
On-Line Data Reconstruction In Redundant Disk Arrays

A dissertation submitted to the Department of Electrical and Computer Engineering,
Carnegie Mellon University, in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Copyright © 1994

by

Mark Calvin Holland

ii

i

Abstract

There exists a wide variety of applications in which data availability must be continu-

ous, that is, where the system is never taken off-line and any interruption in the accessibil-

ity of stored data causes significant disruption in the service provided by the application.

Examples include on-line transaction processing systems such as airline reservation sys-

tems and automated teller networks in banking systems. In addition, there exist many

applications for which a high degree of data availability is important, but continuous oper-

ation is not required. An example is a research and development environment, where

access to a centrally-stored CAD system is often necessary to make progress on a design

project. These applications and many others mandate both high performance and high

availability from their storage subsystems.

Redundant disk arrays are systems in which a high level of I/O performance is

obtained by grouping together a large number of small disks, rather than building one

large, expensive drive. The high component count of such systems leads to unacceptably

high rates of data loss due to component failure, and so they typically incorporate redun-

dancy to achieve fault tolerance. This redundancy takes one of two forms: replication or

encoding. In replication, the system maintains one or more duplicate copies of all data. In

the encoding approach, the system maintains an error-correcting code (ECC) computed

over the data. The latter category of systems is very attractive because it offers both low

cost per megabyte and high data reliability, but unfortunately such systems exhibit very

poor performance in the presence of a disk failure. This dissertation addresses the design

of ECC-based redundant disk arrays that offer dramatically higher levels of performance

in the presence of failure than systems comprising the current state of the art, without sig-

nificantly affecting the performance, cost, or reliability of these systems.

The first aspect of the problem considered here is the organization of data and redun-

dant information in the array. The dissertation demonstrates techniques for distributing the

workload induced by a disk failure across a large set of disks, thereby reducing the impact

of the failure recovery process on the system as a whole.

ii

Once the organization of data and redundancy has been specified, additional improve-

ments in performance during failure recovery can be obtained through the careful design

of the algorithms used to recover lost data from redundant information. The dissertation

shows that structuring the recovery algorithm so as to assign one recovery process to each

disk in the array, as opposed to the traditional approach of structuring it so as to assign a

process to each unit of in a set of data units to be concurrently recovered, provides signifi-

cant advantages.

Finally, the dissertation develops a design for a redundant disk array targeted at

extremely high availability through extremely fast failure recovery. This development also

demonstrates the generality of the techniques presented here.

iii

Acknowledgments

First and foremost thanks of course go to my parents, Robert and Esther Holland.

Their support has been unconditional and unwavering, but they’ve given me more than

that. The really significant thing Mom and Dad did for me was to show me that education

is the primary road to a better and more meaningful life. One is enriched by each new level

of understanding that one acquires, irrespective of traditional boundaries between domains

of knowledge. For this lesson, I’m more grateful to them than I can say. I love you both.

My advisor, Dan Siewiorek, gave me the freedom to pursue my own academic inter-

ests, and supported me even when my work did not exactly coincide with his own research

agenda. This involved a great deal of extra effort on his part, and his willingness to make

sure I succeeded didn’t go unnoticed. It was he who initially suggested the topics for both

my Master’s and Ph.D. I’m very pleased to have had the opportunity to work with him,

and my only regret is that the path my studies took did not allow us to work more closely.

This dissertation has grown out of long and fruitful discussions with Garth Gibson.

Garth is one of the sharpest and most capable people I’ve ever worked with, and it was his

encyclopedic knowledge of data storage technology, and where it is and should be going,

that guided my studies from the start. This would be impressive even if it were all, but

Garth and I were also able to establish a rare relationship based on confidence and com-

munication that allowed our interaction to be pleasurable as well as productive. Thanks

Garth.

Before I leave off thanking my advisors, one more point has to be made. Garth and

Dan stood by me when a personal crisis caused me to shirk my studies for a while. This I

appreciate more than anything else.

Bill Courtright, Hugo Patterson, and Dan Stodolsky all deserve thanks for contribut-

ing to my thesis through constant discussion, review, and technical assistance. In working

with them I felt genuinely like a member of a team; like each of us made it a goal that we

should all succeed. The three of you made it all a positive experience for me.

iv

Stephanie Byram has put up with a lot from me lately, and I want her to know that I

realize that nothing goes unnoticed. Thanks for tolerating, Steph. I’ll be there when you

need me.

Finally, I want to express my thanks to Yale Patt, now with the University of Michi-

gan at Ann Arbor. About nine years ago, Yale took a chance and gave some responsibility

to an undergraduate student who lacked confidence and was uncertain of his abilities. I

firmly believe that the opportunities that arose from his support have led to my every suc-

cess since then. The rare and beautiful thing Yale did for me was to trust me in the absence

of any compelling reason to do so. I really hope, Yale, that you continue to extend your

confidence to others at the risk of getting burned.

v

Table of Contents

1
Chapter 1: Introduction 1
Chapter 2: Background Information 7

2.1. The need for improved availability in the storage subsystem 8
2.1.1. The widening access gap 8
2.1.2. The downsizing trend in disk drives 9
2.1.3. The advent of new, I/O intensive applications 10
2.1.4. Why these trends necessitate higher availability 10

2.2. Technology background 13
2.2.1. Disk technology 13
2.2.2. Disk array technology 16

2.2.2.1. Disk array architecture 17
2.2.2.2. Defining the RAID levels: data layout and ECC 18
2.2.2.3. Reading and writing data in the different RAID levels 23

2.2.2.3.1. RAID Level 1 24
2.2.2.3.2. RAID Level 3 25
2.2.2.3.3. RAID Level 5 26

2.2.2.4. Comparing the performance of the RAID levels 29
2.2.2.5. On-line reconstruction 29
2.2.2.6. Related work: variations on these organizations 30

2.2.2.6.1. Multiple failure toleration 30
2.2.2.6.2. Addressing the small-write problem 32
2.2.2.6.3. Spare space organizations 34
2.2.2.6.4. Distributing the functionality of the array controller 35
2.2.2.6.5. Striping studies 35
2.2.2.6.6. Disk array performance evaluation 37
2.2.2.6.7. Reliability modeling 37
2.2.2.6.8. Improving the write-performance of RAID Level 1 39
2.2.2.6.9. Network file systems based on RAID 40

2.3. Evaluation methodology 40
2.3.1. Simulation methodology 40
2.3.2. The raidSim disk array simulator 41
2.3.3. Default workload 42

Chapter 3: Disk Array Architectures and Data Layouts 45
3.1. Related work 45

3.1.1. Availability techniques in mirrored arrays 46
3.1.2. Availability techniques for parity-based arrays 47

3.1.2.1. Multiple independent groups 47
3.1.2.2. Distributing the failure-induced workload 49

vi

3.1.3. Summary 51
3.2. Disk array layouts for parity declustering 52

3.2.1. Layout goodness criteria 52
3.2.2. Layouts based on balanced incomplete block designs 55

3.2.2.1. Block designs 55
3.2.2.2. Deriving a layout from a block design 56
3.2.2.3. Evaluating the layout 58
3.2.2.4. Finding block designs for layout 60

3.2.3. A related study: layout via random permutations 61
3.2.4. Summary 63

3.3. Primary evaluations 63
3.3.1. Comparing declustering to RAID Level 5 65

3.3.1.1. No effect on fault-free performance 65
3.3.1.2. Declustering greatly benefits degraded-mode performance 65
3.3.1.3. Declustering benefits persist during reconstruction 66
3.3.1.4. Declustering also benefits data reliability 68
3.3.1.5. Summary 70

3.3.2. Varying the declustering ratio 70
3.3.2.1. Fault-free performance 71
3.3.2.2. Degraded- and reconstruction-mode performance 72
3.3.2.3. High data reliability 74
3.3.2.4. Summary 74

3.3.3. Improving fault-free performance by increasing disk utilization 75
3.3.3.1. A simple model for the load-increase factor 75
3.3.3.2. Verification via simulation 79
3.3.3.3. Summary 80

3.3.4. Performance on non-OLTP workloads 81
3.3.4.1. Performance versus user access size and read-write ratio 81
3.3.4.2. Performance versus locality of reference 85
3.3.4.3. Performance on specific workloads 86
3.3.4.4. Summary of non-OLTP performance evaluations 91

3.3.5. Overall performance evaluation summary 91
3.4. System configuration 92
3.5. Optimizations and improvements 99

3.5.1. Optimizing the reconstruction unit size 99
3.5.1.1. Layout modification 100
3.5.1.2. Evaluating the benefits of larger reconstruction units 102
3.5.1.3. Determining the optimal reconstruction unit 104

3.5.2. Compacting the full block design table 105
3.5.2.1. Balancing parity in the minimum number of block design tables 106
3.5.2.2. Reordering algorithm 107
3.5.2.3. Compaction results and conclusions 109

3.5.3. Improving adherence to criterion six 112
3.5.3.1. The need for optimization 112
3.5.3.2. Optimizing the designs 114
3.5.3.3. Results 116

vii

3.5.3.4. Conclusions 120
3.6. Conclusions 120

Chapter 4: Reconstruction Algorithms 123
4.1. Prior work 123
4.2. Stripe-oriented and disk-oriented reconstruction 124

4.2.1. Stripe-oriented reconstruction and its parallelized version 124
4.2.2. Disk-oriented reconstruction 126
4.2.3. Implementation of disk-oriented reconstruction 127

4.2.3.1. Buffer memory management 127
4.2.3.2. Interaction with writes in the normal workload 129

4.2.4. Summary 130
4.3. Performance evaluations 131

4.3.1. Comparing reconstruction algorithms 131
4.3.2. Sensitivity of disk-oriented algorithm to available buffer memory 133
4.3.3. Comparing memory requirements between algorithms 134

4.4. Optimizations and improvements 135
4.4.1. Work reducing variations to reconstruction algorithms 135

4.4.1.1. Defining the variations 136
4.4.1.2. Evaluating the options on OLTP-like workloads 137
4.4.1.3. Dynamic use of reconstruction options 140
4.4.1.4. Summary 141

4.4.2. Head following 141
4.4.2.1. Basic head-following algorithm, and its shortcomings 142
4.4.2.2. First approach: fetch closest active parity stripe 144
4.4.2.3. Second approach: multiple reconstruction points 148
4.4.2.4. Summarizing: head following is not viable under a random workload 152
4.4.2.5. Evaluating head following on other workloads 153
4.4.2.6. Summary 154

4.5. Conclusions 155
Chapter 5: Distributed Sparing 157

5.1. The benefits of distributed sparing 158
5.2. Distributed sparing and its implications on failure recovery 159
5.3. Implementation in declustered parity arrays 160
5.4. Disk-oriented reconstruction algorithm to support distributed sparing 169
5.5. Performance analysis 171

5.5.1. Reconstruction performance 171
5.5.2. Ultra-fast reconstruction in large arrays 172
5.5.3. Large-access performance in reconfigured mode 175
5.5.4. Re-evaluating the reconstruction options under distributed sparing 177

5.6. A related study 179
5.7. Conclusions 181

Chapter 6: Conclusions 183
References 193
Appendix A: Data Mapping Algorithms 201

A.1. Preliminaries 201
A.2. Mapping code for declustered parity 202

viii

A.2.1. Data structures 202
A.2.2. MapSector 205
A.2.3. MapParity 206
A.2.4. MapPhysicalToStripeID 207

A.3. Mapping code for declustered parity with distributed sparing 208
A.3.1. MapSector 210
A.3.2. MapParity 211
A.3.3. MapPhysicalToStripeID 212
A.3.4. remap_to_spare_space 214

A.4. adjust_params 215
Appendix B: Block Designs 217

B.1. Block designs onv > 43 217
B.2. Designs in the database 217
B.3. Block designs used in the simulations 218

B.3.1. Designs onv = 40 220
B.3.2. Designs onk = 4 221

Appendix C: Simulation and Model Data 225

ix

List of Figures

Chapter 1: Introduction
Chapter 2: Background Information

Figure 2.1: The ubiquitous storage hierarchy of computer systems. 7
Figure 2.2: Failure-induced workload increase in RAID Level 5. 12
Figure 2.3: Physical components of a disk drive. 14
Figure 2.4: Data layout on a disk drive. 14
Figure 2.5: Disk array architectures. 17
Figure 2.6: Data and redundancy organization in RAID Levels 0 through 5. 20
Figure 2.7: Read and write operations in RAID Level 1 (mirroring). 24
Figure 2.8: Read and write operations in RAID Level 3 (bit-interleaved parity). 25
Figure 2.9: Read and write operations in RAID Level 5 (rotated parity). 27
Figure 2.10: The structure of raidSim. 41

Chapter 3: Disk Array Architectures and Data Layouts
Figure 3.1: Striping data across multiple independent groups in RAID Level 5. 48
Figure 3.2: Declustering a parity stripe of size four over an array of seven disks. 50
Figure 3.3. An example parity-declustered layout. 56
Figure 3.4: Full block design table for a parity declustering organization. 57
Figure 3.5: Comparing organizations: fault-free performance. 65
Figure 3.6: Comparing organizations: degraded-mode performance. 66
Figure 3.7: Comparing organizations: response time during reconstruction. 67
Figure 3.8: Comparing organizations: reconstruction time. 68
Figure 3.9: Comparing organizations: reliability. 69
Figure 3.10: Varying declustering ratio: user response time in fault-free mode. 72
Figure 3.11: Varying declustering ratio: user response time in degraded mode. 73
Figure 3.12: Varying declustering ratio: reconstruction time. 73
Figure 3.13: Varying declustering ratio: reliability. 74
Figure 3.14: Fault-free workload increase factor versus the declustering ratio. 78
Figure 3.15: Scaling the applied workload with the declustering ratio. 79
Figure 3.16: User response time using scaled user access rates. 80
Figure 3.17: Fault-free data transfer rate versus access size. 83
Figure 3.18: Disk utilization and normalized transfer rate in a fault-free array. 84
Figure 3.19: Parity-declustered array performance under a UNIX workload. 90
Figure 3.20: Comparing the reconstruction model to simulation data. 97
Figure 3.21: Single-disk I/O bandwidth versus access size. 100
Figure 3.22: Doubling the size of the reconstruction unit. 101
Figure 3.23: Striping sequential units across parity stripes. 102
Figure 3.24: Reconstruction performance versus reconstruction unit size. 103
Figure 3.25: Cumulative response time degradation during reconstruction. 104
Figure 3.26: Compacting the full block design table withv=6, k=4, andb=15. 107
Figure 3.27: The block design reordering algorithm. 109
Figure 3.28: Histogram of full block design table compaction percentage. 110

x

Figure 3.29: Histogram of compaction percentage versus declustering ratio. 111
Figure 3.30: Minimum disk size to guarantee good parity balance. 112
Figure 3.31: Meeting criterion six via left-symmetric parity-declustered layout. 113
Figure 3.32: The mutual incompatibility of criteria five and six. 114
Figure 3.33: The results of the annealing study. 117
Figure 3.34: Two sources of variation in the individual disk access times. 119

Chapter 4: Reconstruction Algorithms
Figure 4.1: Comparing reconstruction algorithms. 132
Figure 4.2: Sensitivity to available buffer memory. 133
Figure 4.3: Two methods for servicing a user write to unreconstructed data. 136
Figure 4.4: User response time for five combinations of the variations. 138
Figure 4.5: Reconstruction time for five combinations of the variations. 139
Figure 4.6: Evaluating monitored redirection of reads: response time. 140
Figure 4.7: Evaluating monitored redirection of reads: reconstruction time. 140
Figure 4.8: Evaluating the “fetch closest active” type of head following. 146
Figure 4.9: Example reconstruction access time histograms. 148

Chapter 5: Distributed Sparing
Figure 5.1: Contrasting sparing alternatives in RAID Level 5 arrays. 159
Figure 5.2: Spare-space allocation versus spare-unit assignment. 161
Figure 5.3: Allocating spare space in contiguous bands to simplify the mapping. 163
Figure 5.4: The allocation of spare space. 164
Figure 5.5 (part 1): Generating the assignment of reconstructed units to spare units. 167
Figure 5.5 (part 2): Generating the assignment of failed units to spare units. 168
Figure 5.6: Comparing sparing alternatives. 172
Figure 5.7: Distributed-sparing reconstruction performance versusC with G=4. 174
Figure 5.8: 5- and 10-year data loss probabilities versusC with G=4. 175
Figure 5.9: Large access performance in reconfigured mode. 176
Figure 5.10: A hypothetical large access in reconfigured mode. 177
Figure 5.11: Evaluating redirection of reads under distributed sparing. 178

Chapter 6: Conclusions
References
Appendix A: Data Mapping Algorithms
Appendix B: Block Designs
Appendix C: Simulation and Model Data

xi

List of Tables

Chapter 1: Introduction
Chapter 2: Background Information

Table 2.1: First-order comparison between the RAID levels for anN-disk array. 30
Table 2.2: Default array parameters for simulation. 42
Table 2.3: Parameters of the IBM 0661 Model 370 (Lightning) drive. 43
Table 2.4: Default workload parameters for simulations. 43

Chapter 3: Disk Array Architectures and Data Layouts
Table 3.1: A sample block design. 56
Table 3.2: I/O operations in degraded mode. 77
Table 3.3: Summary statistics on traces collected from a UNIX workstation. 88
Table 3.4: Symbols used in the configuration equations. 94
Table 3.5: Tabularizing the degree of variation. 119

Chapter 4: Reconstruction Algorithms
Chapter 5: Distributed Sparing

Table 5.1: Number of full block design tables per sparing region for 433 designs. 165
Chapter 6: Conclusions

Table 6.1: Summary of thesis contributions. 190
References
Appendix A: Data Mapping Algorithms

Table A.1: Variables used in declustered parity mapping functions. 203
Table A.2: Additional layout terms used in distributed sparing. 208

Appendix B: Block Designs
Table B.1: Known block designs onv > 43. 218
Table B.2: Block designs in the database. 219

Appendix C: Simulation and Model Data
Table C.1: Workload increase factor data from Figure 2.2. 225
Table C.2: Response time data from Figure 3.5. 225
Table C.3: Response time data from Figure 3.6. 226
Table C.4: Response time data from Figure 3.7. 226
Table C.5: Reconstruction time data from Figure 3.8. 226
Table C.6: Reliability data from Figure 3.9a. 227
Table C.7: Reliability data from Figure 3.9b. 227
Table C.8: Response time data from Figure 3.10. 227
Table C.9: Response time data from Figure 3.11. 227
Table C.10: Reconstruction time data from Figure 3.12. 228
Table C.11: Reliability data from Figure 3.13. 228
Table C.12: Workload increase factor data from Figure 3.14. 228
Table C.13: Data from Figure 3.15. 229
Table C.14: Response time data from Figure 3.16. 229
Table C.15: Transfer rate data from Figure 3.17a. 229
Table C.16: Transfer rate data from Figure 3.17b. 230

xii

Table C.17: Transfer rate data from Figure 3.18a. 230
Table C.18: Normalized transfer rate data from Figure 18b. 231
Table C.19: Data from Figure 3.19. 231
Table C.20: Data from Figure 3.24. 231
Table C.21: Cumulative degradation data from Figure 3.25. 232
Table C.22: Transfer rate data from Figure 3.33. 232
Table C.23: Reconstruction time data from Figure 4.1a. 232
Table C.24: Average response time data from Figure 4.1. 233
Table C.25: 90th percentile response time data from Figure 4.1. 233
Table C.26: Reconstruction time data from Figure 4.2a. 233
Table C.27: Average response time data from Figure 4.2b. 233
Table C.28: 90th percentile response time data from Figure 4.2b. 234
Table C.29: Average response time data from Figure 4.4. 234
Table C.30: 90th percentile response time data from Figure 4.4. 234
Table C.31: Reconstruction time data from Figure 4.5. 235
Table C.32: Average response time data from Figure 4.6. 235
Table C.33: 90th percentile response time data from Figure 4.6. 235
Table C.34: Reconstruction time data from Figure 4.7. 236
Table C.35: Reconstruction time data from Figure 4.8a. 236
Table C.36: Response time data from Figure 4.8b. 236
Table C.37: Access time histograms from Figure 4.9. 237
Table C.38: Reconstruction time data from Figure 5.6a. 238
Table C.39: Response time data from Figure 5.6b. 238
Table C.40: Data from Figure 5.7. 238
Table C.41: Reliability data from Figure 5.8. 239
Table C.42: Transfer rate data from Figure 5.9. 239
Table C.43: Reconstruction time data from Figure 5.11a. 239
Table C.44: Response time data from Figure 5.11b. 240

1

Chapter 1: Introduction

This dissertation provides techniques for designing data storage subsystems that are

highly available, which we define as systems that tolerate component failures in order to

maximize the probability that all stored data is available for retrieval, with maximum per-

formance, at all times. There exists a wide variety of applications in which data availabil-

ity must be continuous. These systems are never taken off-line and any interruption in the

accessibility of stored data causes significant disruption in the service provided by the

application. Examples include

• airline reservation systems, where the non-availability of booking information can
lead to flight delays and/or revenue loss,

• database servers for point-of-sale terminal systems, where inventory, distribution,
and pricing control systems all rely on the central collection of information from
each sale,

• file servers that support a large number of clients with differing work schedules, and

• automated teller networks in banking systems, where the accessibility of funds relies
on the accessibility of account information.

In addition, there exist many applications for which a high degree of data availability is

important, but continuous operation is not required. An example is a research and devel-

opment environment, where access to a centrally-stored CAD system is necessary to make

progress on a design project. In all of these applications, the availability of data stored on

a computer is crucial to the function of the parent organization.

The performance-related definition of availability described above differs slightly

from the standard usage, which defines availability strictly as the probability that a system

is operational at a particular time instant [Siewiorek92, p. 4]. However, the performance

aspect of availability is critical in the data storage arena, because typical storage sub-

system experience severe performance degradation in the presence of failure. Note that in

the above-described applications, extended periods of unacceptable performance are tan-

tamount to data non-availability.

2

A primary mechanism by which data becomes temporarily unavailable or irretriev-

ably lost is disk failure in the data storage subsystem. Consequently, application areas

such as those listed above demand not only the ability to recover from such failures with-

out losing data, but also that the recovery process:

1. function without taking the system off-line,

2. rapidly restore the system to its fault-free state, and

3. have minimal impact on system performance as observed by the users.

The necessity of condition (1) is clear; taking the system off-line to repair a failure

results in an obvious breach of availability. Condition (2) is necessary for two reasons.

First, the recovery process consumes input/output bandwidth in the storage subsystem,

and so the system’s users experience degraded performance during recovery from a com-

ponent failure. It is necessary to minimize the duration of this degradation. Second, stor-

age subsystems often tolerate only a single failure at time, and so minimizing the recovery

time minimizes the probability of irretrievable data loss due to a second failure occurring

before the first has been recovered. Condition (3) is necessary because performance degra-

dation that is so severe as to render the system unusable is equivalent to data non-avail-

ability.

Performance and availability are not independent metrics. Because the failure recov-

ery process consumes input/output bandwidth in the storage subsystem, it is necessary that

the fault-free system load be kept low enough that the system performance will not be

degraded to an unacceptable level by the extra input/output load induced to recover from a

failure, should one occur. For example, if the load on a storage subsystem increases by

50% in the presence of a failure, then the fault-free system load must be kept below about

65% of its maximum in order to avoid throughput loss due to saturation should a failure

occur. If, however, the system can be re-designed such that the load increase during failure

recovery is only 25%, then the fault-free system load can be up to about 80% of its maxi-

mum without risking loss of throughput. For this reason, improved failure-recovery per-

formance can translate directly into improved fault-free system performance.

Traditionally, continuous-operation systems implement fault-tolerance in the data

storage subsystem bydisk mirroring, that is, by replicating every block of user data on at

least two disks and providing at least two independent access paths to each disk. The

3

backup copy (or copies) of each data block are used to maintain availability in the pres-

ence of a failure (or set of failures) that renders a disk inaccessible. This approach is

expensive because it incurs a storage capacity overhead for redundancy of at least 100%.

Consequently, it is generally used only in relatively large-scale, high-cost systems where

the need for availability justifies the expense. Smaller-scale applications such as file serv-

ers for local area networks often rely exclusively on periodic backup for fault-tolerance.

These systems may therefore experience both irretrievable data loss and extended periods

of data non-availability when component failures occur.

Over the past few years,redundant disk arrays have begun to supplant both mirrored

and non-redundant storage in both continuous-operation and high-availability applica-

tions. These systems are commonly known as Redundant Arrays of Independent Disks

(RAID) Levels 1 through 5, with each level defining a variation on the basic architecture.

The different levels have different performance, reliability, and capacity overhead charac-

teristics. Levels 2 through 5 achieve high availability at lower storage cost than mirroring,

which is Level 1. Instead of duplicating every byte of file system data, Levels 2 through 5

use a portion of the physical data space of the disks comprising the array to store an error

correcting code computed over the file system data. Since these arrays have lower capacity

overhead than mirrored systems, there is substantial motivation to use them in all applica-

tions where data availability is important.

Unfortunately, the redundant disk arrays constituting the current state of the art

exhibit poor performance during the process of failure recovery. In the disk array organi-

zation most appropriate to transaction-processing and database applications (RAID Level

5), the load on the surviving drives increases dramatically in the presence of a disk failure.

This increase can be up to 100%, depending on the characteristics of the workload being

serviced by the array. This requires that the fault-free system load be limited to about 50-

60% of its maximum so that system throughput can be maintained in the presence of fail-

ure. In actuality the load must be even lower in order to maintain adequate system respon-

siveness; if a fault-free system is loaded at 60% of its maximum and it’s failure-induced

workload increase is 60%, the system will be saturated in the presence of failure, and

hence the access response times as observed by the users will be essentially unbounded.

This inability to handle component failure gracefully constitutes a major limitation in the

4

applicability of redundant disk arrays to high-availability applications. Improving perfor-

mance in the presence of failure is the topic of this dissertation.

This dissertation considersuser-observed response time and total failure recovery

time to be the primary figures of merit for failure-recovery performance. The former mea-

sures the time taken to complete a user’s read or write request, and the analyses presented

here always report bothaverage and90th percentile values since most applications man-

date a minimum level of responsiveness. The latter measures the total time taken to recon-

struct and store on a replacement disk the entire contents of a failed disk. In general, this

dissertation does not consider user throughput (total number of input/output operations

executed per second) to be a figure of merit, because it assumes throughout that the stor-

age subsystem must continue to service the full user-applied workload in the presence of

failure. Under this assumption, no degree of throughput degradation during failure recov-

ery is acceptable, and the systems considered here do not experience any. This is achieved

by keeping the fault-free user workload sufficiently light that storage subsystem does not

saturate in the presence of failure.

My thesis is that it is possible to construct redundant disk arrays that exhibit arbi-

trarily-small user-observed response-time degradation during failure recovery, that simul-

taneously minimize the duration of the recovery process, and that achieve this using a data

capacity overhead for redundancy of less than 100%, which is the overhead required by a

mirrored-disk system. In support of this thesis, the dissertation makes the following con-

tributions:

• Demonstrates an implementation ofdeclustered parity, a disk array architecture that
allows for arbitrarily-small performance degradation during failure recovery, and
develops variations on it that improve various aspects of performance during failure
recovery,

• Demonstrates an efficient on-line data reconstruction algorithm, and then introduces
and analyzes a number of modifications and optimizations that can be applied to it,

• Demonstrates that a system composed of the above two components delivers supe-
rior performance and availability when compared to existing disk array organiza-
tions, and

• Develops and evaluates a disk array organization that achieves extremely rapid fail-
ure recovery, on the order of 30 seconds per disk failure, by combining the above
components withdistributed sparing, which is a technique for allocating spare units

5

to disks in a disk array.

6

7

Chapter 2: Background Information

This chapter reviews the state of the art in redundant disk array technology, and then

provides background information on the methodologies used in the rest of the dissertation.

To place the work in context, Figure 2.1 loosely illustrates the storage hierarchy typical of

computer systems, both general- and special-purpose. This dissertation focuses on the reli-

ability and availability characteristics of the “Magnetic Disk” component, occasionally

utilizing or making reference to “Main Memory” resources one level up.

The remainder of this chapter is organized as follows. The first section motivates the

work in this dissertation by describing trends in the computer industry that are causing

storage subsystems to be composed of increasing numbers of disks. The second section

provides background information on disk and redundant disk array technology. The third

section describes the methodology used throughout this thesis for evaluating the perfor-

mance of the proposed techniques. It also identifies the workloads that are of primary

interest; specifically, it describes the workload characteristics of transaction processing

environments, where data availability is crucial.

Magnetic Disk 5 - 50 ms 1 - 1000 GB

Processor Registers

Cache Memory

Main Memory

Off-Line Storage

Resource Access Time Size

1 - 10 ns

10 - 100 ns

100 - 1000 ns

0.5 - 15 minutes

0.1 KB

1 - 1000 KB

1 - 1000 MB

Up to 100s of TB

Figure 2.1: The ubiquitous storage hierarchy of computer systems.

Because of the trade-off between access time and size, the storage elements in computer
systems are organized hierarchically, with the fastest-but-smallest elements closest to
the processor, and the largest-but-slowest elements farther away. This maximizes
throughput by allowing the most commonly accessed data to be held in the fastest stor-
age. Note the large gap between the access time of main memory and that of magnetic
disk; this will be a primary motivating factor for the descriptions of storage subsystem
architectures that follow.

8

2.1. The need for improved availability in the storage subsystem

There exist several trends in the computer industry that are driving the design of stor-

age subsystems toward higher levels of parallelism. This means that current and future

systems will achieve better I/O performance by increasing the number, rather than the per-

formance, of the individual disks used [Patterson88, Gibson92]. This distinction is impor-

tant in that, as will be seen, it implies directly the need for improved data availability. This

section briefly describes these trends (Sections 2.1.1 through 2.1.3), and shows why they

lead to the need for improved availability in the storage subsystem (Section 2.1.4).

2.1.1. The widening access gap

First and foremost, processors are increasing in performance at a much faster rate

than disks. Microprocessors are increasing in computational power at between 25 and

30% per year [Myers86, Gelsinger89], and projections for future performance increases

range even higher. Gelsinger et. al. [Gelsinger89] predicts that the huge transistor budgets

projected for microprocessors in the 1990s will allow on-chip multiprocessing, yielding a

further 20% annual growth rate for microprocessors. Bell [Bell89] projects supercomputer

growth rates of about 150% per year.

Disk drives, by way of contrast, have been increasing in performance at a much

slower rate. Comparing the state of the art in 1981 [Harker81] to that in 1993 [Wood93]

shows that the average seek time1 for a disk drive improved from about 16 ms to about 10

ms, rotational latency from about 8.5 ms to about 5 ms, and data transfer rate from about 3

MB/sec (which was achieved only in the largest and most expensive disks) to about 5 MB/

sec. Combining these, the time taken to perform an average 8 KB access improved from

27.1 ms to 15.0 ms, or by about 45%, in the twelve-year period. This corresponds to an

annual rate of improvement of less than 5%.

Increased processor performance leads directly to increased demand for I/O band-

width [Gibson92, Kung86, Patterson88]. Since disk technology is not keeping pace with

processor technology, it is necessary to use parallelism in the storage subsystem to meet

the increasing demands for I/O bandwidth. This has been, and continues to be, the primary

motivation behind disk array technology.

1. Seek time, rotational latency, and transfer rate are defined in Section 2.2.1.

9

2.1.2. The downsizing trend in disk drives

Prior to the early 1980s, storage technology was driven by the large-diameter (14

inch) drives [IBM3380, IBM3390] used by mainframes in large-scale computing environ-

ments such as banks, insurance companies, and airlines. These were the only drives that

offered sufficient capacity to meet the requirements of these applications [Wood93]. This

changed dramatically with the growth of the personal computer market. The enormous

demand for small form-factor, relatively inexpensive disks produced an industry trend

toward downsizing, which is defined as the technique of re-implementing existing disk

drive technology in smaller form factors. This trend was enabled primarily by the rapid

increase in storage density achieved during this period, which allowed the capacity of

small-form factor drives to increase from a few tens of megabytes when first introduced to

over 2 gigabytes today [IBM0664]. It was also facilitated by the rapid growth in VLSI

integration levels during this period, which allowed increasingly sophisticated drive con-

trol electronics to be implemented in smaller packages. Further impetus for this trend

derived from the fact that smaller form-factor drives have several inherent advantages

over large disks:

• smaller disk platters and smaller, lighter disk arms yield faster seek operations,

• less mass on each disk platter allows faster rotation,

• smaller platters can be made smoother, allowing the heads to fly lower, which
improves storage density,

• lower overall power consumption reduces noise problems.

These advantages, coupled with very aggressive development efforts necessitated by

the highly competitive personal computer market, have caused the gradual demise of the

larger drives. In 1994, the best price/performance ratio is achieved using 3 1/2 inch disks,

and the 14 inch form factor has all but disappeared. The trend is toward even smaller form

factors: 2 1/2 inch drives are common in laptop computers [ST9096], and 1.3 inch drives

are available [HPC3013]. One-inch diameter disks should appear on the market by 1995,

and should be common by about 1998. At a (conservative) projected recording density in

excess of 1-2 GB per square inch [Wood93], one such disk should hold well over 2 GB of

data.

These tiny disks will enable very large scale arrays. For example, a one-inch disk

10

might be fabricated for surface-mount, rather than using cables for interconnection as is

currently the norm, and thus a single printed circuit board could easily hold an 80-disk

array. Several such boards could be mounted in a single rack to produce an array contain-

ing on the order of 250 disks. Such an array would store at least 500 GB, and even if disk

performance does not improve at all between now and 1998, could service either 12,500

concurrent I/O operations or deliver 1.25 GB per second aggregate bandwidth. The entire

system (disks, controller hardware, power supplies, etc.) would fit in a volume the size of

a filing cabinet.

To summarize, the inherent advantages of small disks, coupled with their ability to

provide very high I/O performance through disk array technology, leads to the conclusion

that storage subsystems are, and will continue to be, constructed from a large number of

small disks, rather than from a small number of powerful disks. Many trends in the storage

industry substantiate this claim. For example, Montgomery Securities predicts that the

redundant disk array market will exceed seven billion dollars by 1994 [Jones91]. Storage

Technology Corporation, traditionally a maker of large-form-factor IBM-compatible disk

drives, has stopped developing disks altogether, and is replacing this product line by one

based on disk arrays [Rudeseal92].

2.1.3. The advent of new, I/O intensive applications

Finally, increases in on-line storage capacity and commensurate decreases in cost per

megabyte enable new technologies that demand even higher levels of I/O performance.

The most visible example of this is in the emergence of digital audio and video applica-

tions such as video-on-demand [Rangan93]. Others include scientific visualization, and

large-object servers such as spatial databases [McKeown83, Stonebraker92]. These appli-

cations are all characterized by the fact that, if implemented on a large scale, their

demands for storage and I/O bandwidth will far exceed the ability of current data storage

subsystems to supply them. These applications will drive storage technologies by consum-

ing as much capacity and bandwidth as can be supplied, and hence necessitate higher lev-

els of parallelism in storage subsystems.

2.1.4. Why these trends necessitate higher availability

The preceding discussion demonstrated that higher degrees of I/O parallelism (an

11

increased number of disks in a storage subsystem) are increasingly necessary to meet the

storage demands of current and future systems. The discussion deliberately avoided iden-

tifying the specific organizations to be used in future storage systems, but made the case

that such systems will be comprised of a relatively large number of independent disks.

However, constructing a storage subsystem from a large number of disks has one signifi-

cant drawback: the reliability of such a system will be worse than that of a system con-

structed from a small number of disks, because the disk array has a much higher

component count. This subsection describes this problem, the solutions to it, and then

motivates the work described in the rest of this dissertation by showing that the existing

solutions do not adequately solve the problem.

As the number of disks comprising a system increases, the reliability of that system

falls. Specifically, assuming the failure rates for a set of disks to be identical, independent,

exponentially-distributed random variables, a simple reliability calculation shows that the

mean time to data loss for a group ofN disks is only 1/N times as long as that of a single

disk [Patterson88]. Gibson analyzed a set of disk lifetime data to investigate the accuracy

of the assumptions behind this calculation, and found “reasonable evidence to indicate that

the lifetimes of the more mature of these products can be modeled by an exponential dis-

tribution” [Gibson92, p. 113]. Working from this assumption, a 100-disk array comprised

of disks with 300,000 hour mean time to failure (typical for current disks) will experience

a failure every 3000 hours, or about once every 125 days. As disks get smaller and array

sizes grow, the problem gets worse: a 600-disk array experiences a failure approximately

once every three weeks.

Disk arrays typically incorporate some form of redundancy in order to protect against

data loss when these failure occurs. This is generally achieved either bydisk mirroring

[Katzman77, Bitton88, Copeland89, Hsiao91], or byparity encoding [Arulpragasam80,

Kim86, Park86, Patterson88, Gibson93]. In the former, one or more duplicate copies of

each user data unit are stored on separate disks. In the latter, commonly known as Redun-

dant Arrays of Inexpensive2 Disks (RAID) [Patterson88], a portion of the array’s physical

capacity is used to store an error correcting code computed over the data stored in the

2. Because of industrial interest in using the RAID acronym and because of their concerns about the
restrictiveness of its “Inexpensive” component, RAID is often reported as an acronym for Redun-
dant Arrays of Independent Disks [RAID93].

12

array. Section 2.2.2 describes both of these approaches in detail. Studies have shown that,

due to superior performance on small read and write operations, a mirrored array, also

known as RAID Level 1, may deliver higher performance to many important workloads

than can a parity-based array [Chen90a, Gray90]. Unfortunately, mirroring is substantially

more expensive — its storage overhead for redundancy is 100%, whereas the overhead in

a parity-encoded array is generally less than 25%, and may be less than 10%. Furthermore,

several recent studies [Rosenblum91, Menon92a, Stodolsky93] demonstrated techniques

that allow the small-write performance of parity-based arrays to approach and sometimes

exceed that of mirroring.

 The low redundancy overhead and potential high performance of parity-encoded

arrays makes them very attractive in I/O intensive applications. However, their perfor-

mance during the process of failure recovery is poor, and this limits their applicability to

continuous-operation and other high-availability environments. Specifically, Ng and Matt-

son [Ng92a] derive the following equation for the workload increase factor on the surviv-

ing disks in a RAID Level 5 array containing a single failed disk:

wherer is the fraction of all user accesses that are reads,w = 1 - r, andN is the number of

disks in the array. Figure 2.2 plots this function for a 40-disk array.

Util faulty

Util faultfree

N
N 1−

N 2−() r N 8−() w+
N 1−() r 4w+()+=

0.0 0.2 0.4 0.6 0.8 1.0
User Read Fraction (r)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
or

kl
oa

d
In

cr
ea

se
 F

ac
to

r

Figure 2.2: Failure-induced workload increase in RAID Level 5.

The figure shows the factor by which the surviving-disk workload increases when a disk
fails in a RAID Level 5 array [Ng92a]. Note that the y-axis starts at 1.0.

13

Since typical OLTP workloads are read-dominated [Ramakrishnan92], the load on the

surviving disks increases by typically between 50-100% in the presence of a disk failure.

This severely degrades the performance as observed by the users, and dramatically length-

ens the period of time required to recover the lost data and store it on a replacement drive.

This inability to achieve rapid recovery and high performance in the presence of failure

constitutes the “failure recovery problem” in parity-encoded redundant disk arrays. It

points directly to the need to improve upon the existing disk array organizations to achieve

higher degrees of availability.

This dissertation demonstrates techniques that significantly improve the performance

of parity-encoded disk arrays in the presence of disk failure. The goals are to simulta-

neously minimize both the duration of the failure recovery process, and its impact on the

performance of the array as observed by the users. This allows the construction of low-

cost arrays with high performance and high degrees of availability, for use in any applica-

tion where interruptions in the accessibility of data interfere with the smooth operation of

the organization.

2.2. Technology background

This section describes the structure and organization of modern disk drives and disk

arrays. Subsequent chapters assume a reasonably intimate knowledge of this material. The

section on disk technology has been kept to a minimum; it covers only those aspects of

disk drive structure and terminology that are utilized and referred to in the remainder of

the dissertation. Product manuals such as Digital Equipment Corporation’sMass Storage

Handbook [DEC86] provide more thorough descriptions of disk drive technology. This

section describes disk array structure and functionality in more detail, because this infor-

mation is essential to understanding the availability techniques to be developed.

2.2.1. Disk technology

Figure 2.3 shows the primary components of a typical disk drive. A disk consists of a

stack of platters coated with magnetic media, with data stored on all surfaces. The platters

rotate on a common spindle at constant velocity past the read/write heads (one per sur-

face), each of which is fixed on the end of a disk arm. The arms are connected to a com-

14

mon shaft called an actuator. Applying a directional current to a positioning motor causes

the actuator to rotate small distances in either direction. Rotating the actuator causes the

disk heads to move, in unison, radially along the platters, thereby allowing access to a

band spanning most of the coated surface of each platter.

Figure 2.4 illustrates how data is typically organized on a disk. Part (a) shows how a

block of sequential user data (almost always 512 bytes) is collected together and stored in

a sector. A sector is the minimum-sized unit that can be read from or written to a disk

drive. A header area in front of each sector contains sector identification and clock syn-

chronization information, and a trailer area contains an error correcting code computed

over the header and data. The set of sectors on a single surface at constant radial distance

Drive Motor
(Constant RPM)

Positioning Motor
(Voice Coil)

Platter

Surfaces
(Media)

Actuator

Read/Write HeadArm

Spindle

Figure 2.3: Physical components of a disk drive.

Figure 2.4: Data layout on a disk drive.

Cylinder

012

3 4 5

7

6

Track

Hdr/Sync Data ECC

Sector

(a) Grouping data into sectors, tracks, and cylinders (b) Sequential sector layout

0 1
2

345
6

7

15 8
9

101112
13

14

22 23
16

171819
20

21

28 29
30

312425
26

27

15

from the spindle is called atrack, and the set of all tracks at constant radial offset is called

a cylinder. At current densities, a typical 3 1/2 inch disk has 50-100 sectors per track,

1000-3000 cylinders, and 4-20 surfaces.

In order to access a block of data, the drive control electronics moves the actuator to

position the disk heads over the correct cylinder, waits for the desired data to rotate under

the heads, and then reads or writes the indicated sectors. Moving the actuator is called

seeking, and takes 1-20 ms depending on the seek distance. Current disks rotate at

between 3600 and 7200 RPM, making the expected rotational latency (one half of one rev-

olution) between 4.2 and 8.3 ms. Thus for each access the disk must firstseek to the indi-

cated cylinder and thenrotate to the start of the requested data. The combination of these

two operations is referred to aspositioning the disk heads.

If a user access requests a full track’s worth of data, the rotational latency can be elim-

inated by reading or writing the data in the order that the requested sectors pass under the

heads, rather than waiting until the first sector rotates under the heads to commence the

operation. This is calledzero latencyoperation orfull-track I/O, and can be extended to

include the case where the access spans only part of a track.

Note that the tracks near the outside of each surface have greater circumference than

those near the spindle. A technique calledzoned bit recording (ZBR), takes advantage of

this and stores more sectors per track in the outer cylinders. This approach groups sets of

50-200 adjacent cylinders into zones, with the number of sectors per track being constant

within each zone, but successively larger in the outer zones than the inner.

Figure 2.4b illustrates the assignment of sequential data to sectors, tracks, and cylin-

ders. Nearly all disks read or write only one head at time, that is, they do not access multi-

ple heads in parallel,3 and so sequential user data is sequential in any given sector. Thus,

as shown in the figure, sequential data starts at sector zero, proceeds around to the end of

the track, moves to the next track (which is actually on the underside of the first platter),

3. This is because the disk heads cannot be positioned independently, and thermal variations in the
rigidity of the actuator, platters, and spindle make it difficult or impossible to keep all the disk
heads simultaneously positioned over their respective tracks. There do exist a few disks that access
multiple heads in parallel by careful management of head alignment [Fujitsu2360], but these are
not commodity products and typically have lower density and higher cost per megabyte than stan-
dard disks.

