

Then, probe the cache by issuing N one-block READs at LBNk. If there were no misses, increment

S and repeat the algorithm. If the cache discards the cached value after a READ, issue one-block

READs to LBNk, waiting suÆciently long for each prefetch to �nish (e.g., several revolutions).

Then, determine if there are hits on LBNk+1. As before, binary search is used to �nd the segment

size S and to detect possible adaptive behavior. This algorithm assumes that prefetching can �ll

the entire segment. If this is not the case, the segment size may be underestimated.

4.3.3 Prefetching

Number of prefetched sectors. Issue one-block READ at LBN1 which is the logical beginning

of the cylinder. After a suÆciently long period of time (i.e., 4 revolutions), probe the cache by

issuing a one-block READ to LBN1 + P where P is the hypothesized prefetch size. By selecting

appropriate LBN1 values, DIXtrac can determine the maximum prefetch size and whether the disk

prefetches past track and cylinder boundaries.

Track prefetching algorithm. Some disks implement a prefetch algorithm that automatically

prefetches all of track n + 1 only after READ requests fetch data from track n � 1 and n on the

same cylinder [18]. To test for this behavior, �rst \pollute" the cache and then issue entire-track

READs to track n� 1 and n. Then, wait at least one revolution and issue a one-block READ to a

block on track n+ 1. If there was a cache hit and the previous prefetch size indicated 0, then the

disk implements this track-based prefetch algorithm.

10

4.3.4 Read/Write-on-Arrival

To minimize the media access time, some disks can access sectors as they pass under the head

rather than in strictly ascending order. This is known as zero-latency read/write or read/write-on-

arrival. To test for write-on-arrival, issue a one-block WRITE at the beginning of the track followed

by an entire-track WRITE starting at the same block. If the completion time is approximately

two revolutions, the disk does not implement write-on-arrival, because it takes one revolution to

position to the original block and another revolution to write the data. If the time is much less,

the disk implements write-on-arrival. Read-on-arrival for requested blocks is tested the same way

by using READ requests.

4.3.5 Degrees of freedom provided by the Cache Mode Page

The SCSI standard de�nes a Cache Mode Page that allows one to set various cache parameters.

However, since the Cache Mode Page is optional, typically only a subset of the parameters on the

page are changeable. To determine what parameters are changeable and to what degree, DIXtrac

runs several versions of the cache parameter extractions. This information is valuable for systems

that want to aggressively control disk cache behavior (e.g., see [15]). The �rst version observes the

disk's default cache behavior. Other versions explore the e�ects of changing di�erent Cache Mode

Page �elds, such as the minimal/maximal prefetch sizes, the number/size of cache segments, the

Force-Sequential-Write bit, and the Discontinuity bit. For each, DIXtrac determines and reports

whether changing the �elds has the speci�ed e�ect on disk cache behavior.

4.4 Command Processing Overheads

DIXtrac re�nes and automates the MTBRC-based scheme for determining command processing

overheads described in [18]. The eight extracted command overheads are listed below with how

they are extracted.

MTBRC1(1-sector write, 1-sector read on other cylinder) =

Host Delay +Read Miss After Write+ seek +Media Xfer + Bus Xfer

MTBRC2(1-sector write, 1-sector write on other cylinder) =

Host Delay +Write Miss After Write+ seek +Media Xfer + Bus Xfer

MTBRC3(1-sector read, 1-sector write on other cylinder) =

11

Host Delay +Write Miss After Read+ seek + Bus Xfer +Media Xfer

MTBRC4(1-sector read, 1-sector read miss on other cylinder) =

Host Delay +Read Miss After Read+ seek +Media Xfer + Bus Xfer

Time5(1-sector read hit after a 1-sector read) =

Host Delay +Read Hit After Read+Bus Xfer

Time6(1-sector read hit after a 1-sector write) =

Host Delay + Bus Xfer +Read Hit After Write

Time7(1-sector write hit after a 1-sector read) =

Host Delay +Write Hit After Read+Bus Xfer

Time8(1-sector write hit after a 1-sector write) =

Host Delay +Write Hit After Write+Bus Xfer

Media transfer for one block is computed by dividing the rotational speed by the relevant number

of sectors per track. Bus transfer is obtained by comparing completion times for two di�erent-sized

READ requests that are served from the disk cache. The di�erence in the times is the additional

bus transfer time for the larger request.

When determining the MTBRC values for cache miss overheads, four di�erent seek distances are

used and appropriate seek times are subtracted. The MTBRC values are averaged to determine the

overhead. Including a seek in these MTBRC measurements captures the e�ective overhead values

given overlapping of command processing and mechanical positioning activities. Four di�erent

cylinder distances are used to account for disks which have signi�cantly lower seek times for distance

of 1 or two cylinders.