16

continues this way to the end of the cylinder, and then moves to the next cylinder and

starts again. Note that in this example a rotational distance equal to one sector is skipped

upon crossing a track boundary (moving from sector 7 to 8), and two sectors are skipped

upon crossing a cylinder boundary (moving from sector 23 to 24). These gaps are called

the track skew andcylinder skew. The data is laid out in this manner to assure that the

drive control electronics will have time to reposition the actuator when a user access spans

a track or cylinder boundary. The track skew is shorter than the cylinder skew because

only fine adjustments are necessary when switching to a new track within one cylinder,

whereas switching to a new cylinder requires the actuator to be moved one full cylinder

width and then fine-adjusted over the new track. Typical values for track and cylinder

skew in current technology are about 0.5 and 1.5 ms, respectively.

The interface electronics in a disk drive typically contain a buffer memory, varying in

size from about 32 KB to about 1 MB, which serves two purposes. First, several disks may

share a single path to the CPU, and the memory serves to speed-match the disks to the bus.

In order to avoid holding the bus for long periods of time, a disk will typically read data

into the buffer and then burst-transfer it to the CPU. The buffer serves the same purpose

on a write operation: the CPU burst-transfers the data to the drive’s buffer, and the drive

writes it to the media at its own rate. Reading and writing to and from the buffer, instead of

directly between the media and the bus, also eliminatesrotational position sensing (RPS)

misses [Buzen87], which occur in bufferless disks when the transfer path to the CPU is not

available at the time the data arrives under the disk heads. The second purpose served by

the buffer is as a cache memory [IBM0661, Maxtor89]. Applications typically access files

sequentially, and so the disks comprising a storage subsystem typically observe a sequen-

tial access pattern as well. Thus after each read operation, the disk controller will continue

to read sequential data from the media into the buffer. If the next block of requested data is

sequential with respect to the previous block, the disk can often service it directly from the

buffer instead of accessing the media. This yields both higher throughput and lower

latency. Many disks generalize thisreadahead function so that the buffer becomes a full-

fledged cache memory.

2.2.2. Disk array technology

This section describes the structure and operation of disk arrays in detail.

17

2.2.2.1. Disk array architecture

Figure 2.5 illustrates two possible disk array subsystem architectures. Today’s sys-

tems use the architecture of Figure 2.5a, in which the disks are connected via inexpensive,

low-bandwidth (e.g. SCSI [ANSI86]) links to an array controller, which is connected via

one or more high-bandwidth parallel buses (e.g. HIPPI [ANSI91]) to one or more host

computers. Array controllers and disk busses are often duplicated (indicated by the dotted

lines in the figure) so that they do not represent a single point of failure [Katzman77,

Menon93]. The controller functionality can also be distributed amongst the disks of the

array [Cao93].

As disks get smaller [Gibson92], the large cables used by SCSI and other bus inter-

faces become increasingly unattractive. The system sketched in Figure 2.5b offers an

alternative. It uses high-bandwidth bidirectional serial links for disk interconnection. This

architecture scales to large arrays more easily because it eliminates the need for the array

controller to incorporate a large number of string controllers. Further, by making each

link bidirectional, it provides two paths to each disk without duplicating busses. While

serial-interface disks are not yet common, standards for them are emerging (P1394

[IEEE93], Fibre Channel [Fibre91], DQDB [IEEE89]). As the cost of high-bandwidth

serial connectivity is reduced, architectures similar to that of Figure 2.5b may supplant

today’s short, parallel bus-based arrays.

In both organizations, the array controller is responsible for all system-related activ-

ity: controlling individual disks, maintaining redundant information, executing requested

transfers, and recovering from disk or link failures. The functionality of an array controller

Figure 2.5: Disk array architectures.

Array Controller (Hardware or Host Software)

Disk

Disk

•
•
•

Disk

Disk

•
•
•

• • •

Disk

Disk

•
•
•

(a) Bus-connected (b) High-bandwidth serial connected

Port(s) to host computer(s)

Disk Disk • • • Disk

• • •

Array
Controller

Port(s) to host computer(s)

18

can also be implemented in software executing on the subsystem’s host or hosts. The algo-

rithms and analyses presented in this thesis apply to all array controller implementations.

2.2.2.2. Defining the RAID levels: data layout and ECC

An array controller implements the abstraction of alinear address space. The array

appears to the host as a linear sequence of data units, numbered 0 throughN·B- 1, where

N is the number of disks in the array andB is the number of units of user data on a disk.

Units holding ECC do not appear in the address space exported by the array controller;

they are not addressable by the application program. The array controller translates

addresses in this linear space into physical disk locations (disk identifiers and disk offsets)

as it performs requested accesses. It is also responsible for performing the redundancy-

maintenance accesses implied by application write operations. We refer to the mapping of

an application’s logical unit of stored data to physical disk locations and associated ECC

locations as the disk array’slayout.

Fundamental to all disk arrays is the concept ofstriping consecutive units of user data

across the disks of the array [Kim86, Livny87, Patterson88, Gibson92, Merchant92b].

Striping is defined as breaking up the linear address space exported by the array controller

into blocks of some size, and assigning the consecutive blocks to consecutive disks, rather

than filling each disk with consecutive data before switching to the next. Thestriping unit

(or stripe unit) [Chen90b] is the maximum amount of consecutive data assigned to a single

disk. The array controller has the freedom to set the striping unit arbitrarily; the unit can be

as small as a single bit or byte, or as large as an entire disk. Striping has two benefits: auto-

matic load balancing in concurrent workloads, and high bandwidth for large sequential

transfers by a single process.

Disk arrays achieve load balance in concurrent workloads (those that have many pro-

cesses concurrently accessing the stored data) by selecting the stripe unit to be large

enough that most small accesses are serviced by a single disk. Such arrays typically select

the striping unit to be larger than the expected access size, which causes a typical access to

be serviced by only one disk. This allows the independent processes to perform small

accesses concurrently in the array, and as long as the processes’ access patterns are not

pathologically regular with respect to the striping unit, it assures that the load will be

approximately evenly balanced over the disks. Thus, anN-disk coarse-grain striped array

19

can serviceN I/O requests in parallel, but each of them occurs at the bandwidth of a single

disk.

Arrays achieve high data rates in low-concurrency workloads by striping at a finer

grain, for example, one byte or one sector. Such arrays are used when the expected work-

load is a single process requesting data in very large blocks. Fine-grain striping assures

that each access uses all the disks in the array, which maximizes performance when the

workload concurrency (number of processes) is one4. After the initial seek and rotational

delay penalties associated with each access, a fine-grain-striped array transfers data to or

from the CPU atN times the rate of a single disk. Therefore, a fine-grain striped array can

service only one I/O at any one time, but is capable of reading or writing the data at a very

high rate.

Patterson, Gibson, and Katz [Patterson88] classified redundant disk arrays into five

types, called RAID Levels 1 through 5, based on the organization of redundant informa-

tion and the layout of user data on the disks. This terminology has gained wide acceptance

[RAID93], and is used throughout this dissertation. The term “RAID Level 0” has since

entered common usage to indicate a non-redundant array. Figure 2.6 illustrates the layout

of data and redundant information for the six RAID levels. The remainder of this section

briefly introduces each of the levels, and subsequent sections provide additional details.

RAID Level 1, also calledmirroring or shadowing, is the standard technique used to

achieve fault-tolerance in traditional data storage subsystems [Katzman77, Bitton88]. The

disks are grouped into mirror pairs, and one copy of each data block is stored on each of

the disks in the pair. To unify the taxonomy, RAID Level 1 defines the user data to be

block-striped across the mirror pairs, but traditional mirrored systems instead fill each disk

with consecutive user data before switching to the next. This can be though of as setting

the stripe unit to the size of one disk. RAID Level 1 is a highly reliable organization since

the system can tolerate multiple disk failures (up toN/2) without losing data, so long as no

two disks in a mirror pair fail. It can be generalized to provide multiple-failure tolerance

4. Since the host views the array as one large disk, it never attempts to read or write less than one
sector, and hence every user access uses all the disks in the array. Note that one sector is the mini-
mum unit that can be read from or written to an individual disk, and so a fine-grain striped array
typically disallows accesses that are smaller thanN times the size of one sector, whereN is the
number of disks in the array. This rarely poses a problem since fine-grain striped arrays are typi-
cally used in applications where the average request size is very large.

20

Disk 0 Disk 1 Disk 2 Disk 3

D0 D1 D2 D3

D6 D7 D8 D9

D12 D13 D14 D15

0

1

2

RAID Level 0: Nonredundant

Disk 4

D4

D10

D16

Disk 5

D5

D11

D17

Disk 0 Disk 1 Disk 2 Disk 3

D0 D0 D1 D1

D3 D3 D4 D4

D6 D6 D7 D7

0

1

2

RAID Level 1: Mirroring

Disk 4

D2

D5

D8

Disk 5

D2

D5

D8

D9 D9 D10 D10 D11 D113

Disk 0 Disk 1 Disk 2 Disk 3

d0 d1 d2 d3

d4 d5 d6 d7

d8 d9 d10 d11

0

1

2

RAID Level 2: Hamming-Code ECC

Disk 4

h0-3

Disk 5

d12 d13 d14 d15

h4-7

h8-11

h12-153

0

1

2

RAID Level 3: Byte-Interleaved Parity

Disk 5

p0-4

p5-9

p10-14

p15-193

Disk 4

d4

d9

d14

d19

Disk 3

d3

d8

d13

d18

Disk 2

d2

d7

d12

d17

Disk 1

d1

d6

d11

d16

Disk 0

d0

d5

d10

d15

0

1

2

RAID Level 4: Block-Interleaved Parity

Disk 5

P0-4

P5-9

P10-14

P15-193

Disk 4

D4

D9

D14

D19

Disk 3

D3

D8

D13

D18

Disk 2

D2

D7

D12

D17

Disk 1

D1

D6

D11

D16

Disk 0

D0

D5

D10

D15

0

1

2

RAID Level 5: Rotated Block-Interleaved Parity

Disk 5

P0-4

D5

D11

D173

Disk 4

D4

P5-9

D10

D16

Disk 3

D3

D9

P10-14

D15

Disk 2

D2

D8

D14

P15-19

Disk 1

D1

D7

D13

D19

Disk 0

D0

D6

D12

D18

4 D23

D295

D22

D28

D21

D27

D20

D26

P20-24

D25

D24

P25-29

Figure 2.6: Data and redundancy organization in RAID Levels 0 through 5.

The figure shows the first few units on each disk in each of the RAID levels. “D” repre-
sents a block of user data (of unspecified size, but some multiple of one sector), “d’ a bit
or byte of user data, “hx-y” a Hamming code computed over user data bits/bytes x
through y, “px-y” a parity (exclusive-or) bit/byte computed over data blocks x through y,
and “Px-y” a parity block over user data blocks x through y. Note from these definitions
that the number of bytes represented by each individual box and label in the above dia-
grams varies with the RAID level. The numbers on the left indicate the offset into the disk,
expressed in stripe units. Shaded blocks represent redundant information, and non-shaded
blocks represent user data.

Level 0 is non-redundant, and therefore not fault-tolerant. Level 1 is simple mirroring, in
which two copies of each data block are maintained. Level 2 uses a Hamming error-cor-
rection code to achieve fault-tolerance at a lower capacity overhead than Level1. Levels 3
through 5 exploit the fact that failed disks are self-identifying. Thus Levels 3 through 5
achieve fault tolerance using a simple parity (exclusive-or) code, lowering the capacity
overhead to only one disk out of 6 in this example. Levels 3 and 4 are distinguished only
by the size of the striping unit: one bit or one byte in Level 3, and one block in Level 4. In
Level 5, the parity blocks rotates through the array rather than being concentrated on a
single disk, to avoid throughput loss due to contention for the parity drive.

D18 D19 D20 D213 D22 D23

(Left-Symmetric)

21

by maintaining more than two copies of each data unit. Its drawback is that its cost per

megabyte of storage is at least double that of RAID Level 0.

RAID Level 2 provides high availability at lower cost per megabyte by utilizing well-

known techniques used to protect main memory against transient data loss. The disks

comprising the array are divided intodata disks andcheck disks. User data is bit- or byte-

striped across the data disks, and the check disks hold a Hamming error correcting code

[Peterson72, Gibson92] computed over the data in the corresponding bits or bytes on the

data disks. This reduces the storage overhead for redundancy from 100% in mirroring to a

value in the approximate range of 25-40% (depending on the number of data disks) in

RAID Level 2, but reduces the number of failures that can be tolerated without data loss.

As will be seen, the reliability and performance of such a system can still be very high. It

can be extended to support multiple failure toleration by using ann-failure-tolerating

Hamming code, which of course increases the capacity overhead for redundancy and the

computational overhead for computing the codes.

Thinking Machines Corporation’s Data Vault storage subsystem [TMC87] employed

RAID Level 2, but this organization ignores an important fact about failure modes in disk

drives. Since disks contain extensive error detection and correction functionality, and

since they communicate with the outside world via complex protocols, the array controller

can directly identify failed disks from their status information, or by their failure to adhere

to the communications protocol. A system in which failed components areself-identifying

is called anerasure channel, to distinguish it from anerror channel, in which the locations

of the errors are not known. Ann-failure detecting code for an error channel becomes an

n-failure correcting code when applied to an erasure channel [Gibson89, Peterson72].

RAID Level 3 takes advantage of this fact to reduce the storage overhead for redundancy

still further.

In RAID Level 3, user data is bit- or byte-striped across the data disks, and a simple

parity code is used to protect against data loss. A single check disk (called theparity disk)

stores the parity (cumulative exclusive-or) over the corresponding bits on the data disks.

This reduces the capacity overhead for redundancy to 1/N. When the controller identifies a

disk as failed, it can recover any unit of lost data by reading the corresponding units from

all the surviving disks, including the parity disk, and XORing them together. To see this,

22

assume that disk 2 in the RAID Level 3 diagram within Figure 2.6 has failed, and note that

Multiple failure tolerance can be achieved in RAID Level 3 by using more than one

check disk, and a more complex error-detecting/correcting code such as a Reed-Solomon

[Peterson72] or MDS code [Burkhard93, Blaum94]. RAID Level 3 has very low storage

overhead and provides very high data transfer rates. Since user data is striped on a fine

grain, each user access uses all the disks in the array, and hence only one access can be

serviced at any one time. Thus this organization is best suited for applications such as sci-

entific computation, in which a single process requests a large amount of sequential data

from the array.

Since all accesses use all disks in RAID Level 3, the disk heads move in unison, and

so the cylinder over which the heads are currently located is always the same for all disks

in the array. This assures that the seek time for an access will be the same on all disks,

which avoids the condition in which some disks are idle waiting for others to finish their

portion of an access. In order to assure that rotational latency is also the same for each

access on each disk, systems using RAID Level 3 typically use phase-locked loop cir-

cuitry to synchronize the rotation of the spindles of the disks comprising the array. Many

disks currently on the market support this spindle synchronization.

RAID Level 4 is identical to Level 3 except that the striping unit is relatively coarse-

grained (perhaps 32KB or larger [Chen90b]), rather than a single bit or byte. The block of

parity that protects a set of data units is called aparity unit. A set of data units and their

corresponding parity unit is called aparity stripe. RAID Level 4 is targeted at applications

like on-line transaction processing (OLTP), in which a large number of independent pro-

cesses concurrently request relatively small units of data from the array. Since the striping

unit is large, the probability that a single small access will use more than one disk is low,

and hence the array can service a large number of accesses concurrently. This organization

is also effective at workloads that are predominantly small accesses, but contain some

fraction of larger accesses. The array services concurrent small accesses in parallel, but

achieves a high data rate on the occasional large access by utilizing many disk arms.

In RAID Level 4, each disk typically services a different access, and so unless the

p0 4− d0 d1 d2 d3 d4⊕ ⊕ ⊕ ⊕=() d2 d0 d1 p0 4− d3 d4⊕ ⊕ ⊕ ⊕=()⇒

23

workload applied contains a significant fraction of large accesses, the heads do not remain

synchronized. Consequently, there is no compelling reason to synchronize the spindles

either. However, spindle synchronization never degrades performance, and can improve it

on large accesses, disks arrays typically use it whenever the component disks support it.

The problem with RAID Level 4 is that the parity disk can be a bottleneck in work-

loads containing a significant fraction of small write operations. Each update to a unit of

user data implies that the corresponding parity unit must be updated to reflect the change.

Thus the parity disk sees one update operation for every update to every data disk, and its

utilization due to write operations isN-1 times larger than that of the data disks. This does

not occur in RAID Level 3, since every access uses every disk. To solve this problem,

RAID Level 5 distributes the parity across the disks of the array. This assures that the par-

ity-update workload is as well-balanced across the disks as the data-update workload.

In RAID Level 5, there are a variety of ways to lay out data and parity such that parity

is evenly distributed over the disks [Lee91]. The structure shown in Figure 2.6 is called

the left-symmetric organization, and is formed by first placing the parity units along the

diagonal, and then placing the consecutive user data units on consecutive disks, at the low-

est available offset on each disk. This method for assigning data units to disks assures that,

if there are any accesses in the workload large enough to span many stripe units, the max-

imum possible number of disks will be used to service them. Chapter 3 clarifies the impor-

tance of this property.

RAID Levels 2 and 4 are of less interest than the others, because levels 3 and 5 pro-

vide better solutions, respectively. We omit Levels 2 and 4 from the remaining discussion.

2.2.2.3. Reading and writing data in the different RAID levels

This section describes the techniques used to read and write data in the different

RAID levels, both when the array is fault-free (“fault-free mode”) and when it contains a

single failed disk (“degraded mode”). The focus is on the techniques used to maintain par-

ity, and to continue operation in the presence of failure. This section uses the terms “read

throughput” and “write throughput” to indicate the maximum rates at which data can be

read from or written to the array.

24

In all cases, the array controller maps the linear array address and access type sup-

plied by the host (the “user” read or write) to the indicated set of operations on physical

disks (the corresponding “disk” reads and/or writes). In RAID Level 0, the set of reads or

writes so generated can be immediately and concurrently initiated, since there is no parity

to maintain, and no possibility of continuing operation in the presence of failure. Thus the

read throughput and write throughput of a RAID Level 0 array are bothN times the

throughput of a single disk. In Levels 1, 3, and 5, the disk operations triggered by a user

read or write operation are more complex, especially in the presence of a disk failure, and

often must be sequenced appropriately.

2.2.2.3.1. RAID Level 1

Figure 2.7 illustrates the different read and write operations in RAID Level 1. In fault-

free mode, the controller must send user write operations to both disks. This reduces the

maximum possible write throughput to 50% of that of RAID Level 0. The two write oper-

ations can, in general, occur concurrently, but some systems perform them sequentially in

order to guarantee that the old data will be recoverable should the first write fail.

Typically, read requests are sent to only one of the two disks in the pair, so that the

other will be free to service other read operations. The controller can service user reads in

fault-free mode from either copy of the data. This flexibility allows the controller to

improve throughput by selecting, for each user read operation, the disk that will incur the

least positioning overhead [Bitton88, Bitton89]. This is frequently called theshortest seek

optimization, and can improve read throughput by up to about 15% over RAID Level 0

[Chen90a].

D D

select
closest

D D D D D D

Fault-Free
Write

Fault-Free
Read

Degraded
Write

Degraded
Read

Figure 2.7: Read and write operations in RAID Level 1 (mirroring).

25

In degraded mode, the controller sends user write operations that target a unit with

one copy on the failed disk only to the surviving disk in the pair, instead of to both. This

does not affect the utilization on the surviving disk, because it does not absorb any write

traffic that it would not otherwise encounter. However, in the presence of a disk failure, the

surviving disk must absorb, in addition to its regular workload, all the read traffic targeted

at the failed drive in fault-free mode. In read-intensive workloads, this can cause the utili-

zation on the surviving disk to double. User reads and writes that do not target any units on

the failed disk occur as if the array were fault-free.

2.2.2.3.2. RAID Level 3

Figure 2.8 illustrates reads and writes in RAID Level 3. The following discussion

Figure 2.8: Read and write operations in RAID Level 3 (bit-interleaved parity).

The diagonal lines in the figure indicate that when the host accesses (reads or writes) a
block of data consisting of bits0 throughn-1, disk0 services bits0, 3, 6, …,n-3, disk1
services bits1, 4, 7, …,n-2, and disk 2 services bits2, 5, 8, …,n-1. The array controller
arranges for the correct bits to read from or written to the correct drive. On a write
operation, the controller writes to disk3 a block containing the following bits:(0⊕1⊕2),
(3⊕4⊕5), (6⊕7⊕8), …, ((n-3)⊕(n-2)⊕(n-1)). Note that the controller implements this
bit-level parity operation using only sector-sized accesses on the disks, and son must be
a multiple of8·N·S, whereN is the number of disks in the array, andS is the number of
bytes in a sector. The controller typically enforces this condition, since the only alterna-
tive is to use read-modify-write operations on the individual disks, which drastically
reduces efficiency.

Fault-Free
Write

pddd

Fault-Free
Read

pddd

Degraded
Write

pddd

Degraded
Read

pddd

26

assumes that each user access is some multiple of(N-1)·S in size, whereN is the number

of disks in the array andS is the number of bytes in a sector (almost always 512). This is

because each access uses all data disks, and the minimum sized unit that can be read from

or written to a disk is one sector. If the array is to support accesses that are not a multiple

of this size, the controller must handle any partial-sector updates via read-modify-write

operations, which can degrade write performance.

In fault-free mode, user write operations update the old data in place. The controller

updates the parity disk by computing the cumulative XOR of the data being written to

each drive, and writing the result to the parity disk concurrently with the write of the user

data to the data disks. The controller may perform this XOR operation before the write is

initiated, or as the data flows down to the disks [Katz93]. Because the XOR happens at

electronic speeds (a few microseconds per complete user access) but the disk runs at

mechanical speeds (milliseconds per access), this computation typically has no measur-

able effect on the performance of the array. User read operations simply stream the data

into the controller; the parity disk remains idle during this time.

A degraded-mode user write operation in RAID Level 3 occurs in exactly the same

manner as in fault-free mode, except that the controller suppresses the write to the failed

disk. A degraded-mode user read is serviced by reading the parity and the surviving data,

and XORing them together to reconstruct the data on the failed drive. Disk arrays that

stripe data on a fine grain (a bit or a byte) have the property that their performance in

degraded mode is not significantly different than their performance in fault-free mode.

This is because the controller accesses all disks during every access in any case, and so

supporting degraded-mode operation simply amounts to modifying the bit streams sent to

and from each drive. The XOR operations that occur in degraded mode are typically per-

formed as the data streams into or out of the controller, and so they do not significantly

increase access times.

2.2.2.3.3. RAID Level 5

Figure 2.9 illustrates the various translations of user accesses to disk accesses in

RAID Level 5. User write operations in fault-free mode are handled in one of three ways,

depending on the number of units being updated. In all cases, the update mechanisms are

designed to guarantee the property that after the write completes, the parity unit holds the

27

cumulative XOR over the corresponding data units, or

If the update affects only one data unit, the prior content of that unit is read and

XORed with the new data about to be written. This produces a map of the bit positions that

need to be toggled in the parity unit in order that the parity unit should reflect the new data.

These changes are applied to the parity unit by reading its old contents, XORing in the

previously generated map, and writing the result back to the parity unit. The correctness of

this transformation is shown as follows, where a new data blockD2,newis being written to

Figure 2.9: Read and write operations in RAID Level 5 (rotated parity).

Fault-Free
Read-Modify-Write

PDDD

Data
Preread

Data
Update

Parity
Preread

Parity
Update

Fault-Free
Reconstruct-Write

PDDD

Fault-Free
Large-Write

PDDD

Fault-Free
Read

PDDD

Degraded
Write

PDDD

Degraded
Read

PDDD

12 3 4

Pnew D1 D2 D3 ... DN 1−⊕ ⊕ ⊕ ⊕=

28

a unit on disk number 2 in anN-disk array:

This parity update operation is called aread-modify-write, and is easily generalized to

the case where the user access targets more than one data unit. In this case, the controller

reads the previous contents of all data units to be updated, and then XORs them together

with the new data, prior to reading, XORing, and re-writing the parity unit. Read-modify-

write updates are used for all fault-free user write operations in which the number of data

units being updated is less than half the number of data units in a parity stripe.

The preread-and-then-write operation performed on the data unit is typically done

atomically to minimize the positioning overhead incurred by the access [Stodolsky93].

This is also true for the parity unit. Since the old data must be available to perform the par-

ity update, the data preread-and-write is typically allowed to complete (atomically) before

the parity preread-and-write is started.

In applications that tend to read blocks of data shortly before writing them, the perfor-

mance of the read-modify-write operation can be improved by acquiring the old contents

of the data unit to be updated from the system’s buffer cache, rather than reading it from

disk. This reduces the number of disk operations required from four to three. This situa-

tion is very common in OLTP environments [TPCA89, Menon92c].

When the number of data units being updated exceeds half of one parity stripe, there

is a more efficient mechanism for updating the parity. In this case, the controller writes the

new data without pre-reading the old contents of the written unit, reads and XORs together

all of the data units in the parity stripe that arenot being updated, XORs in to this result

each of the new data units to be written, and writes the result to the parity unit. The new

parity that is written is therefore the cumulative XOR of the new data units and the data

units not being updated, which is correct. This is called areconstruct-write operation,

because of its similarity to the way failed data is recovered.

Pnew Pold D2 old, D2 new,⊕()⊕= ⇒

Pnew D1 D2 old, D2 old,⊕() D2 new, D3 ... DN⊕ ⊕ ⊕ ⊕ ⊕= ⇒

Pnew D1 D2 new, D3 ... DN⊕ ⊕ ⊕ ⊕=

29

The final mechanism used to update parity in a fault-free RAID Level 5 array is the

degenerate case of the reconstruct-write that occurs when a user access updates all data

units in a parity stripe. In this case, the controller does not need to read any old data, but

instead simply updates each data unit in-place, and then XORs together all the new data

units in buffer memory and writes the result to the parity unit. This is often called alarge

write, and is the most efficient form of update.

In degraded mode, a user read requesting data on the failed disk is serviced by reading

all the units in the parity stripe, including the parity unit, and XORing them together to

reconstruct the requested data unit(s). User reads that do not request data on the failed disk

are serviced normally. User write requests updating data on the failed drive are serviced

via reconstruct-writes, independently of the number of units being updated, with the write

to the failed disk suppressed. Since the data cannot be written, this method of update

causes the new data to be reflected in the parity, so that the next read will return the correct

data. User write requests not updating data on the failed drive are serviced normally,

except in the reconstruct-write case, where the parity needs to be read. When a user write

request updates data for which the parity has failed, the data is simply written in-place,

since no parity-maintenance operations are possible.

2.2.2.4. Comparing the performance of the RAID levels

Table 2.1, adapted from Patterson, Gibson, and Katz [Patterson88], compares the

fault-free performance and capacity overhead of the RAID levels. The values are all first-

order approximations, since there are a wide variety of effects related to seek distance,

head synchronization, access patterns, etc., that influence performance, but the table pro-

vides a baseline comparison. It’s clear that RAID Level 1 offers better performance on

concurrent, small-access workloads, but does so at a high cost in capacity overhead.

2.2.2.5. On-line reconstruction

The preceding has shown how a disk array operates, and how it may continue to oper-

ate in the presence of a single disk failure. The next step to take is that the array should

have the abilityrecover from the failure, that is, restore itself to the fault-free state. Fur-

ther, a disk array should be able to effect this recovery without taking the system off-line.

This is implemented by maintaining one or more on-line spare disks in the array. When a

30

disk fails, the array switches to degraded mode as described above, but also invokes a

background reconstruction process to recover from the failure. This process successively

reconstructs the data and parity units that were lost when the disk failed, and stores them

on the spare disk. The mechanism by which this is accomplished is called thereconstruc-

tion algorithm. Once all the units have been recovered, the array returns to normal perfor-

mance and is once again single-failure tolerant, and so the recovery is complete. The

primary topic of this thesis is the design of disk arrays and reconstruction algorithms that

minimize both the duration and the user-performance impact of the reconstruction pro-

cess.

2.2.2.6. Related work: variations on these organizations

This section summarizes industrial and academic research on disk arrays. It defines

nine categories of investigation, and presents brief summaries of some papers in each.

These studies do not relate specifically to the topic of availability, but rather serve as back-

ground in the area of redundant disk arrays. Subsequent chapters describe in detail prior

studies that are specifically related to one of the topics covered in this dissertation.

2.2.2.6.1. Multiple failure toleration

Each of the RAID levels defined above is only single-failure tolerant; in each organi-

RAID
Level

Large Accesses Small Accesses Capacity
Overhead

(%)

Max Con-
currencyRead Write RMW Read Write RMW

0 100 100 100 100 100 100 0 N

1 100+ 50 66 100+ 50 66 100 N

3 100 100 100 n/a n/a n/a 100/N 1

5 100 100 100 100 25 33 100/N N

Table 2.1: First-order comparison between the RAID levels for anN-disk array.

The table reports performance numbers as percentages of RAID Level 0 performance. The
“RMW” column gives the performance of the array when the application reads each data
unit before writing it, which eliminates the need for the data preread. The capacity over-
heads are expressed as a percentage of the user data capacity of the array. The concur-
rency figures indicate the maximum number of user I/Os that can be simultaneously
executed. The table reports the maximum concurrency numbers for Levels1 and5 as N
because such arrays can supportN concurrent reads, but writes involve multiple I/O oper-
ations, and this reduces the maximum supportable concurrency.

31

zation there exist pairs of disks such that the simultaneous failure of both disks results in

irretrievable data loss. This is adequate in most environments, because the reliability of

the component disks is high enough that the probability of incurring a second failure

before a first is repaired is low. There are, however, three reasons why single-failure toler-

ance may not be adequate for all systems. First, recalling that the reliability of the array

falls as the number of disks increases, the reliability of very large single-failure tolerating

arrays may be unacceptable [Burkhard93]. Second, applications in which data loss has

catastrophic consequences may mandate a higher degree of reliability than can be deliv-

ered using the RAID architectures described above. Finally, disk drives sometimes exhibit

latent sector failures, in which the contents of a sector or group of sectors is irretrievably

lost, but the failure is not detected because the data is never accessed. The rate at which

this occurs is very low, but if a latent sector failure is detected on a surviving disk during

the process of reconstructing the contents of a failed disk, the corresponding data becomes

unrecoverable. Multiple-failure toleration allows recovery even in the presence of latent

sector failures.

The drawback of multiple failure toleration is that it degrades write performance: in

ann-failure tolerating array, every write operation must update at leastn+1 disks, so that

some record of the write will remain shouldn of thosen+1 disks fail [Gibson89]. Thus the

write performance of the array decreases in proportion to any increase inn.

Gibson et. al. [Gibson89] treated multiple failure tolerance as an error-control coding

problem [Peterson72]. They restricted consideration to the class of codes that (1) do not

encode user data, but instead simply store additional “check” information in each parity

stripe, (2) use only parity operations (modulo-2 arithmetic) in the computation of the

check information, and (3) incur exactlyn+1 disk writes per user write. They defined three

primary figures of merit on the codes used to protect against data loss: themean time to

data loss, which is the expected time until unrecoverable failure in an array using the indi-

cated code, thecheck disk overhead, which is the ratio of disks containing ECC to disks

containing user data, and thegroup size, which is the number of units in a parity stripe,

including check units, supportable by the code. They demonstrated codes for double- and

triple-error toleration based on three primary techniques, which they callN-dimensional

parity, full-n codes, and theadditive-3 code. Each of these is a technique for defining the

32

equations that relate each check bit to a set of information bits. In comparing the tech-

niques according to the figures of merit, they show multiple-order-of-magnitude reliability

enhancements in moving from single- to multiple-failure toleration, and achieve this using

relatively low check disk overheads ranging from 2% to 30%.

Burkhard and Menon [Burkhard93] described two multiple-failure tolerating schemes

as examples ofmaximum distance separable (MDS) codes [MacWilliams78]. The first

uses afile dispersal matrix to distribute a block of data (afile in their terminology) inton

fragments such that anym< n of them suffice to reconstruct the entire file. An array con-

structed using such a code can tolerate (n-m) concurrent failures without losing data. The

second, described fully by Blaum et. al. [Blaum94], clusters together sets ofN-1 parity

stripes, whereN is the number of disks in the array, and stores two parity units per parity

stripe. The first parity unit holds the same information as in RAID Level 5, and the second

holds parity computed using one data unit from each of the parity stripes in the cluster.

Blaum et. al. showed that this scheme tolerates two simultaneous failures, is optimal with

respect to check disk overhead and update penalty, and uses only XOR operations in the

computation of the parity units.

2.2.2.6.2. Addressing the small-write problem

Recall from Section 2.2.2.3 that small write operations in RAID Level 5 incur up to

four disk operations: data preread, data write, parity preread, and parity write. This

degrades the performance of small write operations by a factor of four when compared to

RAID Level 0. Several organizations have been proposed to address this problem.

Menon and Kasson [Menon89, Menon92a] proposed a technique based onfloating

the data and/or parity units to different disk locations upon each update. Normally, the

controller services a small write operation by pre-reading the old data, waiting for the disk

to spin through one revolution, writing the new data back to the original location, and then

repeating this process for the parity unit. In the floating data/parity scheme, the controller

reserves (leaves unoccupied) some number of data units on each track of each disk. After

each preread operation, the array controller writes the new data to a rotationally conve-

nient free location, rather than writing it in-place. This saves up to one full rotation (10-17

milliseconds of disk time) per preread/write pair. An analytical model in the paper shows

that a free unit can typically be found within about two units of the location of the old data.

33

This makes each preread/write pair take only slightly longer than a single access, and thus

can potentially nearly double the small-write performance of the array. Menon and Kasson

concluded that the best capacity/performance tradeoff is achieved by applying this floating

only to the parity unit, rather than to both data and parity. A potential problem with this

approach is that the array controller must be intimately familiar with the geometry and

performance characteristics of the component disks, as well as the latencies involved in

communicating with them. This requires a high degree of predictability from the disks,

and makes the design difficult to verify, tune, and maintain.

Another technique proposed to address the small-write problem is to eliminate them

from the workload. TheLog-Structured File System (LFS) [Rosenblum91, Seltzer93] has

the potential to achieve this by organizing the file system as an append-only log. The moti-

vation behind this file system is that a disk drive is able to service sequential accesses at

about twenty times the bandwidth of random accesses. All user writes are held in memory

until enough have accumulated to allow them to be written to disk using a single large

update. Over time, this causes the disk to fill with dead data, and so acleaner process peri-

odically sweeps through the disk, compacts live files into sequential extents, and reclaims

dead space. This technique improves write performance by causing all writes to be

sequential, and can potentially improve read performance by causing files written contigu-

ously to end up contiguous on the disk. When the underlying storage mechanism is a disk

array, the only writes that are encountered are large enough to span entire parity stripes,

and thus the large-write optimization always applies.

Stodolsky et. al. [Stodolsky93] adapted the ideas behind LFS to the problem of parity

maintenance, and proposed an approach based on logging the parity changes generated by

each write operation, rather than immediately updating the parity upon each user write. In

this scheme, the controller reads the old data (or acquires it from the buffer cache), and

writes the new data as before. It then XORs together the old and new data to produce a

parity update record, which it appends it to a write-only buffer, rather XORing it with the

old parity. The controller spills the entire buffer to disk when it becomes full. No parity

operations are performed for each user write, but some of the array’s capacity (about one

disks’ worth) must be reserved to hold the parity update logs. Eventually the log space in

the array becomes full, at which time the controller empties it by reading the log records

34

and the corresponding parity units, XORing them together, and writing the result back out

to the parity locations. Note that the controller buffers only parity information, and so is

not vulnerable to data loss due to power failure. The advantage of this approach is that in

RAID Level 5, parity is updated using a large number of small, random accesses, whereas

in parity logging, it is updated using a smaller number of large, sequential accesses. The

paper showed simulation results indicating that this technique can allow the performance

of RAID Level 5 arrays to approach, or under certain conditions even exceed, that of mir-

roring.

Menon and Cortney [Menon93] described the architecture of a controller that

improves small-write performance by deferring the actual update operations for some

period of time after the application performs the write. In this approach, the controller

stores the data associated with a write in a nonvolatile, fault-tolerant cache memory in the

array controller. Immediately upon storing the data in the cache, the host computer is told

that the write is complete, even though the data has not yet been sent to disk. The control-

ler maintains the data block in the cache until another block replaces it, at which time it is

written (“destaged”) to disk using the four-operation RAID Level 5 update. This improves

write performance in two ways. First, if the host performs another write to the same unit

prior to destage, the new data can simply replace the old in the cache, and the first write

need not occur at all. Second, if the host writes several units in the same track, they are all

destaged at the same time, which greatly improves disk efficiency. This is an expensive

solution, suitable only for large-scale systems, because of the necessity of incorporating

the large, nonvolatile, fault-tolerant cache.

2.2.2.6.3. Spare space organizations

RAID Level 5 arrays typically maintain one or more on-line spare disks, so that

reconstruction can be immediately initiated should one of the primary disks fail. This

spare disk can be viewed as a system resource that is grossly underutilized; the throughput

of the array could be increased if this disk could be used to service user requests.

Menon and Kasson [Menon92b] described and evaluated three alternatives for orga-

nizing the spare space in a RAID Level 5 disk array. The first,dedicated sparing, is the

default approach of dedicating a single disk as the spare. In the second, calleddistributed

sparing, the spare space is distributed amongst the disks of the array, much in the same

35

manner as parity is distributed in RAID Level 5. In the third technique,parity sparing, the

array is divided into at least two independent groups, and when a failure occurs, the

affected group is merged with another, with the parity space in the surviving group serving

as the spare space for the group containing the failure. In the latter two organizations, the

completion of reconstruction returns the array to fault-free mode, but in a different config-

uration than before the failure. For this reason, they require a separatecopyback phase in

the reconstruction process, to restore the array to the original configuration when the failed

disk has been physically replaced. The paper concluded that distributed sparing was pref-

erable to parity sparing due to improved reconstruction-mode performance.

2.2.2.6.4. Distributing the functionality of the array controller

The existence of a centralized array controller in both of the architectures shown in

Figure 2.5 has two disadvantages: it constitutes either a single point of failure or an expen-

sive system resource that must be duplicated, and its performance and connectivity limit

the scalability of the array to larger numbers of disks. Cao et. al. [Cao93] described a disk

array architecture they callTickerTAIP that distributes the controller functionality amongst

several loosely-coupled controller nodes. Each node controls a relatively small set of disks

(one SCSI string, for example), and communicates with the other nodes via a small, dedi-

cated interconnect network. Under the direction of the distributed controllers, data and

parity units, as well as control information, pass through the interconnect to effect the

RAID read and write algorithms. The paper demonstrated the elimination of several per-

formance bottlenecks through the use of the distributed-control architecture.

2.2.2.6.5. Striping studies

A variety of studies have looked at how to select the striping unit in a redundant disk

array. The choice is always made based on the characteristics of the expected workload.

Gray, Horst, and Walker [Gray90] objected to the notion of striping the data across

the disks comprising an array, arguing that fine-grain striping is inappropriate for transac-

tion processing systems because it causes more than one arm to be used per disk request,

and that coarse-grain striping has several drawbacks when compared to non-striped arrays.

These drawbacks stem primarily from the inability to address individual disks directly

from software. They include the inability to archive and restore a single disk, the software

36

problems inherent in re-coding existing device drivers to enable them to handle the

abstraction of one very large, highly concurrent disk, the problem of designing single

channels fast enough to absorb all bandwidth produced by the array, etc. They proposed

instead an organization in which the parity is striped across the array in large contiguous

extents at the end each disk. The data is not striped at all; the controller allocates sequen-

tial user sequentially on each disk, and fills each disk with data before using the next. This

is essentially equivalent to RAID Level 5 with a very large striping unit, but allows each

disk to be addressed individually. The paper conceded that none of these problems are

insurmountable in RAID arrays, but asserted that designers cannot ignore the problem of

retrofitting existing systems to use disk arrays.

Chen and Patterson [Chen90b] developed simple rules of thumb for selecting the

striping unit in a nonredundant disk array. They expect that these rules will hold, perhaps

with some modification, for redundant arrays as well. The study used simulation to evalu-

ate the performance of a block-striped RAID Level 0 on many different synthetically-gen-

erated workloads, and then investigated choices of the striping unit that maximize the

minimum observed throughput across all these workloads. They found that a good rule of

thumb is to select the striping unit according to the formula

whereS is a constant typically around 1/4. Note that the stripe unit size takes on its mini-

mum value (one sector) at concurrency one, in order to assure that the single requesting

process is able to utilize all the disks. The size of the striping unit increases as the concur-

rency rises in order to gradually reduce the probability that any particular access will use

more than one disk arm.

Lee and Katz [Lee91] described several different strategies for placing the parity units

amongst the striped data units. They found that the most significant performance effect of

varying parity placement was the number of disks used for large reads and writes; some

placement strategies caused fewer than the maximum number of possible disks to be used

on large accesses, and these suffered in performance. The left-symmetric parity placement

illustrated in the RAID Level 5 case of Figure 2.6 was among the best of the options.

Merchant and Yu [Merchant92b] noted that it is common for a database workload to

Size S avg positioning time disk xfer rateconcurrency 1−()⋅ ⋅ ⋅ 1 sector+=

37

consist of two components: transactions, and ad hoc, read-only queries into the database.

Transactions generate small, randomly distributed accesses into the array, whereas the ad

hoc queries often scan significant portions of the database. To efficiently handle this work-

load combination, they proposed a dual striping strategy for mirrored arrays, where the

size of the stripe unit is small in one copy (4 KB) and large in the other (32 KB). The

authors note that using a large stripe unit is efficient for relatively large accesses because it

reduces the number of actuators used, but under a small-access model, it can cause work-

load imbalance amongst the disks. They assert that the converse is true as well: a small

stripe unit achieves good workload balance, but causes too many actuators to be used per

large access. Thus they service the transactions using the small-stripe-unit copy of the

data, and the ad hoc queries with the large-stripe-unit copy. Merchant and Yu evaluated

this organization using both analytical modeling and simulation, with a synthetically gen-

erated workload that adhered to the assumptions made in designing the striping strategy.

They found substantial benefits to this approach.

2.2.2.6.6. Disk array performance evaluation

Chen et. al. [Chen90a] tackled the thorny problem of comparing RAID Level 5 to

RAID Level 1. The comparison is difficult to make because equating the number of actua-

tors causes the array capacities to differ, and vice versa. The authors addressed this prob-

lem by choosing to equate user data capacity and reporting two metrics: throughput at a

fixed 90th percentile response time, and throughput per disk at a fixed 90th percentile

response time. Their motivation for this was the assumption that systems will dictate a

minimum acceptable capacity and level of responsiveness, and will desire the maximum

possible throughput subject to these constraints. The authors evaluated the architectures

by implementing them in real hardware, and applying synthetically-generated workloads

that varied in the parameters of interest. The results largely validated the simple model of

Patterson et. al. [Patterson88], which is approximated in Table 2.1. They further showed

that due to the shortest-seek optimization, the RAID Level 1 outperformed the RAID

Level 5 on small-access dominated-workloads, whereas the reverse was true on large-

access workloads due to more efficient write operations in RAID Level 5.

2.2.2.6.7. Reliability modeling

Patterson et. al. [Patterson88] derived a simple expression for the mean time to data

38

loss (MTTDL) in a redundant disk array:

whereMTTFdisk is the mean time to failure of a component disk,Ngroups is the number of

independent groups in the array, each of which containsNdiskspergroup disks, including the

(possibly distributed) parity disk, andMTTRdisk is the mean time to repair (reconstruct) a

disk failure. This model assumes that disk failure rates are identical, independent, expo-

nentially distributed random variables. In arrays that maintain one or more on-line spare

disks, the repair time can be very short, a few minutes to half an hour, and so the mean

time to data loss can be very long.

Schulze et. al. [Schulze89] noted that the time until data loss due to multiple simulta-

neous disk failures, which is the only failure mode modeled by the above equation, is not

an adequate measure of true reliability because the failure of other system components

(array controllers, string controllers, cabling, air conditioning, etc.) can equally well cause

data to be lost or become temporarily inaccessible. This paper estimated the reliability of

each such component, and derived simple techniques for building redundancy into the

controllers, cabling, cooling, etc., so as to maximize the overall system reliability.

Modeling the reliability of disk arrays was the one of the primary topics of Gibson’s

Ph.D. dissertation [Gibson92, Gibson93]. He analyzed all of the assumptions behind the

simple equation given above, identified the conditions under which they do and do not

hold, and derived new reliability models for conditions not previously covered. Specifi-

cally, he investigated whether disk failure rates are truly exponentially distributed, derived

reliability models for disk arrays with dependent failure modes, extended these models to

take into account the possibility of spare-pool exhaustion, and investigated the reliability

implications of both the number and the connectivity of the spare drives. He verified the

models using Monte Carlo simulation of disk lifetimes, and found good agreement

between the two. This work theoretically and empirically validated the use of the models

and disk array structures described above.

MTTFRAID

MTTFdisk() 2

NgroupsNdiskspergroup Ndiskspergroup 1−() MTTRdisk
=

39

2.2.2.6.8. Improving the write-performance of RAID Level 1

As shown in Table 2.1, mirrored systems achieve only 50% of the write performance

of nonredundant arrays, because each write must be sent to two disks. This section

describes several studies intended to improve this performance. Most of the ideas here

relate to caching and deferring updates, and so apply to parity-encoded arrays as well.

Solworth and Orji proposed several variations on an organization to improve mir-

rored-array write performance. They first proposed implementing a large, nonvolatile,

possibly fault-tolerantwrite-only disk cache dedicated exclusively to write operations

[Solworth90]. In this scheme, the controller defers user write operations by holding the

corresponding data in the cache until a user read operation moves the disk heads to the

vicinity of the data to be written, at which time it destages the data to disk. In this sense,

this scheme is similar to the deferred-updated techniques described by Menon and Corney

[Menon93], with the primary difference being that reads are not cached in Solworth and

Orji’s proposal, and the cache replacement policies are adapted to account for this. The

authors do not address the question of whether some of the memory used for write-cach-

ing would be better used for read-caching.

In two follow-on studies, Solworth and Orji proposeddistorted mirrors [Solworth91]

anddoubly distorted mirrors[Orji93]. In the former, the controller updates data in-place

on the primary disk in a mirror pair, but writes the data to any convenient location on the

secondary drive. The controller maintains a data structure in memory describing the loca-

tion of each block on the secondary drive. This approach reduces the total disk-arm time

consumed in servicing a write request. The controller services small reads from either

copy, but services large reads from the primary copy only, since consecutive blocks on the

secondary are not in general sequential on the disk. In the latter (doubly distorted mirrors),

the authors combined the ideas of a write-only cache and write-anywhere semantics on the

secondary drive to eliminate the necessity that the cache be nonvolatile and fault-tolerant.

Polyzois, Bhide, and Dias [Polyzois93] proposed a modification to the deferred-write

technique in which the two disk arms in a mirror pair alternate between reading and writ-

ing. Deferred writes accumulate in the cache for some period of time, and then the control-

ler batches them together and writes them out to one drive. During this period, the other

drive services all read operations. The two drives then switch roles: the first services reads,

40

and the second destages deferred writes. This scheme yields very low latency access to

data at moderate workloads, because there is always one disk arm available to service user

read requests, and write operations incur only the latency required to install the data in the

cache.

2.2.2.6.9. Network file systems based on RAID

Several studies have looked at extending the ideas of striping and parity protection to

network file systems. This allows the file system to operate in the presence of server and/

or network failures, and provides for disaster recovery should all data stored at one site be

permanently destroyed. It achieves this at lower disk cost that the standard approach of file

duplication on multiple servers.

Stonebraker and Schloss [Stonebraker90] proposed an organization that is essentially

identical to RAID Level 5, with each disk replaced by a server in a network file system.

They evaluated the performance, overhead, and reliability of several variations on this

idea, and concluded that distributed RAID has many reliability advantages, but performs

poorly in the presence of failures. Other studies [Cabrera91, Hartman93] have extended

this idea to network file systems that stripe data for performance.

2.3. Evaluation methodology

This section describes the techniques and workloads used to evaluate the availability

techniques developed in this dissertation.

2.3.1. Simulation methodology

We performed nearly all the performance analyses in this paper using an event-driven

disk array simulator calledraidSim [Chen90b, Lee91], originally developed for the RAID

project at U.C. Berkeley [Katz89]. We chose simulation because hardware was not avail-

able to allow real implementation, and because accurate analytical models of disk array

performance are difficult to formulate due to the fact that a single user operation can

invoke multiple disk operations [Lee93].

As disks get smaller and less expensive, and as systems demand increased I/O rates,

41

the number of disks in a typical array will increase. For this reason, we focus our simula-

tions on array sizes that are larger than are common today. Specifically, the simulations

reported in subsequent sections use a default array size of 40 disks. In order to verify that

our conclusions are not specific to a particular array size, we also ran 20-disk simulations

in most cases. The performance of the 20 disk array was identical to that of the 40-disk

array for a given user workload measured in accesses per second per disk, and so in gen-

eral we report only the 40-disk results here.

All reported simulation results represent averages over five independently seeded

simulation runs. In nearly all cases, this resulted in very small confidence intervals (a few

percent of the mean) and so the performance plots in subsequent sections do not show the

actual intervals. Appendix C gives the 95% confidence interval computed for each run.

For simulations of fault-free and degraded-mode arrays, the simulation was not terminated

until the 95% confidence interval on the user response time had fallen to less than 3% of

the mean. For reconstruction-mode runs, the simulation was terminated at the completion

of reconstruction. All simulation were “warmed up” by running a few accesses before ini-

tiating the collection of statistics for that run.

2.3.2. TheraidSim disk array simulator

RaidSim consists of four primary components, illustrated in Figure 2.10. At the top

level of abstraction is a reference generator. This module simulates a set of independent

processes performing read and write operations in the data space of the array. In most

cases we configured the reference generator to produce synthetic workloads according to

prespecified distributions (described in the next subsection). This allows us to identify and

isolate specific performance effects in the array. This module also has the ability to apply

references traces taken from real applications. We used this ability to validate conclusions

by evaluating performance on more realistic workloads.

RaidSim sends the requests produced by this workload generator to aRAID striping

Reference RAID
Striping
Driver

Disk
Simulation

Module

Event
Driven

SimulatorGenerator

Figure 2.10: The structure of raidSim.

42

driver, whose function is to translate each user request into the corresponding set of disk

accesses. This code in this module was copied directly from the RAID device driver in the

Sprite operating system [Ousterhout88] used for the RAID-I prototype at U.C. Berkeley

[Lee90]. The original version of this code correctly controlled real hardware, and the Ber-

keley RAID group extracted it from Sprite and installed in raidSim with little or no modi-

fication. We extended this driver to support the disk array architectures and recovery

techniques described in the remainder of this dissertation. This assured that the set of disk

requests generated by each user request is identical to that which would be observed in a

real system, which validated the accuracy of the simulation. We made every extension

with the intention of preserving the property that this code could be re-installed in a device

driver and would continue to function. We did not actually perform this re-installation due

to lack of appropriate hardware. Table 2.2 shows the configuration of our extended version

of this striping driver.

RaidSim sends low-level disk operations generated by the striping driver to adisk

simulation module, which accurately models all significant aspects of each disk access

(seek time, rotation time, cylinder layout, etc.). Table 2.3 shows the characteristics of the

314 MB, 3-1/2 inch diameter IBM 0661 Model 370 (Lightning) [IBM0661] disks on

which we based the simulations. This disk was relatively current when we initiated this

study, but has since been superceded [IBM0664].

At the lowest level of abstraction in raidSim is anevent-driven simulator, which raid-

Sim modules invoke to cause simulated time to pass. This is fundamentally a co-routine

(lightweight process) package and a set of scheduling and queueing routines.

2.3.3. Default workload

This dissertation reports on many performance evaluations. In order to assure that the

Array size: 40 disks
Stripe unit size: 24KB
Reconstruction unit: 24KB
Head scheduling: FIFO
User data layout: Sequential in address space of array
Disk spindles: Synchronized

Table 2.2: Default array parameters for simulation.

43

results of different sets of simulations are directly comparable, it’s necessary to applied a

consistent workload to the array. We therefore developed a default workload and apply it

in most cases. Since the techniques developed in this thesis are most applicable in environ-

ments where the non-availability of data can lead to significant disruption in the service

provided by the application, we chose to model an on-line transaction processing (OLTP)

workload.

OLTP workloads are characterized by a large number of independent processes, con-

currently reading and writing data in relatively small units [TPCA89, Menon92c,

Ramakrishnan92]. They typically mandate a minimum level of responsiveness; for exam-

ple, the TPC-A transaction processing benchmark [TPCA89] requires that 90% of all

transactions complete in under two seconds. In many such environments, the system must

service ad hoc database queries simultaneously with the transaction workload, which leads

to a small percentage of larger accesses in the workload. Because of the random nature of

the workload, caching is not highly effective on the actual account records comprising the

database, and so the workloads observed by the storage subsystem are typically read-dom-

inated [Ramakrishnan92]. This is the workload captured in the simulations.

Geometry: 949 cylinders, 14 heads, 48 sectors/track
Sector size: 512 bytes
Revolution time: 13.9 ms
Seek time model:

(ms,cyls = seek distance in cylinders-1)
2.0 ms min, 12.5 ms average, 25 ms max

Track skew: 4 sectors
Cylinder skew: 17 sectors
MTTF: 150,000 hours

2.0 0.01 cyls 0.46 cyls⋅+⋅+

Table 2.3: Parameters of the IBM 0661 Model 370 (Lightning) drive.

Type % of workload Operation Size (KB) Alignment (KB) Distribution
1 80% Read 4 4 Uniform
2 16% Write 4 4 Uniform
3 2% Read 24 24 Uniform
4 2% Write 24 24 Uniform

Number of requesting processes: 5 x (number of disks)
Think time distribution: Exponential, mean varied to adjust offered load

Table 2.4: Default workload parameters for simulations.

44

Table 2.4 shows the default workload generated for the simulations, which we based

loosely on access statistics measured on an airline-reservation OLTP system [Ramakrish-

nan92]. A majority of the studies in this dissertation use this workload, or one derived

from it by modifying a single parameter.

45

Chapter 3: Disk Array Architectures and Data Layouts

This chapter describes disk array architectures and data layout mechanisms that can

be used to design storage subsystems that exhibit good failure-recovery performance. The

primary focus is on a technique we callparity declustering that reduces the amount of

work required of each surviving disk to reconstruct each unit of data on a failed disk. This

improves reconstruction time by reducing the total number of input/output operations

needed to recover the contents of a failed drive, and also improves user response time by

reducing the number of operations necessary to effect the on-the-fly reconstruction of a

data unit requested by a user. Further, it reduces the failure-induced per-disk load increase

from about 60%, as experienced by a RAID Level 5 array ([Ng92a], see also Section

3.3.3.1) to an arbitrarily-small fraction, thereby allowing the fault-free disk utilization to

be higher than in RAID Level 5 without risking saturation should a failure occur. Further

still, this technique balances all failure-induced workload over the disks comprising the

array, and thereby both minimizes reconstruction time and maximizes user performance

during recovery.

The remainder of this chapter is organized as follows. Section 3.1 describes previous

and related work on the topic. Section 3.2 describes parity declustering, the main approach

to the problem of on-line failure recovery taken in this thesis, and its implementation. Sec-

tion 3.3 presents a comprehensive series of performance evaluations of parity decluster-

ing, demonstrating its advantages over previous solutions. Section 3.4 discusses the

problem of configuring a system, which is the process of selecting the values of the main

parameters under parity declustering. Having established and evaluated the basic tech-

nique, Section 3.5 discusses a number of optimizations and improvements that can be

applied to improve specific performance aspects of the approach. Section 3.6 concludes

and summarizes the chapter.

3.1. Related work

Previous and related work on architectures and data layout techniques for availability

46

in storage subsystems stems primarily from mirrored-disk research in the database com-

munity. This section provides an overview of that work, and then describes the previous

efforts aimed at parity-based arrays.

3.1.1. Availability techniques in mirrored arrays

Many researchers have proposed techniques to improve the performance of mirrored-

disk storage systems [Bitton88, Copeland88, Orji93, Merchant92b], but only two such

techniques,interleaved declustering andchained declustering, relate specifically to per-

formance during failure recovery. Both of these techniques improve failure-recovery per-

formance by distributing the failure-induced workload over more than the minimum

number of surviving disks.

Traditionally, mirrored disk systems allocate one disk as a primary and another as a

secondary or backup disk. To improve performance during failure recovery, Teradata Cor-

poration implemented a scheme calledinterleaved declustering in their DBC/1012 data-

base computer [Teradata85]. In this approach, the disks comprising the storage subsystem

are divided into groups calledclusters. Half of each disk is allocated to primary copies of

user data (in the Teradata case, database relations), and the other half contains a portion of

the secondary-copy data from each of the primaries on all other disks in the cluster. This

insures that the controller can recover from a failure since the primary and secondary cop-

ies of any data are on different disks. It also distributes the workload associated with

reconstructing a failed disk across all surviving disks in the cluster. Copeland and Keller

[Copeland89] compared this approach to the more standardmirrored declustering, where

each disk has a backup disk that stores identical data, and concluded that interleaved

declustering provided significant improvements in recovery time, mean time to data loss,

throughput during normal operation, and response time during recovery.

A problem with the interleaved declustering approach is that in order to distribute the

reconstruction workload across a relatively large number of disks, the array must be con-

figured with a large cluster size (the number of disks over which the backup copies are dis-

tributed). This reduces the system mean-time-to-data-loss (MTTDL) by increasing the

probability that a second disk will fail before the data on the first can be recovered. Hsiao

and DeWitt [Hsiao90, Hsiao91] describe a scheme calledchained declustering which is

47

able to distribute the reconstruction workload across a larger number of disks without

affecting the MTTDL. In this organization, the controller maintains a single backup copy

of each block of data on diski on disk(i+ 1) mod N, whereN is the total number of disks.

When a disk fails, its backup disk absorbs all its workload, and the controller shifts a large

percentage of the backup’s regular workload to the next disk in the line (the backup’s

backup). The workload-shifting process repeats, with each disk in the line absorbing a

decreasing amount of the regular workload of the disk for which it serves as the backup.

The controller pre-computes the workload-shift percentage distribution to balance the

resulting workload across all disks. This scheme can tolerate multiple failures in a cluster,

as long as no two adjacent disks fail, and so it is attractive in systems where the cost of

mirroring is warranted by the need for data integrity.

Both of these techniques rely on the existence of two copies of all data, and so they do

not apply directly to parity-based arrays. However, as will be seen, techniques similar to

these can be (and have been) applied to the design of non-mirrored redundant disk arrays.

3.1.2. Availability techniques for parity-based arrays

This section describes the technique currently used in the industry to improve failure-

recovery performance, and demonstrates that it does not solve the failure recovery prob-

lem as defined in Section 2.1.4. The section then describes two previous array proposals

aimed at addressing this problem. One of these proposals, which we callparity decluster-

ing, forms the foundation of the new architecture and data-layout techniques presented in

the remainder of this chapter. Section 3.1.2.2 describes it in detail.

3.1.2.1. Multiple independent groups

The technique currently used in the disk-array industry to improve the failure-recov-

ery performance of redundant disk arrays is to divide the set of disks comprising an array

into a number of independent groups, and to compute parity over the disks in each group

rather than over all the disks in the array [Rudeseal92]. Figure 3.1 illustrates one such

approach for a fifteen-disk array consisting of three independent groups of five disks

each1.

1. To simplify the presentation, the user data units in the figure are laid out according to the left-
asymmetric mapping scheme [Lee91]. There exist other arrangements of user data that provide bet-
ter overall performance [Lee90, Lee91].

48

Since multiple-group arrays stripe consecutive user data across the groups, a work-

load that accesses the data space of the array uniformly sends an equal number of requests

to each group. When a disk fails, only the user accesses that address the failed group expe-

rience degraded performance. As long as the disks in the affected group do not saturate,

the failure affects only one out of everyNgroups accesses. Increasing the number of groups

in the array increases the capacity overhead for redundancy, since more blocks are con-

sumed by parity, but in the absence of disk saturation it reduces degraded-mode perfor-

mance degradation by a factor ofNgroups over that of a single-group configuration.

This approach, although widely used, is not an adequate solution to the failure recov-

ery problem for a number of reasons. It does not allow the fault-free utilization on any disk

to be above about 60% (as derived in Section 2.1.4) because, should a failure occur, the

resultant disk saturation in the affected group would cause unacceptably long user

response time for all accesses that address that group. Second, a group that contains a fail-

ure becomes a severe system performance bottleneck. Assuming that user processes

access the data space of the array uniformly, every process periodically accesses the failed

group. Since the disk utilizations are high in this group, the queueing time for these

accesses is long. Therefore, the processes are not able to access the array at their normal

rate because they regularly get stuck for long periods trying to perform I/O in the affected

group. Finally, this technique causes reconstruction time to be very long because the only

disks that participate in the reconstruction of a failed drive are those in the failed group,

and these are precisely the drives on which the load has increased.

D0.3

P3

D6.2

D9.2

3

Figure 3.1: Striping data across multiple independent groups in RAID Level 5.

The figure shows the mapping of consecutive parity stripes to physical disks in the array.
Shaded blocks represent parity computed over the corresponding data blocks within
each group. The notation Di.j represents stripe unit numberj of parity stripe numberi,
andPj denotes the parity for parity stripej.

Group 0 Group 1 Group 2

P0

D3.3

D6.3

D9.3

4

D0.2

D3.2

P6

D9.1

2

D0.1

D3.1

D6.1

P9

1

D0.0

D3.0

D6.0

D9.0

0

P12 D12.0 D12.1 D12.2 D12.3

D1.3

P4

D7.2

D10.2

3

P1

D4.3

D7.3

D10.3

4

D1.2

D4.2

P7

D10.1

2

D1.1

D4.1

D7.1

P10

1

D1.0

D4.0

D7.0

D10.0

0

P13 D13.0 D13.1 D13.2 D13.3

D2.3

P5

D8.2

D11.2

3

P2

D5.3

D8.3

D11.3

4

D2.2

D5.2

P8

D11.1

2

D2.1

D5.1

D8.1

P11

1

D2.0

D5.0

D8.0

D11.0

0

P14 D14.0 D14.1 D14.2 D14.3

0
1
2
3
4

49

3.1.2.2. Distributing the failure-induced workload

It’s clear from the above discussion that in order for a disk array to maintain adequate

performance in the presence of disk failure, the load increase due to the failure must be

both minimized and distributed over the array rather than concentrated in a small number

of disks. Recognizing this, Muntz and Lui [Muntz90] applied ideas similar to that behind

interleaved declustering [Copeland89] to parity-based arrays to derive an organization we

call parity declustering2. Whereas interleaved declustering distributes the backup copies

of data over more than the minimal set of disks, parity declustering distributes fixed-width

parity stripes across an array whose size (number of disks) is larger than the number of

units in a parity stripe. Muntz and Lui’s proposal forms the foundation of our work on

architectures to improve failure-recovery performance, and so this section describes it in

detail.

Referring again to Figure 2.6, note that each parity unit protectsC-1 data units, where

C is the number of disks in the array. If instead the array were organized such that each

parity unit protected some smaller number of data units, sayG-1, then more of the array’s

capacity would be consumed by parity, but the reconstruction of a single data unit would

require that the host or controller read onlyG-1 units instead ofC-1. As illustrated in

Figure 3.2, parity declustering can also be viewed as the distribution of the parity stripes

comprising a logical RAID Level 5 array onG disks over a set ofC physical disks. The

advantage of this rearrangement is that not every surviving disk is involved in the recon-

struction of a particular data unit;C-G disks are left free to do other work. To see this in

Figure 3.2, assume that physical disk number 3 has failed; in order to reconstruct the par-

ity stripe labeled ‘S’, it is only necessary to read units from disks zero, four, and six. Disks

one, two, and five are not involved at all.

In parity declustering, the reconstruction of each unit on the failed drive requiresG-1

reads. Since there areC-1 surviving drives, each surviving disk sees a failure-induced read

load increase of(G-1)/(C-1) instead of(C-1)/(C-1) = 100% as in RAID Level 5 (refer to

Section 2.1.4)3. Similarly, each disk sees an approximate failure-induced write load

2. Muntz and Lui use the termClustered RAID to describe this approach. Their use may be derived
from “clustering” independent RAIDs into a single array with the same parity overhead. Our use
follows the earlier work on mirrored arrays, where redundancy information is “declustered” over
more than the minimal collection of disks.
3. This assumes the failure-induced workload is evenly balanced over all disks.

50

increase of (G-1)/(C-1) instead of (C-1)/(C-1) = 25% as in RAID Level 5. The frac-

tion (G-1)/(C-1) is referred to as thedeclustering ratio and is denoted byα. Parity declus-

tering therefore reduces the degraded-mode workload increase due to user reads from a

factor of 2.0 to a factor of (1+α), and reduces the load increase due to user writes from a

factor of 1.25 of a factor of 1+0.25α. Thus the performance degradation due to failure

recovery diminishes toward zero asα is reduced.

The declustering ratio can be made smaller, and thus failure-recovery performance

improved, either by increasingC for a fixedG as shown in Figure 3.2, or by decreasingG

for a fixedC. As α is made smaller, performance during failure recovery improves but

more of the array’s capacity is consumed by parity. WhenG=2 (the minimum possible

value), declustered parity reduces to mirroring since the controller computes the parity

unit for each parity stripe as the XOR over only one data unit. Thus declustered parity with

G=2 is essentially equivalent to interleaved declustering [Copeland89, Hsiao91] in that the

controller maintains two copies of each data unit, with the mirror data being distributed

over the other disks in the array. At the other extreme, whenG=C (α = 1.0), parity declus-

tering is equivalent to RAID Level 5. Thus parity declustering can be seen as defining a

continuum of design points between RAID Level 5 and mirroring, exhibiting improved

performance in the presence of failure but increased capacity overhead asG is reduced.

Reddy and Bannerjee [Reddy91] proposed an organization essentially equivalent to a

1 20

Logical Array Physical Array

0 1 2 3 4 5 6

S S S S S S S

3

S

Figure 3.2: Declustering a parity stripe of size four over an array of seven disks.

C

G

1
4

1
4

51

limited version parity declustering. Their technique assigns each unit on each disk in an

array to one of a set ofparity groups, in such a way as to distribute the groups evenly

across the array. They derive the assignment of units to parity groups from the incidence

matrix of abalanced incomplete block design (refer to Section 3.2.2) for the case when the

array is divided into exactly two parity groups, that is, when the number of units in a parity

stripe is equal to half the number of disks in the array. This is equivalent to a parity-declus-

tered organization withα ≈ 0.5. They discuss the possibility of deriving layouts for other

values ofα, but do not make the mechanism clear in the general case.

3.1.3. Summary

In order to achieve the degraded- and reconstruction-mode performance advantages

of declustering, it is necessary to find a mapping of logical parity stripes onto sets of phys-

ical disks such that the failure-induced workload is balanced over theC disks comprising

the array. This is referred to asdata layout. Muntz and Lui left it as an open problem, and

Reddy and Bannerjee address it only for special case whereα is approximately 0.5. One of

the contributions of this dissertation is to solve this problem. Ng and Mattson [Ng92a]

independently proposed a data layout solution very similar to the one described in the next

section. This study, concurrent with our own, formulates the implementation of a parity

declustered layout using essentially the same technique as is described in Section 3.2.2.

This dissertation provides a more thorough treatment of the implementation issues, and

improves on the basic technique in several ways. Merchant and Yu [Merchant92a] have

also addressed this problem; Section 3.2.3 discusses their solution and contrasts it to our

own.

This dissertation further extends prior work by providing comprehensive analyses of

failure recovery techniques in the larger context of overall system performance, and using

the results to derive improved disk array architectures and data layouts. Issues addressed

in this chapter include deriving a declustered data layout that allows reconstruction

accesses to be of arbitrary size, and combining declustering with the multiple independent

groups approach to yield arrays that simultaneously provide high levels of degraded- and

reconstruction-mode performance, reliability, and availability, while consuming only a

relatively small fraction of the capacity of the array for redundancy.

52

3.2. Disk array layouts for parity declustering

In most disk array systems, the array controller (whether implemented in hardware or

as a device driver in the host operating system) implements an abstraction of the array as a

linear address space. A disk-managing application such as a file system views the disk

array’s data units as a linear sequence of disk sectors that can be read or written with appli-

cation data. Parity units typically do not appear in this address space, that is, they are not

addressable by the application program. The array controller translates addresses in this

user space into physical disk locations (disk identifiers and disk offsets) as it performs

requested accesses. We refer to this mapping of an application’s logical unit of stored data

to physical disk locations and associated parity locations as the disk array’slayout. In this

section we discuss goals for a disk array layout, present a layout for declustered parity

based on balanced incomplete block designs, and contrast it to a layout proposed by Mer-

chant and Yu [Menon92a] which supports more combinations of array size (C) and num-

ber of units per parity stripe (G) in large arrays, at the cost of higher complexity.

3.2.1. Layout goodness criteria

Extending from prior studies [Lee90, Dibble90, Reddy91, Merchant92a], we have

identified six criteria for a good disk array layout.

1. Single failure correcting. No two units (whether data or parity) contained in the

same parity stripe may reside on the same physical disk. This is the basic charac-

teristic of any failure-tolerating organization. In arrays in which groups of disks

have a common failure mode, such as the case where a break in a communication

link causes multiple disks to become unavailable, this criteria should be extended

to prohibit the allocation of data or parity units from one parity stripe to two or

more disks sharing that common failure mode [Schulze89, Gibson93].

2. Distributed recovery workload. When any disk fails, the user workload that it had

serviced prior to the failure should be evenly distributed across all disks that share

any parity stripe with the affected disk. In a parity-based array, each user access to

data on a failed drive translates into multiple physical disk accesses in order to

effect the on-the-fly reconstruction of the data. Criterion 2 states that, over time,

each surviving disk in the array should service an equivalent number of these

53

accesses. When a failed disk is replaced or repaired and the background recon-

struction process is started, the reconstruction workload should also be evenly dis-

tributed.

3. Distributed parity. In order that the parity update load should be evenly balanced,

an equivalent number of parity units should be assigned to each disk in the array.

4. Efficient mapping. The functions mapping a file system’s logical block address to

the physical disk addresses for the corresponding data unit and parity stripe, and

the appropriate inverse mappings, must be efficiently implementable. These func-

tions are executed each time a user data unit is accessed, and so it is necessary that

they consume neither excessive computation nor memory resources.

5. Large write optimization. The mapping functions should have the property that

user data units that are contiguous in the address space of the array map to contig-

uous data units within contiguous parity stripes on the physical drives. This insures

that whenever a user performs a write operation that is the size of the data portion

of a parity stripe and starts on a parity stripe boundary, it is possible to update the

corresponding parity unit without pre-reading the prior content of any data or par-

ity units. When this criterion holds, the controller can service such a write opera-

tion by simply computing the cumulative XOR over the newly-written data units,

and writing the result to the corresponding parity unit. When this criterion does not

hold, that is, when a contiguous region of user data maps to a set of data units in

differing parity stripes, it is necessary to perform read-modify-write operations on

the data and parity units in each affected parity stripe. Thus the total number of I/O

operations necessary to service large user write operations is reduced when this

criterion holds.

6. Maximal parallelism. A read of contiguous user data with size equal to a data unit

times the number of disks in the array should induce a single data unit read on all

disks in the array, while requiring alignment only to a data unit boundary. This

insures that the controller can achieve maximum parallelism.

There are a number of points to be made about these criteria. Firstly, criteria two and

three make recommendations about balancing workload over the array. In general, this

54

means that considering the array as a whole (all data and parity units on all disks), the

workload should be balanced. Note, however, that if the applied workload is localized to a

particular region of the array, rather than being evenly distributed across the entire data

space, then the failure-induced and parity-update workload can be imbalanced despite the

fact that the array meets both criteria two and three. For this reason, these criteria should

be extended to apply to the smallest possible subsection of the address space, so that local-

ized workloads see the same benefits.

Secondly, criterion six should not be interpreted as placing constraints on the size of

the data unit in the array; it makes recommendations only about the assignment of consec-

utive data units to disks. Using more than one disk to service a read operation increases the

total positioning overhead (seek time and rotational delay) incurred by the read, but

reduces the data transfer time. If the amount of data transferred from each drive is rela-

tively small, and other requests are waiting to access the array, then the parallel transfer of

the access will lead to significantly lower throughput because of this extra positioning

overhead. In this case, the controller could achieve higher throughput by servicing multi-

ple accesses concurrently, with each accesses using fewer drives. However if a very large

read is serviced by a small number of disks, the response time of the read will be very long

due to the lack of parallel data transfer. Therefore, the stripe unit size should be selected

according to the characteristics of the expected workload [Chen90b], and the layout policy

should not influence this selection.

The best way to understand the value of criterion six is to consider the ramifications

of disregarding it. After the characteristics of the expected workload have been used to

determine the appropriate data unit size, it may still be the case that there occur some user

accesses large enough to span all the disks in the array. If criterion six is ignored, the

resultant layout could allocate the data units of a very large contiguous read over a possi-

bly small subset of the disks. (This is consistent with criterion five ifG is much smaller

thanC.) This could render the file system or application program unable to achieve high

transfer bandwidth even for very large contiguous reads, and so the response time of these

reads would be many times longer than necessary. Criterion six provides a very simple

model for file systems and applications to ensure fast transfer for large objects.

Finally, note that the first four criteria deal exclusively with relationships between

55

stripe units and parity stripe membership, and thus are properties only of the functions that

map units in the address space of the array to physical disk locations. The last two make

recommendations for the relationship between the allocation of contiguous user data into

the address space of the array and parity stripe organization. Unfortunately, the disk array

controller (whether implemented as hardware or a device driver) has no way of identifying

a region of user data as contiguous, because a file system is not required to allocate contig-

uous user data contiguously in the array’s address space. For example, in order to manage

storage space efficiently, file systems generally divide each user data file into fixed-size

blocks, and store each in a separate and often unrelated location. Although the data in the

file is logically contiguous, and is perhaps always read and written contiguously, there is

no way for the array controller to identify this, and thus no way for it to guarantee that cri-

teria five and six are always met. The best that can be done is to attempt to meet these last

two criteria for data units thatare contiguous in the address space of the array. This issue

is discussed more fully in Section 3.5.3.

3.2.2. Layouts based on balanced incomplete block designs

Our primary goal in designing a layout strategy for parity declustering was to meet

criterion two: every surviving disk in the array should absorb an equivalent fraction of the

total extra workload induced by a failure, including both accesses invoked by users and

reconstruction accesses. An equivalent formulation is that the same number of units be

required from each surviving disk during the reconstruction of the entire contents of a

failed disk. This will be achieved if the total number of parity stripes that include a given

pair of disks is constant across all pairs of disks. In other words, the failure-induced work-

load will be balanced if disks numberi andj appear together in a parity stripe exactly n

times for anyi andj, wheren is some fixed constant. As suggested by Muntz and Lui, a

layout with this property can be derived from abalanced incomplete block design

[Hall86]. This section shows how such a layout may be implemented.

3.2.2.1. Block designs

A block design is an arrangement ofv distinct objects intob tuples4, each containing

4. These tuples are calledblocks in the block design literature. We avoid this name as it conflicts
with the common definition of a block as a contiguous chunk of data. Similarly we useλp instead of
the usualλ for the number of tuples containing each pair of objects to avoid conflict with either of
the common usages ofλ as the rate of arrival of user accesses at the array or the failure rate of some
system component.

56

k objects, such that each object appears in exactlyr tuples, and each pair of objects

appears in exactlyλp tuples. For example, Table 3.1 gives a block design with b = 5,v = 5,

k = 4, r = 4, andλp = 3, using non-negative integers as objects.

This example demonstrates a simple form of block design, called acomplete block

design, which includes all combinations of exactlyk distinct objects selected from the set

of v objects. The number of these combinations is . Note that only three ofv, k, b, r,and

λp are free variables since the following two relations are always true:bk= vr, andr(k-1)

= λp(v-1). The first of these relations counts the objects in the block design in two ways,

and the second counts the pairs in two ways.

3.2.2.2. Deriving a layout from a block design

The layout associates disks with objects and parity stripes with tuples. For clarity, the

following discussion is illustrated by the construction of the layout in Figure 3.3 from the

block design in Table 3.1. To build a parity layout, we find a block design withv = C, k =

G, and the minimum possible value forb. The mapping identifies a tuple in the block

design with a parity stripe: each object in a tuple identifies the disk on which the corre-

sponding data or parity unit of the parity stripe resides. In Figure 3.3, the first tuple in the

design of Table 3.1 is used to lay out parity stripe 0: the three data blocks in parity stripe 0

Tuple Number Tuple

0 0, 1, 2, 3
1 0, 1, 2, 4
2 0, 1, 3, 4
3 0, 2, 3, 4
4 1, 2, 3, 4

Table 3.1: A sample block design.

v
k

P1
P2
P3
P4

DISK4
0
1
2
3

Offset
P0

D2.2
D3.2
D4.2

DISK3
D0.2
D1.2
D3.1
D4.1

DISK2
D0.1
D1.1
D2.1
D4.0

DISK1
D0.0
D1.0
D2.0
D3.0

DISK0

Figure 3.3. An example parity-declustered layout.

57

are on disks 0, 1, and 2, and the parity block is on disk 3. Based on the second tuple, stripe

1 is on disks 0, 1, and 2, with parity on disk 4. In general, the layout assigns stripe unitj of

parity stripei (labeledDi.j in Figure 3.3) to the lowest available offset on the disk identi-

fied by thejth object of tuplei mod b in the block design, and the last object of each tuple

is used to map the parity unit.

It is apparent from Figure 3.3 that this approach produces a layout that violates the

distributed parity criterion (3). To resolve this violation, we duplicate the above layoutG

times (four times in this example), assigning parity to a different object of each tuple in

each duplication, as shown in Figure 3.4. This layout, the entire contents of Figure 3.4, is

further duplicated until all stripe units on each disk are mapped to parity stripes. We refer

to one iteration of this layout (the first four blocks on each disk in Figure 3.4) as ablock

design table, and one complete cycle (all blocks in Figure 3.4) as afull block design table,

or simply afull table.

Note the following from Figure 3.4. First, the units comprising a parity stripe do not

C = 5, G = 4

Figure 3.4: Full block design table for a parity declustering organization.

The right half of the figure illustrates how G iterations of the block design table are used
to construct the full block design table, with the parity rotating through the columns of
the design. The left half shows the corresponding full block design table layout on five
drives, with a few parity stripes shaded for clarity.

D0.0 D0.1 D0.2 P0 P1
D1.0 D1.1 D1.2 D2.2 P2
D2.0 D2.1 D3.1 D3.2 P3
D3.0 D4.0 D4.1 D4.2 P4
D5.0 D5.1 P5 D5.2 D6.2
D6.0 D6.1 P6 P7 D7.2
D7.0 D7.1 D8.1 P8 D8.2
D8.0 D9.0 D9.1 P9 D9.2

P10 D10.1 D10.2 D11.2
P11 D11.1 D12.1 D12.2
P12 P13 D13.1 D13.2

D14.0 P14 D14.1 D14.2
D15.0 D15.1 D15.2 D16.2
D16.0 D16.1 D17.1 D17.2
D17.0 D18.0 D18.1 D18.2
P19 D19.0 D19.1 D19.2

D10.0
D11.0
D12.0
D13.0
P15
P16
P17
P18

DISK1 DISK2 DISK3 DISK4DISK0Offset

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

TUPLEParity Stripe

Parity Block
Design
Table

Full
Block
Design
Table

Data Layout on Physical Array Layout Derivation from Block Designs

2,
2,
3,
3,
3,

3
4
4
4
4

1,
1,
1,
2,
2,

0,
0,
0,
0,
1,

0
1
2
3
4

2,
2,
3,
3,
3,

3
4
4
4
4

1,
1,
1,
2,
2,

0,
0,
0,
0,
1,

5
6
7
8
9

2,
2,
3,
3,
3,

3
4
4
4
4

1,
1,
1,
2,
2,

0,
0,
0,
0,
1,

10
11
12
13
14

2,
2,
3,
3,
3,

3
4
4
4
4

1,
1,
1,
2,
2,

0,
0,
0,
0,
1,

15
16
17
18
19

58

all reside at the same disk offset in the array, as they typically do in a RAID Level 5 array

(refer back to any of the groups in Figure 3.1). Second, a single instance of a block design

maps an identical number of units on each physical disk. To see this, note that from the

definition, each object appears in exactlyr blocks in the design, and hence one instance of

the block design maps exactlyr units onto each physical disk. Since the layout maps the

entire array via copies of the block design table, it assigns an equivalent number of units to

each disk. Third, if the block design has a very large number of tuples, then the size of one

full table can exceed the size of the array. This results in violations of criteria two and

three, and so it is necessary to find an appropriately small design for each combination of

C andG. Finally, defining thefull table depth as the number of units assigned to each disk

over the course of one full table (k·r), Figure 3.4 seems to imply that the number of units

on each disk must be an exact multiple of the full table depth. This is not actually the case,

since there need not be an integral number of full tables, nor even of tables in the array. As

long as the full table depth is sufficiently small, the slight parity and workload imbalances

caused by the existence of one partial full table at the end of the array are negligible. Sec-

tion 3.5.2.3 discusses this issue in more detail.

3.2.2.3. Evaluating the layout

It is easy to verify that the layout of Figure 3.4 meets the first four criteria:

(1) No two stripe units from the same parity stripe will be assigned to the same disk

because no tuple in the block design contains the same object more than once.

(2) The failure-induced workload is evenly balanced because each disk appears

together with each other disk in exactlyλp parity stripes in one block design table. This

property implies that when any disk fails, exactlyλp stripe units must be read from each

other disk in order to reconstruct the missing data for that table. Since the failure-induced

workload is balanced in each table, it is balanced over the entire array. While it is not guar-

anteed that a block design will exist for every possible combination ofC andG, nor that

the number of tuples will be sufficiently small that the size of a full table will not exceed

the size of the array, we have identified acceptable block designs for all combinations ofC

andG up to about 40 disks, and for many of the possible combinations beyond.5 Section

3.4 discusses the problem of designing larger arrays.

5. Appendix B describes a large database of block designs publicly available via the internet.

59

(3) Parity is balanced because over the course of one full table, the layout assigns par-

ity to each object of each tuple in the block design exactly once (refer to the boxes labelled

“parity” in Figure 3.4), and since each object appears exactlyr times in the block design

table, the layout assigns a parity unit to each disk exactlyr times over the course of the full

table. Again, since parity is balanced in every full table, it is balanced over the entire array.

Note that if the number of units on a disk is not a multiple ofk·r (the number of units

assigned to each disk over the course of the full table), then there will a small imbalance in

the parity distribution due to the existence of a partial full block design table at the end of

the array. As long as the number of units assigned to each disk in one full table is a rela-

tively small fraction of the number of units per disk in the array, this imbalance will be

negligible. However, in arrays consisting of small disks mapped by large block design

tables, the imbalance may become significant. Section 3.5.2 discusses a technique to

reduce the size of the full block design table in order to alleviate this problem.

(4) The data mapping algorithms presented in Appendix A operate in constant time,

and consist of a few dozen multiply, divide, and modulo operations. Thus they do not con-

sume excessive computational resources. For efficiency, the algorithms use three tables in

memory; two of them are integer arrays of size equal to the number of objects in the block

design (b·k), and one is an integer array of size equal to the number of data and parity units

in one table6. As long as the block design for a particular layout is sufficiently small, the

mapping tables are also small (nearly always less than about 20 KB), and so the algo-

rithms are also memory efficient.

As previously mentioned, criteria five and six depend on the assignment of user data

units to units in the address space of the array, and so no data layout mechanism can guar-

antee that they will always be met. Assuming that this user data mapping is sequential,

that is, that successive blocks of user data are mapped to the successive data units in the

linear address space of the array, the above layout meets criterion 5 (the large write opti-

mization), but fails to meet criterion 6 (maximum parallelism). To see this, note that since

consecutive user data is always consecutive within a parity stripe, a write ofG-1 user data

units aligned on aG-1 unit boundary will always map to the complete set of data units in

some parity stripe, and so the large write optimization can be applied. However, Figure 3.4

6. At this point in the discussion, these two table sizes appear to be the same sincebk= vr. Section
3.5.1 shows an extension of the declustered parity architecture in which they can differ.

60

shows that readingC (5, in this case) successive user data units starting at the unit marked

D0.0 causes two units to be read from each of disks 0 and 1, and does not use disks 3 and

4 not at all. Hence the layout violates criterion six.

Criterion six is important when a significant fraction of the workload consists of read

operations of size approximately equal to the number of disks in the array multiplied by

the size of one data unit. Note that reads of less thanG data units always use the maximum

number of disks, and reads of a very large number of units typically span enough parity

stripes to use most or all the disks in the array. Typical OLTP transactions access data in

small units [TPCA89, Ramakrishnan92], and large accesses account for a small fraction of

the total workload, typically deriving from ad hoc queries (decision-support functions) or

array-maintenance functions rather than actual transactions [Merchant92b]. Thus, for

OLTP environments, only a small minority of the user accesses touch more than one data

unit, and the fraction of reads that access more thanG-1 units is even smaller [Ramakrish-

nan92]. This means that the benefits of achieving criterion six in our layout would be mar-

ginal at best in OLTP workloads, and so we do not consider the failure to meet criterion

six a significant drawback of the layout policy. However, under a user workload where

large read operations are more common, the failure to meet criterion six, combined with

the fact that a declustered parity array must skip over more parity units when servicing a

read large enough to access multiple data units from multiple disks, causes the response

time of these large reads to be longer in parity declustering than in RAID Level 5. To

explore this issue further, Section 3.3.4 analyzes the performance of the layout strategy for

non-OLTP workloads, and Section 3.5.3 investigates the possibilities of simultaneously

meeting both criteria five and six.

3.2.2.4. Finding block designs for layout

This section describes the process of finding a block design once the values ofC and

G have been determined. The problem of selecting the values of these two parameters is

discussed in Section 3.4.

Complete block designs such as the one in Table 3.1 are easily generated, but the

number of tuples in a complete design, , is in general so large that the layout fails to

have an efficient mapping. For example, a 40 disk array with 10% parity overhead (G=10)

mapped by a complete block design will have close to one billion tuples in its block design

C
G

61

table. In addition to the ridiculous amount of memory required to store this table, the lay-

out generated from it will meet neither criterion two (distributed reconstruction) nor crite-

rion three (distributed parity) because even large disks rarely have more than a few million

sectors. Fortunately, there exists an extensive literature on the theory ofbalanced incom-

plete block designs (BIBDs), which are simply designs having fewer than tuples. This

section describes the process of finding such a design for a given parameter set. Section

3.4 discusses the problem of generating layouts for arrays in whichC is large enough that

no block design is known for a given combination ofC andG.