Compared to the human-assisted methodology suggested in [18], each overhead extraction is

independent of the others, obviating the need for fragile matrix solutions. Also, cache hit times are

measured directly rather than with MTBRC, avoiding problems of uncooperative cache algorithms

(e.g., cached writes are cleared in background unless the next request arrives).

5 DIXtrac Implementation

DIXtrac runs as a regular application on the Linux 2.2 operating system. Raw SCSI commands

are passed to the disk under test via the Linux raw SCSI device driver (/dev/sg). Each such SCSI

12

command is composed in a bu�er and sent to the disk via a write system call to /dev/sg. The

results of a command are obtained via a read system call to /dev/sg. The read call blocks until

the disk completes the command.

DIXtrac extracts parameters in the following steps. First, it initializes the drive. Second, it

performs the 4 steps of the extraction process described in Section 4. Third, it writes out parameter

�les and cleans up.

The initialization step �rst sets the drive to conform to SCSI version 2 de�nition via the

CHANGE DEFINITION command, allowing the remainder of the extraction to use this com-

mon command set. Next, it issues 50 random read and write requests which serve to \warm up"

the disk. Some drives have request times which are much longer for the �rst few requests after

they have been sitting idle for some time. This behavior is due to several factors such as thermal

re-calibration or automatic head parking.

The clean up step restores the disk to its original con�guration, resetting the original SCSI ver-

sion and cache settings. However, this restoration is not complete since some of the extraction steps

use WRITE commands overwriting the original contents of some sectors. A possible enhancement

to DIXtrac would be to save the original contents of the blocks and restore them during clean up.

The remainder of this section discusses DIXtrac's time measurement and output �le formats in

more detail.

5.1 Time Measurement

To measure elapsed time, DIXtrac uses the POSIX gettimeofday system call, which returns wall-

clock time with a microsecond precision. The Linux implementation on Intel Pentium-compatible

processors uses the processor's cycle counter to determine time, thus the returned time has the

microsecond precision de�ned (but not required) by POSIX.

Before doing a write system call to the /dev/sg device, the current time is obtained via the

gettimeofday system call. gettimeofday is called again after the read system call returns with

the result of the SCSI command. The execution time of the SCSI command is the di�erence of those

two times. The time measured via gettimeofday includes the overheads of the gettimeofday and

read/write calls and may include a sleep time during which other processes are scheduled. The

advantage of using gettimeofday call is that the time can be measured on an unmodi�ed kernel.

Although it is not required for proper functioning of DIXtrac, the parameter extractions re-

ported here were performed on a kernel with modi�ed sg driver that samples the time in kernel

13

right before calling the low-level portion of the device driver. The measured time is returned as a

part of the sg device structure that is passed to the read and write call. This modi�cation elimi-

nates the overheads of gettimeofday giving more precise time measurements. The times obtained

via the user-level gettimeofday call on the unmodi�ed kernel are, on average, 1.5% larger, with

the largest deviation of 6.8%, compared to the time obtained via modi�ed sg driver.

However, even the time obtained from the modi�ed sg driver includes the PC bus, host adapter,

and SCSI bus overheads. Bus and device driver overheads could be isolated by measuring time using

a logical analyzer attached to the SCSI bus. DIXtrac assumes that, on average all SCSI commands

incur the same bus and driver overheads. To eliminate bus contention issues, DIXtrac should

extract data from a disk on a dedicated SCSI bus with no other device attached. The e�ects of

other devices on the PC internal bus are minimized by performing extraction on an otherwise idle

system.

5.2 Output File Formats

DIXtrac produces several output �les whose names are created by appending an appropriate suÆx

to one of the command-line arguments, the model-name. To support use of the extracted data in

DiskSim [3], DIXtrac creates a speci�cation �le model-name.diskspecs in the appropriate format.

It also creates a con�guration �le model-name.parv and a seek time �le model-name.seek. These

three �les can be used directly in the DiskSim simulator. Section 6 describes our use of DiskSim

to validate DIXtrac's extraction algorithms.

6 Results and Performance

DIXtrac has been fully tested on 8 disk models: IBM Ultrastar 18ES, Hewlett-Packard C2247,

Quantum Viking, Quantum Atlas III, Quantum Atlas 10K, Seagate Barracuda, Seagate Cheetah,

and Seagate Hawk. This section evaluates DIXtrac in terms of extraction times and characterization

accuracies, focusing on the four most recent of the tested disk drives: Ultrastar, Atlas III, Atlas

10K, and Cheetah.

6.1 Extraction Times

Table 1 summarizes the extraction times. The times are broken down to show how long each ex-

traction step takes. With the exception of the IBM Ultrastar 18ES, an entire characterization takes

14

Vendor IBM Quantum Seagate
Disk Model Ultrastar 18ES Atlas III Atlas 10K Cheetah
Model Number DNES309170W TD9100W TN09100W ST34501N
Capacity 9.1 GB 9.1 GB 9.1 GB 4.5 GB

Task Time (seconds)

Layout extraction 164.7 (10.6) 20.9 (0.8) 50.1 (3.9) 47.6 (0.4)
Complete seek curve 45.2 (0.1) 43.5 (0.2) 33.3 (0.3) 67.3 (0.1)
Other mechanical overheads 35.8 (1.3) 21.3 (2.5) 18.6 (1.5) 16.6 (1.4)
Cache parameters 25.6 (0.6) 8.1 (0.4) 12.6 (0.3) 12.3 (1.8)
Command process overheads 64.3 (2.5) 43.5 (1.5) 12.7 (0.9) 23 (2.3)

Totals 335.6 (9.2) 137.4 (3.1) 127.4 (4) 166.8 (3.4)

Table 1: Break down of extraction times for tested disks. The times are mean values of �ve
extractions. The values in parentheses are standard deviations. \Other mechanical overheads"
includes the extraction of head switch, write settle, and rotation speed.

less than three minutes. Extraction times could be reduced further, at the expense of accuracy, by

using fewer repetitions for the timing extractions (e.g., seek, mechanical, and command processing

overheads).

The extraction time for the IBM Ultrastar 18ES is longer because of the layout extraction step.

The layout of this disk includes periodic unused cylinders, which causes DIXtrac to create dummy

zones and repeat time-consuming, per-zone extractions (e.g., sectors per track, track skew, etc.).

Extraction for this layout could certainly be optimized, but we are pleased that it worked at all

given its unexpected behavior.

Table 2 shows the number of address translations required by DIXtrac to characterize each

disk. Note that the number of translations does not depend directly on the capacity of the disk.

Instead, it depends mainly on the sparing scheme, the number of zones, and the number of defects.

More translations are performed for disks with more defects, because slipped and relocated blocks

obtained from the defect list are veri�ed. Comparing the number of blocks to the number of

translations provides a metric of eÆciency for DIXtrac's layout discovery algorithms. Given the

time required for each translation, this eÆciency is important.

The disk maps obtained by the extraction process have been veri�ed for all eight models (24

actual disks) by doing address translation of every logical block and comparing it to the disk map

information. The run time of such veri�cation ranges from almost 5 hours (Quantum Atlas 10K) to

21 hours (Seagate Barracuda). In addition to validating the extraction process, these experiments

highlight the importance of translation-count-eÆciency when extracting the disk layout map.

15

Vendor IBM Quantum Seagate
Disk Model Ultrastar 18ES Atlas III Atlas 10K Cheetah

Capacity (blocks) 17916239 17783250 17783248 8887200
Defects 123 56 64 21
One Address Translation 2.41 ms 1.66 ms 0.86 ms 7.32 ms
Translations 36911 (39) 7081 (11) 26437 (79) 5245 (43)

Table 2: Address translation characteristics for tested disks. The number of translations is the
average of �ve runs. The values in parantheses are standard deviations.

6.2 Validation of Extracted Values

We evaluate the accuracy of parameters extracted by DIXtrac by using DiskSim. After extracting

parameters from each disk drive, a synthetic trace was generated, and the response time of each

request in the trace was measured on the real disk. The trace run and the extracted parameter �le

were then fed to DiskSim to produce simulated per-request response times. The real and simulated

response times are then compared.

Two synthetic workloads were used to test the extracted parameters. The �rst synthetic work-

load was executed on each disk with both read and write caches turned o�. This workload tests

everything except the cache parameters. It consists of 5000 independent requests with 2/3 READs

and 1/3 WRITEs. The requests are uniformly distributed across the entire disk drive. The size of

the requests is between 2 and 12 KB with a mean size of 8 KB. The inter-arrival time is uniformly

distributed between 0 and 72 ms.

The second workload focuses on the cache behavior and was executed with the disk's default

caching policies. This trace consists of 5000 requests (2/3 READs and 1/3 WRITEs) with a mix

of 20% sequential requests, 30% local (within 500 LBNs) requests, and 50% uniformly distributed

requests. The size of the requests is between 2 and 12 KB with a mean size of 8 KB. The inter-arrival

time is uniformly distributed between 0 and 72 ms.