The construction of BIBDs is an active area of research in combinatorial theory, and

there exists no technique that allows the direct construction of a design with an arbitrarily-

specified set of parameters. Instead, researchers generate designs on a case-by-case basis,

and tables of known designs [Hanani75, Hall86, Chee90, Mathon90] are published and

periodically updated. These tables are dense whenv is small (less than about 45), but

become gradually sparser asv increases.

When a block design on a particular parameter set is needed, the first step in finding it

is to check these tables. The Hanani table presents designs that can be used to generate

layouts for all values ofG as long asC is at most 43. Appendix B summarizes the remain-

ing tables for larger values ofC. When a required design does not exist in any table, it is

often possible to varyC and/orG slightly from the desired values in order to find a design.

For example, we know of no design that can be used to generate a layout forC=33 and

G=11, but designs onC=33 exist for bothG=10 andG=12, as do designs onG=11 with

C=32 andC=34. Using any of these four alternative designs results in a layout that is

nearly identical to theC=33, G=11 case for every possible figure of merit. In general, as

long as the variations inC andG are small (recall that this is nearly never necessary for

arrays of less than 44 disks), adjusting either parameter has negligible impact on all

aspects of system performance. When none of the above techniques yield a design with an

acceptably small number of tuples, a layout can be generated using the alternative layout

strategy described in the next section.

3.2.3. A related study: layout via random permutations

Section 3.4 will show that it is possible, using only designs that are known to exist, to

construct parity declustered disk arrays with an arbitrary number of disks and a very small

C
G

62

degree of performance degradation during failure recovery. However, it will also show

that in systems with very stringent requirements (performance during recovery, capacity

overhead, and data reliability), it may be necessary to use a system configuration for

which no block design can be found. In this case, there is an alternative declustered parity

layout strategy that can be used. Developed by Merchant and Yu [Merchant92a], this

approach is based on randomizing the assignment of parity stripes to disks, and so does

not use block designs at all. This layout is therefore capable of mapping a declustered

array using any combination ofC andG, but it does so at the expense of much larger com-

putational overhead. Section 3.4 describes the process of selecting between layout strate-

gies.

Merchant and Yu’s approach distributes failure-induced workload (criterion two) and

parity (criterion three) over the disks in the array by randomizing the assignment of data

and parity units to disks. The layout defines a linear address space consisting of units num-

bered 0 throughBC-1, whereB is the number of units on a disk andC is the number of

disks in the array. EveryGth unit in this address space (units numberG-1, 2G-1, 3G-1,

etc.) contains parity for the previousG-1 units. If the assignment of these units to disks

were truly random, then there would be no guarantee that the units comprising a parity

stripe all reside on different disks (criterion one). Instead, their layout uses a set ofrandom

permutations on the disk identifiers to assign units to disks.

Define a set of random permutations of the integers from 0 toC-1 as follows:Pn, the

nth permutation in the set, maps the integera to Pn,a, where 0< a < C and 0< Pn,a < C, as

illustrated:

To map the location of theith data unit, let andj = i mod C. The physical

location of uniti is offsetn into the disk with identifierPn,j. Thus the permutationPn iden-

tifies the disks on which units numbernC through(n+1)C-1 reside.

WhenC is a multiple ofG, no parity stripe will span more than one permutation.

Since the elements of each permutation are distinct, the units comprising a parity stripe

will all reside on different disks, and so the layout meets criterion one. IfC is not a multi-

ple ofG, then using each permutationR = LCM(C,G)/G times sequentially, where LCM()

Pn: 0 1 … C 1−, , ,() Pn 0, Pn 1, … Pn C 1−,, , ,()→

n i C⁄=

63

is the least-common-multiple function, ensures that no parity stripe spans a permutation,

again meeting the needs of criterion 1. The fact that the set of permutations used to map an

array is selected randomly implies both that parity blocks are randomly distributed, and

that each parity stripe is mapped to a set of disks chosen randomly from the possible

combinations, ensuring that criteria two and three are also met. The layout meets criterion

four as long as the permutationPn can be computed efficiently. Merchant and Yu present

an algorithm for this that operates by controlling the exchange phase of a series of applica-

tions of a shuffle-exchange network with random bits derived from a linear-congruential

random number generator. While certainly requiring substantial computation, this algo-

rithm’s asymptotic computation needs grow slowly (logarithmically) with respect toC

andG. The random-permutation layout meets or fails criteria five and six under the same

conditions as in the block-design based layout.

We have verified by simulation that this layout yields array performance essentially

identical to that of our block-design layout. The advantage of this algorithm, then, is that it

is able to generate a layout for arbitraryC andG, whereas the block design approach is

limited to those combinations ofC andG for which a design can be found. The disadvan-

tage is the relatively large amount of computation a host or controller must do to compute

a physical disk address every time a unit of data is accessed. By way of contrast, the

block-design based mapping algorithms in Appendix A compute physical disk addresses

via a lookup in a small table and a few dozen arithmetic operations.

3.2.4. Summary

This section demonstrated layout techniques that allow the per-disk load increase

experienced during failure recovery to be arbitrarily small (a factor ofα). These tech-

niques improve failure recovery performance by increasing the amount of redundant

information stored in the array, that is, by trading off array capacity for performance dur-

ing failure recovery. The next section verifies via simulation that these improvements are

actually achievable.

3.3. Primary evaluations

This section presents the results of four simulation studies, using the simulation sys-

C
G

64

tem and workloads described in Chapter 2. Each focuses on five primary figures of merit:

performance when all disks in the array are functional (fault-free mode), performance in

the presence of a single disk failure (degraded mode), performance during the reconstruc-

tion of a failed drive (reconstruction mode), total time required to reconstruct a failed

drive (reconstruction time), and the probability of data loss within a fixed period of time

(data reliability). The declustered parity simulations use the block-design based layout

described in Section 3.2.2.2 in all cases.

The first study compares a declustered-parity disk array to an equivalent-capacity

multiple-group RAID Level 5 array. Since both of these techniques operate by trading off

array capacity for improved failure recovery performance, equating both the number of

disks and the total data capacity of the arrays allows a direct comparison. This study dem-

onstrates that the declustering solution is uniformly superior for nearly every figure of

merit.

Once the advantages of declustering relative to RAID Level 5 are established, the sec-

ond study looks into the benefits that can be obtained by reducingG while keepingC

fixed. ReducingG results in less available data capacity in the array, but improves perfor-

mance in the presence of failure by reducing the number of I/O operations required to

reconstruct any particular data unit.

The third study verifies the claim that declustering allows a fault-free array to be

driven to higher degree of utilization than a RAID Level 5 array, without risking unaccept-

able response time during recovery. The section derives a simple analytic model for the

amount by which the fault-free workload in a declustered array can be increased over a

RAID Level 5 array, as a function ofα. It then presents the results of a set of simulations

comparing the degraded-mode response time between arrays with varying declustering

ratios, where the user workload applied to the array is increased commensurate with each

decrease inα. The simulation results validate both the model and the ability of declustered

arrays to support higher fault-free workloads.

Since the first three studies evaluate declustering using a small-access workload typi-

cal of OLTP applications, the fourth looks at performance on other workloads. The first

part of this study uses synthetic workloads to characterize the performance of declustering

65

with respect to user access size, read fraction, and locality of reference, and the second

part evaluates performance using workloads derived from real applications.

3.3.1. Comparing declustering to RAID Level 5

The comparison examines arrays with a total of 40 disks, and keeps constant the frac-

tion of the array’s capacity consumed by parity. It uses the workload described in Section

2.3.3. Specifically, we fix the size of a parity stripe at 10 units (10% parity overhead),

which means the simulations compare a 4-group 9+1 RAID Level 5 (α=1.0) to aC=40,

G=10 declustered array (α=0.23).

3.3.1.1. No effect on fault-free performance

Figure 3.5 plots the average and ninetieth-percentile user response time versus the

achieved user I/O operations per second when the declustered parity and RAID Level 5

arrays are fault-free. This figure shows that for OLTP workloads, parity declustering

causes no fault-free performance degradation with respect to RAID Level 5. This is a nec-

essary condition, since improving failure-recovery performance at the expense of fault-

free performance is unacceptable. Section 3.3.4 characterizes the performance of fault-

free declustered arrays over a wider range of workloads.

3.3.1.2. Declustering greatly benefits degraded-mode performance

Figure 3.6 plots the respective disk arrays’ user response-time against achieved user

I/Os per second when each array contains one failed disk, but reconstruction has not yet

Figure 3.5: Comparing organizations: fault-free performance.

0 200 400 600 800 1000 1200
User I/Os per Second

0

50

100

150

200

250

300

U
se

r
R

es
po

ns
e

T
im

e
(m

s) 40/10 Decl: 90%
40/10 Decl: avg
4x 9+1 RAID5: 90%
4x 9+1 RAID5: avg

66

been started. At low workloads the two organizations perform identically, since the extra

I/Os caused by accesses to the failed disk’s data can easily be accommodated. As the

workload climbs, the failure-recovery problem in RAID Level 5 arrays becomes evident:

the RAID Level 5 group containing the failure saturates at about 15 user I/Os per second

per disk, and forms a system performance bottleneck. Once the affected group has satu-

rated, all requesting processes are affected because user data is striped over all the groups

of the array to achieve load balance. Thus every user process periodically requests data

from the affected group, and is forced to wait in the queue for that group for a long period

of time. This yields underutilization of the remaining disks, and so the system is not able

to deliver all of its potential bandwidth to the users. Because the declustered-parity array

distributes failure-induced work across all disks in the array, it is able to deliver about 25%

more I/Os per second while still delivering a 90th percentile user response time of about

15% over the fault-free case.

3.3.1.3. Declustering benefits persist during reconstruction

Figure 3.7 shows average and 90th percentile user response times while reconstruc-

tion is ongoing. In contrast to the degraded-mode performance shown in Figure 3.6,

Figure 3.7 shows that at low user workloads, parity declustered arrays deliver very slightly

(a few percent) worse response time in reconstruction mode. A multiple group RAID

Level 5 array suffers less penalty for reconstruction at low loads than do parity declustered

arrays because many disks experience no load increase and those that do see an increase

Figure 3.6: Comparing organizations: degraded-mode performance.

0 200 400 600 800 1000
User I/Os per Second

0

40

80

120

160

200

240

280

320

U
se

r
R

es
po

ns
e

T
im

e
(m

s)

40/10 Decl: 90%
40/10 Decl: avg
4x 9+1 RAID5: 90%
4x 9+1 RAID5: avg

67

have plenty of available bandwidth. But, as described in the previous section, this group

quickly becomes saturated as the on-line user load increases. This dramatically increases

average and 90th percentile response times, and limits total throughput.

Turning to the issue of time until reconstruction completes, Figure 3.8 illustrates the

heart of the failure recovery problem in RAID Level 5 arrays. Since the workload doubles

on surviving disks in the group containing a failed disk, and since these are the only disks

that participate in recovering the contents of this failed disk, reconstruction time is poor at

all levels of user workload. The declustered parity organization was designed to overcome

this problem by both reducing the per-disk load increase in reconstruction and utilizing all

disks in the array to participate in this reconstruction. In other words, a RAID Level 5

array has reconstruction bandwidth equal only to the unused bandwidth on the disks in one

group (on which the load has nearly doubled), but a declustered parity array provides the

full unused bandwidth of the array to effect reconstruction.

The minimum possible reconstruction time is the time required to write the entire

contents of the replacement disk at the maximum bandwidth of the drive. The simulated

320 megabyte drives support a maximum write rate of approximately 1.6 MB/sec, and so

the minimum possible reconstruction time is approximately 200 seconds. In Figure 3.8,

consider the point corresponding to 15 user I/Os per second per disk. This load (600 total

I/Os per second into 40 disks) drives the array’s disks to about 50% utilization in fault-free

Figure 3.7: Comparing organizations: response time during reconstruction.

0 200 400 600 800 1000
User I/Os per Second

0

40

80

120

160

200

240

280

320

360
40/10 Decl: 90%
40/10 Decl: avg
4x 9+1 RAID5: 90%
4x 9+1 RAID5: avg

U
se

r
re

sp
on

se
 ti

m
e

(m
s)

68

mode, and so constitutes a reasonable operating point. Reconstruction time in the declus-

tered parity organization at this load level is approximately 260 seconds, indicating that

near optimal reconstruction performance is obtained. Contrast this with the RAID Level 5

organization, where reconstruction time is essentially unbounded at this user access rate.

To emphasize, Figure 3.7 and Figure 3.8 show response time and reconstruction time in

the same on-line reconstruction event – they show that parity declustering provides huge

savings in reconstruction time, and simultaneous savings in response time for moderately

and heavily loaded disk systems.

3.3.1.4. Declustering also benefits data reliability

Our final figure of merit is the probability of losing data because of a disk failure

occurring while another disk is under reconstruction. Assuming that the likelihood of fail-

ure of each disk is independent of that of each other disk, or, equivalently, that there are no

dependent disk failure modes in the system, Gibson [Gibson93] models the mean time to

data loss as

whereMTTFdisk is the mean time to failure for each disk,Ngroups is the number of groups

in the array,Ndiskspergroup is the number of disks in one group (Ndiskspergroup= G in

RAID Level 5 arrays andNdiskspergroup= C in parity-declustered arrays), andMTTRdisk is

the mean time to repair (reconstruct) a failed disk7. From this, the probability of data loss

Figure 3.8: Comparing organizations: reconstruction time.

0 200 400 600 800 1000
User I/Os per Second

0

1000

2000

3000

4000

R
ec

on
st

ru
ct

io
n

T
im

e
(s

ec
)

40/10 Decl
4x 9+1 RAID5

MTTDL
MTTFdisk

2

NgroupsNdiskspergroup Ndiskspergroup 1−() MTTRdisk
=

69

in a time periodT can be modeled as

Figure 3.9 shows the probability of losing data within 5 and 10 years (optimistic esti-

mates of a disk array’s useful lifetime) due to a double-failure condition in each of the two

organizations, usingMTTFdisk= 150,000 hours. The RAID Level 5 array is more reliable

at low user access rates because a multiple-group RAID Level 5 array can tolerate multi-

ple simultaneous disk failures without losing data as long as each failure occurs in a differ-

ent group. In contrast, there are no double-failure conditions that do not cause data loss in

a declustered parity array. However, as the user access rate rises, the reconstruction time,

and the resulting probability of data loss, rise much more rapidly in the RAID Level 5

array. For our example arrays and workload, the declustered parity array becomes more

reliable at about 10 user accesses per second per disk (a fault-free utilization of about

40%). This is significantly less than the user workload required to saturate the RAID Level

5 array during reconstruction (about 14 accesses/second/disk).

7. Gibson treats dependent failure modes and the effects of on-line spare disks in depth. As nearly
all of that work applies here directly, this section describes only the simple and illustrative case of
independent disk failures.

P data loss in time T() 1.0 e T− MTTDL⁄−=

Figure 3.9: Comparing organizations: reliability.

The figures show the probability of data loss within (a) 5 years and (b) 10 years. Note
that the Y-axis is log-scaled.

0 200 400 600 800 1000

User I/Os per Second

10-4

10-3

10-2

5-
ye

ar
 d

at
a

lo
ss

 p
ro

ba
bi

lit
y

40/10 Decl
4x 9+1 RAID5

0 200 400 600 800 1000

User I/Os per Second

10-4

10-3

10-2

10
-y

ea
r

da
ta

 lo
ss

 p
ro

ba
bi

lit
y

40/10 Decl
4x 9+1 RAID5

(a) (b)

70

3.3.1.5. Summary

This section considered the effects of replacing a multi-group RAID Level 5 array

with a declustered parity array of the same cost and the same user capacity. Declustered

parity achieves the same fault-free performance as an equivalent RAID Level 5 array. Its

advantage is that it also supports higher user workloads with lower response time in both

degraded and reconstruction mode, has dramatically shorter reconstruction time, and at

moderate and high user workloads, has superior data reliability. This makes a compelling

case for the use of parity declustering in on-line systems that cannot tolerate substantial

degradation during failure recovery.

3.3.2. Varying the declustering ratio

Having established the benefits of declustered parity over multiple-group RAID Level

5, this section investigates how much failure recovery performance can be improved by

relaxing the constant-data-capacity assumption. Specifically, it examines the effect on fail-

ure recovery performance of varying the declustering ratio in a fixed-size single-group

array. Because the size of the array,C, is fixed, varying the declustering ratio

(α=(G-1)/(C-1)) is achieved by varying the size of each parity stripe,G. This determines

the parity overhead, 1/G, and correspondingly, the fraction of storage available for user

data, (G-1)/G. Asα is decreased from 1.0, the user data capacity of the array decreases but

the failure-recovery performance improves since the total failure-induced workload

decreases. This section shows that declustering ratios larger than 0.25, which provide rela-

tively low parity overhead, yield much of the performance benefits of the example in the

last section. It also shows that in systems very sensitive to performance during failure

recovery, the special case of parity declustering withG=2 (the minimal possible value)

yields failure-recovery performance advantages unavailable in most other declustered

organizations, at the cost of high parity overhead.

This section considers the same array size as the previous section, 40 disks, and

reports on the performance of the arrays on the workload described in Table 2.4, using a

fixed user access rate of 14 user I/Os per second per disk. We selected this rate because it

is approximately the maximum that a RAID Level 5 array (α=1.0) can support during

reconstruction. It causes the disks to be utilized at slightly less than 50% in the fault-free

case.

71

The simulations reported here evaluate the arrays atα=1.0,α=0.75,α=0.5,α=0.25,

and the two special casesG=3 andG=2. The caseG=3 is significant because when a parity

stripe contains only two data units and one parity unit, it is possible to improve small-write

performance by replacing the normal 4-access update (data read-modify-write followed by

parity read-modify-write) by a 3-access update. In this case, the controller reads the data

unit that isnot being updated, computes the new parity from this unit and the unit to be

written, and then writes the new data and new parity. This is simply the application of the

reconstruct-write technique described in Section 2.2.2.3.3.

The caseG=2 is important because it is equivalent to disk mirroring, except that the

layout distributes the backup copy of each disk over the other disks in the array instead of

locating it on a single drive. For comparison, the graphs also include the case where the

backup copy is located on a single drive. To distinguish between these two, we refer to the

case where the backup copy is on a single disk as “mirroring”, and the case where it is

declustered as the “G=2” case.

In both mirroring and parity declustering withG=2, the controller replaces the four

accesses normally associated with a small-write operation by two: one write to each copy

of the data. Another optimization also applies: since there are two copies of every data

unit, it is possible to improve the performance of the array on read accesses by selecting

the “closer” of the two copies at the time the access is initiated [Bitton88]. The raidSim

simulator contains an accurate disk model, and so we implement this as follows: when a

read access is initiated, the simulator locates the two copies that can be read and then com-

putes the completion time of the request for each of the two possible accesses. This com-

putation takes into account all components of the access time (queueing, seeking,

rotational latency, and data transfer). The simulator selects and issues the access that will

complete sooner. We refer to this as theshortest access optimization.

These optimizations can be significant in terms of performance, but they apply only in

theG=2 andG=3 cases, which are expensive in terms of capacity overhead.

3.3.2.1. Fault-free performance

Figure 3.10 shows that the response time of a fault-free array is independent ofα in

all cases exceptG=2 andG=3, where the above-described optimizations can be applied.

72

This figure confirms the result of Section 3.3.1.1 that declustering parity does not nega-

tively effect fault-free performance. Similarly, declustered parity withG=2 performs

essentially identically to mirroring. Figure 3.10 does not show a significant benefit for the

three-access update whenG=3 because the OLTP-like workload used in the simulations is

dominated by read rather than write operations. However, forG=2, the combined

response-time benefit of a two-access update and the shortest access optimization is close

to 40% for average response time, and 20% for 90th-percentile response time. Thus for

workloads such as OLTP that are dominated by small accesses, the main consideration for

fault-free performance is whether or not the value of the optimizations available in the

G=2 case warrants the large capacity overhead it incurs.

3.3.2.2. Degraded- and reconstruction-mode performance

Figure 3.11 demonstrates the declustering ratio’s direct effect on degraded-mode per-

formance of an array. As the declustering ratio,α, ranges down from 1.0 the array’s

response time decreases almost linearly to a minimum that is about half of its maximum at

α=1.0. Comparing Figure 3.11 to Figure 3.10 shows that the response times that occur at

low declustering ratios are little degraded from their fault-free counterparts. This lack of

degradation at lowα occurs because reconstructing data on-the-fly is adding very little to

each surviving disk’s utilization, and thus the disk utilization remains at approximately

50%, the same level as in the fault-free case. However, whenα=1.0 the degraded-mode

utilization is close to 100% because extra I/O required to maintain operation in the pres-

Figure 3.10: Varying declustering ratio: user response time in fault-free mode.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

20

40

60

80

100

U
se

r
R

es
po

ns
e

T
im

e
(m

s)
Declustering: 90%
Declustering: avg
Mirroring: 90%
Mirroring: avg

73

ence of failure. Hence, response time is dramatically longer when degraded than when

fault-free.

User response time during reconstruction shows essentially the same characteristics

as user response time in degraded mode because user accesses are given strict priority

over reconstruction accesses, and so reconstruction is just a little more load on each sur-

viving disk. However, Figure 3.12 shows that reconstruction time decreases by an order of

magnitude asα drops from 1.0 to 0.2. The shape of this curve is determined by the interac-

tion of two separate bottlenecks: at highα the rate at which data can be read from surviv-

ing disks limits reconstruction rate, but, at lowα the replacement disk is the bottleneck8.

Since a high declustering ratio causes surviving disks to be saturated with work, recon-

Figure 3.11: Varying declustering ratio: user response time in degraded mode.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

40

80

120

160

200

U
se

r
R

es
po

ns
e

T
im

e
(m

s)

Declustering: 90%
Declustering: avg
Mirroring: 90%
Mirroring: avg

Figure 3.12: Varying declustering ratio: reconstruction time.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

400

800

1200

1600

2000

R
ec

on
st

ru
ct

io
n

tim
e

(s
ec

)

Declustering
Mirroring

74

struction time falls off steeply with decreasingα, flattening out at the point where the

replacement disk becomes saturated with reconstruction writes.

Finally, reconstruction time is much longer in the case of mirroring than for declus-

tered parity withG=2 because a declustered array has the aggregate unused bandwidth of

the entire array available to read blocks of the backup copy, while a mirrored array has

only the bandwidth of a single disk. The reconstruction time is not as long as in the case of

α=1.0 (RAID Level 5) because mirroring handles user accesses more efficiently.

3.3.2.3. High data reliability

Figure 3.13 shows the probability of losing data within 5 and 10 years due to a disk

failure occurring while the reconstruction of another disk is ongoing (refer to Section

3.3.1.4). Decreasing reconstruction time by decreasing the declustering ratio in an array

directly decreases the probability of data loss in any time period. This figure, then, is

largely determined by the data in Figure 3.12.

3.3.2.4. Summary

In contrast to parity declustered arrays with fixed declustering ratios determined by a

8. Chapter 5 investigates a technique to remove this bottleneck by distributing the capacity of spare
disks throughout the array.

Figure 3.13: Varying declustering ratio: reliability.

The figures show the probability of data loss within (a) 5 years and (b) 10 years. Note
that the Y-axis is log-scaled.

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

10-4

10-3

10-2
5-

ye
ar

 d
at

a
lo

ss
 p

ro
ba

bi
lit

y

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

10-4

10-3

10-2

10
-y

ea
r

da
ta

 lo
ss

 p
ro

ba
bi

lit
y Declustering

Mirroring
Declustering
Mirroring

75

fair cost comparison to multi-group RAID Level 5 arrays in Section 3.3.1, this section

examined the choices available if an array’s declustering ratio is varied. It showed that the

special case of parity declustering withG=2 offers special benefits over declustered parity

layouts with slightly higher declustering ratios. Alternatively, if lowering cost or overhead

is of prime interest, then a declustering ratio of 0.5 is of particular interest. It provides half

the benefit for improving degraded- and reconstruction-mode performance and nearly all

the benefit for reducing reconstruction time and data reliability while costing only twice

the parity overhead of a single group RAID Level 5 array.

3.3.3. Improving fault-free performance by increasing disk utilization

In a continuous-operation system, it is necessary to guarantee that the failure of a disk

causes no significant degradation in the throughput of the system, and causes only the

minimum possible response time degradation. Since both throughput and response time

are primarily functions of disk utilization, these guarantees are made by maintaining the

fault-free disk utilization at a sufficiently low level such that the load increase experienced

during a failure will not cause the utilizations to rise above some pre-defined boundary.

The per-disk load increase experienced during a failure is less in a parity declustered array

than in a RAID Level 5, and so the declustered array can maintain a higher level of fault-

free disk utilization than can the RAID Level 5. This section derives and verifies a simple

model for the factor by which the fault-free load in a declustered array can be increased

over a RAID Level 5 array such that the degraded-mode disk utilization remains constant.

 At first glance, it may seem that the fault-free load can increase in direct proportion

to the decrease inα from 1.0. The model and simulations will show that while this is true

for read operations, the presence of writes in the user workload forces the actual load

increase factor to be slightly less. The section shows that at low declustering ratios, the

fault-free disk utilization can be increased by a factor between 1.2 and 2.0, depending on

the characteristics of the applied user workload, and that for read-dominated workloads, a

typical load increase factor for low values ofα is about 1.6.

3.3.3.1. A simple model for the load-increase factor

The derivation is similar to that of Ng and Mattson [Ng92b], and starts with a simple

model for the degraded-mode disk utilization in a declustered array assuming a small-

76

access model, that is, assuming that each user read or write addresses only one data unit.

When a disk array is fault-free, a user read operation invokes a single disk read on one

drive, while a user write operation invokes a read-modify-write on the addressed data unit

and then a read-modify-write on the corresponding parity unit. In degraded mode, the

translation of user accesses into disk access is more complicated. The following descrip-

tion summarizes the specifications in Section 2.2.2.3.3. A read or write that does not

access the failed disk at all operates as if the array were fault-free. A read of failed data

causes all of the non-failed data and parity in the parity stripe to be read and XORed

together to produce the failed unit. The controller services a write to failed data by reading

all surviving units in the parity stripe, XORing them together with the new data to produce

the new parity unit, and then writing the new parity unit to disk. Finally, a write to a data

unit for which the parity unit has failed results in a single write to the data unit, since there

is no parity to update.

 Table 3.2a and Table 3.2b summarize the disk accesses that occur in degraded mode

for user read and write operations, respectively. The tables should be read as follows: the

first column gives the failure conditions, that is, whether the addressed data or parity unit

resides on a failed disk or a surviving disk. The second column gives the percentage of all

accesses that invoke the indicated failure condition, or, equivalently, the probability that

the failure condition will occur on any given access. The third column gives the number

and type of I/O operations that occur in that failure condition, and the fourth column gives

the number of disks over which the operations specified in column three are distributed.

Defining λ as the total user access rate in accesses per second,w as the fraction of

user accesses that are write operations,Tr/w as the average time (seconds) required to per-

form a disk read or write operation,Trmw as the average time required to perform a disk

read-modify-write, and recalling thatα = (G-1)/(C-1), the following disk utilization model

for declustered parity arrays in degraded mode is easily derived from Table 3.2:

U w
λα
C

Tr/w
λ

C C 1−() Tr/w+ C 2−
C

()
2λ

C 1−() Trmw+ +=

1 w−()
λ
C

Tr/w
λα
C

Tr/w+

(1)

77

The first term is the disk utilization caused by user write operations, and the second

term by user read operations. Within each term, each sub-term models the corresponding

row in Table 3.2. Since the controller services a read-modify-write via a regular read, a

rotation back around to the start of the data, and then a regular write, it’s clear thatTrmw =

Tr/w + Trot, whereTrot is the time for one complete revolution. To simplify the above

expression, defineT = Tr/w/Trot, and use the approximations and

. The latter approximation is justified by noting that whenα is close to

1.0, 1/(C-1) is small by comparison, and whenα is small, the term in which this expres-

sion appears has little impact on the overall expression for disk utilization. Applying these

simplifications and expressingU as a function ofα andλ yields:

Recall that the goal of this analysis is to derive the factor by which the fault-free

workload in a declustered parity array with some fixed declustering ratioα can be

increased over that of a RAID Level 5 array, while still maintaining the same degraded-

Table 3.2: I/O operations in degraded mode.

Part (a) shows the number and type of disk operations that occur upon each user read
operation, and part (b) gives the same information for user write operations.

Failure Conditions Disk I/Os
Invoked

Probability
of Occurrence

No. of Disks
Distributed OverData Unit Parity Unit

Failed Surviving 1/C
G-2 Reads

1 Write C-1

FailedSurviving 1/C 1 Write C-1

SurvivingSurviving (C-2)/C 2 RMWs C-1

(b) User Write Operations

Failure Conditions On Disk I/Os
Invoked

Probability
of Occurrence

No. of Disks
Distributed Over

Failed

Surviving (C-1)/C 1 Read C-1

1/C G-1 Reads C-1

(a) User Read Operations

Data Unit

C 2−() / C 1−() 1≈

α 1/ C 1−()+ α≈

U α λ,()
λTrot

C
wTα 2w T 1+() T 1 w−() 1 α+()+ +[]= (2)

78

mode disk utilization. Accordingly, we now setU(1.0,λRAID5) = U(α, λdecl), and solve

the resultant equation for the ratio betweenλdecl and λRAID5. After simplification this

yields a workload increase factor of

Figure 3.14 plots this function across the range of possible values ofw andα, using

T = 7/4, which is a reasonable value for a modern disk running a small-access dominated

workload. When there are no writes in the workload (w = 0), the workload increase factor

reduces to 2/(1 +α), implying that (1 +α)λdecl= 2λRAID5. This is intuitive since for a

100% read workload, the RAID Level 5 disk utilization doubles in the presence of a fail-

ure, whereas the utilization in a declustered array increases by only a factor ofα. This

implies that in the absence of write operations, the fault-free user workload can be

increased in direct proportion to the decrease inα from 1.0. However Figure 3.14 shows

that in the presence of write operations, the fault-free user workload increase factor is

λdecl

λRAID5

T w 2+() 2w+
T 1 α w+ +() 2w+= (3)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

1.0

1.2

1.4

1.6

1.8

2.0

W
or

kl
oa

d
In

cr
ea

se
 F

ac
to

r

w=0.0
w=0.2
w=0.4
w=0.6
w=0.8
w=1.0

Figure 3.14: Fault-free workload increase factor versus the declustering ratio.

The workload increase factor for a declustered array is the amount by which the fault-
free user workload can be increased over that of a RAID Level 5 array such that
degraded-mode disk utilization will be constant. “w” is the fraction of all user accesses
that are write operations. The plot assumes T = 7/4. Note that the Y-axis starts at 1.0
rather than 0.0.

79

smaller than this intuitive value of 2/(1 +α). Referring back to Table 3.2, as the fault-free

user workload is increased, the majority of the new accesses invoke two read-modify-

write operations, and a small minority invoke either one orG-1 simple operations (reads

and/or writes). Decreasing the value ofα reduces the penalty of the latter type of write, but

since the double read-modify-write operation is much more expensive than a simple read

or write, the reduction inα fails to compensate for the increase in disk utilization caused

by the increased number of read-modify-write operations. This limits the overall workload

increase factor to a smaller value than would be expected.

3.3.3.2. Verification via simulation

This section demonstrates the accuracy of the above derivation via simulation.

Figure 3.15 plots the applied workload and the degraded-mode disk utilization for the 40-

disk example array described in Section 2.3.1, using a user access rate that scales withα

according to the workload increase factor in Equation (3) above. The user workload

applied was the one described in Section 2.3.3. It’s clear that the disk utilization is con-

stant across all values ofα, except for the leftmost data point in the figure, where the utili-

Figure 3.15: Scaling the applied workload with the declustering ratio.

The simulations scale the load applied to the array with the declustering ratio by multi-
plying a baseline access rate (λRAID5) by the workload increase factor using r=0.82 and
T=7/4. This yields an average disk utilization in degraded mode that is constant with
respect to the declustering ratio. Part (a) shows the applied load, and part (b) shows the
resultant average surviving disk utilization (simulation results) in degraded mode versus
the declustering ratio, for a 40-disk array.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

4

8

12

16

20

A
pp

lie
d

Lo
ad

 (
ac

c/
se

c/
di

sk
)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

 S
ur

vi
vi

ng
 D

is
k

U
til

iz
at

io
n(a) (b)

λRAID5 = 14
λRAID5 = 12
λRAID5 = 10
λRAID5 = 8

λRAID5 = 14
λRAID5 = 12
λRAID5 = 10
λRAID5 = 8

80

zation is very slightly lower than predicted. As in the previous sections, this data point

corresponds to theG=3 case, where the model derived from Table 3.2 is not strictly accu-

rate due to differences in the handling of writes (refer to the description of the RAID Level

5 update techniques in Section 2.2.2.3.3).

Since the user response time in a disk array is primarily (but of course, not exclu-

sively) a function of the disk utilization, the flat utilization plot in Figure 3.15b should

imply that the average user response time in degraded mode should also be constant with

respect to the declustering ratio. Figure 3.16 verifies that this is the case by plotting aver-

age user response time in degraded mode versus the declustering ratio, using the scaled

user access rate shown in Figure 3.15a. At low and moderate disk utilizations, the

response time is flat with respect to the declustering ratio, but atλRAID5= 14, the disks are

near saturation, and so the response time becomes very sensitive to slight variations in the

access rate. This explains the increasing nonuniformity of the upper lines in the figure.

The slight dip in the response time at theG=3 point (α = 0.05) is more apparent in this fig-

ure than in Figure 3.15.

3.3.3.3. Summary

This section has shown that parity declustering can improve the fault-free array per-

formance over RAID Level 5 by allowing the disks to be operated at significantly higher

Figure 3.16: User response time using scaled user access rates.

The figure shows the average user response time in degraded mode versus the decluster-
ing ratio for a 40-disk array, using the scaled user access rates of Figure 3.15a.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

20

40

60

80

100

120

A
vg

 U
se

r
R

es
po

ns
e

T
im

e
λRAID5 = 14
λRAID5 = 12
λRAID5 = 10
λRAID5 = 8

81

utilization while maintaining the same levels of throughput and responsiveness should a

failure occur. This means that parity declustering allows a system with a given perfor-

mance level to be implemented using fewer disks, and hence can reduce overall system

cost. Of course, increasing the fault-free disk utilization in a disk array causes the fault-

free response time to increase, and so a balance must be struck between fault-free respon-

siveness, responsiveness in degraded mode (that is, worst-case responsiveness), and array

capacity overhead for parity.

Since the system designer has the freedom to choose the declustering ratio, decluster-

ing provides an additional degree of freedom in the design process. For example, if the

system is to be highly responsive at all times, a designer might choose to configure the

array with a low declustering ratio and operate the array at a low fault-free disk utilization.

This assures that, should a failure occur, the performance degradation will be essentially

unnoticeable to the users. If, however, the system specifications emphasize cost over

responsiveness, then declustering allows the operation of the array at a high utilization

without risking any throughput degradation due to saturation should a failure occur. Sec-

tion 3.4 summarizes the process of system configuration.

3.3.4. Performance on non-OLTP workloads

The previous evaluations focused on a workload dominated by small, random

accesses, since these are typical of the OLTP environment where parity declustering is

most attractive. However, OLTP is not the only application area requiring high availability

from the data storage subsystem, and so this section evaluates the performance of the

organization under differing workload conditions. The first subsection characterizes per-

formance with respect to user access size and read-to-write ratio, the second subsection

investigates locality of reference, and the third evaluates performance using workloads

traced from specific applications.

3.3.4.1. Performance versus user access size and read-write ratio

Section 3.3.1.1 showed that the fault-free performance of declustered parity redun-

dant disk arrays is insensitive to the declustering ratio for workloads dominated by

accesses that touch only a single data unit. This is not true for workloads containing a sig-

nificant fraction of larger accesses, for three primary reasons. First, note that for any given

82

large access, the maximum number of disks that can be used to service the access is equal

to the access size divided by the size of the stripe unit, plus one disk if the access is not

aligned to a stripe unit boundary. Since the layout does not meet criterion six (Section

3.2.2.3), large read accesses are not able to consistently utilize this maximum number of

disks, and so the data transfer rate for these accesses is less than it would be in an array

that meets criterion six. Second, the number of parity units dispersed in the array increases

as the declustering ratio (α) decreases. Read accesses that are large enough to span multi-

ple data units on any particular disk are forced to skip over these parity units while trans-

ferring the requested data. Since there is more parity at lowerα, each disk spends more

time skipping over these units, which reduces the data transfer bandwidth available to the

users. The third aspect of declustered parity arrays that influences large-access perfor-

mance is that reducing the value ofG increases the fraction of write accesses to which the

large-write optimization applies. The first two of these effects cause performance to

degrade as the declustering ratio is reduced, while the third causes performance to be

improved.

The interaction of these three effects is the primary topic of this section, and conse-

quently the figure of merit that is used here is the data transfer bandwidth of the array. For

the evaluations that follow, we set the concurrency of the workload to one, that is, the sim-

ulations consisted of a single process synchronously requesting large read and/or write

accesses. This represents the worst case for the declustered arrays, since any higher con-

currency would allow more disks to be utilized at any one time, and thus increase the

cumulative large-access bandwidth available to the users.

Figure 3.17 plots the maximum data rate (total megabytes of user data moved per sec-

ond) achieved in a 40 disk array as a function of the user access size, for several values of

α. The left hand plot is for a 100% read workload, and the right-hand plot is for 100%

writes. Note that the x-axis is log-scaled. The size of the stripe unit was fixed at 24 KB,

and so the rightmost data point in each plot, corresponding to a user access size of 4 MB,

accesses between 4 complete stripes (forG=40) and 85 complete stripes (forG=3).

For access sizes less than about half a megabyte, there is no significant performance

difference between any of the configurations, but the curves begin to separate for access

sizes above this value. The access size at which the curves begin to deviate from one

83

another can, of course, be increased by increasing the size of the striping unit. Above the

deviation point, the failure to meet criterion six and the necessity of skipping over more

parity per access allows the higher-α configurations to transfer more data each second

than those with a lower value ofα. In the 100%-write workload, the deviation between the

curves is less pronounced and occurs at a larger user access size (about 2 MB). This is

because the improved write performance of smaller-α configurations compensates for the

degraded transfer rates. Note that as the access size increases, the write-performance ben-

efits of a smaller value ofα diminish, but the associated transfer-rate penalties do not.

Simulations for mixed read-write workloads exhibit the expected behavior: the deviation

between the curves has magnitude and starting point intermediate to the values shown in

Figure 3.17.

It’s clear, then, that for low-concurrency workloads characterized by very large access

sizes, declustered parity arrays do not perform as well as RAID Level 5 arrays, and that

the degradation is worse for lower values ofα. The next step toward understanding and

addressing this problem is to investigate whether it is the failure to meet criterion six or

the necessity of skipping over parity units that contributes most to this degradation. The

two effects can be separated by looking at the disk utilizations; at low workload concur-

rency, the failure to meet criterion six causes disks to be underutilized, whereas the time

Figure 3.17: Fault-free data transfer rate versus access size.

Part (a) shows the response for a 100% read workload, and part (b) for a 100% write
workload. The stripe unit size was 24 KB. Note that the x-axis is log-scaled. The small
spike in the data transfer rate forα = 1.0 in part (a) at an access size of 210 KB is due to
fluctuations in the disk utilization due to the simulated access sizes not being exact mul-
tiples of the stripe unit size times the number of disks in the array.

22 24 26 28 210 21220

Access Size (KB)

0

10

20

30

D
at

a
T

ra
ns

fe
r

R
at

e
(M

B
/s

ec
)

α=1.00 (G=40)
α=0.74 (G=30)
α=0.49 (G=20)
α=0.23 (G=10)
α=0.05 (G=3)

22 24 26 28 210 21220

Access Size (KB)

0

10

20

30

D
at

a
T

ra
ns

fe
r

R
at

e
(M

B
/s

ec
)

(a) (b)

84

required to skip over parity units manifests as extra head positioning time, and hence

affects data rate but not utilization.

Figure 3.18a shows the average disk utilization for a 100% read workload as a func-

tion of the access size9. From the significant deviations in utilization, it’s clear that the

failure to meet criterion six is the dominant component. To quantify this for the example

array, Figure 3.18b plots the data transfer rates of Figure 3.18a scaled so as to normalize

the disk utilization to the RAID Level 5 case. More specifically, if Dα(s) is the data trans-

fer rate at access sizes and declustering ratio α (Figure 3.17a), and Uα(s) is the corre-

sponding disk utilization (Figure 3.18a), then the normalized data transfer rate

(Figure 3.18b) is equal to Dα(s)·U1.0(s)/Uα(s). The normalized transfer rate reveals, to a

first-order approximation, what the data rate would be if the declustered layouts could

meet criterion six and thus match the disk utilization obtained by the RAID Level 5 case.

The point of the figure is that the normalized data rates are nearly identical, and so essen-

tially all of the large-access performance degradation is due to the failure to meet criterion

six. To some degree, this result is an artifact of the choice of striping unit to be exactly one

9. Since the left-symmetric layout is used for theα = 1.0 (RAID Level 5) case, criterion six is met
and so it appears at first glance that the disk utilization atα = 1.0 should be 1.0 for all access sizes
above 40·24K = 960 KB. The actual RAID Level 5 disk utilization is lower than this because the
workload concurrency is 1 and none of the simulated access sizes are exact multiples of 960 KB.

Figure 3.18: Disk utilization and normalized transfer rate in a fault-free array.

The applied workload was 100% reads. The normalized transfer rate in part (b) is equal
to the transfer rate in Figure 3.17a multiplied by the ratio between the disk utilization for
the given declustering ratio and the disk utilization for the RAID Level 5 case. The point
of this plot is that all the lines are essentially co-incident, indicating that the failure to
meet criterion six is the dominant factor by which large-access performance is lost in
declustered parity arrays.

Access Size (KB)

0.0

0.2

0.4

0.6

0.8

1.0
A

ve
ra

ge
 D

is
k

U
til

iz
at

io
n α=1.00 (G=40)

α=0.74 (G=30)
α=0.49 (G=20)
α=0.23 (G=10)
α=0.05 (G=3)

22 24 26 28 210 21220 22 24 26 28 210 21220

Access Size (KB)

0

10

20

30

D
at

a
T

ra
ns

fe
r

R
at

e
(M

B
/s

ec
)

(a) (b)

85

disk track, which allows a parity unit skipped in time equal to two track skews. However,

it’s clear from the utilization plot that adherence to criterion six remains the dominant

problem. Based on this result, Section 3.5.3 discusses a technique whereby the adherence

to criterion six can be improved in declustered parity arrays.

3.3.4.2. Performance versus locality of reference

This section investigates whether the performance of declustered parity architectures

is sensitive to locality of reference in the access stream. The conclusion drawn is that the

performance of declustered arrays is not significantly sensitive to locality. To avoid blud-

geoning the reader with still more performance plots, this section presents summary

results only.

We simulated fault-free-, degraded-, and reconstruction-mode performance for the

40-disk array using an 80/20 read/write ratio and an access size of 4 KB, for two locality

patterns. In the first pattern, accesses were uniform within the address space of the array.

In the second, deliberately selected as an extreme case, 90% of all accesses were uni-

formly distributed within the first 10% of the array and the remainder were uniformly dis-

tributed over the entire array. The remaining workload parameters matched those in Table

2.4. Simulation results showed the following:

• User response time in all modes of operation improved by about 20% due to shorter
average seek operations, with the degree of performance improvement independent
of the declustering ratio, and

• Reconstruction time was essentially unaffected, since user locality does not signifi-
cantly influence the average seek distance for a reconstruction access.

In the specific case ofα=1.0 (RAID Level 5), the simulation results showed a few excep-

tions to the above:

• User response time in the degraded and reconstruction modes improved by more
than 20%, that is, by more than the improvement whenα was less than 1.0, because
the uniform workload caused the array to be close to saturation in the presence of a
failure, whereas the 90/10 workload did not, and

• Reconstruction time was significantly lower in the 90/10 workload, again due to the
fact that the uniform workload causes the array to be on the brink of saturation in the
presence of failure.

These results validate the conclusion that the performance of parity declustered disk

86

arrays is not strongly dependent upon the degree of locality in the user workload. Put

another way, any locality-related performance benefits that appear in non-declustered

arrays will also appear in declustered arrays.

3.3.4.3. Performance on specific workloads

The previous sections analyzed the performance of parity declustering using synthetic

workloads. This allowed specific performance issues to be isolated and clearly defined,

but by the same token it glossed over many effects that may influence the performance of

the array. The purpose of this section is to validate that the conclusions reached in the pre-

vious sections apply to more realistic workloads. The technique employed is to drive the

simulator with reference traces taken from real applications. We made several attempts to

acquire traces taken from real applications in commercial settings, but none were success-

ful. We therefore collected traces locally.

Using thedfstrace [Kistler92] tracing package, we captured traces of the I/O behavior

of several I/O-intensive applications running UNIX applications on a DECStation 5000

under the Mach operating system. This machine has only one disk, and so all the accesses

are serialized in the trace. Further, the machine does not have sufficient resources (mem-

ory, memory bandwidth, I/O bus bandwidth, etc.) to run a highly concurrent I/O workload,

and so the approach adopted to achieve a concurrent workload characteristic of a UNIX

workstation environment was to trace a set of nine applications running in isolation, and

then simulate all the traces running concurrently.

Although each process was traced independently, there can be a significant degree of

concurrency in the actual workload applied to (and subsequently serialized by) the disk

queue, which stems from three sources. First, if the application consists of a set of inde-

pendent processes, or makes remote procedure calls to an asynchronous program such as a

network file daemon, the separate processes can access the I/O system in parallel. Second,

the operating system by default performssingle block readahead, in which after each

demand read operation it attempts to fetch the next sequential block into the buffer cache.

This improves the overlap between processing and I/O in the common case where the

application is reading a file sequentially. It can cause concurrent I/O because if a user

request arrives while a readahead request is pending, the I/O concurrency will be at least

two. Finally, and most significantly, every thirty seconds the operating system writes all

87

dirty blocks in the buffer cache to disk, in order to guard against data loss due to crashes or

power failures. All such blocks are queued for write asynchronously, that is, without wait-

ing for each to complete before queuing the next, and this can cause the I/O concurrency

to rise, momentarily, into the hundreds.

Since the goal of this study is to validate prior conclusions using these I/O workloads,

it’s not adequate to run the serialized traces directly through the simulator, because the

concurrency in the real workloads would cause them to perform substantially differently

on a disk array than they perform on a single disk. In order to recapture the single-applica-

tion workload concurrency, we pre-processed each of the nine independent traces prior to

simulation as follows. We configureddfstrace to record the time that each I/O operation

arrives at the buffer cache, as well as the time that each access starts and completes on the

disk. The preprocessor assumes the disk queue to be empty at the start of the trace, and

processes each record in the trace file sequentially. If, at the time an I/O passed through the

buffer cache, there was another I/O pending (that is, another I/O has passed through the

buffer cache layer but not yet completed disk service), the pre-processor assumed that the

newly arrived I/O is asynchronous to the application, and marked the I/O as such in the

trace file. As raidSim read each trace entry, it forked an independent process to handle

each asynchronous I/O, but serialized the synchronous operations (those on the main

access stream) on a per-process basis. The forked processes simply delayed for the inter-

access time specified in the trace record, performed the indicated access, and then termi-

nated. This preprocessing allowed the trace to reflect both intra- and inter-application con-

currency in the I/O workload.

The applications, which we deliberately selected to stress the I/O system, were as fol-

lows:

• Andrew, the Andrew File System benchmark [Howard88],

• Bigfile read, a sequential read of a 20 MB data file into memory,

• Compress, the UNIX data compression program applied to a 19 MB input file and
producing a 4.6 MB compressed file,

• Uncompress, run on the file generated in thecompress trace,

• Grep, a text-searching program, applied to 1532 small files (e-mail messages) con-
tained in 27 directories and totalling 3.7 MB,

88

• Make, the UNIX program build utility, building theraidSim simulator, which con-
sists of 125 source files totalling about 25,000 lines of code,

• Paging, a 30-second trace of paging behavior invoked by forcing an application
(raidSim) to allocate and use more memory than is available on the workstation,

• Tar create, the UNIX archiving program, archiving to the local disk a directory con-
taining 257 files in 15 subdirectories, and totalling about 7 MB, and

• Tar extract, extracting (de-archiving) the same directory.

Table 3.3 lists some summary statistics about these applications. The table omits the

average access sizes because, under Mach, all I/O accesses made by a user process are

passed through the buffer cache software layer, which uses a block size of 8 KB, and so

the accesses that arrive at the disk are at most 8 KB in size. Except for thegrep trace,

Trace
Number of
Reads (%)

Number of
Writes (%)

Avg
Delay
 (ms)

Total
MB

Touched

Sequential
Accs (%)

Mean/
Median/

90%
Seek Dist

(Cyls)

%
Async
 Accs

Andrew 120 (33%) 243 (66%) 60 1.04 45 (12%) 55/3/179 34

Bigfile read 2690 (98%) 42 (1%) 8 20.61 2423 (88%) 18/0/0 48

Compress 2458 (74%) 845 (25%) 29 23.10 1644 (49%) 161/0/642 22

Grep 1700 (91%) 148 (8%) 10 4.28 77 (4%) 27/0/58 9

Make 204 (18%) 913 (81%) 91 2.12 146 (13%) 86/1/455 27

Paging 1518 (56%) 1370 (43%) 590 12.29 1172 (40%) 32/0/171 62

Tar create 1248 (56%) 972 (43%) 22 14.13 123 (5%) 103/87/137 59

Tar extract 984 (30%) 2227 (69%) 20 13.75 10 (0%) 167/166/414 50

Uncompress 724 (22%) 2468 (77%) 73 23.10 1703 (53%) 96/0/406 74

Averages 1294 (53%) 1025 (46%) 100 12.7 815 (29%) 83/28/273 43

Table 3.3: Summary statistics on traces collected from a UNIX workstation.

For each of the traces, the table gives the number and percentage of read accesses, the
number and percentage of write accesses, the average delay between “synchronous”
accesses, the total number of distinct megabytes read or written by the trace, the number
and percentage of accesses that were sequential, the mean, median, and ninetieth percen-
tile seek distances for the synchronous accesses, and the percentage of all accesses that
were determined to be asynchronous by the preprocessor. Note that the UNIX file system
interleaves consecutive blocks on the disk [Leffler89], rather than laying them out com-
pletely sequentially, and so the “sequential accesses” column reports those accesses tar-
geting a disk location one interleave factor (16 sectors in this case) away from the
previous access, rather than immediately adjacent to the previous access.

89

where the typical file size was small and there were many accesses to metadata, most

accesses were 8 KB, and the rest were fairly evenly distributed between 1 and 7 KB. The

buffer cache size on the workstation was set to 12 MB, and was purged of all information

prior to starting each application, so that the traces would reflect “cold-cache” behavior.

Note the severely skewed seek distributions: in thebigfile read trace, for example, the

average seek distance was 16 cylinders, but over 90% of the accesses did not seek at all.

This is due to the file system [Leffler89] allocation policy, which is effective at locating

consecutive blocks of a file close together, and unrelated data far apart. Note also the high

percentages of asynchronous accesses, indicating that there is significant I/O concurrency

even in a single application.

In order to generate a workload sufficient to keep a large array busy, we combined

together three copies of each of the above traces, adjusting the sector offsets within each

trace so that each copy of each trace accessed a different region of the array. The resulted

in a workload sufficient to keep a 20-disk array utilized at about 50% in the fault-free case,

and so this is the array size used in the simulations that follow. Note that this differs from

the previous sections, which used a 40-disk array. We assigned each trace to a different

process withinraidSim, resulting in 27 processes generating both synchronous and asyn-

chronous accesses. The traces differ in length (total number of accesses), and so some pro-

cesses finish their trace more rapidly than others. When a process completes a trace,

raidSim restarts it at the beginning, and continues to restart it until all processes have com-

pleted their trace at least once. The reconstruction unit size was one track (24 KB), in

accordance with the results of Section 3.5.1. In accordance with Chen’s results [Chen90b],

the simulations set the stripe unit size to 24 KB to make the probability that an access will

span a stripe unit boundary small, without clustering too much sequential data on a single

disk.

Figure 3.19 shows the results of this study. Part (a) shows the reconstruction time, and

part (b) shows the average and 90th percentile user response time in the fault-free,

degraded, and reconstruction modes. These results agree well with the previous simula-

tions that used synthetic models. The remainder of this section compares these results to

the previous ones.

First, declustering has little effect on fault-free performance, except that there is a

90

slight increase in 90th percentile response time asα is reduced to 0.2 (G = 5), and then a

marked increase atα = 0.1 (G = 3). Asα is decreased to 0.2, 90th percentile user response

time increases from 220 ms to 231 ms, which is approximately 5%. This is not significant

in that it is close to being within the error bars of the plot10. The significant increase in

90th percentile response time atG = 3 is because of the different mechanism for handling

user write operations in this case (refer to the opening remarks in Section 3.3.2); when

G = 3 there are only two data units in a parity stripe, and so the controller can service a

write by directly over-writing the old data with the new, reading the data unit that isnot

being written, XORing this unit with the newly-written unit, and writing the result to the

parity unit. In this case, the new-data write and the old-data read occur concurrently,

whereas withG > 3, the two read-modify-write operations used to service the request are

serialized. This causes the increase in 90th percentile response time by increasing the

average queueing time for an access. This optimization also causes the trace to be retired

faster; in other words, the throughput was higher atG=3 than at other values. Except for

these effects, the plot of fault-free response time versus declustering ratio is flat, which

10. Recall from Section 2.3.1 that in fault-free mode, the simulations were run until the 95% confi-
dence interval on user response time had fallen to less than 3% of the mean.

Reconstruction
Degraded
Fault-Free

Reconstruction
Degraded
Fault-Free

90th Percentile Average

Figure 3.19: Parity-declustered array performance under a UNIX workload.

Part (a) shows reconstruction time, and part (b) shows average and 90th percentile user
response time in the three different modes of operation (b), for a 20-disk array running
the UNIX file system traces.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0
400

800

1200

1600

2000

2400

2800

3200

R
ec

on
st

ru
ct

io
n

T
im

e
(s

ec
)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

50

100

150

200

250

300

350

U
se

r
R

es
po

ns
e

T
im

e

(a) (b)

91

agrees with the results of Section 3.3.1.1.

Second, declustering reduces the degraded-mode response time significantly; average

user response time was 167 ms atα = 1.0, but only 129 ms atα = 0.1, which corresponds

to a 23% decrease. This improvement is smaller than was observed in Section 3.3.2.2 due

to the higher percentage of write operations in the traced workloads. Recall from Section

2.1.4 that the failure-induced workload increase experienced by a disk array decreases in

severity as the write fraction increases.

Finally, the reconstruction-mode plots agree well with those in Section 3.3.2.2: reduc-

ing the declustering ratio to 0.2 improves reconstruction time by about a factor of 6 (3200

seconds down to 510 seconds), and causes the reconstruction-mode response time to be

very nearly the same as the response time when the array is fault-free.

3.3.4.4. Summary of non-OLTP performance evaluations

The primary conclusion to be drawn from this section is that the benefits of decluster-

ing apply to other workloads as well as OLTP, but several performance effects need to be

considered. First, declustering negatively impacted the fault-free read-performance of the

array on large accesses with low concurrency. This effect only occurred for very large

accesses. Additionally, Section 3.5.3 will show that it is often possible to recapture a sig-

nificant fraction of this lost performance. Second, the degradation in the fault-free perfor-

mance of large write operations was less severe than the read degradation, due to the fact

that the large-write optimization applies at smaller access sizes in a declustered array.

Third, locality of reference was shown to have very little impact on any of the conclusions

about declustering. Finally, evaluating declustering using real workloads largely validated

the previous conclusions.

3.3.5. Overall performance evaluation summary

The comprehensive set of performance evaluations presented in this section demon-

strated four primary facts about declustering. First, at moderate to high user accesses rates,

the declustering approach is superior to the multiple-group RAID Level 5 approach for

every figure of merit. Second, declustering offers order-of-magnitude improvements in

reconstruction time, simultaneous with large improvements in user response time during

recovery, at the cost of increased capacity overhead for parity. Third, a declustered array

92

can be operated at substantially higher fault-free utilization than can a multiple-group

RAID Level 5 array without risking the unbounded queueing delays caused by saturation

should a failure occur. Finally, the benefits of declustering apply to non-OLTP workloads

as well.

3.4. System configuration

Section 3.3.1 showed that for arrays of up to about 40 disks, a single declustered

group organization yields better performance in the presence of failure than an organiza-

tion that separates disks into a set of independent RAID Level 5 groups. This section

revisits the question of when to configure a set of disks as a single group or multiple

groups, where the data reliability of each group is independent of failures in other groups.

Of particular interest is the question of how to configure arrays that have more than 40

disks. In this context an array configuration is a set of values for the number of disks in a

group,C, the number of units in one parity stripe,G, and the number of groups, denoted

Ngroups. The section shows that it is not always desirable, and sometimes not viable, to

structure a large array as a single declustered group.

A primary consideration in the construction of large single-group arrays is their sus-

ceptibility to data loss arising from failures in equipment other than the disks [Schulze89,

Gibson93]. For example, if the bus-connected disk array architecture shown in Figure 2.5

provides only one path to each disk but shares this path over multiple disks, the failure of

a path renders multiple disks unavailable, although not damaged, for long periods of time.

This constitutes a dependent failure mode for the set of disks on that path. To make such

an array tolerant of all single failures according to criterion one in Section 3.2.1, these

disks may not reside in the same redundancy group. A cost effective way to do this is to

organize each rank11 of drives as an independent parity group. It follows then that the size

of each declustered group (C) can be no larger than the number of cable paths in the array.

With today’s technology, board area and cable connector size limit the number of paths

operating in a single array to a relatively small number, usually much less than 40. In this

11. A disk array typically contains several disk busses, each of which is shared by several disks. A
“rank” of drives is defined as a set of disks, one from each bus, that have a common bus ID. Orga-
nizing each rank as a distinct parity group assures that no two disks in a group will share a bus.

93

case, the results of Section 3.3.1 are directly applicable: the group size (C) should be max-

imized to minimize performance degradation during failure recovery. Further, since the

number of disks in a rank is limited to a relatively small number, an adequately small

block design always exists, and so there is no need to use any of the alternative layout

strategies.

In disk arrays with sufficient redundancy in non-disk components, such as the fully

duplicated versions of Figure 2.5, the number of disks managed as a single parity group

could be much larger than 40. In the process of configuring such large arrays, the funda-

mental tradeoffs are between cost, data reliability, capacity (parity overhead), fault-free

performance, and on-line failure recovery performance. Remaining with the OLTP-like

model of such an array’s workload, the following discussion assumes that the goal of any

configuration is to achieve the lowest cost array which meets specific I/O throughput and

response time requirements.

We derive a set of constraint equations and simple analytical models from which it is

possible to compute values forC, G, andNgroups. We assume that a designer has specified

four primary constraints on the design of the array:

1. a minimum acceptable I/O rate, which must be maintained in both fault-free and

degraded mode,

2. a maximum acceptable average12 user response time in fault-free mode,

3. a maximum acceptable average user response time in degraded mode, and

4. a minimum acceptable mean time to data loss (MTTDL).

We further assume that a system designer has selected a particular disk from which to con-

struct the array; if this is not the case, the analysis below can be repeated for each disk

under consideration.

In some applications, there may be additional constraints on the design of the array,

such as a minimum capacity requirement, or a maximum acceptable parity group size. For

this reason, the configuration process presented below should be viewed as a baseline

approach which can be augmented or modified to meet the specific goals of an implemen-

12. Constraints 2 and 3 can be easily changed to use 90th percentile response time instead of an
average value. This involves changing only a few terms in the response-time equations.

94

tation.

Table 3.4 presents the parameters used in deriving the configuration constraint equa-

tions. First, we assume that each user write operation translates into four disk operations,

so the disk access rate corresponding to user access rateλ is λ(r+4(1-r)) = λ(4-3r). In the

presence of failure, this access rate is increased by a factor off(r,α), which will be derived

below. This workload must be serviced by the surviving set ofNgroups·C-1 disks, each of

which can service a maximum ofµd I/Os per second, and operates at utilizationUdeg:

(1)

Symbol Type Description

Ngroups Result Number of independent groups in the array.
Ntot Result Total number of disks =Ngroups·C
C Result Number of disks per group.
G Result Number of units per parity stripe.
λ Constraint Min acceptable user access rate (I/Os/second).
Tff Constraint Max acceptable average response time, fault-free (sec).
Tdeg Constraint Max acceptable average response time, degraded (sec).
MTTDL Constraint Min acceptable mean time to data loss (sec).
Bd Specification Single-disk capacity (MB).
r Specification Read fraction in user workload.
MTTFd Specification MTTF of component disk (sec).
TS, TR, TX Specification Expected disk seek, rotation, and transfer time (sec).
RX Specification Max disk transfer rate (MB/sec).
α Term Declustering ratio ((G-1)/(C-1)).
f(r,α) Term Failure-induced user workload increase function.
µd Term Disk service rate at 100% utilization (1/(TS+TR+TX)).
Trecon Term Reconstruction time (sec).
Ufault-free Term Average fault-free disk utilization.
Udeg Term Average degraded-mode disk utilization.
Urepl Term Average recon-mode utilization on replacement disk.
Usurv Term Average recon-mode utilization on surviving disk.

A synonym forUdeg, used in a different context.
w Term Write fraction in user workload (1-r).

Table 3.4: Symbols used in the configuration equations.

“Results” are values computed by the configuration model. “Constraints” are system
requirements. “Specifications” are system parameters supplied by the designer. “Terms”
are intermediate values computed in the equations.

λ 4 3r−() f r α,()⋅ ⋅ Udeg Ngroups C 1−⋅() µd⋅ ⋅≤

95

To derive an equation for the second constraint, we model each disk as an M/M/1

queue [Jain91]. Such a queue has response time 1/(µ·(1-U)), whereµ is the service rate

andU the utilization. In order to map this disk response time back to user response time,

we make the very pessimistic assumption that each of the four I/O operations associated

with a user write operation occurs sequentially, and the write is not considered complete

until all four have completed. This makes the user read response time equal to the disk

response time, and the user write response time equal to four times the disk response time.

The average user response time is therefore (r+4w) = (3-4r) times as long as the disk

response time. The second constraint is therefore:

(2)

Similarly the third constraint is modeled by:

(3)

We assume that user accesses are given priority over reconstruction accesses, and that

reconstruction accesses are perfectly preemptible. This lets us useTdeg as the average user

response time in both degraded mode and in reconstruction mode.

The fourth constraint is modeled by the reliability equation presented in Section

3.3.1.4, using the reconstruction time as the repair time:

(4)

Equation (4) requires an estimate of the reconstruction time for a particular configura-

tion. For generality, we use a simple analytical model to derive this estimate; more accu-

rate results can be obtained via detailed simulation, as is done in the rest of this

dissertation13. The reconstruction time model works by computing the expected disk utili-

zation caused by user requests at a given access rate, for one surviving disk and the for the

replacement disk, and then assuming that all the disk time not consumed by user accesses

is used to effect reconstruction. First, considering only a surviving disk serving a user

13. Our modified version of theraidSim simulator described in Section 2.3.2 is available via anon-
ymous ftp from the machineftp.cs.cmu.edu, internet address 128.2.206.173, in the directorypro-
ject/nectar-io.

3 4r−
µd 1 Ufault-free−() Tff≤

3 4r−
µd 1 Udeg−() Tdeg≤

MTTFd
2

Ngroups C C 1−() Trecon⋅ ⋅ ⋅ MTTDL≥

96

access rate ofλ, disk requests arrive at a rate of(λ/(Ngroups·C))·(4-3r)·f(r,α), and are ser-

viced at rate 1/(TS+TR+TX). Thus the surviving disk utilization due to user-invoked

accesses is:

(5)

If the disk queue is empty of user requests when a user request arrives, the new

request incurs an average seek (TS), an average rotational latency (TR), an average transfer

time (TX), an average seek back to the reconstruction point (TS), and an average rotational

latency to initiate the next reconstruction access (TR). If, however, the user request arrives

while another user request is in-service or queued, the new request does not incur the latter

two components, because no seek back to the reconstruction point is invoked between two

user accesses. At a given disk utilizationU, the probability that an M/M/1 queuing system

is empty is 1-U [Jain91], and so the total utilization consumed by all activity other than the

transfer of reconstruction data is:

(6)

Subtracting the above value from unity yields the utilization available for reconstruc-

tion transfer, which we assume occurs at the drive bandwidth ofRX. The fraction of each

surviving disk that must be read to effect reconstruction isα, and so the time required to

read all the necessary data from a surviving drive is

(7)

If the surviving disks represent the reconstruction bottleneck, then Equation (7) repre-

sents a good estimate of the reconstruction time. If, however, the replacement disk repre-

sents the reconstruction bottleneck, then the above model will be highly optimistic. To

resolve this, we perform a similar computation for the total time taken to write the entire

contents of the replacement disk. Since user writes to previously-reconstructed data must

be serviced by the replacement disk, we assume that the only user-induced workload that

the replacement disk observes is from half of all user write operations invoking two oper-

ations (a pre-read and a write) on the replacement disk14. Therefore

14. Section 4.4.1 (page 135) discusses fully the workload that the replacement disk might see under
various conditions. We assume the simplest model here.

Usurv
λ

NgroupsC
4 3r−() f r α,() TS TR TX+ +()⋅ ⋅ ⋅=

Utot Usurv 1 Usurv−() TS TR+()+=

Tread

Bd α⋅
RX 1 Utot−()=

97

Urepl = (λ·w)/(Ngroups·C·µd). Using exactly the same strategy as was used to derive Equa-

tion (6), the time required to write the replacement drive is:

(8)

Reconstruction time is thereforeTrecon= MAX(Tread,Twrite). Figure 3.20 plots this

function versus the declustering ratio using the same configuration and workload as was

used to derive Figure 3.12. The data from Figure 3.12 is included for comparison. The fig-

ure shows acceptable although imperfect agreement between this very simple model and

the simulations.

We derive the functionf(r,α) representing the degraded-mode workload increase on

the surviving disk from the model in Section 3.3.3.1, with the small modification that we

assume for simplicity that fault-free user writes require four I/Os instead of two atomic

read-modify-write operations. We derive the expected surviving-disk utilizations in

degraded- and fault-free mode, and then take the ratio to find the load increase factor.

UsingTacc= TS+ TR + TX, the utilizations are:

(9)

The latter of these two simplifies tow(α+4) + r(1+α), where we use the approxima-

Twrite

Bd

RX 1
λw

NgroupsC
TS TR TX 1 Urepl−() TS TR+()+ + +()−()

=

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

400

800

1200

1600

2000

2400

2800

R
ec

on
st

ru
ct

io
n

tim
e

(s
ec

)

Model
Simulation

Figure 3.20: Comparing the reconstruction model to simulation data.

Ufault-free
λ 4 3r−()

C
Tacc=

Udeg w
λα
C

λ
C C 1−()

4λ C 2−()
C C 1−()+ + Tacc r

λ
C

λα
C

+ Tacc+=

98

tion (4C-7)/(C-1) ≈ 4. Note that Equation (9) makes no mention ofNgroups; it implicitly

assumes that there is only one group in the array. This represents a worst-case assumption

that greatly simplifies the model. If there is more than one group in the array, performance

will be better than the values computed above because any access that does not touch the

affected group will not incur any performance penalty at all. Dividing the array into multi-

ple groups will not cause a bottleneck to form in the array because the declustering ratio

(α) will be computed to assure adherence to the specified throughput and response time in

the worst case.

From Equation (9), derivef(r,α) as:

(10)

Equations (1) through (10) define all the terms necessary to derive the values of

Ngroups, C, andG. Starting with Equation (2), compute the average fault-free disk utiliza-

tion asUfault-free= 1 - 1/(µd·Tff). Similarly use Equation (3) to find the average degraded-

mode disk utilization asUdeg= 1 - 1/(µd·Tdeg). Using these values and the formula for

f(r,α), derive the declustering ratio as:

(11)

Using Udeg andα, derive the total number of disks in the system (Ntot = Ngroups·C)

from Equation (1):

(12)

At this point,Trecon is computable from known values. UsingTrecon as the mean time

to repair, computeC from Equation (4) as:

(13)

The value ofC derived in Equation (13) may be very large. It may even be larger than

Ntot, which is of course a contradiction. This is because the target array reliability

(MTTDL) may be lenient enough to place essentially no restrictions onC. Therefore, after

computing the value ofC in Equation (13),C should be reduced to at most the value

f r α,()
Udeg

Ufault-free

α 3r− 4+
4 3r−= =

α 4 3r−()
Udeg

Ufault-free
 3r 4−+=

Ntot
λ 4 3r−() f r α,()

Udeg µd⋅= 1+

C
MTTFd

2

Ntot MTTDL Trecon⋅ ⋅ 1+=

99

(Ngroups·C), and can be reduced further if required to find a block design. SinceG remains

to be calculated, this will not affect any of the previous constraint computations.

Ngroups is easily computed from the values ofC and (Ngroups·C). SimilarlyG can now

be computed asα·(C-1) + 1. This yields all the configuration parameters.

At this point it is necessary to evaluate any other constraints that apply to a particular

design. For example, the total user data capacity of the array is easily computed as

(Ngroups·C·Bd)·(G-1)/G. If this capacity is not adequate, the analysis can be re-done using

a different (larger) component disk, more disks, a larger value forC (which will allow a

larger value ofG), or a less stringent requirement on the degraded-mode workload

increase.

The configuration methodology presented here can also be used to revisit the question

presented in Section 3.2.3. That section discussed selecting between a declustered parity

layout based on balanced incomplete block designs and any of the alternative layouts. Pes-

simistically, if a declustered parity group size exceeds about 40 disks, it cannot be guaran-

teed that a sufficiently small block design exists for all possible values ofG; for such a

guarantee, Schwabe and Sutherland’s approximately balanced designs [Schwabe94], or

Merchant and Yu’s random permutations layout [Merchant92a] can be used. The primary

conditions under which these mechanisms become necessary are when the design man-

dates both very high failure-recovery performance (low declustering ratio) and very low

capacity overhead (highG). It’s important to note once again that acceptably-small block

designs exist for many combinations ofC andG beyond 40 disks; the only caveat is that

such designs are not known forevery possible combination.

3.5. Optimizations and improvements

This section describes and evaluates a set of variations that can be applied to the lay-

out strategy to improve specific aspects of its performance.

3.5.1. Optimizing the reconstruction unit size

The rate at which a disk drive is able to read or write data increases with the access

100

size. This is illustrated in Figure 3.21, which shows the total kilobytes per second that can

be read from or written to an IBM Lightning drive (refer to Table 2.3) using random

accesses of size equal to one block (2 KB), one track (24 KB), and one cylinder (336 KB).

The figure shows that track accesses move data about ten times faster than block accesses,

and cylinder accesses about twice as fast as track accesses.

This implies that it might be possible to speed up reconstruction by increasing the size

of the accesses used by the reconstruction process. In order to maximize fault-free perfor-

mance, the size of a data unit should be selected according to the characteristics of the

expected workload [Chen90b] rather than the characteristics of the reconstruction process,

and so it’s desirable that the reconstruction unit size be selectable independently of the

data unit size. The block-design based layout described above requires a simple modifica-

tion to support this decoupling. This section describes this modification, investigates the

sensitivity of reconstruction-mode performance to the size of the reconstruction unit, and

then describes a technique for determining the optimal reconstruction unit.

3.5.1.1. Layout modification

Referring back to Figure 3.3, assume that the reconstruction unit is four times as large

as the data unit, and that disk number 1 has failed. If a reconstruction process at some

point reads four consecutive units starting at offset zero on disk 2, the data that is read con-

tains data unitD3.1, which is not needed to reconstruct disk 1. In general, since the units

400
600
800

1000
1200

Block

97200

Track Cylinder

720

1467

Figure 3.21: Single-disk I/O bandwidth versus access size.

The figures shows the peak I/O bandwidth (total kilobytes read or written per second) for
an IBM Model 0661 (Lightning) drive, when the access size is one block (2KB), one
track (24 KB), and one cylinder (336 KB).

KB/sec
1400

101

necessary to reconstruct a particular drive are interspersed on the disks with units that are

not, the reconstruction process must either waste time and resources reading unnecessary

data, or it must break up its accesses into sizes smaller than one reconstruction unit, which

results in substantially less efficient data transfer from the disks. Note that this problem

does not occur in RAID Level 5 arrays because every unit on every surviving disk must be

read at some point in time in order to reconstruct a failed drive.

This problem can be eliminated by repeating the tuple assignment pattern so as to

pack multiple data stripe units into a single reconstruction unit. This modified layout is

illustrated in Figure 3.22, which shows a layout where the reconstruction unit size is twice

the data unit size, using the same block design (Table 3.1) as used in Figure 3.3. While the

layout of Figure 3.3 advances to the next tuple in the block design after each parity stripe,

the modified layout advances after everyn parity stripes, wheren is the reconstruction unit

size divided by the data unit size. Using Figure 3.22 as an example, parity stripes zero and

one are laid out using the first tuple in Table 3.1, parity stripes two and three using the sec-

ond tuple, and so on.

The above modification can of course be extended to pack an arbitrary number of data

units into each reconstruction unit. With this modified layout, each reconstruction unit

occupies a contiguous region on each disk, and so can be read in a single access without

transferring extraneous data. However, this layout has a drawback in that it causes rela-

tively large regions of sequential user data to be clustered on a small number of drives.

P2

DISK0 DISK1 DISK2 DISK3 DISK4

0

1

2

3

Offset

Figure 3.22: Doubling the size of the reconstruction unit.

The figures shows the first block design table for a layout in which the size of the recon-
struction unit has been doubled by packing two data or parity units into each reconstruc-
tion unit.

P3

P0

P1

D0.2

D1.2

D0.1

D1.1

D0.0

D1.0

P4

P5

D4.2

D5.2

D2.2

D3.2

D2.1

D3.1

D2.0

D3.0

P6

P7

D6.2

D7.2

D6.1

D7.1

D4.1

D5.1

D4.0

D5.0

P8

P9

D8.2

D9.2

D8.1

D9.1

D8.0

D9.0

D6.0

D7.0

4

5

6

7

Data Unit Size

Reconstruction
Unit
Size

102

Note, for example, that in Figure 3.22 the first twelve user data units, which map to the

units labelledD0.0 throughD3.2, all reside on disks 0, 1, and 2. This problem of course

gets worse as the size of the reconstruction unit increases with respect to the size of the

data unit, and as the number of units in one parity stripe (G) decreases with respect to the

number of disks in the array (C).

The layout in Figure 3.23 addresses this problem by striping data units across recon-

struction units, instead of filling each reconstruction unit with data units before switching

to the next. This means that stripe zero occupies the first slot in tuple 0, stripe one occupies

the first slot in tuple 1, and so on up to stripe four, which occupies the first slot in tuple 4.

Stripe five then occupies the second slot in tuple 0, stripe 6 the second slot in tuple 1, and

so on to the end of the table. This avoids excessive clustering of consecutive user data

units onto small sets of disks because it restores the condition that successive parity stripes

are laid out using successive tuples.

3.5.1.2. Evaluating the benefits of larger reconstruction units

Figure 3.24 plots the reconstruction time and user response time during reconstruc-

tion versus the declustering ratio for a 40-disk array, using reconstruction units of size

equal to one track (24 KB), half a cylinder (seven tracks), and one full cylinder (14 tracks).

The figure does not consider reconstruction units smaller than a track because of the

strongly diminishing efficiency of the drives for small accesses, and because it is desirable

P1

DISK0 DISK1 DISK2 DISK3 DISK4

0

1

2

3

Offset

Figure 3.23: Striping sequential units across parity stripes.

The figure shows the first block design table for a layout where the reconstruction unit
size is twice the data unit size, and where the problem of excessive clustering of sequen-
tial user data on small groups of drives has been fixed by striping sequential data units
across tuples.

P6

P0

P5

D0.2

D5.2

D0.1

D5.1

D0.0

D5.0

P2

P7

D2.2

D7.2

D1.2

D6.2

D1.1

D6.0

D1.0

D6.0

P3

P8

D3.2

D8.2

D3.1

D8.1

D2.1

D7.1

D2.0

D7.0

P4

P9

D4.2

D9.2

D4.1

D9.1

D4.0

D9.0

D3.0

D8.0

4

5

6

7

Data Unit Size

Reconstruction
Unit
Size

103

to take advantage of the zero-latency read optimization (refer to page 15 in Section 2.2.1)

if the disks support it, although the IBM 0661 (Lightning) drives simulated in this study do

not. The user workload was again the one described in Table 2.4, and the user access rate

was 14 accesses per second per disk, approximately the maximum supportable when

α = 1.0.

The figure shows that using a larger reconstruction unit improves reconstruction time

by up to about 25% by utilizing the disks more efficiently, but also degrades user response

time, in many cases quite severely, by monopolizing the disk arms for long periods of

time. Since large reconstruction accesses are non-preemptible and take a long time to

complete, user accesses tend to queue behind them, thereby increasing the observed

response time. At higher declustering ratio, using the larger reconstruction units consumes

so much bandwidth that the array fails to support the user access rate of 14 accesses per

second per disk, as indicated by the missing points in the figure. This occurs despite the

fact that user accesses are given strict priority over reconstruction accesses, because once

a reconstruction access is initiated, many user accesses end up queueing behind it for long

periods of time.

The obvious question that arises from Figure 3.24 is how much user response time

Figure 3.24: Reconstruction performance versus reconstruction unit size.

The figure shows reconstruction time (a) and average user response time during recon-
struction (b) for various sizes of the reconstruction unit.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

50

100

150

200

250

300

350

A
vg

 U
se

r
R

es
po

ns
e

T
im

e
(m

s)14 Tracks (1 Cyl)
7 Tracks (1/2 Cyl)
1 Track (24 KB)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

400

800

1200

1600

R
ec

on
st

ru
ct

io
n

T
im

e
(s

ec
)

(a) (b)

104

degradation is acceptable to improve reconstruction time. The next section proposes a

metric to answer this question, and finds that the answer is actually independent of the

declustering ratio.

3.5.1.3. Determining the optimal reconstruction unit

To quantify the trade-off between improved reconstruction time and degraded user

response time, Figure 3.25 plots the cumulative response time degradation during recon-

struction versus the declustering ratio for the array and workload described above. The

cumulative degradation is the product of the reconstruction time (Figure 3.24a) and the

increase in average user response time (Figure 3.24b) during reconstruction over the fault-

free response time. By this “total extra wait time” metric, the increase in efficiency

obtained by increasing the size of the reconstruction unit above one track does not com-

pensate for the elongation in response time it causes at any declustering ratio. This demon-

strates that in systems that mandate a minimum level of responsiveness, the size of the

reconstruction unit can not be selected strictly for maximum disk bandwidth.

A reconstruction unit that isn tracks in size takesn full disk revolutions plus the sec-

ond-order component ofn track and/or cylinder skews to transfer. Therefore for a fixed

disk revolution rate and reconstruction unit size, the time that user requests block waiting

for reconstruction requests to complete will be largely independent of the declustering

Figure 3.25: Cumulative response time degradation during reconstruction.

CumDeg = (RespTimerecon- RespTimefault-free) * ReconTime

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

50

100

150

200

C
um

ul
at

iv
e

R
T

 D
eg

ra
da

tio
n

(s
ec

)

14 Tracks (1 Cyl)
7 Tracks (1/2 Cyl)
1 Track (24 KB)

105

ratio, array size, and other array parameters. The conclusion from this is that for most

arrays, track-sized reconstruction units are the most appropriate.

3.5.2. Compacting the full block design table

Recall from Section 3.2.2 that the “full table depth” (the number of units assigned to

each disk in one full table) should be minimized for three reasons. First, if the depth

exceeds the number of units on a single disk, then the block-design-based layout strategy

will fail to balance parity over the array, and so will fail to balance the fault-free update

workload. Second, recall that in order to utilize the entire capacity of each disk in the

array, the last full table in the array may be incomplete, that is, may contain fewer thank

block design tables. If the full table depth is a significant fraction of the number of units on

one disk, then the existence of a partial full table at the end of the array may also imbal-

ance the parity distribution. Third, if the user workload exhibits a high degree of locality,

accessing only the data in a portion of one full table over some period of time, then the

parity update workload will not be balanced across the array during that time, since parity

is only balanced over complete full tables. Thus reducing the depth of the full table both

improves the balance of parity update workload across the disks of the array, and allows

the array to be constructed from smaller-capacity disks, if that is desired. This section

describes a mechanism by which the full table can be compacted to its minimum possible

size.

This section makes extensive reference to the five block design parameters, so we

summarize them here for convenience. A block design consists ofb tuples, each contain-

ing k objects selected from a set ofv possible objects, such that each object appears in

exactlyr tuples, and each pair of objects appears in exactlyλp tuples. By counting objects

and pairs in the design, it is easy to derive thatbk= vr andr(k-1) = λp(v-1). The disk array

layout mechanism associates objects with disks and tuples with parity stripes, sov = C and

k = G.

The remainder of this section presents a technique for compacting the full table to it’s

minimum size. The first subsection outlines the approach and presents an example, the

second describes the process of reordering the tuples and elements of the block design to

achieve parity balance, and the third evaluates the effectiveness of the approach at reduc-

106

ing the size of the full table.

3.5.2.1. Balancing parity in the minimum number of block design tables

Recall that the block-design based layout described in Section 3.2.2 constructs a full

table fromk block design tables solely in order to balance the distribution of parity across

the array. There is no other reason to rotate the parity assignment through the columns of

the block design. The question that arises from this observation is whether it is possible to

balance the parity distribution in fewer thank repetitions of the block design table. This

would shrink the size of the full table, and thus improve the layout with respect to all three

issues described above. Since each block design table containsb tuples and each tuple

contains one parity unit, there areb parity units in one block design table. In order to bal-

ance these parity units across thev disks comprising the array, it’s clear that at least

LCM(b,v) tuples are required, where LCM is the least-common-multiple function. Since

LCM(b,v) is of course a multiple ofb, it’s clear that this number of tuples comprises an

integral number of block design tables, and that this number of tables (LCM(b,v)/b) is the

minimum over which parity can be balanced. This follows immediately from the fact that

concatenating together any integral number of block designs yields a block design.

The full block design table can be compacted to its minimum size as follows. From a

block design B on parametersv, k,andb, construct an expanded designB’ consisting of

Nc = LCM(b,v)/b copies ofB. Reorder the tuples ofB’ and the objects within each tuple

according to the reordering algorithm (presented below) to achieve the condition that the

last object in tuplei of B’ is objecti mod v, for all tuplesi in B’. This reordered version of

B’ has the property that its last column identifies each disk exactly LCM(b,v)/v times.

Thus if the last column of the block design is always selected to be the parity object, that

is, if the rotation of the parity through the columns of the block design is suppressed, then

parity will be evenly balanced in the array. Figure 3.26 illustrates the compaction process

for an example block design.

The data mapping algorithms given in Appendix A are capable of optionally sup-

pressing the rotation of the parity unit, and so they can be used directly to implement the

compacted-full-table layout by simply usingB’ instead ofB as the block design. The only

cost of this implementation over the straightforward block-design implementation

described in Section 3.2.2 is the small amount of extra memory (a few tens of kilobytes, at

107

most, for any array of up to 43 disks) needed to store the expanded design.

3.5.2.2. Reordering algorithm

The algorithm to re-order the expanded block designB’ to achieve the “ordering

property”, that is, the condition that objecti mod v appears as the last object of tuplei, for

all tuples i, is straightforward. First note that each object appearsNc·r = k·LCM(b,v)/v

times in the expanded design, but is required to serve as a parity unit only

Tuple Number

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

(a) Original Design

0 1 2 3
0 1 2 4
0 1 2 5
0 1 3 4
0 1 3 5
0 1 4 5
0 2 3 4
0 2 3 5
0 2 4 5
0 3 4 5
1 2 3 4
1 2 3 5
1 2 4 5
1 3 4 5
2 3 4 5

(b) Expanded Design

0 1 2 3
0 1 2 4
0 1 2 5
0 1 3 4
0 1 3 5
0 1 4 5
0 2 3 4
0 2 3 5
0 2 4 5
0 3 4 5
1 2 3 4
1 2 3 5
1 2 4 5
1 3 4 5
2 3 4 5
0 1 2 3
0 1 2 4
0 1 2 5
0 1 3 4
0 1 3 5
0 1 4 5
0 2 3 4
0 2 3 5
0 2 4 5
0 3 4 5
1 2 3 4
1 2 3 5
1 2 4 5
1 3 4 5
2 3 4 5

(c) Re-ordered Design

3 1 20
0 4 21
0 1 52
0 1 43
0 1 54
0 1 35
4 2 30
4 2 31
0 5 42
0 5 43
1 2 54
1 2 35
5 2 30
5 3 41
5 3 42
0 1 23
0 1 24
0 1 25
4 1 30
0 5 31
0 4 32
0 2 53
0 1 54
0 2 45
5 3 40
4 2 31
1 5 32
1 5 43
1 2 54
2 3 45

Figure 3.26: Compacting the full block design table withv=6, k=4, andb=15.

LCM(b,v)/b= 2 copies of the original design (a) are concatenated together to form the
expanded design (b), which is then re-ordered (c) such that object (i mod v) appears as
the last object of tuple i, for all tuples i. This reduces the full table size by 50% in this
example.

108

Nc·b/v= LCM(b,v)/v times. Thus there arek times as many copies of each object in the

expanded design as are needed to serve as parity units. The re-ordering algorithm simply

selects successive tuples that have the desired property. When it encounters the condition

that it needs to select a tuple containing a particular objecti, but no copies ofi are left

unselected, it finds a swapping of selected tuples with unselected tuples that moves a copy

of i into the unselected set, while still maintaining the ordering property on the selected

set. The algorithm occasionally needs to perform a more complex swap on three tuples

rather than just two, but never more than three. Figure 3.27 defines the algorithm more

precisely.

Schwabe and Sutherland [Schwabe94] have also investigated whether or not it is pos-

sible to balance parity without duplicating the block design tableG times and rotating the

parity slot. They proved that parity can be balanced if and only ifb is a multiple ofv. Note

that the expanded design (B’) is simply a new block design withb’ = Nc·b andv’ = v.

Therefore, Schwabe and Sutherland’s result implies (1)Nc = LCM(b,v)/v is the minimum

number of copies of the block design over which parity can be balanced, and (2) any block

design, duplicatedNc times, can be reordered to achieve the condition that tuplei contains

object(i mod v). Conclusion (1) arises becauseNc is the minimum number of copies of the

block design required to assure thatb’ is a multiple ofv, which is necessary to balance par-

ity. Conclusion (2) arises becauseB’ is a block design in which the number of tuples (b’)

is a multiple of the number of elements (v), and this is sufficient to guarantee the balance.

It’s clear from the above that it is always possible to reorder an expanded design such

that is has the ordering property. In practice, we have never observed this simple algorithm

to fail to find such an ordering. An interesting topic for future work would be to prove that

the above algorithm always works. More specifically, the result to be proven is that when

selecting theith tuple, it is always possible to find a three-way tuple swap that moves a

tuple containing a copy of element(i mod v)into the necessary position.

In practice, the algorithm is very efficient: in deriving the reordering for 433 block

designs withv < 50 andα < 1.0, it performed an average of ten tuple swaps per block

design, two designs required one three-way swap each, and no designs required more than

one three-way swap. This efficiency stems from the fact that there are many more copies

of each element in the expanded design than are actually needed to serve as parity.