For each disk, �ve extractions were performed to create �ve sets of disk parameters. For each

set of parameters, �ve mixed traces and �ve random traces were generated and run on the real

disk and on the DIXtrac-con�gured simulated disk. So, for each disk, 50 validation experiments

were run. The simulated and measured response times for the tested disks are shown in Figure 1.

Each curve is a cumulative distribution of all collected response times for the 25 runs, consisting of

125000 data points.

The di�erence between the response times of the real disk and the DIXtrac-con�gured simulator

16

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IBM Ultrastar 18ES − Random Trace (RMS=0.07)

Access Time [ms]

F
ra

ct
io

n
of

 R
es

po
ns

es

Real Disk
DIXtrac/DiskSim

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IBM Ultrastar 18ES − Mixed Trace (RMS=0.20)

Access Time [ms]

F
ra

ct
io

n
of

 R
es

po
ns

es

Real Disk
DIXtrac/DiskSim

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Quantum Atlas III − Random Trace (RMS=0.14)

Access Time [ms]

F
ra

ct
io

n
of

 R
es

po
ns

es

Real Disk
DIXtrac/DiskSim

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Quantum Atlas III − Mixed Trace (RMS=1.14)

Access Time [ms]

F
ra

ct
io

n
of

 R
es

po
ns

es

Real Disk
DIXtrac/DiskSim

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Quantum Atlas 10K − Random Trace (RMS=0.19)

Access Time [ms]

F
ra

ct
io

n
of

 R
es

po
ns

es

Real Disk
DIXtrac/DiskSim

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Quantum Atlas 10K − Mixed Trace (RMS=0.30)

Access Time [ms]

F
ra

ct
io

n
of

 R
es

po
ns

es

Real Disk
DIXtrac/DiskSim

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seagate Cheetah 4LP − Random Trace (RMS=0.43)

Access Time [ms]

F
ra

ct
io

n
of

 R
es

po
ns

es

Real Disk
DIXtrac/DiskSim

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seagate Cheetah 4LP − Mixed Trace (RMS=0.27)

Access Time [ms]

F
ra

ct
io

n
of

 R
es

po
ns

es

Real Disk
DIXtrac/DiskSim

Figure 1: Measured and simulated response time cumulative distribution for IBM Ultrastar 18ES,

Quantum Atlas III, Atlas 10K, and Seagate Cheetah 4LP disks.

17

Vendor IBM Quantum Seagate
Disk Model Ultrastar 18ES Atlas III Atlas 10K Cheetah

Trace Type mixed random mixed random mixed random mixed random

RMSOverall (ms) 0.20 0.07 1.14 0.14 0.30 0.19 0.27 0.43
% TMean 3.9% 0.6% 18.1% 1.1% 8.6% 2.2% 4.9% 3.5%

RMSMin (ms) 0.17 0.06 1.10 0.12 0.27 0.05 0.15 0.30
% TMean 3.3% 0.5% 17.4% 0.9% 7.9% 0.6% 2.7% 2.4%

RMSMax (ms) 0.27 0.14 1.18 0.22 0.34 0.30 0.37 0.55
% TMean 5.3% 1.1% 18.7% 1.7% 9.8% 3.4% 6.7% 4.4%

Table 3: Demetit �gures (RMS) for tested disks. RMSOverall is the overall demerit �gure for all
trace runs combined. RMSMin and RMSMax are the minimal and maximal values of a particular
run out of the 25 runs. The % TMean value is the percent di�erence of the respective RMS from
the mean real disk response time.

can be quanti�ed by a demerit �gure [10], which is the root mean square distance between the two

curves. The demerit �gure, here referred to as the RMS, for each graph is given in Table 3. Most

of these accuracies compare favorably with the most accurate disk simulation models reported in

the literature [10, 18].

However, several suboptimal values merit discussion. For the Seagate Cheetah, the simulated

disk with DIXtrac-extracted parameters services requests faster than the real disk. This di�erence

is due to smaller e�ective values of READ command processing overheads. Manually increasing

these values by 0.35 ms results in a closer match to the real disk with RMS at 0.17 ms and 0.16 ms

for the mixed and random trace respectively. We have not yet been able to determine why DIXtrac

underestimates this command overhead.

The di�erences in the mixed trace runs for the two Quantum disks are due to shortcomings

of DiskSim. DIXtrac correctly determines that the disks use adaptive cache behavior. However,

because DiskSim does not model such caches, DIXtrac con�gures it with average (disk-speci�c)

values for the number and size of segments. The results show that the actual Atlas 10K disk has

more cache hits than the DiskSim model con�gured with 10 segments of 356 blocks. Interestingly,

the adaptive cache behavior of the real Atlas III disk is worse than the behavior of the simulated

disk con�gured with 6 segments and 256 blocks per segment. Manually lowering the value of blocks

per segment to 65, while keeping all other parameters the same, gives the best approximation of

the real disk behavior.