109

3.5.2.3. Compaction results and conclusions

Figure 3.28 shows a histogram of the percentage reduction in full table size when we

applied the compaction algorithm to the 433 designs described above. In about 15% of the

designs (65 out of 433), there was no benefit to compacting the full block design table

because, in these cases, LCM(b,v)/b > k. However, the percentage compaction for the

other 85% of the designs ranged from a minimum of 50% to over 99% for some of the

larger designs. The average compaction was about 70%, including the designs which did

Algorithm Reorder

Precondition: the expanded block designB’ with parametersNc, v, k, andb.

Define: an ordered setS holding currently selected tuples

an unordered setUS holding currently unselected tuples

Postcondition: S contains an expanded design having the ordering property

Notation: L(t) represents the last object of tuplet

US = B’

for i = 0 to(Nc·b -1) {

if (∃ a tuplet ∈ US such that object(i mod v) ∈ t) then {

removet from US and install it as tuplei of S

move object (i mod v) so that it is the last object of tuplet

} else if (∃ t1 ∈ S such that (i mod v) ∈ t1 and∃ t2 ∈ US such that L(t1) ∈ t2) {

/* simple swap of two tuples */

movet2 to the position inS occupied byt1
install t1 as tuplei of S

adjust object ordering int1 andt2
} else {

/* three-way tuple swap */

find t1, t2 ∈ S andt3 ∈ US such that L(t2) ∈ t3, L(t1) ∈ t2, and (i mod v) ∈ t1
movet3 to the position inS occupied byt2
movet2 to the position inS occupied byt1
install t1 as tuplei of S

adjust object ordering int1, t2, andt3
}

}

Figure 3.27: The block design reordering algorithm.

110

not compact at all.

It’s expected that designs with largerα will compact more than other designs, sinceα

is proportional tok and an uncompacted block design full table consists ofk repetitions of

a block design table. Since the advantages of declustering are much more pronounced at

low values ofα, it’s worthwhile to investigate the compaction percentage as a function of

the declustering ratio. Figure 3.29 shows, for the same set of 433 designs, the average

compaction percentage as a function ofα, with α quantized to multiples of 0.1. It’s clear

that the trend toward greater compaction at higher declustering ratios is slight, indicating

that the benefits of compaction apply at all values ofα.

The final question to be answered with respect to the size of the full block design table

is how large the component disks of the array must be in order to assure an even balance

of parity. As discussed previously, if the depth of the full block design is too large with

respect to the number of units on a disk, then the existence of a partial full table at the end

of the array may imbalance the parity distribution. Figure 3.30 plots, for each of the 433

block designs (v < 50 andα < 1.0) the minimum number of units required on each disk in

the array to assure that the number of units on each disk is at least ten times the compacted

full table depth. When the component disks are at least as large as the values given in the

Figure 3.28: Histogram of full block design table compaction percentage.

0 20 40 60 80 100
Percentage Reduction in Full Table Depth

0

20

40

60

80

100

N
um

be
r

of
 D

es
ig

ns

111

figure, the array consists of at least ten full tables, and so the parity imbalance effects of

the partial full table, if any, are guaranteed to be small. Assuming the size of the unit of

layout to be 32 KB (about one track for typical disks), then the peak value of the graph of

about 18,000 units corresponds to a minimum disk size of 580 MB. Note, however, that

about 70% of the designs allow for component disks of any size larger than 5,000 units, or

about 160 MB.

It is important to note that having fewer than ten full block design tables in the array

does not necessarily imply that the parity distribution will be unbalanced. On the contrary,

so long as there is at least one full block design table in the array, it is always possible to

balance parity exactly by truncating the disks at the boundary of the last full table. Further,

the actual degree of parity imbalance caused by the existence of a partial full table varies

with the block design used and the size of the component disks, and can be small even

when the full table depth is large. The plot in Figure 3.30 should be interpreted as the min-

imum disk size toguarantee that any parity imbalance will be small.

Figure 3.29: Histogram of compaction percentage versus declustering ratio.

Each bar represents an average computed over designs whose declustering ratios are
within 0.05 of the center point of the bar on the x-axis. There were 433 designs alto-
gether, evenly distributed around the pointα = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

10

20

30

40

50

60

A
ve

ra
ge

 P
er

ce
nt

ag
e

C
om

pa
ct

io
n

112

3.5.3. Improving adherence to criterion six

This section discusses a technique for optimizing a block design to improve adher-

ence to criterion six. The first subsection motivates the need for optimization by demon-

strating that it is not possible to simultaneously meet criterion five and six using the block-

design-based layout. The second describes the optimization approach, the third evaluates

the results, and the fourth concludes.

3.5.3.1. The need for optimization

As illustrated in Figure 3.31, it is possible to meet criterion six by employing a data

mapping similar to Lee’s left-symmetric layout for non-declustered arrays [Lee91], but

this causes the layout to violate criterion five. This mapping works by pre-assigning the

parity units to physical disk locations in the same manner as Figure 3.4, and then assigning

each successive data unit in the address space of the array to the first available data unit on

each successive disk, wrapping around to disk zero after using disk four. This generates a

layout that meets criterion six since all disks are used before any is re-used. It causes crite-

Figure 3.30: Minimum disk size to guarantee good parity balance.

The figure shows the minimum number of units per disk to ensure that the array consists
of at least ten full block design tables, which guarantees that any parity imbalance due to
the existence of a partial full table is small. The value 10 is arbitrary, but reasonable.
Note that parity is balanced within each full table, and so parity can be balanced over
the array by truncating the disks to ensure that there are an integral number of full block
design tables in the array. This reduces the values in the above figure by a factor of 10.

0 100 200 300 400 500
Block Design Number

0

5000

10000

15000

20000

M
in

im
um

 U
ni

ts
 P

er
 D

is
k

113

rion five to be violated because successive user data blocks are assigned to differing parity

stripes. For example, a write of three units starting at unit D3 is one parity stripe in length

and parity-stripe aligned, but, referring back to Figure 3.4, unit D3 is in parity stripe 2, D4

is in parity stripe 6, and D5 is in parity stripe 1. Therefore, the controller must pre-read the

corresponding data and parity units to effect the write operation, which violates criterion

five. At first glance it seems possible to solve this problem by re-defining the data units

that each parity unit protects. For example, P1 could be defined to be the parity unit for

data units D3 through D5, no matter where they reside. Unfortunately, this leads to a viola-

tion of criterion one: Figure 3.31 shows that under this definition, D4 and P1 reside on the

same disk.

It’s easy to show by counterexample that, in general, it is not possible in this layout to

simultaneously meet both criterion five and criterion six. Consider the block design on

v = 10 andk = 4 given in Figure 3.32a. In order to meet criterion five, the layout must

assign sequential data units in the address space of the array to sequential data units of par-

ity stripes in the physical array. Tuple number zero shares at least one object with every

other tuple in the design, and so no matter which tuple is selected as tuple number one in

P1
P2
P3
P4

P0
D3
D8
D13

D2
D7
D12
D17

D1
D6
D11
D16

D0
D5
D10
D15

DISK0 DISK1 DISK2 DISK3 DISK4
0
1
2
3

Offset

Figure 3.31: Meeting criterion six via left-symmetric parity-declustered layout.

The figure shows the data units that are allocated by the full block design table in
Figure 3.4, where data units are mapped in the style of Lee’s left-symmetric layout. Note
that this figure shows the mapping of data units in the address space of the array to phys-
ical disks, rather than the mapping of parity stripes to disks as in Figure 3.4.

D20
D25
D30
D35

D21
D26
D31
D36

P5
P6

D22
D27

D18
P7
P8
P9

D4
D9
D14
D19

4
5
6
7

D24
D29
D34
D39

D23
D28
D33
D38

D32
D37
P13
P14

P10
P11
P12
D41

D40
D45
D50
D55
P15
P16
P17
P18

D46
D51
D56
P19

D42
D47
D52
D57

D43
D48
D53
D58

D44
D49
D54
D59

8
9

10
11
12
13
14
15

114

the block design, it will be the case that two successive parity stripes have at least one disk

in common. Each parity stripe containsG-1 = 3 user data units, and so the only way that

the six user data units contained in the two parity stripes defined by tuples zero and one

can all reside on different disks is if the common element is always selected to be the par-

ity unit in at least one of the two tuples. However, as illustrated in Figure 3.32b, the layout

has the property that every column in the design is selected as the parity column at some

point within the full block design table, and so this cannot always be the case. Thus, in this

example, it is always possible to find a user access of size 2(G-1) = 6 user data units that

uses fewer than six disks, which violates criterion six.

3.5.3.2. Optimizing the designs

The above discussion leads to the idea of optimizing the tuple and object ordering

within a block design in order to maximize the adherence to criterion six in a given design.

Note that large-access performance is the only figure of merit of a parity-declustered

redundant disk array that is affected by the tuple and object ordering of the block design,

and so these orderings can be freely permuted without affecting any of the other perfor-

mance metrics.

0 1 2 3
2 4 5 6
2 7 8 9
1 2 5 8
0 3 5 8
1 4 6 8
1 5 7 9
0 2 4 7

1 3 4 7
0 5 6 7

Tuple
Number Tuple

0
1
2
3
4
5
6
7

8
9

(a) Block design onv = 10,k = 4, b = 15

10
11
12
13
14

0 4 8 9
2 3 6 9
0 1 6 9
3 4 5 9
3 6 7 8

Tuple
Number Tuple

Figure 3.32: The mutual incompatibility of criteria five and six.

The figure shows a block design in which it is impossible to simultaneously meet both
criterion five and six, using the layout defined in Section 3.2.2. The bold typeface in part
(a) identifies an object that each tuple has in common with tuple 0. As shown in part (b),
at some point within the full block design table the parity column will be selected as a
column containing neither copy of the common element between tuples 0 and 1, and thus
there will be an access of size six user data units that re-uses a disk. Since all tuples have
an element in common with tuple 0, this holds no matter which of them appears as tuple
number 1.

Tuple 0:
Tuple 1:

0
2

1
4

2
5

3
6

(b) The violation of criterion six

Parity column

115

Since there areb! possible orderings of the tuples in a design, and (k!)b possible

object orderings for each such tuple ordering, it’s clearly infeasible to exhaustively search

for the ordering that yields optimal adherence to criterion six. Instead, the approach taken

here is to use a generic “global optimization” technique,simulated annealing [Kirk-

patrick83]. This approach, modeled after the physical process by which a hot metal cools

to a minimum energy state, can be summarized as follows. Define a cost function on the

problem being considered, such that the function assigns to a given problem state a num-

ber indicating its “badness” with respect to the optimization goal. Then define a set of

legal permutations on the problem state, with the intent that all possible problem states can

be reached by some set of permutation applications. Finally, define the current “tempera-

ture” as an abstract number that is initially set to a high value and is gradually reduced as

the annealing process proceeds. The annealer selects permutations at random and applies

them to the problem state, monitoring the cost function as it does so. Permutations that

reduce the cost function (“downward moves”) are always “accepted”, that is, the algo-

rithm updates current problem state to reflect the permutation. Permutations that increase

the cost (“upward moves”) are accepted or rejected according to a probability distribution

defined on the current temperature. The probability of accepting an upward move is high

at high temperature, and diminishes, typically exponentially, as the temperature is

reduced. This process continues until the point where the temperature is too low to accept

any more upward moves, and no more downward moves can be found within some num-

ber of attempts. The goal of accepting upward moves at high temperature is to allow the

optimization process to move out of local minima in the error surface. Of course, the

annealing algorithm is not guaranteed to find the global optimum, and so the process is

generally repeated several times with different random seed values, and the best solution

thus identified is selected.

To optimize a block design for large-access performance, define the cost function as

the reciprocal of the average number of disks used by an access of sizeC data units, where

the average is taken over the accesses starting at each data unit within a full block design

table, including those accesses that cross the full table boundary. Since the array is laid out

using copies of the full table, this cost function suffices to optimize large-access perfor-

mance throughout the array. It is of course possible to define the cost function so as to

optimize the block design with respect to any access size less than or equal toC data units,

116

if the expected workload is known. Define two permutations, one that swaps the ordering

of two randomly selected tuples, and one that swaps the ordering of two randomly selected

objects within a randomly selected tuple. The annealing then proceeds as described above.

3.5.3.3. Results

Figure 3.33 shows the results of this study for a few block designs onv = 40. The left-

had plot in each part of the figure shows the cumulative distribution function (CDF) for

the number of disks used by an access of size 40 stripe units, both before and after optimi-

zation. In each such plot, each y-axis value represents the fraction of all possible accesses

to the array that use fewer disks than the corresponding x-axis value. The figure also gives

the average number of disks used by an access in each case (the numbers in parentheses in

the legend). The right-hand plot in each part shows the corresponding simulation results

for large-access performance, measured in total megabytes moved per second on a 100%

read workload with concurrency one. A workload of 100% writes yielded similar results,

and so we omit the plots.

There are a number of points to be made about these plots. First, recall from Section

3.2.1 that the goal of meeting criterion six is to be able to guarantee a high data transfer

bandwidth for accesses large enough to span many stripe units in the array. The CDF plots

show that after optimization, the probability of using fewer than about 25 of the 40 disks

in the array on any one large access is zero for all values ofG, and so it is possible to pro-

vide such a guarantee. Second, note that in all cases the probability of using all 40 disks to

service an access is zero, indicating that, even after optimization, it is impossible in the

given declustered-parity layout examples to use all the disks for any access of size 40.

This empirical result is even stronger than the one proven in the previous section. How-

ever, it’s clear that optimizing the designs does in general improve the adherence to crite-

rion six, with the degree of improvement depending with the specific case being

considered. For the examples considered, the improvement varied from essentially zero to

about a 10% increase in the average number of disks used by an access of size 40. In all

cases, this improvement in the adherence to criterion six translated directly into improved

large-access performance due to higher disk utilization. These observations are reflected

in the plots on the right-hand side of Figure 3.33, which show that the large-access perfor-

mance of an array using an optimized block design exceeds that of an array using an unop-

117

Figure 3.33: The results of the annealing study.

The left-hand plots show cumulative distribution functions on the number of disks used
by an access of size 40 stripe units, and the right-hand plots show the large-access read
performance of optimized block designs as compared to unoptimized designs, for a 40-
disk array. Numbers in parentheses are average values. For each value of G, the left-
hand plot shows the probability of using fewer thann disks to service an access of size 40
stripe units, as a function ofn. The right hand plot shows the comparative performance
gains obtained by optimizing the block design, with the RAID Level 5 case included in
each plot for comparison. Note the log scale on the x-axis.

Unoptimized (26.8)
Optimized (29.4)

G=3

G=30

G=20

RAID5
Optimized
Unoptimized

G=3

22 24 26 28 210 21220

RAID5
Optimized
Unoptimized

G=20

RAID5
Optimized
Unoptimized

G=30

Unoptimized (29.2)
Optimized (32.4)

Unoptimized (31.8)
Optimized (32.4)

0 10 20 30 40

Disks Used in Access of Size 40

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Access Size (KB)

0

10

20

30

T
ra

ns
fe

r
R

at
e

(M
B

/s
)

22 24 26 28 210 21220

RAID5
Optimized
Unoptimized

G=10
Unoptimized (28.7)
Optimized (29.2)

G=10

Access Size (KB)

0

10

20

30

T
ra

ns
fe

r
R

at
e

(M
B

/s
)

22 24 26 28 210 212200 10 20 30 40

Disks Used in Access of Size 40

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0 10 20 30 40

Disks Used in Access of Size 40

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Access Size (KB)

0

10

20

30
T

ra
ns

fe
r

R
at

e
(M

B
/s

)

22 24 26 28 210 21220

0 10 20 30 40

Disks Used in Access of Size 40

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Access Size (KB)

0

10

20

30

T
ra

ns
fe

r
R

at
e

(M
B

/s
)

118

timized design, but still falls short of that attained in a RAID Level 5 array that meets

criterion six.

Finally, and most interestingly, consider theG = 10 case in Figure 3.33. For this

example, optimizing the block design yielded only about 2% improvement in adherence to

criterion six, but the read performance of the optimized design at an access size of 4 MB

(212 bytes) was about 20% better than the corresponding unoptimized case (about 22

MB/second for the optimized case, versus about 18 unoptimized). The disk utilization plot

(not shown) indicates correspondingly higher utilization using the optimized design. This

effect is caused by variations in the degree ofhead synchronization allowed by the two

designs. Since the workload concurrency is one, the single requesting process issues one

access and then waits for it to complete. If some disks finish their component of the user

access before others because of variations in seek distance and/or amount of data trans-

ferred from each drive, those disks will be idle until the slowest disk completes its compo-

nent of the access. If, on the other hand, all the disk heads remained perfectly

synchronized and each disk involved in a user access transferred exactly the same amount

of data, then all disks would complete their component of the user access at approximately

the same time, and so the disk utilization would remain high on all drives. This higher uti-

lization would allow for higher data transfer bandwidth.

This shows that the large-access performance of a declustered-parity array at low

workload concurrency is sensitive to thevariability in the layout of data and parity. As

illustrated in Figure 3.34, the two primary factors that influence this performance are (1)

the variability in the physical disk offset of each component of a large access, and (2) the

variability in the amount of data transferred from any one disk for a large access. The

former causes variation in the completion time of the access components by inducing vari-

ation in the seek times, and the latter by inducing variation in the data transfer times.

To analyze this effect for the examples given above, Table 3.5 gives the coefficient of

variation (“COV”, the standard deviation divided by the mean) in the starting physical

disk offset on each disk, and in the amount of data transferred from each disk, for an

access of size 40 stripe units. There are many possible accesses of size 40 in each array,

characterized by their starting position within the full block design table. Each such access

has a distinct COV for the two metrics, and so the table reports the “average COV” across

119

all the possible size-40 accesses within a full block design table. In a strict sense, this aver-

age COV is not statistically meaningful since there is a COV associated with the averag-

ing process itself, but since the only goal is to minimize the variability, it serves as a

convenient metric.

The table shows that the COV on the physical disk offset is small in both the opti-

mized and unoptimized case, indicating that there is little variability in the component

COV of Physical Disk Offset
COV of Amount of Data

Transferred Per Disk

Block Design Unoptimized Optimized Unoptimized Optimized

G=3 0.04 0.07 0.44 0.46

G=10 0.03 0.03 0.56 0.42

G=20 0.01 0.01 0.37 0.33

G=30 0.005 0.004 0.34 0.34

G=40 (RAID5) 0.003 N/A 0.00 N/A

Table 3.5: Tabularizing the degree of variation.

The table gives the coefficients of variation on physical disk offsets and amount of data
transferred for the example designs on C = 40.

Varying amount

Varying
physical disk
offset

of data transferred

Disk 0 Disk 1 Disk 2 Disk 3

Figure 3.34: Two sources of variation in the individual disk access times.

The figure shows examples of physical-disk-offset and amount-of-data-transferred varia-
tions between the components of a large access in a declustered-parity redundant disk
array. The shaded regions represent the units read by a hypothetical large access.

120

access times due to differing seek times. However, the variations in the amount of data

transferred per disk are larger, ranging up to almost 60% of the mean value. The entry for

G = 10 shows that the optimization process reduced the standard deviation in amount of

data transferred from 56% of the mean to 42%. The resultant increase in disk utilization

caused the improved performance observed in Figure 3.33. Note that reducing this vari-

ance was not the goal of the optimization; the cost function used by the annealer consid-

ered only the average number of disks used by an access of a particular size. Note also that

optimizing the block design according to this cost function can cause the variability to

increase, as happened in theG = 3 case. An interesting topic for future work would be to

revise the cost function to include both number-of-disks and variability terms, and re-eval-

uate the performance gains using the blocks designs so generated.

3.5.3.4. Conclusions

In summary, the block design optimization process was able to improve the large-

access performance of parity declustered redundant disk arrays by up to about 30% in the

examples considered. Expressed a different way, Figure 3.33 shows that optimizing the

block design allowed the array to recapture a significant fraction of the performance lost

due to the failure to meet criterion six; for example, optimizing a block design for an array

with C = 40 andG = 20 improved the read data transfer rate from 20.7 to almost 26.6

MB/second at an access size of 4 MB. The corresponding RAID Level 5 array achieved

about 28.4 MB/second on the same workload, indicating that optimizing the block design

recaptured about 75% of lost performance. The actual degree of performance improve-

ment was case-specific, and there were cases where little benefit was observed by optimiz-

ing the design. However in these cases, the unoptimized design performed comparatively

well (consider theG = 30 case in Figure 3.33), and so there was little benefit to be

achieved in any case.

3.6. Conclusions

This very long chapter first showed that the performance of RAID Level 5 disk arrays

in the presence of a failed disk is not acceptable, and then described and thoroughly evalu-

ated parity declustering as a solution. The fundamental idea behind this approach is that

121

each parity unit should protect fewer thanC-1 data units, whereC is the number of disks

in a group. Having made this observation, the problem reduced to finding a layout for the

data and parity units that balances the failure-induced workload over the disks comprising

the array. We derived such a layout usingbalanced incomplete block designs.

Having defined the declustered parity organization, the question arose of how to

select the values forC andG, its two primary parameters. The chapter showed that, using

certain very reasonable assumptions about the requirements of the system, this problem

reduced to a tradeoff between capacity overhead and reliability.

Evaluating parity declustering turned up several shortcomings, such as the necessity

to decouple the size of the reconstruction unit from that of the striping unit and the fault-

free performance degradation on very large read accesses, and so the subsequent sections

proposed modifications to address them. These sections showed that all of the shortcom-

ings were addressable via some technique; at the end of the chapter there remained no sig-

nificant drawbacks to using parity declustering.

122

123

Chapter 4: Reconstruction Algorithms

This chapter addresses the design and implementation of the reconstruction algo-

rithm, which is the technique used to recover the data that is lost when a disk fails. The

primary problems to be addressed are (1) selecting the order in which to reconstruct lost

units, (2) managing concurrency in the reconstruction process (determining the read and

write operations to perform in parallel), (3) managing the buffer memory used to hold par-

tially-reconstructed units, and (4) controlling the interaction of reconstruction accesses

with normal user accesses in order to guarantee correct results and good performance.

These functions can be implemented in either the host computer or in the array controller,

or can be distributed amongst the local disk controllers in the array [Cao93]; the tech-

niques discussed in this chapter apply to all implementations.

The chapter is organized as follows. Section 4.1 discusses prior and related work on

the topic. There have not been many studies specifically addressing the design of the

reconstruction algorithm, so this short section essentially summarizes assumptions that

other researchers have made about the recovery process. Section 4.2 describes what has

been the default reconstruction algorithm,stripe-oriented reconstruction, and discusses its

limitations. This leads to the development ofdisk-oriented reconstruction, the algorithm

that forms the basis of the work in this chapter. Section 4.3 provides a comprehensive set

of performance evaluations, demonstrating the benefits of disk-oriented reconstruction.

Section 4.4 describes and evaluates a set of optimizations and improvements that can be

applied to the reconstruction algorithm to improve specific aspects of its performance.

Section 4.5 concludes and summarizes the chapter.

4.1. Prior work

There is little or no existing literature on the design of the reconstruction algorithm,

neither for mirrored nor parity-based arrays. Most failure-recovery studies make a number

of assumptions about the characteristics of the reconstruction algorithm, but none specify

124

how they would be implemented. Both the mirroring studies [Copeland89, Bitton88] and

the parity-based studies [Muntz90, Merchant92a] assume that the recovery algorithm is

able to maintain an even balance of reconstruction requests across the disks comprising

the array at all times, that the reconstruction process is able to absorb all of the array’s

excess bandwidth, and that buffer memory management does not pose a problem. The

implementation of a reconstruction algorithm that adheres to these assumptions is one of

the topics of this chapter. Hou et. al. [Hou93] describe a simulation-based study that pre-

sumably models the operation of the reconstruction algorithm, but the study focuses on

other aspects of the recovery process and hence does not describe or analyze the algorithm

in detail.

4.2. Stripe-oriented and disk-oriented reconstruction

This section describes the reconstruction algorithm assumed by most studies, and

uses it to motivate the development of a better algorithm.

4.2.1. Stripe-oriented reconstruction and its parallelized version

The most straightforward approach to reconstruction, which we term thestripe-ori-

ented algorithm, is as follows:

for each unit on the failed disk (sequentially)
1. Identify the parity stripe to which the unit belongs.
2. Lock all units in the stripe against accesses by the users.
3. Issue low-priority read requests for all other units in the stripe, including

the parity unit.
4. Wait until all reads have completed.
5. Compute the XOR over all units read.
6. Issue a low-priority write request to the replacement disk.
7. Wait for the write to complete.
8. Unlock the stripe.

end

In this context, a “low-priority request” is one that has lower queueing priority; that

is, a low-priority request will not be initiated on a disk until there are no normal priority

requests in the queue for that disk, but will be initiated immediately upon the occurrence

of this condition. Once initiated, a low-priority access cannot be interrupted by a higher-

125

priority access. The algorithm uses the low-priority requests in order to minimize the

impact of reconstruction on user response time, since commodity disk drives do not sup-

port preemptive access. The algorithm uses a low-priority request even for the write to the

replacement disk, because as will be discussed in Section 4.4.1.1, this disk services writes

in the user request stream as well as reconstruction writes. The algorithm locks the stripe

currently under reconstruction against user accesses because (1) a user write operation can

cause a data unit to be temporarily out of date with respect to its parity unit, and it must be

guaranteed that the reconstruction process reads neither data nor parity in this period, and

(2) there is a potential race condition on the replacement disk between the write of the

reconstructed data and a write of new user data. Note that as it is currently specified, there

is a potential livelock problem in the algorithm: a user write request targeting a parity

stripe that is currently under reconstruction is forced to wait for the low-priority recon-

struction accesses to complete. If the array is operating at a high utilization, the recon-

struction can be starved and hence the user write may be forced to wait indefinitely. We

address this issue in Section 4.2.3.2.

The main problem with this algorithm is that it is unable to consistently utilize all the

disk bandwidth that is not absorbed by users. This inability stems from three sources.

First, it does not overlap reads of the surviving disks with writes to the replacement, so the

surviving disks are idle with respect to reconstruction during the write to the replacement,

and vice versa. Second, the algorithm simultaneously issues all the reconstruction reads

associated with a particular parity stripe, and then waits for all to complete. Some of these

read requests will take longer to complete than others, since the depth of the disk queues

will not be identical for all disks and since the disk heads will be in essentially random

positions with respect to each other in an OLTP workload. Therefore, during the read

phase of the reconstruction loop, each involved disk may be idle from the time that it com-

pletes its own reconstruction read until the time that the slowest read completes. Third, in

the declustered parity organization, not every disk is involved in the reconstruction of

every parity stripe, and so uninvolved disks remain idle with respect to reconstruction

since the reconstruction algorithm works on only one parity stripe at a time.

These deficiencies can be partially overcome by parallelizing this algorithm, that is,

by simultaneously reconstructing a set of parity stripes instead of just one [Holland92]. In

126

this approach, the host or array controller creates a set ofP identical, independent recon-

struction processes. Each process executes the stripe-oriented algorithm, except that the

next parity stripe to reconstruct is selected by accessing a shared list of as-yet unrecon-

structed parity stripes, so as to avoid duplication. Since different parity stripes use differ-

ent sets of disks, the reconstruction process is able to absorb more of the array’s unused

bandwidth than in the single-process case, by allowing concurrent accesses on more than

G-1 disks.

Although this approach yields substantial improvement in reconstruction time [Hol-

land92], it does so in a haphazard fashion. Disks may still idle with respect to reconstruc-

tion because the set of data and parity units that comprise a set ofP parity stripes is not

guaranteed to use all the disks in the array evenly. Furthermore, the number of outstanding

disk requests each independent reconstruction process maintains varies as accesses are

issued and complete, and so the number of such processes must be large if the array is to

be consistently utilized. Supporting a large number of reconstruction processes requires a

large amount of memory and computation power in the host or array controller. The next

subsection describes a better algorithm.

4.2.2. Disk-oriented reconstruction

The deficiencies of both single-stripe and parallel-stripe reconstruction can be

addressed by restructuring the reconstruction algorithm so that it isdisk-oriented instead

of stripe-oriented. A few previous studies [Merchant92a, Hou93] have suggested the main

ideas behind this approach; we fully define and evaluate it in this section. Instead of creat-

ing a set of reconstruction processes associated with stripes, the host or array controller

createsC processes, each associated with one disk. Each of theC-1 processes associated

with a surviving disk execute the following loop:

repeat
1. Find lowest-numbered unit on this disk that is needed for reconstruction.
2. Issue a low-priority request to read the indicated unit into a buffer.
3. Wait for the read to complete.
4. Submit the unit’s data to a centralized buffer manager for XOR, or

Block the process if buffer manager has no memory to accept the unit.
until (all necessary units have been read)

The process associated with the replacement disk executes:

127

repeat
1. Request the next sequential full buffer from the buffer manager.

Block the process if none are available.
2. Issue a low-priority write of the buffer to the replacement disk.
3. Wait for the write to complete.

until (the failed disk has been reconstructed)

The buffer manager provides a central repository for data and parity from parity

stripes that are currently “under reconstruction.” When a new buffer arrives from a surviv-

ing-disk process, the manager XORs the data into an accumulating “sum” for that parity

stripe, and notes the arrival of a unit for the indicated parity stripe from the indicated disk.

When it receives a request from the replacement-disk process it searches its data structures

for a parity stripe for which all units have arrived, deletes the corresponding buffer from

the active list, and returns it to the replacement-disk process.

The advantage of this approach is that it is able to maintain one low-priority request in

the queue for each disk at all times, which means that it will absorb all of the array’s band-

width that is not absorbed by users. Section 4.3.1 demonstrates that this approach yields

substantially faster reconstruction than the parallel-stripe oriented approach.

4.2.3. Implementation of disk-oriented reconstruction

There are two implementation issues that need to be addressed in order for the above

algorithm to perform as expected. The first relates to the amount of memory needed, and

the second to the interaction of reconstruction accesses with updates in the normal work-

load.

4.2.3.1. Buffer memory management

In the stripe-oriented algorithm, the host or array controller requires exactlyG recon-

struction units worth of buffer memory per reconstruction process1, where a reconstruc-

tion unit is defined as the amount of data read or written per reconstruction access (refer to

Section 3.5.1). There is no need to manage this memory in any way, since each buffer is

used for only one purpose. However, in the disk-oriented algorithm, transient fluctuations

in the arrival rate of user requests at various disks can cause some reconstruction pro-

1. A well-designed controller might actually require onlyG-1 buffers per reconstruction process,
since a buffer used to read data could be re-used to compute parity.

128

cesses to read data more rapidly than others. This buffer manager must store this informa-

tion until the corresponding data or parity arrives from slower reconstruction processes,

and thus the buffering requirements of each individual reconstruction process vary over

time. It’s possible to construct pathological conditions in which a substantial fraction of

the data space of the array needs to be buffered in memory, and so it’s necessary to define

a buffer memory management policy for the disk-oriented algorithm.

The amount of memory needed for disk-oriented reconstruction can be bounded by

enforcing a limit on the number of buffers employed. If no buffers are available, a request-

ing process blocks until a buffer is freed by some other process. In the implementation

described here, the buffer pool is divided into two parts: each surviving-disk reconstruc-

tion process has one buffer assigned for its exclusive use, and all remaining buffers are

assigned to a “free buffer pool.” A surviving-disk process always reads units into its

exclusive buffer, but then upon submission to the buffer manager, the buffer manager

transfers the data to a buffer from the free pool, and then installs this buffer in its data

structures. This division of buffers simplifies the code by assuring that there is always a

free buffer into which to read data or parity when a reconstruction access arrives at the

head of a disk queue. A buffer stall condition occurs only when there are no free buffers

available into which to transfer the incoming unit, at which point the corresponding recon-

struction process has no outstanding I/O requests. Only the first process submitting data

for a particular parity stripe must acquire a free buffer, because subsequent submissions

for that parity stripe can be XORed into this buffer. Thus this approach is able to maintain

as many parity stripes under reconstruction as there are buffers in the free buffer pool.

Forcing reconstruction processes to stall when there are no available free buffers

causes the corresponding disks to idle with respect to reconstruction. In practice, a rela-

tively small number of free buffers suffices to achieve good reconstruction performance.

There should be at least as many free buffers as there are surviving disks, so that in the

worst case each reconstruction process can have one access in progress and one buffer

submitted to the buffer manager. Section 4.3.2 demonstrates that using this minimum

number of buffers is in general adequate to achieve most of the benefits of the disk-ori-

ented algorithm, and using about twice as many free buffers as disks reduces the buffer

stall penalty to nearly its minimum.

129

The alternative to this approach is to permanently assign buffers to disks as is sug-

gested by Merchant and Yu [Menon92a] and by Hou et. al. [Hou93]. In other words, each

reconstruction buffer available to the host or array controller is permanently assigned to

one of the disks in the array, and no other disk may use it. The drawback of this simpler

scheme is that it causes a reconstruction processes to stall when it exhausts its supply of

buffers, even when there are many unused buffers assigned to other disks. Simulations

showed that this approach yielded substantially worse reconstruction time than the “free

buffer pool” approach.

4.2.3.2. Interaction with writes in the normal workload

The reconstruction accesses for a particular parity stripe must be interlocked with user

writes to that parity stripe, since a user write can potentially invalidate data that has been

previously read by a reconstruction process. This problem applies only to user writes to

parity stripes for which some (but not all) data units have already been fetched; if the par-

ity stripe is not currently “under reconstruction,” then the user write can proceed indepen-

dently.

There are a number of approaches to this interlocking problem. The controller can

flush buffered partially-reconstructed units when a conflicting user write is detected.

Alternatively, the controller can treat buffered units as a cache, and user writes can update

any previously-read information before a replacement-disk write is issued. A third option

is to delay the initiation of a conflicting user write until the desired stripe’s reconstruction

is complete.

We rejected the first option as wasteful of disk bandwidth. We rejected the second

because it requires that the host or array controller buffer each individual data and parity

unit until all have arrived for one parity stripe, rather than just buffering the accumulating

XOR for each parity stripe. This would have multiplied the memory requirements in the

host or controller by a factor of at leastG-1. The third option is memory-efficient and does

not waste disk bandwidth, but if it is implemented as stated, a user write may experience a

very long latency when it is forced to wait for a number of low-priority accesses to com-

plete. This drawback can be overcome if it is possible to expedite the reconstruction of a

parity stripe containing the data unit that is about to be by the user. This is what we imple-

mented. When the controller detects a user write to a data unit in a parity stripe that is cur-

130

rently under reconstruction, it elevates all pending accesses for that reconstruction to the

priority of user accesses. If there are any reconstruction accesses for the indicated parity

stripe that have not yet been issued, the controller issues them immediately, at regular pri-

ority rather than low priority. The user write triggering the re-prioritization stalls until the

expedited reconstruction is complete, and the controller allows it to proceed normally.

Note that a user write to a lost and as-yet unreconstructed data unit implies that an on-

the-fly reconstruction operation must occur, because the written data must be incorporated

into the parity, and there is no way to do this without the previous value of the affected

disk unit. Thus, this approach to interlocking reconstruction with user writes does not

incur any avoidable disk accesses. Also, in practice, forcing the user write to wait for an

expedited reconstruction does not significantly elevate average user response time,

because the number of parity stripes that are under reconstruction at any given moment

(typically less than about 3C, as will be seen in Section 4.3.2) is small with respect to the

total number of parity stripes in the array (many thousand).

A potential problem arises if a free reconstruction buffer has not yet been acquired for

the parity stripe whose reconstruction is to be expedited, and none are available. The cur-

rent implementation simply allocates a new buffer and frees it when the reconstruction is

complete. This may not be acceptable in some implementations because the amount of

buffer memory available may be strictly limited and completely in use. There are a num-

ber of potential solutions to this problem, ranging from reserving a few buffers for this

purpose to stealing an in-use buffer and forcing the reconstruction of the corresponding

parity stripe to be restarted. We did not pursue these avenues as the problem is minor and

highly transient.

4.2.4. Summary

This section demonstrated a reconstruction algorithm designed to absorb for recon-

struction all of the disk array bandwidth not absorbed by the users. The described imple-

mentation keeps every surviving disk busy with reconstruction reads at all times, unless

blocked by the inability to acquire a buffer to hold the reconstruction unit. Splitting the

buffer pool into “exclusive” and “free” parts and forcing processes to block only at buffer

submission time assures maximally efficient buffer usage, since a reconstruction process

131

cannot block unless there are zero free buffers in the system. The approach of expediting

the reconstruction of parity stripes for which a user write is pending is simple to imple-

ment, and also preserves software boundaries in that the code controlling the user write

operations is maintained separately from the code controlling the reconstruction process.

The only modification required to the user-write code is that it must make a single call into

the reconstruction module prior to initiating a write operation so that a pending recon-

struction operation, if any, can be forced to completion before the write occurs.

4.3. Performance evaluations

The section presents the results of simulations evaluating the above algorithms. It

reports on both reconstruction performance and the sensitivity of this performance to the

amount of buffer memory in the controller.

4.3.1. Comparing reconstruction algorithms

Figure 4.1 shows the reconstruction time and user response time during recovery ver-

sus the declustering ratio (α) for single-thread, 8-way parallel, and 16-way parallel stripe-

oriented reconstruction, and for disk-oriented reconstruction, using the array and work-

load parameters from the tables in Section 2.3. The figure shows that the disk-oriented

algorithm makes more efficient use of the system resources: reconstruction is uniformly

faster under disk-oriented reconstruction than under any of the stripe oriented algorithms,

with the difference ranging up to a maximum of about 40% atα = 0.5 (refer to Appendix

C). The graphs converge at lowα because, as discussed in Section 3.3.2.2, saturation on

the replacement drive becomes the dominant factor influencing reconstruction perfor-

mance, and so the differences in the efficiencies of the reconstruction algorithms become

less significant.

Figure 4.1b shows that the improvement in reconstruction time comes at a moderate

cost in user response time. The stripe-oriented algorithms yield slightly better user

response time because they cause disks to idle more frequently, allowing user requests to

more often arrive to find an empty disk queue. This does not happen in the disk-oriented

algorithm because reconstruction accesses are always initiated as soon as any disk

becomes idle. Neglecting the RAID Level 5 (α = 1.0) case, where disk saturation causes

132

the response times to be unstable, the maximum difference in average user response time

between the disk-oriented algorithm and the 16-way parallel stripe-oriented algorithm is

about 20% atα = 0.75. However, the performance degradation caused by reconstruction

lasts longer using these stripe-oriented algorithms, and this offsets the response-time ben-

efit that they provide.

Note that the response time degradation experienced when using the disk-oriented

algorithm is fundamentally a priority inversion problem, because low-priority reconstruc-

tion requests force high-priority user requests to stall until the low-priority requests com-

plete. An interesting topic for future work would be to investigate the possibilities of

recapturing the lost responsiveness by implementing pre-emption in the local controllers

of the disks comprising the array. If the disks had the ability to suspend and subsequently

restart low-priority accesses with relatively low overhead, the controller could maintain

responsiveness during reconstruction at essentially the same level as in fault-free mode.

Stripe oriented, P=1
Stripe oriented, P=8
Stripe oriented, P=16
Disk-oriented

Stripe oriented, P=1
Stripe oriented, P=8
Stripe oriented, P=16
Disk-oriented

90th Percentile Average

Figure 4.1: Comparing reconstruction algorithms.

The figure shows reconstruction time (a) and user response time during reconstruction
(b) for the different reconstruction algorithms. The figure deliberately cuts off the upper
portion of the reconstruction time plot in order to expand the scale. Reconstruction time
with one process(P=1) andα=1.0 was about 9000 seconds (refer to Appendix C).

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

1000

2000

3000

R
ec

on
st

ru
ct

io
n

T
im

e
(s

ec
)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

40

80

120

160

200

240

U
se

r
R

es
po

ns
e

T
im

e
(m

s)

(b)

133

4.3.2. Sensitivity of disk-oriented algorithm to available buffer memory

As stated in Section 4.2.3.1, about 3C total reconstruction buffers are sufficient to

obtain most of the benefit of the disk-oriented reconstruction algorithm. Figure 4.2 dem-

onstrates this by showing the reconstruction time and average user response time during

reconstruction for a varying number of free reconstruction buffers. Figure 4.2a shows that

the reconstruction time can be slightly improved by using 120 rather than 80 buffers for a

40-disk array, but further increases do not yield any significant benefit. Using a very large

number of reconstruction buffers causes reconstruction time to be slightly worse than the

other cases. This is because with 540 reconstruction buffers in use there can be up to 540

parity stripes actively under reconstruction, which causes an excessive number of user

accesses to invoke expedited reconstruction. This lengthens reconstruction time by forcing

parity stripes to be reconstructed in non-sequential order, thereby increasing the average

head positioning time incurred by a reconstruction access. Figure 4.2b shows that the

number of reconstruction buffers has virtually no effect on user response time, except in

the case where 540 buffers were used, where an excessively large fraction of user accesses

are forced to wait for expedited reconstruction.

The non-sensitivity of reconstruction performance to available buffer memory is

explained by noting that at declustering ratios close to 1.0, the reconstruction rate is lim-

Figure 4.2: Sensitivity to available buffer memory.

The figure shows the sensitivity of reconstruction time (a) and user response time during
reconstruction (b) to the number of reconstruction buffers employed. In the legend, the
caption “40+X” means that the simulation was run using 40 exclusive and X free recon-
struction buffers.

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

400

800

1200

1600

2000

R
ec

on
st

ru
ct

io
n

T
im

e
(s

ec
)

40+40 buffers
40+80 buffers
40+120 buffers
40+500 buffers
Hollow: Avg
Filled: 90%

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

40

80

120

160

200

240

U
se

r
R

es
po

ns
e

T
im

e
(m

s)

134

ited by the rate at which data can be read from the surviving disks, while at low values of

α, the replacement disk is the bottleneck. When the surviving disks are the bottleneck,

total buffer stall time will be small because the controller cannot read data from the surviv-

ing disks as fast as it can write data to the replacement. This means that the buffer manager

will recycle buffers faster than the reconstruction processes will require them to accept

new data or parity units, and so a blocked process will not have to wait long to acquire a

buffer. Under this condition, it’s clear that increasing the size of the buffer pool will not

improve performance. The simulations bear this out, showing that whenα is close to 1.0,

each surviving-disk process spends only a small fraction of its total time waiting to

acquire reconstruction buffers. At low values forα, the surviving-disk processes generate

reconstructed units faster than the replacement-disk process can write them out to disk,

and so all free reconstruction buffers fill up very early in the reconstruction run, no matter

how many of them there are. In this case, the rate at which the buffer manager frees buff-

ers is throttled by the rate at which the replacement-disk process can write them to disk.

Since the total number of free buffers has no effect on this rate, there is no benefit in

increasing the total number of these buffers.

 The conclusion from this is that using about three times as many reconstruction buff-

ers as there are disks is in general sufficient to achieve the full benefits of a disk-oriented

reconstruction algorithm. For an array of 40 disks using 24 KB stripe units and a total of

120 reconstruction buffers (40 exclusive + 80 free), the total buffer requirement in the host

or controller is about 2.9 MB. Assuming that buffer memory costs 25 times as much as

disk, and using the example 314 MB disks, the total cost of the buffer memory needed for

reconstruction is less than 1% of the cost of the disks. Figure 4.2 shows that even this rep-

resents a relatively generous usage of buffer memory; the controller can use fewer buffers

without experiencing any significant decrease in reconstruction performance.

4.3.3. Comparing memory requirements between algorithms

A P-way parallel stripe-oriented algorithm requiresPG controller memory buffers,

whereP should be at least 8 or 16, while Figure 4.2 shows that a disk-oriented algorithm

requires about 3C. Thus except at low declustering ratios, the disk-oriented algorithm

requires fewer buffers than the stripe-oriented algorithm with significant parallelism, and

yet delivers faster reconstruction. In the example 40-disk array withα=0.5, the disk-ori-

135

ented algorithm requires about 120 buffers, while the 8-way parallel stripe-oriented algo-

rithm requires 160. Figure 4.1 shows that the disk-oriented algorithm is able to reconstruct

about twice as fast under these conditions. However, at very lowα the opposite condition

holds; atα = 0.05 (G=3), an 8-way parallel disk-oriented algorithm requires only 24

reconstruction buffers, but the disk-oriented algorithm still requires about 120. Figure 4.1

shows that saturation on the replacement drive causes reconstruction time to be essentially

the same between the two algorithms at this declustering ratio. However, Chapter 5 will

demonstrate a mechanism by which the replacement-disk bottleneck at lowα can be elim-

inated, which in turn eliminates this apparent advantage for a stripe-oriented algorithm.

It is important to note that the total buffer memory requirements of the disk-oriented

algorithm are relatively small, and so the controller can typically borrow the required

memory from the controller or host buffer cache. If a reconstruction buffer is the size of

one track (as indicated by the results of Section 3.5.1) and a disk contains 10,000 tracks,

then the 120 buffers required for the example 40-disk array total about 1% of the size of

one disk. If buffer memory costs 25 times as much per megabyte as disk, a buffer cache of

10% of the size of one disk costs about 6% of the total disk cost in the example array, and

so is affordable in either the host or controller. Therefore, borrowing the 1% needed to

effect reconstruction rapidly will not, in most cases, significantly alter the performance of

the cache. This makes the disk-oriented algorithm preferable at all values of the low

declustering ratio.

4.4. Optimizations and improvements

Paralleling the structure of Chapter 3, this section describes and evaluates a set of

optimizations and improvements that can be applied to the reconstruction algorithm. The

first subsection evaluates the effects of applying a set of well-known variations to the disk-

oriented algorithm. The second discusses a technique calledhead following, where the

reconstruction algorithm attempts to minimize head positioning time by reconstructing

data and parity in the region of the array currently being accessed by the users.

4.4.1. Work reducing variations to reconstruction algorithms

Muntz and Lui [Muntz90] identified two simple modifications to a reconstruction

136

algorithm, each intended to improve reconstruction-mode performance or reduce recon-

struction time by reducing the total work required of surviving disks. This section evalu-

ates their effects under the disk-oriented reconstruction algorithm.

4.4.1.1. Defining the variations

In the first variation, calledredirection of reads, the controller services user read

requests for failed data units that have already been reconstructed by reading from the

replacement disk, instead of invoking on-the-fly reconstruction as is done in degraded

mode. This reduces the number of disk accesses needed to service the read fromG-1 to 1.

Although this seems to be an obvious thing to do, Section 4.4.1.2 shows that it can actu-

ally lengthen reconstruction time under certain conditions. In the second variation,piggy-

backing of writes, when a user read request causes a data unit to be reconstructed on-the-

fly, the controller writes that data unit to the replacement drive as well as delivering it to

the requesting process. This is intended to speed reconstruction by reducing the total num-

ber of data units that need to be recovered, but in the following evaluation it will turn out

to have little effect.

Additionally, there are two ways to service a user write to a data unit whose contents

have not yet been reconstructed. In the first, the controller writes new data directly to the

replacement drive, and updates the parity to reflect this change. In the second, the control-

ler updates only the parity, and does not write the data to disk at all. Figure 4.3 illustrates

Failed Surviving Surviving Surviving Replacement

New
Data

Parity

Figure 4.3: Two methods for servicing a user write to unreconstructed data.

Method 1 writes the new data to the replacement and updates the parity. Method 2
updates only the parity, and allows the background reconstruction process to later install
the new data on the replacement drive.

Data DataData

Methods 1 and 2

Method 1 only

137

the two approaches more specifically: in the first method the controller writes the new data

to the replacement disk, and updates the parity by reading all the other units in the parity

stripe, XORing them together with the new data, and writing the result to the parity unit.

In the second method, the controller updates the parity in the same manner as the first

option, but does not write the new data to the replacement drive. In the latter case, the data

unit being updated remains invalid until recovered by the background reconstruction pro-

cess. We view sending user writes to the replacement disk (the former approach) as a third

modification that the controller can apply, and refer to it as theuser writes option. Note

that writing to the replacement disk eliminates the need to reconstruct the corresponding

data later on, but exacerbates the replacement-disk reconstruction bottleneck at low

declustering ratios.

These three options affect the distribution of work between surviving disks and the

replacement disk. When all three options are off, the replacement disk sees only recon-

struction writes and user writes to data that has been previously reconstructed, and the sur-

viving drives service the remainder of the workload. Enabling an option shifts workload

from the surviving disks to the replacement disk: redirecting reads shifts user-read work-

load, piggybacking writes shifts reconstruction workload, and enabling user writes to the

replacement shifts user-write workload. This section analyzes these options using the

disk-oriented reconstruction algorithm and the array and the workload configuration

described in the tables in Section 2.3.

The following evaluations investigate five of the eight possible combinations of these

three reconstruction algorithm options: all options off, each option on with the other two

off, and all options on. They show that only one option, the redirection of reads option,

achieves its intended benefit for the workload considered here.

4.4.1.2. Evaluating the options on OLTP-like workloads

Figure 4.4 shows the average and 90th percentile user response time during recon-

struction for five combinations of the reconstruction options. This figure shows that the

piggybacking of writes and user-writes options have little effect on user response time. To

understand this, note that updating a particular unit on the replacement drive can improve

response time only if a user process re-accesses that unit prior to the completion of recon-

struction. For a random workload, the probability of re-accessing the same data unit

138

before reconstruction completes is fairly small, and so these two reconstruction options

have little effect.

Redirection of reads, in contrast to the other options, can be effective for the OLTP

workload. It improves user response time by 10-20% when the declustering ratio is near

1.0, with its benefit diminishing to zero as this ratio decreases. It is most effective when

this ratio is large because the surviving disks are heavily loaded by reconstruction. Off-

loading work from these drives by redirecting reads to the underutilized replacement disk

improves response time by both reducing the number of I/Os necessary to service a user

read and by servicing such a read on a lightly-utilized drive. Reducingα, however, causes

both these effects diminish: at lowα it takes fewer disk reads to service a user read to the

failed drive, and the replacement disk utilization increases because these more lightly

loaded surviving disks reconstruct units more quickly.

Figure 4.5 shows the reconstruction time for the five combinations of options. The

piggybacking of writes and user-writes options again make little difference. In this case, it

is because nearly all (96%) of the accesses in the workload are smaller than one recon-

struction unit. This means that typical user- or piggybacked-write operation updates and

marks as reconstructed only a fraction of a reconstruction unit. When a reconstruction pro-

cess examines a partially-reconstructed unit, it has the option of reconstructing only the

Figure 4.4: User response time for five combinations of the variations.

 In the legend,R indicates redirection of reads,P indicates piggybacking of writes,W
indicates user-writes to the replacement drive,0 indicates that an option is off, and1
indicates that an option is on. The figure is difficult to read because of the overlapping
lines; in all plots, the000, 010, and001 curves are essentially coincident, as are the100
and111 curves.

RPW 000: 90%
RPW 000: avg
RPW 100: 90%
RPW 100: avg
RPW 010: 90%
RPW 010: avg
RPW 001: 90%
RPW 001: avg
RPW 111: 90%
RPW 111: avg0.0 0.2 0.4 0.6 0.8 1.0

Declustering Ratio (α)

0

40

80

120

160

200

240

U
se

r
R

es
po

ns
e

T
im

e
(m

s)

139

unrecovered portion of the unit, or of reconstructing the entire unit. Because there is little

difference between the time taken to read an entire track and the time taken to read a track

less one unit, and because many disks cannot read two blocks on one track as quickly as

they read the whole track, the implementation evaluated here always chooses the latter

option. Hence, most of the potential benefits to reconstruction time from user- and piggy-

backed-write options cannot be realized. Moreover, at lowα, these two options actually

have a negative effect on reconstruction time since they cause more work to be sent to the

over-utilized replacement disk.

While redirection of reads reduces user response time during recovery at all values of

α, it does not have the same effect on reconstruction time. Figure 4.5 shows that enabling

this option halves reconstruction time atα=1.0, but doubles it atα=0.1. This is partly

because the replacement disk is over-utilized at lowα, but there is also another reason. In

the absence of user workload, the replacement disk services only writes from the recon-

struction process and writes to previously-reconstructed data. Because the reconstruction

writes are purely sequential, the replacement drive experiences a very low average posi-

tioning overhead, and operates at high efficiency. Enabling any of the reconstruction

options incurs a significant reduction in the efficiency of the replacement disk by forcing it

to service far more randomly located accesses. This accounts for the significant increase in

reconstruction time at lowα when the reconstruction options are enabled.

Figure 4.5: Reconstruction time for five combinations of the variations.

 Refer to Figure 4.4 for a description of the legend.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

400

800

1200

1600

2000

R
ec

on
st

ru
ct

io
n

tim
e

(s
ec

)

RPW 000
RPW 100
RPW 010
RPW 001
RPW 111

140

4.4.1.3. Dynamic use of reconstruction options

As Figure 4.5 shows, the value of each reconstruction algorithm option depends on

whether the replacement disk or the surviving disks limit the rate of reconstruction. This

effect is dependent upon both the array’s declustering ratio and the amount of the failed

disk’s data reconstructed so far. Recognizing this dependence, Muntz and Lui suggested

that the reconstruction algorithm should monitor disk utilizations and enable or disable

each option dynamically, depending on whether surviving disks or the replacement disk

constitutes a bottleneck.

Figure 4.6 and Figure 4.7 show, respectively, user response time during reconstruc-

tion and reconstruction time using a monitored application of redirection of reads instead

Figure 4.6: Evaluating monitored redirection of reads: response time.

Monitored: 90%

Monitored: avg

Constant: 90%

Constant: avg

None: 90%

None: avg

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

50

100

150

200

250

U
se

r
R

es
po

ns
e

T
im

e
(m

s)

Figure 4.7: Evaluating monitored redirection of reads: reconstruction time.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

400

800

1200

1600

2000

R
ec

on
st

ru
ct

io
n

tim
e

(s
ec

)

Monitored
Constant
None

141

of a constant (always enabled) application or no (always disabled) application. The simu-

lations dynamically apply only the redirection of reads option because it is the only option

that significantly affects recovery mode performance for the OLTP workload. This

dynamic reconstruction algorithm is called themonitored redirection option. The monitor-

ing scheme employed is as follows: the controller records the duration of each disk busy

and idle period, and every 300 accesses it generates a new estimate for the utilization of

each disk. If the replacement disk utilization is higher than the average surviving disk uti-

lization, the controller declares the replacement disk to be the bottleneck, and disables

redirection of reads until the next time the estimates are updated. If the opposite is true, the

controller declares the surviving disks to be the bottleneck, and enables redirection of

reads until the next utilization estimate update.

As Figure 4.6 shows, the response-time performance of monitored redirection is actu-

ally worse at moderate and low declustering ratios than the constant-redirection case. This

is because redirection of reads is uniformly beneficial to response time, but monitored

redirection disables it at lowα. Figure 4.7, however, shows that monitored redirection

minimizes reconstruction time because it is always the case that either the replacement

disk or the surviving disks limit the reconstruction rate.

4.4.1.4. Summary

For the OLTP-like workload considered here, the only effective work-reducing varia-

tion to the disk-oriented reconstruction algorithm is redirection of reads. This option

improves user response time by as much as 10% - 20% at high declustering ratios, while

reducing reconstruction time by as much as 40%. However at a low declustering ratio,

redirection of reads benefits response time by only a very small amount, and lengthens

reconstruction time by over-utilizing the replacement disk. A dynamic application of this

option based on monitoring disk utilizations achieves much of its benefits without its

costs, independent of the declustering ratio.

4.4.2. Head following

User accesses and reconstruction accesses interfere with each other by causing the

disk heads to be continually moved between the current reconstruction point and the

region of the array being accessed by the users. More specifically, when a user access

142

arrives at the array while reconstruction is ongoing, it incurs a potentially long seek from

the current reconstruction point to the requested data, performs exactly one access there,

and then, if no other user access arrives, incurs another long seek back to the reconstruc-

tion point. Thus reconstruction can lengthen average user response time by breaking up

any locality of reference in the user access stream, and user accesses can elongate recon-

struction time by causing more of the disk’s time to be spent positioning rather than trans-

ferring data. This observation leads to the idea of modifying the reconstruction algorithm

so that it tracks the user-induced movement of the disk heads, and attempts to select parity

stripes to reconstruct so as to minimize the seek time induced by the reconstruction

accesses.

This section develops two such algorithms and evaluates their efficacy. These tech-

niques both yield negative results, that is, they degrade reconstruction performance rather

than improve it, and analyzing of the reasons behind this leads to the conclusion that head-

following is not viable in random-workload environments such as OLTP. The first subsec-

tion describes the basic approach to the problem, and demonstrates a severe buffer-mem-

ory management problem inherent in it. The second and third subsections propose and

evaluate potential solutions to this problem, but show that neither approach achieves the

intended benefits. The fourth subsection categorizes and summarizes the reasons why

head following is not viable in random-workload environments. Given these reasons, the

fifth subsection investigates whether head following might be effective under other work-

load conditions. The final subsection summarizes the results.

4.4.2.1. Basic head-following algorithm, and its shortcomings

Each disk in a block-stripe redundant disk array typically services a different user

access, and so there is, in general, no correlation between the position of any two heads. It

is therefore necessary to apply the head-following technique on a per-disk basis, rather

than a per-parity-stripe basis. This means that the reconstruction process associated with

each surviving disk should track the head movement on its assigned disk, and pick a sur-

viving data or parity unit to fetch so as to minimize the seek time.

Modern disks typically hide their geometry, and thus their absolute head position,

from the outside world in order to facilitate modular design; the typical interface exported

by a disk consists of a linear address space of sectors, each of which has an address and

143

can be read or written [ANSI86]. Furthermore, the head settling time may vary from

accesses to access, and the rotational speed of the media may vary by a few percent over

time [Maxtor89]. These facts make it difficult or impossible for the host or array controller

to know the head position at any given time with absolute certainty. Fortunately, however,

sectors that are sequential in the address space exported by the disk are typically sequen-

tial on the physical media in order to maximize performance. This means that the control-

ler can use the address of the last sector accessed on a disk as an indicator of that disk’s

head position,2 and thus can monitor the head position without incurring any overhead on

the drive itself. The address of the last sector accessed is, of course, only an approximation

to the current head position, since the media rotates continually under the heads. This

means that the head following algorithm described below may not actually select the unit

that is actually closest to the current head position, in the sense that some other needed

unit may be accessible in a slightly shorter period of time. However, since the goal of head

following is to reduce the seek time penalties incurred by the concurrent servicing of user

requests and reconstruction requests, the accuracy of the approximation is sufficient.

The basic head-following algorithm is as follows. Each reconstruction process sub-

mits a low-priority request to its disk queue, as in the regular disk-oriented algorithm.

Each such request is tagged with the address of a “callback” routine, which is invoked

with a specific set of parameters immediately before the reconstruction access is initiated.

When invoked, the callback function obtains the address of the last sector accessed, either

from its parameter list or from a locally-maintained data structure, and assumes the disk

heads are positioned over this sector. From the disk sector address and the disk identifier, it

computes the logical sector address of the reconstruction units3 immediately adjacent to

this sector. It then consults the reconstruction map to see if any of these reconstruction

units are both needed to reconstruct some unit on the failed drive, and not previously

fetched. The callback continues to search the reconstruction units adjacent to the current

head location, widening the search at each step, until it finds such a reconstruction unit or

2. Most modern disks also incorporate aread-ahead function, whereby after an access ends, they
continue to read sequential sectors from the media into an internal buffer, so that if the user asks for
these sectors, they can be supplied with very low latency. Since the read-ahead buffer is typically
less than one cylinder in size, this does not invalidate the use of the last sector address accessed as
an indicator of the disk head position.
3. Recall that the “reconstruction unit” is the unit of data or parity read or written per reconstruction
access, and its size may be different in size than the data and parity units in the array.

144

determines that no sectors on the indicated drive are still needed for reconstruction. The

callback initiates a low-priority reconstruction read on the first such unit that it finds, or

signals completion if it finds none.

The problem with this approach is that, as described, it leads to almost immediate

deadlock of the reconstruction process. Since the workload causes the disk heads to be

uncorrelated with respect to each other and there are generally many thousand parity

stripes in the array, head following causes each reconstruction process to fetch a recon-

struction unit from a different parity stripe. When the read operations complete, these units

are submitted to the buffer manager, and consumeC reconstruction buffers. Each process

then picks another (uncorrelated) reconstruction unit to fetch, andC more buffers are used.

Thus the reconstruction process rapidly exhaust the pool of available buffers, usually

within the first two or three fetches after the initiation of reconstruction. When no recon-

struction buffers are available to accept a reconstruction unit that has been fetched, the

submitting process blocks until a buffer is freed by another process. Buffers are only freed

when all the surviving reconstruction units in the corresponding parity stripe have been

fetched and XORed together, and the results written to the replacement disk. Since all the

reconstruction processes are fetching units for different parity stripes, no buffers are ever

filled and freed, and so reconstruction deadlocks.

The central problem is that in order to make progress, the reconstruction processes

must work on a correlated set of parity stripes. In other words, when a reconstruction pro-

cess selects a reconstruction unit to fetch, there must be a high probability that the other

reconstruction processes will fetch units for the same parity stripe within a relatively short

period of time, so that the corresponding reconstruction buffer can be filled, written, and

recycled for use by another parity stripe. The next two subsections describe mechanisms

that a reconstruction process can use to select the next reconstruction unit to fetch, so as to

avoid the deadlock condition described above.

4.4.2.2. First approach: fetch closest active parity stripe

Recall from Section 4.2.3.1 that only the first reconstruction process submitting a unit

for a particular parity stripe needs to acquire a reconstruction buffer. Subsequent submis-

sions can simply XOR the fetched data into this buffer, and hence need not allocate a new

one. This leads to the idea of causing the reconstruction processes to initiate reconstruc-

145

tion on a new parity stripe (one for which no other units have been fetched, and so a recon-

struction buffer will be required at submission time) only if there is a buffer available to

accept the fetched unit when it is submitted. If no buffers are available, the reconstruction

process must fetch a reconstruction unit from a parity stripe that is already under recon-

struction, in order to guarantee that it will not have to acquire a buffer at submission time.

Since there are many parity stripes under reconstruction at any one time, the reconstruc-

tion process generally has a choice of which one to select. The obvious candidate is the

one that is closest to the current position of the disk heads.

More specifically, this approach to head following is as follows. When the callback

occurs, indicating that a disk is free to service a reconstruction access, the head-following

code checks to see if any reconstruction buffers are available for use. If so, the callback

routine selects the next reconstruction unit to be fetched to be the as-yet-unfetched unit

that is closest to the current position of the disk heads. It then acquires a reconstruction

buffer, zeroes the data portion of it, marks the buffer as empty, and submits it to the buffer

manager. This places the corresponding parity stripe “under reconstruction”, meaning that

other processes may now submit units for that parity stripe without blocking, since a

buffer has already been acquired. The callback then initiates the fetch for the indicated

reconstruction unit, and proceeds normally. If, however, no buffers are available at the

time of the callback, the routine scans the list of parity stripes that are currently under

reconstruction, and identifies the parity stripes that still require a unit from the indicated

disk. From the parity stripes so identified, the callback routine picks the one that is closest

to the current disk head position, and initiates a fetch on the corresponding reconstruction

unit.

In the unusual case that there are no available reconstruction buffers and no parity

stripes currently under reconstruction that still require a unit from the indicated disk, the

reconstruction process has two choices; it can release the disk, delay for some fixed period

of time and then re-execute the callback routine, or it can just select a unit to be fetched

and accept the buffer stall that may occur upon submission of the unit to the buffer man-

ager. The implementation in raidSim uses the latter option, with the following modifica-

tion. When this situation is encountered, the callback routine selects the closest needed

reconstruction unit, and places the corresponding parity stripe identifier on thebuffer wait

146

list, which is a list of those parity stripes for which reconstruction has been initiated but no

reconstruction buffers have been acquired. Parity stripes identified on this list are given

first priority for reconstruction buffers as they are freed, so as to minimize any buffer stall

time that occurs when processes submit units for these parity stripes. Because of this prior-

itization, reconstruction processes that find no reconstruction buffers available, and no

parity stripes under reconstruction still requiring a unit from their disk, check the buffer

wait list before initiating reconstruction on a new parity stripe. If any parity stripe in the

buffer wait list requires a unit from the disk assigned to the reconstruction process, the

closest such unit is selected for fetch rather than initiating reconstruction on a new parity

stripe.

The goal behind this approach to head following is to distribute the parity stripes cur-

rently under reconstruction throughout the array, rather than having them concentrated at a

single point. This assures that when no buffers are available, there will be a high probabil-

ity of finding something close by to be fetched, and the average seek distance incurred by

a reconstruction access will be reduced.

Unfortunately, Figure 4.8a shows that this approach actually lengthens reconstruction

time over the no-head-following case, by a significant amount at low declustering ratios.

The corresponding response-time plot (Figure 4.8b) indicates that there is essentially no

difference between the head-following and no-head-following cases. This behavior is

Figure 4.8: Evaluating the “fetch closest active” type of head following.

Part (a) shows reconstruction time, and part (b) shows average and 90th percentile user
response time during reconstruction.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

400

800

1200

1600

2000
R

ec
on

st
ru

ct
io

n
T

im
e

(s
ec

)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

40

80

120

160

200

240

U
se

r
R

es
po

ns
e

T
im

e
(m

s)

No following: 90%

No following: avg
Following: 90%

Following: avg

(a) (b)

147

explained by noting that when head following is disabled, reconstruction is largely a

sequential process. Although user accesses cause potentially long seeks to and from the

reconstruction point, it is often possible when head following is disabled to fetch several

sequential reconstruction units before a user access arrives and moves the disk heads

again. These sequential reconstruction accesses occur at a very high bandwidth, since the

seek and rotate penalties incurred between each access are essentially zero. When head-

following is enabled, there is no single reconstruction point, and so reconstruction pro-

cesses can fetch units sequentially only if there is a constant supply of available buffers.

This is not the case at any value ofα (that is, no matter whether the surviving disks or the

replacement disk is the reconstruction bottleneck), because as soon as a buffer is freed,

some reconstruction process grabs it. Thus the average number of free buffers available at

any moment in time is close to zero at all values of the declustering ratio, and so the recon-

struction processes are forced to fetch the “closest active unit” most of the time. This

means that nearly every reconstruction access incurs a seek and rotate penalty. These pen-

alties are smaller than the average seek and rotate penalties listed in Table 2.3 because the

closest active reconstruction unit is always selected, but it is still the case that the recon-

struction process incur some positioning penalty on nearly every reconstruction access. By

way of contrast, although the per-access seek and rotate penalties paid in the no-head-fol-

lowing case are larger, they occur much less frequently since many reconstruction units

can often be fetched sequentially. This accounts for the poor performance of the head fol-

lowing algorithm with respect to the default disk-oriented algorithm.

The reconstruction performance of the head-following algorithm is worst at lowα

because the user access rate is fixed at 14 user I/Os per second per disk in these simula-

tions. This implies that total per-disk access rate is lower at low values ofα., because the

per-disk load increase is less at a low declustering raio than at a high one. At lower access

rates, the non-head-following algorithm is able to perform more sequential reconstruction

accesses per user access, and so the difference between the two algorithms increases as the

declustering ratio is decreased.

Figure 4.9 verifies this explanation by showing a histogram of the time taken to com-

plete a reconstruction access in one specific example (C = 40, G = 10), for one surviving

disk and for the replacement disk. The figure shows that with head-following disabled,

148

many reconstruction accesses occur sequentially and thus get done very quickly, whereas

with head-following turned on, most accesses incur a seek and rotate penalty, and this sub-

stantially lengthens the average reconstruction access time.

It’s clear, then, that the strategy of head following and fetching the “closest active

reconstruction unit” when there are no buffers available to fetch a new unit is not viable

under OLTP-like workloads, because it ruins the sequentiality of the reconstruction pro-

cess. The next section describes a head-following approach intended to avoid this prob-

lem.

4.4.2.3. Second approach: multiple reconstruction points

In order to maintain sequentiality, it’s necessary to structure the reconstruction algo-

rithm such that each process fetches sequentially forward from a well-defined point within

the array. In order to get the advantages of head-following, the processes must be able to

select the next reconstruction unit to fetch from a set of possibilities that are distributed

over the address space of the array. These two facts lead to the idea of maintaining multi-

ple independent “current reconstruction points”, that is, points within the address space of

the array from which a reconstruction process can fetch sequentially forward, instead of

just one such point as in the default disk-oriented algorithm. When a user access moves

Figure 4.9: Example reconstruction access time histograms.

Part (a) shows the histogram for a surviving disk, and part (b) for the replacement disk.
The example shown here is for C = 40 and G = 10 (α = 0.23). Note that the two plots
have different scales on the y-axes.

No head following: average = 27 ms
Fetch closest active: average = 32 ms

No head following: average = 16 ms
Fetch closest active: average = 32 ms

0 10 20 30 40 50
Recon access time (ms)

0

100

200

300

400

500

N
um

be
r

of
 a

cc
es

se
s

0 10 20 30 40 50
Recon access time (ms)

0

2000

4000

6000

8000

10000

12000

N
um

be
r

of
 a

cc
es

se
s(a) (b)

149

the disk heads away from the current reconstruction point and then completes its I/O oper-

ation, the corresponding reconstruction process can reduce the seek time back to the

reconstruction point by selecting the closest reconstruction point, rather than returning to

the original point.

If each process selects its current reconstruction point solely on the basis of shortest

seek distance, then the deadlock condition discussed above can occur. To see this, consider

a system with two reconstruction processes P1 and P2, and a parity stripe S requiring a

reconstruction unit from the disks assigned to both P1 and P2. The following sequence

causes deadlock. P1 fetches its unit from S and installs it in the buffer manager, and then a

user access intervenes and moves the heads on disk 1 to the vicinity of another reconstruc-

tion point. At this point in time, the reconstruction buffers become exhausted. P1 begins

fetching at the new reconstruction point, encounters a parity stripe for which no other units

have been fetched, and blocks upon submission. Meanwhile, P2 encounters a “new”

reconstruction unit at any reconstruction point other than the one at which it will encoun-

ter the required unit in S, and hence P2 blocks upon submission as well. In order to free a

buffer to release either process, one of the two processes must visit another reconstruction

point and fetch the required unit. Since both processes are blocked, deadlock ensues.

This problem of buffer memory management extends beyond the issue of deadlock; it

also manifests itself as poor reconstruction performance. Inherent in the reconstruction

task is the requirement that multiple reconstruction processes work in conjunction on the

same parity stripe, or set of parity stripes, in order to make progress. When there are mul-

tiple reconstruction points in the array, partially-filled buffers (buffers for which some but

not all required units have been fetched and XORed) tend to languish in the buffer man-

ager queues, because there is no impetus for the reconstruction processes required to fill

and free them to move back to the reconstruction point where they will encounter the cor-

responding parity stripes. By way of contrast, with a single reconstruction point, all recon-

struction processes are forced to work on the same relatively small set of parity stripes,

and so the processes fill, write, and recycle buffers at a much more rapid pace.

In order to avoid these problems, a reconstruction process cannot select the next

reconstruction point to visit solely on the basis of shortest seek distance; it must also con-

sider buffer memory management issues. The remainder of this section describes two

150

approaches to this problem, and provides the reasons why they did not perform as hoped.

The simplest approach to the buffer management problem is for each reconstruction

process to select the closest reconstruction point only when there are available reconstruc-

tion buffers, or when the next few parity stripes encountered at that point are already under

reconstruction. When neither of these conditions hold, a process selects the next recon-

struction point to visit by scanning the list of parity stripes currently under reconstruction

to determine how many buffers can be freed by moving to each reconstruction point, and

moving to the one that will free the maximum number of buffers. When no buffers can be

directly freed by moving to any reconstruction point, that is, there are no parity stripes

under reconstruction that requireonly a unit from the disk under consideration to be full,

the scanning process selects the reconstruction point at which it will encounter the most

active parity stripes still requiring a unit from the indicated disk.

Simulating this approach yielded results very similar to those shown in Figure 4.8;

response time was not improved, reconstruction time was not improved at highα, and

reconstruction time was degraded at lowα. The reason is simple: reconstruction buffers

are grabbed by a reconstruction process very soon after being freed, and so it is rare that

there are ever any buffers on the free list. It takes only one fetch by one reconstruction pro-

cess to consume a buffer, but it takes several coordinated fetches by several reconstruction

processes to free a buffer. Since there are rarely any available reconstruction buffers,

reconstruction process are rarely able to move to the closest reconstruction point, and so

they nearly always end up moving to the reconstruction point where they can free the most

buffers. Thus, this algorithm does not actually head-follow at all; it “buffer-follows”. In a

typical example (C = 40, G = 10, two reconstruction points), there were 517,179

total invocations of the head-following callback function, of which only 3,352 (less than

1%) found a buffer available. Even atα = 1.0, reconstruction processes found free buffers

only about 50% of the time, which was not sufficient to offset the languishing-buffers

problem described above. Thus there is no advantage to having multiple reconstruction

points using this approach, since having a single reconstruction point maximizes the algo-

rithm’s ability to recycle buffers.

The above approach is based on avoiding the condition that causes an excessive num-

ber of reconstruction processes to block on buffer submissions. An alternative approach

151

would be allow this condition to occur, but to detect it when it happens and invoke some

mechanism to break the potential deadlock. The premise here is that if the number of

reconstruction points is small, a random user workload should keep the reconstruction

processes moving between the reconstruction points, and thus the actual occurrence of a

condition where an excessive number of reconstruction processes have blocked on buffer

submission should be relatively rare. If this were the case, then even an expensive mecha-

nism for detecting this condition and releasing the affected process would be acceptable,

since it would not occur very often.

The easiest way to release a process that is stalled trying to submit a buffer is to

acquire a buffer, tag it with the identifier of the parity stripe for which the process is trying

to submit, and submit it to the buffer manager. This causes the manager to wake up all pro-

cesses that are waiting on that parity stripe, after which each returns to its normal fetching

of reconstruction units. Accordingly, in this approach, the buffer manager reserves a small

number of reconstruction buffers for the purpose of breaking deadlock conditions as they

arise. When the number of processes waiting on a particular parity stripe crosses some

pre-defined threshold, the buffer manager commits a buffer from this reserved set to the

corresponding parity stripe, thus releasing all the waiting processes4. Similarly, when the

total number of reconstruction processes waiting on buffers crosses a threshold, the buffer

manager commits a reserved buffer to the parity stripe upon which the most processes are

waiting. When the number of available reserved buffers drops below some pre-defined

number, it indicates that excessive buffer stall conditions are arising faster than reserved

buffers are being freed by the completion of reconstruction, and so the buffer manager

switches from thisdeadlock-breaking mode to deadlock-avoidance mode. In avoidance

mode, the reconstruction processes operate as described previously: a process moves to

the closest reconstruction point only if it finds a regular (that is, non-reserved) buffer

available, and otherwise moves to the reconstruction point at which it can free up the most

buffers. When the number of reserved buffers rises back above the threshold, the buffer

manager re-enters deadlock-breaking mode.

The goal behind this is to allow the reconstruction processes to move to the closest

4. In order to avoid reserving these buffers, the buffer manager could instead choose to steal an in-
use buffer to break the deadlock, and force the reconstruction on the corresponding parity stripe to
be restarted.

152

reconstruction point in all cases except when this policy genuinely causes an excessive

number of processes to stall attempting to submit. However, simulating this approach

revealed that its primary premise is flawed: it is not the case that excessive buffer stalls are

relatively rare events so long as the number of reconstruction points is small. Rather, the

buffer-stall thresholds are crossed constantly, and thus the supply of reserved reconstruc-

tion buffers is rapidly depleted, and the algorithm reverts to buffer-stall avoidance mode.

In avoidance mode, the reserved buffers are recycled but never re-committed to break a

deadlock, and so the supply builds back up, and eventually the algorithm re-enters dead-

lock-breaking mode. However, as soon as this occurs, the supply of reserved buffers is

depleted at the same rate as before, and so the algorithm is unable to achieve its goals.

4.4.2.4. Summarizing: head following is not viable under a random workload

After describing the failure of both the fetch-closest-active and multiple-reconstruc-

tion-points approaches, it makes sense to step back and summarize the problems encoun-

tered in trying to improve reconstruction performance via head-following in a random-

workload environment. There are two fundamental issues:

1. Head following interferes with the sequentiality of the reconstruction process. It

makes it difficult for a reconstruction process to issue multiple consecutive

accesses in the absence of user activity on the disk, and this drastically reduces the

bandwidth available for reconstruction (see Figure 3.21). This problem is espe-

cially severe on the replacement disk, which observes an access pattern that is

almost completely sequential using a single-point reconstruction algorithm, but

almost completely random using a head-following algorithm.

2. Head following obstructs the efficient recycling and re-use of reconstruction buffer

memory. Reconstruction progress requires that multiple reconstruction processes

coordinate on a single parity stripe. Using a single-reconstruction-point algorithm

forces all reconstruction processes to work on the same small set of parity stripes,

whereas any form of head following reduces or eliminates this tendency to focus

the reconstruction resources (processes and memory) on a single point in the array.

For these reasons, head following is not viable under workloads (such as OLTP) that

are characterized by a large number of independent processes concurrently accessing

153

small, randomly distributed units of data.

4.4.2.5. Evaluating head following on other workloads

Having found that head following yielded negative results for the primary workload

under consideration, it’s worthwhile to briefly investigate whether there exist workload

conditions under which head following is effective. This section evaluates the perfor-

mance of the two head following algorithms under three workloads: a synthetic, concur-

rent, random workload that exhibits a high degree of spatial locality, a synthetic, single-

process workload that exhibits a high degree of sequentiality, and the traced UNIX work-

station workload described in Section 3.3.4.3. All unspecified parameters were set to the

values given in the tables in Section 2.3. To keep the discussion brief, the results are pre-

sented in summary form only.

The first workload was the same as the one described in Table 2.4, with the modifica-

tion that in 80% of the accesses, the starting points within the array were uniformly dis-

tributed within a contiguous region comprising 10% of the array’s data space, while in the

other 20% the starting points were uniformly distributed throughout the array’s data space.

This causes the disk heads to remain relatively close together, which might make it easier

for the head-following code to coordinate the processes on the same set of parity stripes.

However, the simulation results showed behavior very similar to that exhibited in

Figure 4.8; there was no benefit to reconstruction time at highα, reconstruction time was

worse at lowα, and response time was not strongly affected. The reason for this is that

when the disk heads are largely confined to small region of the array, head following ben-

efits reconstruction-mode performance only for that region of the array. The problems

described in the preceding section still apply when reconstructing the remaining 90% of

the lost data, and the small benefit achieved within the local region is not sufficient to off-

set the loss of sequentiality and the additional positioning overhead due to buffer memory

management. Furthermore, since the amount of buffer memory available in the controller

is typically less than 1% of the size of the array, the region of the array to which the heads

are confined must be extremely small for head-following to be effective even within the

local region.

The results on the random-but-local workload suggest head following might be effec-

tive if a workload had a form of “roving locality”, that is, if the application accessed data

154

within a very small region of the array for a short period of time, and then moved to

another small region. This leads to the idea that a low-concurrency application that

sequentially reads a set of large contiguous files might induce sufficient synchronization

between the disk heads to render head following effective. To model this, we simulated a

single process performing 1 MB read accesses, each of which has a 90% probability of

being sequential with respect to the previous access.5 This should be a very favorable

workload for head following, because each access uses most of the disk arms, and thus the

heads should be very well synchronized. Simulating this workload indeed shows a limited

benefit to the “fetch-closest-active” type of head following (Section 4.4.2.2). Reconstruc-

tion time was reduced by about 20% whenα was near 1.0, but was again significantly

degraded at lowα. User response time was improved by between 5% and 10% at all val-

ues ofα. Although this performance could perhaps be improved somewhat by specifically

tuning the head-following algorithm to the high degree of sequentiality in the user work-

load, the extreme specificity of the workload, and the less-than-stellar performance

improvements achieved, make the additional complexity and computation overhead of

head-following unattractive.

Finally, for completeness we simulated the performance of the head-following algo-

rithms on the UNIX workstation workloads described in Section 3.3.4.3. The results were

very similar to those reported in Figure 4.8, with the primary difference being that head

following had less of a negative effect at lowα. This was due to the large fraction of

writes in the traced workloads. Recall that a user write operation that targets a previously

reconstructed unit must always update the data on the replacement disk, in order to assure

that the corresponding parity unit does not become out of date. This interferes with the

sequentiality of the reconstruction writes to the replacement disk, and thus slows recon-

struction. Since the traced workload had a higher fraction of writes than the synthetic

workloads, this interference was more severe, and thus the interference due to head-fol-

lowing was less noticeable.

4.4.2.6. Summary

This section described techniques for causing the reconstruction process to track the

5. This represents a geometric distribution, and thus the expected number of sequential megabytes
read between each non-sequential access is 1.0/0.1 = 10 MB.

155

user-induced motion of the disk heads, and attempt to reconstruct in the areas of the array

currently being accessed by the users. The intended benefit is that the head positioning

time incurred by both user- and reconstruction-accesses should be reduced. Two problems

became evident: head following ruins the sequentiality of the reconstruction process, and

interferes with the efficient recycling and re-use of the reconstruction buffers. The section

described several attempts to overcome these problems, none of which were successful.

The conclusion to be drawn is that head following is not viable in random-workload envi-

ronments. Analysis of other workloads showed only limited benefits in very specific cases.

Although this section did not explicitly analyze the issues of computational overhead and

implementation complexity, the head following techniques were all significantly slower

and more complicated that the simple disk-oriented algorithm previously described. Thus,

we found no compelling reason to adopt this approach.

4.5. Conclusions

This chapter demonstrated that there are three primary considerations in the design of

the reconstruction algorithm. First, it is essential that the algorithm absorb as much as pos-

sible of the array’s bandwidth that is not absorbed by the user accesses. Second, the algo-

rithm must preserve the inherent sequentiality of the reconstruction process, since a disk

drive is able to service sequential accesses at many times the bandwidth of random

accesses. Finally, the algorithm must concentrate its resources (work on a relatively small

set of parity stripes at any one time) in order to avoid severe buffer memory management

problems. These considerations lead to the development of the disk-oriented algorithm,

and to the rejection of head following.

The second major concern in the design of a reconstruction algorithm is determining

whether the reconstruction bottleneck will be the surviving disk or the replacement disk.

Theredirection of reads, piggybacking of writes,anduser-writes reconstruction variations

allow some degree of control over the division of user-induced workload between the

replacement and surviving disks, and thus can, under certain conditions, improve the

reconstruction-mode performance of the array by diverting work from the bottleneck

resource to the one with available bandwidth. We found that in OLTP-like workloads (ran-

dom, read-dominated, small-access), the latter two variations had little effect on the over-

all performance. Taking all this into account, the strategy ofmonitored redirection yielded

156

optimal reconstruction time, and good, but not quite optimal, user response time.

The tertiary issues discussed in this chapter included the amount of memory required

in the disk controller, and the interaction of user requests with reconstruction requests. We

showed that the algorithms presented here were largely insensitive to the amount of buffer

memory available, which allows them to provide good performance at low cost. We

argued that, since there is no motivation to use a large amount of memory for reconstruc-

tion in the controller, the number of parity stripes under reconstruction at any moment will

be relatively small, and thus the frequency with which user accesses will interact with

reconstruction accesses will be very low. Thus we proposed a very simple approach to

handling this interaction, based on forcing a user access to wait for an expedited recon-

struction to complete before performing its disk operations.

157

Chapter 5: Distributed Sparing

As discussed in Chapter 2, redundant disk arrays typically maintain one or more on-

line spare disks, so that reconstruction can be immediately initiated when a failure occurs.

This chapter will show that there is strong motivation to distribute the capacity of the on-

line spare disk(s) amongst all the disks in the array, instead of dedicating one or more

disks as spares. The chapter shows that combining thisdistributed sparing technique with

parity declustering (as developed in Chapter 3) eliminates the spare disk as the reconstruc-

tion bottleneck at low values of the declustering ratio (α), and thereby allows for

extremely rapid failure recovery. A few prior studies have investigated the benefits of dis-

tributed sparing in RAID Level 5 arrays; Section 5.1 describes them and summarizes their

conclusions. In order to introduce the details of the technique, Section 5.2 describes its

implementation in RAID Level 5 arrays. Unfortunately, the simple layout solution

described in Section 5.2 does not apply directly to parity-declustered arrays, and so Sec-

tion 5.3 develops a new layout mechanism, again based on balanced incomplete block

designs, that achieves the required distribution. Section 5.4 addresses the re-design of the

disk-oriented reconstruction algorithm to support distributed sparing. The primary issue in

this section is that distributing the spare disks’ capacity (hereafter referred to as thespare

space) eliminates the distinction between surviving-disk processes and the replacement-

disk process. Together, Sections 5.3 and 5.4 put into place all the elements needed to

implement distributed sparing, and so Section 5.5 evaluates via simulation the reconstruc-

tion-mode benefits of this approach. The analysis shows that the technique does indeed

eliminate the spare disk as the reconstruction bottleneck at low declustering ratios. The

results show reconstruction times that decrease monotonically withα, dipping as low as

about 30 seconds in large arrays. Section 5.6 describes a related study that uses complete

block designs to implement distributed sparing, showing that the approach taken in this

study has several advantages, but is only feasible for small arrays. Section 5.7 concludes

and summarizes the chapter.

158

5.1. The benefits of distributed sparing

There are two primary motivations for distributing spare space. First, as Menon and

Mattson [Menon92b] noted, the spare disks in a RAID Level 5 disk array remain idle

except during failure recovery, and so represent a grossly underutilized system resource.

Distributing the spare space allows the idle drives to service user requests, thereby

improving the performance of the array without increasing the number of disks. The bene-

fit of using these extra actuators clearly decreases with the number of disks in the array;

adding one extra actuator to anN-disk array yields a performance improvement factor of

1/N. Menon and Mattson also evaluate a third alternative,parity sparing. In this approach,

upon detecting a failure, the controller merges two parity groups, and uses the parity units

in one group as the spare units for the other. The study concluded that distributed sparing

was a better alternative as it allowed for faster reconstruction, and so the remainder of this

chapter does not consider parity sparing.

The second advantage of distributed sparing, more pertinent to the topic of this disser-

tation, is that it allows for significantly improved reconstruction performance in parity

declustered arrays at low values of the declustering ratio (α). Recall from Section 3.3.2

that for low values ofα, the reconstruction time is limited by the rate at which recovered

data and parity units can be written to the replacement disk. This enforces a lower bound

on the reconstruction period equal to the minimum time required to write the entire con-

tents of one disk (about 200 seconds for the IBM 0661 drives described in Section 2.3.2).

Distributing the spare space amongst the disks of the array increases the maximum recon-

struction-write bandwidth from that of a single disk toward the aggregate write bandwidth

of the array, eliminating the spare disk as the reconstruction-time bottleneck. This prom-

ises extremely fast reconstruction. Note that distributed sparing does not significantly

improve reconstruction time in declustered arrays with a high declustering ratio (recall

that parity declustering withα = 1.0 is equivalent to RAID Level 5), because in this case it

is the surviving disks, rather than the replacement, that constitute the reconstruction bot-

tleneck.

The ultimate goal of any high-availability system is that failure recovery should be

entirely transparent to the system’s users, in terms of both functionality and performance.