These empirical validation results provide signi�cant con�dence in the accuracy of the parame-

ters extracted by DIXtrac. For additional con�dence, extracted data were compared directly with

18

the speci�cations given in manufacturer's technical manuals [12, 11, 4, 7, 8, 6], wherever possible.

In all such cases, the extracted values match the data in the documentation.

7 Summary

DIXtrac is a program that automatically characterizes the performance of modern disk drives.

This paper describes and validates DIXtrac's algorithms, which extract accurate values for over

100 performance-critical parameters. By con�guring a detailed disk simulator with the parameters

extracted by DIXtrac, accurate disk simulation models are demonstrated; the resulting accuracies

match those of the most accurate disk simulators reported in the literature. To date, DIXtrac has

been successfully used on over 20 disk drives, consisting of eight models of disk drives from four

di�erent manufacturers.

With DIXtrac as a tool, we are providing a database of validated disk characterizations on the

Web (http://www.ece.cmu.edu/~schindjr/dixtrac). DIXtrac output �les, including parameter

�les usable by the freely-available DiskSim simulator.

Acknowledgements

This work was supported in part by the National Science Foundation under grant #ECD-8907068.

The authors are indebted to generous contributions from the member companies of the Parallel

Data Consortium, including: Hewlett{Packard Laboratories, Intel, Quantum, Seagate Technology,

3Com Corporation, CLARiiONArray Development, LSI Logic, EMC Corporation, Hitachi, Veritas,

Procom Technology, MTI Technology, In�neon Technologies, and Novell, Inc.

References

[1] M. Aboutabl, A. Agrawala, and J. Decotignie. Temporally determinate disk access: An experimental
approach. Technical Report CS-TR-3752, Dept. of Computer Science, University of Maryland, College
Park, 1997.

[2] Small Computer System Interface-2, draft revision 10k edition, March 1993.

[3] G. R. Ganger, B. L. Worthington, and Y. N. Patt. The DiskSim simulation environment. Technical
Report CSE-TR-358-98, Dept. of Electrical Engineering and Computer Science, Univ. of Michigan,
February 1998.

[4] Hewlett Packard Company. HP C2244/45/46/47 3.5-inch SCSI-3 Disk Drive Technical Reference Man-
ual, September 1992.

[5] D. Kotz, S. B. Toh, and S. Radhakishnan. A detailed simulation model of the HP 97560 disk drive.
Technical Report PCS-TR94-220, Dept. of Computer Science, Darthmouth College, July 1994.

19

[6] Quantum Corporation. Quantum Viking 2.27/4.55 GB S Product Manual, April 1997.

[7] Quantum Corporation. Quantum Atlas III SCSI Hard Disk Drives: Ultra SE SCSI-3 Version Product
Manual, April 1998.

[8] Quantum Corporation. Quantum Atlas 10K 9.1/18.2/36.4 GB Ultra 160/m S Product Manual III SCSI
Hard Disk Drives: Ultra SE SCSI-3 Version, August 1999.

[9] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete computer simulation: The SimOS
apporach. IEEE Journal of Parallel and Distributed Technology, pages 34{43, Winter 1995.

[10] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer, 27(3):17{28,
March 1994.

[11] Seagate Technology. Cheetah 4LP Family: ST34501N/W/WC/DC Product Manual, April 1996.

[12] Seagate Technology. Barracuda 4LP Family: ST32171N/W/WC/DC Product Manual, February 1998.

[13] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revisited. In Winter USENIX Conference,
pages 313{323, 1990.

[14] P. J. Shenoy and H. M. Vin. Cello: A disk scheduling framework for next generation operating systems.
In Proc. of ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages
44{55, 1998.

[15] E. Shriver, C. Small, and K. Smith. Why does �le system prefetching work? In USENIX Technical
Conference, pages 71{83, 1999.

[16] N. Talagala, R. Arpaci-Dusseau, and D. Patterson. Microbenchmark-based extraction of local and
global disk characteristics. http://www.cs.berkeley.edu/~nisha/bench.html, 1999.

[17] A. Varma and Q. Jacobson. Destage algorithms for disk arrays with non-volatile caches. In IEEE
International Symposium on Computer Architecture, pages 83{95, 1995.

[18] B. L. Worthington, G. R. Ganger, and Y. N. Patt. On-line extraction of SCSI disk drive parameters.
In Proc. of ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages
146{156, 1995.

20