A data storage subsystem that combines parity declustering using a low declustering ratio

159

with distributed sparing is uniquely suited to this goal. A low declustering ratio implies

that degraded- and reconstruction-mode performance are not significantly different from

fault-free performance. Distributed sparing eliminates the replacement-disk bottleneck,

thereby minimizing the duration of this performance degradation as well.

5.2. Distributed sparing and its implications on failure recovery

Figure 5.1 contrasts a dedicated-spare RAID Level 5 array to an equivalent distrib-

uted-spare array. The spare space in the distributed-sparing case is laid out by simply allo-

cating one extra unit per parity stripe to contain the spare unit for that stripe, and rotating

this unit along with the parity unit. This guarantees an even distribution of both parity and

spare space over the disks comprising the array.

In fault-free mode, the spare units are unused. When a failure occurs, the host or array

controller reconstructs the data that was lost from each parity stripe, and stores it in the

spare unit for that parity stripe. Note that the spare units lost due to a disk failure do not

have to be reconstructed, and so the host or array controller needs to reconstruct onlyC-1

out of everyC units, whereC is the total number of disks in the array. When all lost data

and parity units have been recovered, the array is said to “reconfigured”, since it is once

again single-fault tolerant, but now contains one fewer disk and has no spare space. The

array operates at normal performance in reconfigured mode, except that parity is typically

S0

S1

S2

S3

DISK4

0

1

2

3

Offset

Figure 5.1: Contrasting sparing alternatives in RAID Level 5 arrays.

The areas labeledP andS represent parity and spare units for each parity stripe, respec-
tively. These layouts are derived by first placing the data units of each parity stripe on
disks in such a way as to adhere to criterion six of Section 3.2.1 (maximal read parallel-
ism), and then placing the parity and/or spare units in the remaining locations.

P0

D1.0

D2.1

D3.2

DISK3

D0.2

P1

D2.0

D3.1

DISK2

D0.1

D1.2

P2

D3.0

DISK1

D0.0

D1.1

D2.2

P3

DISK0

S0

D1.1

P2

D3.0

DISK4

0

1

2

3

Offset

P0

D1.0

D2.2

S3

DISK3

D0.2

S1

D2.1

P3

DISK2

D0.1

P1

D2.0

D3.2

DISK1

D0.0

D1.2

S2

D3.1

DISK0

D4.24 D4.1D4.0S4P4

(b) Distributed Sparing(a) Dedicated Sparing

160

no longer balanced over the array, and adherence to layout criterion six (Section 3.2.1) is

generally lost. At some point in time after the failed disk is physically replaced by a new

drive, the reconstructed data and parity units must be copied from the spare locations to

their original locations on the new drive. Since the reconfigured array operates at normal

performance and is single-fault tolerant, this “copyback” operation can be deferred until a

time when the user access rate to the array is low, such as midnight, a weekend, or a period

of scheduled downtime, and so is not significant with respect to reconstruction perfor-

mance. Either of the layouts of Figure 5.1 can be extended to support multiple spare disks

per group, and thereby tolerate additional disk failures between the time at which the first

drive fails and the point at which the copyback is initiated, so long as no drive fails while

another is under reconstruction.

The advantages of distributed sparing in RAID Level 5 arrays are limited to the use of

the extra actuator or actuators in fault-free mode, and the necessity to reconstruct onlyC-1

out of everyC units on a failed drive. These effects are small for all but the smallest-scale

arrays. In particular, distributed sparing does not yield significantly faster reconstruction

in RAID Level 5 arrays because, as was observed in Section 3.3.2, the reconstruction rate

is limited by the rate at which data and parity can be read from the surviving disks, rather

than the rate at which reconstructed units can be written to the distributed spare space. The

next section derives a layout for distributed sparing in parity declustered arrays that allows

the array to reap the additional benefit of extremely fast reconstruction.

5.3. Implementation in declustered parity arrays

To simplify the exposition of our layout strategy, we consider the process of deriving

a distributed-sparing layout for declustered arrays to have two distinct steps, as illustrated

in Figure 5.2.

 The first step consists of statically allocating spare units to disks, where the term

“static” refers to the fact that the set of units selected to be reserved as spares does not

depend on which disk has failed. Allocation is the process of determining which units on

which disks in the array will be permanently reserved for use as spare units. Although it is

not strictly necessary that the allocation be static, static allocation simplifies the algo-

161

rithms that map logical addresses to physical addresses (refer to layout criterion 4 on page

52). Logically, the process of allocation occurs when the layout is designed; a static allo-

cation is permanent, and inherent in the structure of any given layout.

When a failure occurs, the controller assigns to each failed unit a spare unit that will

replace it in reconfigured mode. Thus the second step in determining the layout is to com-

pute, based on the identifier of the failed disk, an assignment of failed units to spare units.

Logically, this computation occurs only after a disk has failed, but in practice we pre-com-

pute the assignment of failed units to spare units for every possible spare disk. This

assures that reconstruction will not have to be deferred while the controller performs the

spare-assignment computation.

There are five primary considerations in deriving the allocation and the assignment,

which we list as criteria seven through eleven to distinguish them from the six layout crite-

ria in Section 3.2.1:

7. Distributed spare space. Each physical disk should contain the same number of

pre-allocated spare units. This assures that after reconfiguration, each disk will

absorb an equivalent fraction of the failed disk’s workload.

8. Fault tolerance after reconfiguration.When a disk fails, it must be possible to

Figure 5.2: Spare-space allocation versus spare-unit assignment.

Spare units are permanently allocated to physical locations (shaded) in the array. Upon
detecting a failure, the controller assigns each (non-spare) failed unit to one of the pre-
allocated spare units on another disk. As each failed unit is reconstructed, it is written to
its assigned spare unit. When the failed disk is replaced and the reconstructed data cop-
ied from the spare locations to the new disk, the assignment is discarded, but the alloca-
tion remains.

Allocation

Logical
Physical DisksSpare Space

Assignment

Physical Disks

162

assign each reconstructed unit to a spare unit on a disk that contains no data or par-

ity units from the parity stripe containing the failed unit. This assures that the

reconfigured array will be single-fault tolerant.

9. Balanced parity after reconfiguration.The assignment of reconstructed units to

spare units must ensure that the same number of reconstructed parity units are

assigned to each surviving disk. This assures that parity will be balanced in the

reconfigured array.

10. No wasted space. A layout should not allocate more spare space than it will ever

assign. More specifically, if an array is designed to recover fromf non-overlapping

disk failures and subsequent reconstructions without an intervening copyback,

then after exactlyf such failures and reconstructions, there should be no unas-

signed spare space in the array. Consider, for example, an array withf = 1 in which

distributed sparing is achieved by simply using one unit in each parity stripe as a

spare unit for that parity stripe. If the number of units per parity stripe (G) is 5 and

the number of disks in the group (C) is 40, then this approach would allocate 1/5 of

all units in the array as spare units (which are unavailable to store user data),

whereas only 1/40 of the total number of units is actually required to recover from

the failure of any single disk. Criterion 10 eliminates such inefficient layouts from

consideration.

11. Spare units physically close to failed units. The spare unit for each reconstructed

unit should reside at a disk offset that is close to the offset of the failed unit. This

avoids the situation where a large user access that includes both an unfailed and a

spared unit on the same disk incurs a long seek in traversing from one to the other.

It also assures that the reconstruction algorithm can maintain the disk heads rela-

tively well synchronized during reconstruction, thereby avoiding long seeks as it

switches between reading surviving data and writing reconstructed data. The moti-

vation behind this criterion is also discussed in Section 4.2.

In the remainder of this dissertation, we restrict attention to the case wheref = 1,

deferring a more general layout solution to future work. As discussed above, the simple

solution of allocating one unit in each parity stripe to serve as the spare for that stripe is

not acceptable, because it violates criterion ten. Our goal, therefore, is to find a mechanism

163

whereby the layout can distribute exactly one physical disk’s worth of spare space over the

array.

Figure 5.3 shows an allocation of spare units to disks in which the spare space is allo-

cated in bands of contiguous units at a constant disk offset. This approach has two bene-

fits: it guarantees that criterion seven will be met, and it simplifies the algorithms used to

map logical array addresses to physical disk addresses (refer to Appendix B). In what fol-

lows, we derive the number of parity stripes to be spared by each band.

In order to assure that each band of spare space occurs at a constant disk offset, the

number of parity stripes spared by each band must be an integral multiple of the number of

parity stripes in one block design table (refer to page 57). This greatly simplifies the map-

ping algorithms. In order to meet criterion nine, it is also necessary that after reconfigura-

tion (reconstruction to distributed spare space), parity should be balanced within each

band of spare space. As will be seen, these two requirements lead directly to a determina-

tion of the number of parity stripes in between each band of spare space.

When a disk fails, exactlyr parity units are lost from each full block design table,

wherer is the number of tuples in which each object occurs in the block design. (The

block design parameters are defined on page 55.) To meet criterion nine, theser units need

to be evenly distributed over the survivingv-1 disks. In general,r need not be a multiple of

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Some number of parity stripes

Spare space for the above parity stripes

Some number of parity stripes

Spare space for the above parity stripes

••
•

••
•

••
•

Figure 5.3: Allocating spare space in contiguous bands to simplify the mapping.

164

v-1. The approach we take is therefore to placeNft copies of the full block design table

above each band of spare space, whereNft is selected so thatNft·r will be a multiple ofv-1.

The minimum-sized layout region over which the layout policy can allocate spare

space in order to balance parity after a failure isNft = LCM(v-1,r)/r copies of the full

block design table. Allocating spare space overNft full tables assures that the number of

parity units lost in this region is the smallest possible multiple of the number of surviving

disks,v-1. The array loses exactlyk-1 data units for each parity unit lost in a full table,

wherek is the number of objects per tuple, and so the number of data units lost in the

region is also a multiple ofv-1. This implies that the layout policy can also even distribute

the spare units for the lost data units over the surviving disks.

One way to allocate the spare units is illustrated in Figure 5.4. The figure defines a

“sparing region” to beNft full tables and their associated spare space, and shows how the

allocation policy subdivides the spare space into distinct data and parity areas. This segre-

gation of data and parity allows the assignment policy to balance each separately over the

disks in the array. The allocation policy used in this section locates the spare space at the

end of the region in order to simplify the mapping algorithms, but could equally well place

it elsewhere within the sparing region to improve adherence to layout criterion eleven.

Disk 0 Disk 1 Disk 2 Disk C-1

Full table 0

Full table 1

Full table 2

Full tableNft -1
Spare Parity Units
Spare Data Units

•••

•••

••
•

••
•

Figure 5.4: The allocation of spare space.

Each set of Nft = LCM(v-1,r)/r contiguous full block design tables are grouped together
to form a sparing region, and enough spare space is reserved at the bottom to accommo-
date the data and parity units that are lost from the region when a disk fails. Shaded units
represent spare space.

Sparing
Region

165

Referring back the discussion of the full table depth in Section 3.5.2, this approach is

viable as long as the depth (number of units per disk) of the sparing region is smaller than

the number of units per disk in the array, and will achieve good parity balance as long as

the array consists of a reasonably large number of sparing regions (about ten). Fortunately,

for typical block designs, it’s rare thatNft is large. Table 5.1 gives the value ofNft for 433

designs onC = v < 50 with α < 1.0. It shows that it is unusual for there to be more than

one full block design table per sparing region, and quite rare for there to be more than five.

The average value ofNft over the 433 designs was 2.1.

Having specified the allocation of spare units to disks, it’s necessary to find an assign-

ment of actual failed units to spare units that meets the criteria above. In parity-declustered

arrays, the set of parity stripes that are affected by a failure varies with the particular disk

that has failed, and so the layout policy must specify this assignment for each possible

.

Full Tables Per
Sparing Region (Nft)

Number of
Designs

Fraction of
Designs

Cumulative
Fraction

1 264 0.61 0.61
2 71 0.16 0.77
3 39 0.09 0.86
4 18 0.04 0.90
5 15 0.03 0.94
6 4 0.01 0.95
7 7 0.02 0.96
8 3 0.01 0.97
9 3 0.01 0.98
10 2 0.00 0.98
11 1 0.00 0.98
13 3 0.01 0.99
15 1 0.00 0.99
17 1 0.00 1.00
19 1 0.00 1.00

Table 5.1: Number of full block design tables per sparing region for 433 designs.

For each value of Nft, the table gives the number of designs having that value, the fraction
of all designs having that value, and the fraction of all designs having Nft less than or
equal to that value. The 433 block designs had v< 50 andα < 1.0.

166

failed disk. Figure 5.5 illustrates the construction of this assignment for an example block

design (Figure 5.5a) and its associated sparing region (Figure 5.5b). The design is first

replicatedk·Nft times to produce a list of the tuples used in the layout of one sparing region

(Figure 5.5c). The factor ofk arises from the duplication of the block design to balance

parity within a full block design table. The tuples that do not contain the identifier of the

failed disk are discarded from the list (Figure 5.5d). Each remaining tuple is then comple-

mented, that is, a new tuple is constructed for each that contains all the objectsnot con-

tained in the original tuple.

A complement tuple can be viewed as a list of disk identifiers on which the controller

can place the spare unit for the corresponding parity stripe in order to achieve single fault

tolerance after reconfiguration (criterion eight). Since the complement tuple is guaranteed

not to have any objects in common with the original tuple, the spare unit for the parity

stripe laid out by the original tuple can be selected as any one of the objects in the comple-

ment tuple. It is then necessary to select one object from each complement tuple to serve

as the spare disk for the corresponding parity stripe, in such a way as to evenly balance

both the parity and data units. This is achieved using a slightly modified version of the

Reorder algorithm from Section 3.5.2.

First, the complement tuples corresponding to lost parity units are identified and sepa-

rated out from the other complement tuples (Figure 5.5e). TheReorder algorithm is

applied to these tuples, with the modification that tuples and elements are ordered such

that the last column contains the objects in sequence, skipping the object identifying the

failed disk (Figure 5.5f). The last column of the reordered tuples then contains the identi-

fier of each surviving disk exactly the same number of times, and so the disks thus identi-

fied can be used to generate an assignment of spare units to failed units that balances the

distribution of spared parity units across the surviving disks. The reordering process is

repeated for the tuples corresponding to failed data units, to assure that each surviving disk

is assigned the same number of spare data units.

Although we have not formally proven that it is always possible to reorder each of the

two sets of segregated tuples to achieve the balance condition, we have successfully com-

puted the spare map for every possible failed disk for all of the designs in our block design

database.

167

0 1 2
1 3 4
1 3 5
0 3 5
1 2 5
2 3 4
2 4 5
0 1 4
0 2 3
0 4 5

Tuple
Number Tuple

0
1
2
3
4
5
6
7
8
9

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

D0.0 D0.1 P0 D1.1 P1 P2
D3.0 D1.0 D4.1 D2.1 P5 P3
D7.0 D2.0 D5.0 D3.1 D6.1 P4
D8.0 D4.0 D6.0 D5.1 P7 P6
D9.0 D7.1 D8.1 P8 D9.1 P9
D10.0 P10 D10.1 P11 D11.1 D12.1
D13.0 D11.0 P14 P12 D15.1 D13.1
D17.0 D12.0 D15.0 P13 P16 D14.1
D18.0 D14.0 D16.0 P15 D17.1 D16.1
D19.0 P17 P18 D18.1 P19 D19.1
P20 D20.0 D20.1 D21.0 D21.1 D22.1
P23 P21 D24.0 D22.0 D25.1 D23.1
P27 P22 P25 D23.0 D26.0 D24.1
P28 P24 P26 D25.0 D27.1 D26.1
P29 D27.0 D28.0 D28.1 D29.0 D29.1

Spare Parity Space
Spare Data Space

(a) Original block design
(v=6, k=3, b=10)

(b) Sparing Region Layout (Nft = 1)

(c) Replicated design

0 1 2
1 3 4
1 3 5
0 3 5
1 2 5
2 3 4
2 4 5
0 1 4
0 2 3
0 4 5

Tuple
No. Tuple

0
1
2
3
4
5
6
7
8
9

0 1 2
1 3 4
1 3 5
0 3 5
1 2 5
2 3 4
2 4 5
0 1 4
0 2 3
0 4 5

Tuple
No. Tuple

10
11
12
13
14
15
16
17
18
19

0 1 2
1 3 4
1 3 5
0 3 5
1 2 5
2 3 4
2 4 5
0 1 4
0 2 3
0 4 5

Tuple
No. Tuple

20
21
22
23
24
25
26
27
28
29

0 1 2
1 2 5
2 3 4
2 4 5
0 2 3

Tuple
No. Tuple

0
4
5
6
8
10
14
15
16
18

0 1 2
1 2 5
2 3 4
2 4 5
0 2 3

(d) Tuples in replicated design

0 1 2
1 2 5
2 3 4
2 4 5
0 2 3

20
24
25
26
28

Complement
Tuple

affected by failure of disk 2.

3 4 5
0 3 4
0 1 5
0 1 3
1 4 5
3 4 5
0 3 4
0 1 5
0 1 3
1 4 5
3 4 5
0 3 4
0 1 5
0 1 3
1 4 5

Figure 5.5 (part 1): Generating the assignment of reconstructed units to spare units.

The example assumes disk number 2 has failed. The block design (a) is replicated k·Nft
times to produce a complete list of tuples in the sparing region (b and c). From this, the
tuples unaffected by the failure are eliminated, and the remaining tuples complemented
(d) to produce a list of potential spare units for each failed unit. The figure continues on
the next page.

Spare Data Space

168

In practice, we pre-compute the assignment of spare units to reconstructed units for

each possible failed disk so that the controller can immediately instantiate it upon disk

failure. But even this pre-computation of the reordering for the spare assignment is rapid

and efficient: in deriving the reordering for every possible failed disk for the 433 designs

described above, there were an average of 160 tuple swaps and 0.06 three-way tuple

swaps per computation of a spare assignment, and no computations required more than

eight three-way swaps. Computing the spare assignment for a particular design and failed

disk rarely takes more than a few seconds on an engineering workstation.

Tuple
No.

0
14
18

(e) Segregating the complement tuples

25
26

Complement
Tuple

3 4 5
0 3 4
1 4 5
0 1 5
0 1 3

Figure 5.5 (part 2): Generating the assignment of failed units to spare units.

The complement tuples are segregated such that those that lost a parity unit are separate
from those that lost a data unit (e). Each set of tuples is then reordered using theReorder
algorithm (f), with the modification described in the text. In this example, the tuple order-
ing for the data units case did not have to be modified. The last column of each reordered
set of tuples is used to assign failed units to spare units (g).

Tuple
No.

4
5
6
8
10
15
16
20
24
28

Complement
Tuple

0 3 4
0 1 5
0 1 3
1 4 5
3 4 5
0 1 5
0 1 3
3 4 5
0 3 4
1 4 5

Tuples that lost
parity units

Tuples that lost
data units

Tuple
No.

25
18
26
14
0

Complement
Tuple

1 50
4 51
0 13
0 34
3 45

Tuple
No.

4
5
6
8
10
15
16
20
24
28

Complement
Tuple

3 40
0 51
0 13
1 54
3 45
1 50
0 31
4 53
0 34
1 45

Tuples that lost
parity units

Tuples that lost
data units

(f) Reordering the complement tuples

P25 P18 P26 P14 P0
D4.1 D5.0 D6.0 D8.1 D10.0
D15.0 D16.0 D20.1 D24.0 D28.0

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

(g) Assignment of failed units to spare units within sparing region

Spare Parity Space

Spare Data Space

169

5.4. Disk-oriented reconstruction algorithm to support distributed sparing

When a controller uses the disk-oriented algorithm (Section 4.2.2) with dedicated

sparing, the reconstruction processes that read surviving units never have to write recon-

structed units, and vice versa. Under distributed sparing, however, each reconstruction

process must both read surviving data and parity units and write reconstructed units to the

spare space on the disk to which it is assigned. Further, distributed sparing eliminates the

distinction between surviving-disk processes and the replacement-disk process; all pro-

cesses now execute the same algorithm. Finally, under distributed sparing, a reconstruc-

tion process frequently has the choice of whether to write a reconstructed unit or read a

surviving unit. This section describes the modifications to the disk-oriented algorithm that

are required to address these issues.

Recall from Section 4.2.3.1 that when a reconstruction process attempts to submit to

the buffer manager the first reconstruction unit from a parity stripe, and there are no free

buffers available to accept the unit, the process blocks in a FIFO queue until a buffer

becomes available. This causes the corresponding disk to idle with respect to reconstruc-

tion during the period that the process is blocked, which can lengthen reconstruction time.

It is therefore necessary to write full buffers (buffers for which all units have arrived and

been XORed in) to the corresponding spare units as soon as possible, so that the buffer can

be freed for use by another parity stripe. This is the key issue to be addressed in designing

a disk-oriented algorithm for use with distributed sparing.

Define a buffer to be “applicable” to a reconstruction process if the spare unit to

which the buffer is to be eventually written resides on the disk assigned to the indicated

process. In order to minimize the period of time that full buffers remain in memory, each

reconstruction process must write all applicable full buffers to its assigned disk before

reading any new surviving units. Furthermore, a reconstruction process must not remain

blocked trying to submit a new unit to the buffer manager if an applicable buffer becomes

full while the process is blocked.

To achieve these two properties, each reconstruction process must query the buffer

manager for applicable full buffers prior to each read of surviving data. If any such buffers

exist, all such buffers must be written to the process’ assigned disk prior to reading any

170

new data. Further, when a reconstruction process blocks attempting to submit a buffer, the

buffer manager must wake up that process if an applicable buffer becomes full prior to the

successful completion of the buffer submission.

The following disk-oriented reconstruction algorithm achieves these goals. It is exe-

cuted by all reconstruction processes.

while (∃ required surviving units or unwritten spare units on the assigned disk)
while (∃ applicable full buffers)

acquire next sequential full buffer from buffer manager
issue low-priority write of buffer contents to disk
wait for the write operation to complete

end
if (there remain any required and unfetched units on the assigned disk)

if (there are no unresolved buffer submissions by this process)
identify the next sequential required unit
issue a low-priority read request for that unit
wait for the read to complete
inform buffer manager of desire to submit a buffer

end
block on a buffer-manager-maintained synchronization variable
upon wakeup, check status set by buffer manager
if (status == ok to submit) submit buffer to buffer manager

end
end

In addition to it’s XORing responsibility, the buffer manager has several synchroniza-

tion functions. First, it maintains a FIFO queue of all processes that have indicated a desire

to submit buffers, and delivers available buffers to these processes in order. Second, it

monitors all buffer submissions and signals the appropriate synchronization variable when

either a free buffer has been assigned to the parity stripe upon which a process is waiting,

or when a buffer applicable to a particular process has become full. Since the buffer man-

ager may wake up a process for one of two reasons, it must communicate the actual reason

to the process. The status flag referred to in the above algorithm serves this purpose. The

manger sets this flag to “ok to submit” only after a free buffer has been assigned to the par-

ity stripe upon which the indicated reconstruction process is waiting. This assures that the

process will not need to block upon the actual submission. If the “ok to submit” flag is off

171

at the time the reconstruction process returns from the block, it indicates that an applicable

buffer has become full, and so the algorithm returns to the top of the outer loop.

Note that the manager may assign a buffer to the requesting process while that pro-

cess is in the process of writing a full buffer to its disk. In this case, the buffer remains

assigned to the indicated parity stripe and available for submissions by other processes,

but unused by the requesting process until it (the process) has completed all possible write

operations.

This discussion points out another benefit of distributed sparing: by eliminating the

replacement disk as the reconstruction bottleneck, it reduces the total buffer stall time

experienced during reconstruction. In dedicated sparing a reconstruction process will stall,

and hence a disk will idle with respect to reconstruction, whenever there are no free recon-

struction buffers at the time a new parity stripe is submitted to the buffer manager. In dis-

tributed sparing, the process will only stall if this condition is trueand there are no full

buffers to write to the indicated disk.

5.5. Performance analysis

This section analyzes the efficacy of distributed sparing at alleviating the replace-

ment-disk bottleneck in declustered parity arrays, evaluates the large-access performance

degradation experienced in reconfigured mode caused by the failure to meet layout crite-

rion six (Section 3.2.1), and then re-evaluates the reconstruction options (Section 4.4.1)

under distributed sparing.

5.5.1. Reconstruction performance

Figure 5.6 plots the reconstruction time and user response time during recovery for

distributed sparing, and contrasts it to the dedicated-sparing case, using the array configu-

ration and workload parameters described in Chapter 2. It shows that distributed sparing

does provide the intended benefit of extremely fast reconstruction at low declustering

ratios: the minimum reconstruction time was 34 seconds for the Lightning drive in the dis-

tributed sparing case, but 215 seconds under dedicated sparing. The response time plot

shows that this comes at a slight cost: since distributed sparing eliminates the replacement

172

disk as the reconstruction bottleneck, it keeps all disks busier with reconstruction work-

load. This means that even though the controller gives user requests higher priority than

reconstruction requests, distributing the spare space causes the controller to initiate recon-

struction requests more often, which causes user requests to be more often forced to wait

for them to complete. The figure shows that distributed and dedicated sparing perform

essentially identically at higher values of the declustering ratio (α). This is expected since

at higherα the reconstruction rate is limited by the reads from the surviving disks rather

than the writes to the spare locations.

5.5.2. Ultra-fast reconstruction in large arrays

Reconstructing the contents of a failed disk in a parity-declustered disk array requires

at mostB·G disk operations, whereB is the number units on a single disk andG is the

number of units in a parity stripe1. The distributed sparing layout causes these I/Os to be

evenly distributed across all disks in the group containing the failure, which means that the

full aggregate bandwidth of the group is available to reconstruct missing data. Thus, as the

number of disks in a group (C) grows, the total disk bandwidth available to effect recon-

struction grows, but the total amount of work to be done remains constant. This indicates

1. The reconstruction options described in Section 4.4.1 can cause the total number of reconstruc-
tion I/Os to be less thanB·G, but there need never be more than this number.

Figure 5.6: Comparing sparing alternatives.

Part (a) shows reconstruction time, and part (b) user response time during recovery, for
both distributed and dedicated sparing. The graphs deliberately cut off the upper end of
the curves in order to expand the scale. The curves are essentially co-incident at all
points not shown in the figure. The array configuration was as described in Section 2.3.3.

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

200

400

600
R

ec
on

st
ru

ct
io

n
T

im
e

(s
ec

)

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

50

100

150

U
se

r
R

es
po

ns
e

T
im

e

Dedicated: 90%
Dedicated: avg
Distributed: 90%
Distributed: avg

173

that under distributed sparing with a fixed parity stripe size (G), reconstruction time

should be a monotonically decreasing function of the group size (C). Thus reconstruction

time can be made arbitrarily small in large arrays by fixing the value ofG and increasing

C.

This conclusion that reconstruction time can be arbitrarily small is based on the

assumption that the reconstruction rate is limited only by the rate at which data can be read

from or written to the disks in the array. In reality, the reconstruction rate may also be lim-

ited by the ability of the array controller to flow data into its buffers, through its XOR

engine, and back out to the drives. Further, the array controller must often process several

interrupts per disk I/O, and so reconstruction time may also be limited by the instruction

overhead associated with each interrupt. An array controller for a large disk array should

be capable of handling the full aggregate bandwidth of the array however, since if the con-

troller limits the throughput of an array, there is little point in connecting that many disks

to it. Note that the array controller’s implementation can be distributed rather than central-

ized [Cao93], which reduces the problem to that of designing an interconnect network

with sufficient bandwidth. Thus, in what follows, we assume that the array controller can

always keep up with the reconstruction rate, implying that the disks represent the domi-

nant reconstruction bottleneck.

There is also a potential problem in finding block designs to implement a parity-

declustered disk array with very large group size (C). Our database is only dense when

C < 43. As outlined in Section 3.2.2.4, there are a number of solutions to this problem.

Schwabe and Sutherland [Schwabe94] demonstrate approximately-balanced designs forC

ranging up into the thousands, and so a designer can adopt their solution in cases where

she cannot find an applicable block design. In this section, we limited the values ofC > 43

evaluated to powers of prime numbers, which assures the existence of a design for all pos-

sibleG [Hanani75].

Figure 5.7 shows the reconstruction-mode performance of a parity-declustered disk

array with 4 units per parity stripe (G = 4, implying 25% of the array devoted to parity), as

a function of the group size (C). It shows that reconstruction time is indeed a monotoni-

cally decreasing function ofC, and falls as low as 24 seconds for the example disk (refer

to Table 2.3) whenC = 151. IncreasingG to reduce the parity overhead shifts the recon-

174

struction time curve upward, but does not change its shape. Response time is essentially

flat with respect toC, since, for nearly all points in the plot, the declustering ratio is so low

that reducing it further by increasingC has little effect.

The reliability implications of making the group size (C) very large to achieve rapid

recovery remain to be investigated. As in Section 3.4, we assume here that the total num-

ber of disks in the array is dictated by the performance and/or capacity requirements of the

system, and thus it is only necessary to determine the division of these disks into indepen-

dent groups. LettingNdisks be the total number of disks in the system, the reliability equa-

tion presented in Section 3.3.1.4 reduces to

Figure 5.7 shows that under distributed sparing, average recovery time (MTTR) is

inversely proportional to the number of disks in the array2, and thus the term (C-1)·MTTR

is also constant. Therefore, whenNdisks and G are fixed, the reliability of the array

2. Regression-fitting a line to the inverse of the data in Figure 5.7a yields a correlation coefficient of
0.9988. The resultant curve isReconTime= 1/(2.7e-4·C+ 7e-4).

0 25 50 75 100 125 150
Disks in a Group (C)

0

50

100

150

200

250

300

350

400
R

ec
on

st
ru

ct
io

n
T

im
e

(s
ec

)

0 25 50 75 100 125 150
Disks in a Group (C)

0

25

50

75

100

125

150

U
se

r
R

es
po

ns
e

T
im

e

90th percentile
Average

Figure 5.7: Distributed-sparing reconstruction performance versusC with G=4.

Part (a) shows the reconstruction time, and part (b) shows user response time during
failure recovery.

(a) (b)

MTTDL
MTTFdisk() 2

Ndisks C 1−() MTTR
=

175

becomes insensitive toC under distributed sparing:

Thus, for a fixed total number of disks in the array, increasing the group size to

achieve rapid reconstruction has no effect on the array’s reliability. Figure 5.8 plots the

probability of data loss over 5- and 10-year periods (note that these are not the MTTDL

values) using the array sizes and recovery times in Figure 5.7. It’s clear from this figure

that, even for the largest array, the probability of data loss due to multiple concurrent disk

failures is so low that some other factor, for example, a software bug, is almost certain to

dominate the overall reliability equation for the array.

5.5.3. Large-access performance in reconfigured mode

Reconstructing the data of a failed disk in a distributed sparing array changes the

assignment of data units to disks for all the units that were on the failed drive. For this rea-

son, the array’s post-reconfiguration large-access performance may be degraded, since

reconfiguration may reduce the degree to which the layout adheres to criterion six. This is

especially true if the layout has been optimized (see Section 3.5.3) to maximize adherence

MTTDLarray
1

Ndisks C 1−() MTTR
∝() and MTTR

1
C

∝() ⇒

MTTDLarray
1

Ndisks
∝()

0 25 50 75 100 125 150
Total Disks in the Array (Ndisks)

10-4

10-3

5-
Y

ea
r

D
at

a
Lo

ss
 P

ro
ba

bi
lit

y

0 25 50 75 100 125 150
Total Disks in the Array (Ndisks)

10-4

10-3

10
-Y

ea
r

D
at

a
Lo

ss
 P

ro
ba

bi
lit

y

Figure 5.8: 5- and 10-year data loss probabilities versusC with G=4.

Note that the y-axis is plotted on a log scale, and does not end at1.0.

176

to criterion six in the fault-free state.

To investigate this effect, Figure 5.9 plots the maximum throughput achieved at a user

concurrency of one versus the access size, for a 40-disk array running 100% read work-

load, and two selected values of the declustering ratio,α ≈ 0.05 (G = 3) andα ≈ 0.75

(G = 30). In each of these simulations, all accesses were of the same size. Simulations of

workloads containing writes and different values of the declustering ratio yielded similar

results; these two examples are representative of all the simulations performed. The block

designs used for layout were optimized via the technique described in Section 3.5.3. It’s

clear from the figure that the large-access throughput of the array in reconfigured mode is

not significantly lower than in fault-free mode.

To explain this effect, consider the set of disks used by one possible large access, as

illustrated in Figure 5.10. Reconfiguring the array to spare space is equivalent to uni-

formly distributing all the accessed (shaded) units that reside on the failed disk into the

bottom portion of the sparing region. Since a large access typically uses a large fraction of

disks in the array (refer to Figure 3.33), it is likely that each access encounters at most a

few remapped units. Thus, in order to service the access, most surviving disks simply read

22 24 26 28 210 21220

Access Size (KB)

0

10

20

30

D
at

a
T

ra
ns

fe
r

R
at

e
(M

B
/s

)

Fault-free:
Reconfig:
Fault-free:
Reconfig:

Figure 5.9: Large access performance in reconfigured mode.

The plot shows the maximum data transfer rate achieved by a single user process versus
the user access size in a 40 disk array, in both fault-free and reconfigured mode. The
workload was 100% reads and the plot shows two representative values for parity stripe
size (G). Simulations of workloads containing writes and of other values forG yielded
similar results.

G = 30
G = 30
G = 3
G = 3

177

or write the portion of the data assigned to them, but a few must access their portion, and

then skip down to the bottom of the sparing region to access the remapped units. Since the

number of disks that must perform this extra work is typically small, and since the depth

of the sparing region is seldom large (refer to Table 5.1), this extra work causes only a

small performance penalty.

5.5.4. Re-evaluating the reconstruction options under distributed sparing

Section 4.4.1.1 described three options that can be applied to the reconstruction algo-

rithm: redirection of reads, piggybacking of writes, anduser writes to the replacement.

The conclusion of that section was that for workloads dominated by small accesses, only

redirection of reads had significant impact on reconstruction performance. That section

went on to demonstrate that redirection is beneficial to user response time at all values of

the declustering ratio (α), but that it lengthens reconstruction time at lowα by sending

additional work to the over-utilized replacement disk. Since distributed sparing eliminates

the replacement disk as the reconstruction bottleneck, it is worthwhile to re-evaluate this

reconstruction option in this context.

Figure 5.10: A hypothetical large access in reconfigured mode.

The figure shows one sparing region in a 10-disk array. The shaded areas represent the
units read or written by the large access. Disk 3 has failed, and so its units have been
remapped into the spare space at the bottom of the sparing region. The two lined regions
represent the spare locations for the accessed units on disk 3. The figure shows that in
servicing the access, most disks are unaffected, but a few (disks 5 and 9) must skip down
to the end of the sparing region after accessing the unfailed portion of the access
assigned to that disk (if any). Since only a few disks are typically affected, and since the
sparing region is not typically very deep, the large-access performance in reconfigured
mode is only slightly worse than the performance in fault-free mode.

Disk Number
00 2 3 4 5 6 7 8 91

Spare
Region

Spare
Space

Data/
Parity
Space

178

As in the original evaluation of the options, simulations showed that the piggybacking

and user-writes options have little effect on reconstruction performance under distributed

sparing. This is expected behavior, because the reasons for it (described in Section 4.4.1.2)

have nothing to do with the replacement disk being the reconstruction bottleneck. There-

fore, this section considers only redirection of reads. These evaluations again use the array

configuration and workload parameters described in Section 2.3.

Figure 5.11 shows the reconstruction time and user response time during reconstruc-

tion versus the declustering ratio, for a 40-disk array containing one disks’ worth of dis-

tributed spare space. With the elimination of the spare disk as the reconstruction

bottleneck, redirection has become uniformly beneficial to both reconstruction time and

user response time during recovery, with the primary benefit occurring at high values of

the declustering ratio where the load on the surviving disks is greatest. This eliminates the

need for the “monitored” versions of the reconstruction options developed for the dedi-

cated-sparing case (Section 4.4.1.3). Note that redirection in the distributed-sparing con-

text means that the controller redirects a user read operation of a previously-reconstructed

data unit to whichever disk holds the spare unit for that data unit. This means that the redi-

rected workload is also distributed over the disks of the array, rather than being concen-

trated on one replacement disk, and so redirection does not interfere with the very low

reconstruction time possible at lowα.

Figure 5.11: Evaluating redirection of reads under distributed sparing.

Part (a) shows reconstruction time, and (b) user response time during reconstruction.

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

400

800

1200

1600
R

ec
on

st
ru

ct
io

n
T

im
e

(s
ec

) Redirection off: 90%
Redirection on: 90%
Redirection off: avg
Redirection on: avg

0.0 0.2 0.4 0.6 0.8 1.0
Declustering Ratio (α)

0

40

80

120

160

200

R
es

po
ns

e
T

im
e

(m
s)

(a) (b)

179

5.6. A related study

Ng and Mattson [Ng92a, Ng92b] also investigated the benefits of combining distrib-

uted sparing with parity declustering, which they refer to as “Uniform Parity Group Distri-

bution”, and also use a layout mechanism based on combinatorial block designs. This

section very briefly outlines their solution and contrasts it with the one described above.

In this approach, the array is divided into “domains”, each consisting of some number

of parity stripes. Ng and Mattson leave the actual number unspecified, but it must be at

leastk (refer to page 55) since they assume that the layout balances parity within each

domain. They use the tuples of a block design to lay out the domains in the same manner

as parity stripes are laid out in Section 3.2.2.2.

Ng and Mattson add one more criterion to the list given in Section 5.3: they require

that when a disk failure occurs while the array is in reconfigured mode, the layout must

also evenly balance the resulting failure-induced workload across the disks, without relo-

cating any of the surviving units at the time of failure3. In order to achieve this, they lay

out the fault-free array using a complete block design onv = C andk = G, rather than an

incomplete design.

Prior to any failure, the array is mapped using some number of copies of the complete

design. When a disk fails, Ng and Mattson eliminate the identifier of the failed disk from

all tuples in the duplicated complete design. They then select the assignment of spare units

to failed units in such a way that, after reconfiguration, the layout maps the array using

some larger number of copies of the complete design on one fewer disk (v = C-1 and

k = G). The number of tuples in a complete design is , and it’s straightforward to derive

that , and so in order for this approach to work, it must be the case that

v/(v-k) is an integer. Since this is not true for allv andk, it’s necessary in the general case

to lay out the fault-free array using some number of copies of the complete design, such

3. Ng and Mattson’s approach generalizes to the case where multiple disks worth of spare space are
distributed in the array, and multiple failures occur prior to replacement and copyback. That is, by
distributing multiple disks worth of spare space, they are able to maintain balance of the failure-
induced workload through multiple failures and reconfigurations without replacement. In the inter-
est of simplicity, the description here discusses only a single spare disk.

v
k

v
k

 v
v k−

v 1−
k

=

180

that is a multiple of . The logical choice is of course

The above example considered only the case of balancing the failure-induced work-

load through two failures. In general, the required number of copies of the original block

design increases with the number of failures to be survived and reconfigured (f), because

each increase inf adds one more term to the LCM function above.

Since (1) the number of tuples in a complete block design grows exponentially withv,

(2) it is necessary in the general case to use multiple copies of the complete design to lay

out the domains of a fault-free array, and (3) each domain must consist of at leastk parity

stripes, this approach is viable only for configurations with a relatively small number of

disks. For example, withv = C = 15 andk = G = 7, the minimum possible value ofNcopies

is 8, and so the block design used to lay out the fault-free array has 51,480 tuples, which

translates into at least 360,360 parity stripes. Laying out these parity stripes over 15 disks

uses 168,168 units per disk. Assuming, as in Section 3.5.1, that the data and parity unit

size is 32K (about one track), the minimum sized disk that can be used in this layout is

about 5.4 GB, which is too large for many configurations. The approach developed in this

dissertation allows implementation using much smaller disks: the block design onv = 15

andk = 7 hasr = 14 andNft = 2, and so each sparing region uses 2·14·7 = 196 units per

disk for data and parity, and 196/14 = 14 units per disk for spare space, for a total of 210

units per disk per sparing region. With units of size 32 KB, the approach is viable for any

disk size larger than about 6.7 MB.

The drawback of accommodating larger arrays using the approach developed here is

that it neglects entirely the issue of degraded- and reconstruction-mode balance during

second-failure recovery in reconfigured arrays. However, any particular group in the array

should spend only a relatively small percentage of its total time in reconfigured mode, and

hence the probability of a failure occurring while in this mode should be small. This is not

intended to imply that fault tolerance in reconfigured mode is not important, since a small

probability of relatively poor performance is acceptable, whereas a small probability of

Ncopies
v
k

⋅ v 1−

k

Ncopies

LCM v
k

 v 1−
k

,

v
k

=

181

data loss is not.

Table 5.1 shows that sinceNft is generally small, our approach can be implemented

for arrays with much larger values of the group size (C). The conclusion to be drawn from

this is, of course, dependent upon the requirements of the system. IfC is small and system

environment is such that failed disks will not be replaced for long periods of time, then Ng

and Mattson’s approach is superior for its ability to balance failure-induced workload in

the event of non-overlapping multiple failures. The solution derived in this chapter allows

broader application of this technique.

5.7. Conclusions

The techniques described in this chapter used distributed sparing to eliminate the

replacement disk as the reconstruction bottleneck at low declustering ratios, and thereby

allowed for extremely fast reconstruction. Using a reasonably complicated layout mecha-

nism, but a very simple reconstruction algorithm, it was possible to reduce reconstruction

time for the example 40-disk array from a minimum of about 200 seconds to about 35 sec-

onds. The 200 second limit in the dedicated-sparing case is an absolute lower bound; this

is the amount of time it takes to write the entire contents of one disk at the maximum

bandwidth supported by the drive. This factor of six reduction in reconstruction time was

achieved at a slight cost (about 10% in the worst case) in user response time during recon-

struction, but without penalty to response time in reconfigured mode. Distributing the

spare space and deferring the copyback of the reconstructed data to the replacement drive

until a period of low utilization or scheduled downtime can thus allow disk failure events

to go essentially unnoticed by the users of the system.

Beyond the material presented in this chapter, there are several modifications to the

layout and the reconstruction algorithm that might further improve reconstruction perfor-

mance. First, the current layout policy locates the spare space at the end of each sparing

region. Recalling that each spare unit serves as spare space for a number of possible data

or parity units, depending on which disk has failed, it might be possible to derive a layout

that locates each spare unit closer to the set of all units that it protects. This would improve

large-access performance by reducing the positioning penalty described in the caption on

182

Figure 5.10, and could potentially improve small-access performance in highly local

workloads as well. Second, the reconstruction algorithm developed here always gives

writes priority over reads. This policy might be modified to take other factors into account,

such as the current head position and the availability of reconstruction buffers. Finally, the

writes of full buffers to spare locations currently occur one at a time, even if there are sev-

eral full buffers available to write to a particular disk. Reconstruction time might be

improved, at the cost of degraded response time, by batching together sets of full buffers

for specific disks and writing them in bulk. This would potentially reduce the positioning

overhead incurred by the write operations.

183

Chapter 6: Conclusions

This dissertation demonstrated techniques by which it is possible to design parity-

based data storage subsystems that exhibit arbitrarily-small performance degradation dur-

ing failure recovery, and further that allow this recovery to be completed very rapidly.

Toward this end, it made three primary contributions. First, it demonstrated an implemen-

tation of parity declustering, which is a disk array organization that allows the perfor-

mance degradation experienced during failure recovery to be reduced, essentially

continuously, to nearly zero by evenly distributing the failure-induced workload over a

larger-than-minimal set of disks. Second, it developed adisk-oriented reconstruction algo-

rithm that minimizes recovery time by allowing the failure recovery process to absorb

essentially all the array’s bandwidth that is not absorbed by the users. Finally, it combined

the above two techniques withdistributed sparing, which resulted in a disk array exhibit-

ing extremely rapid failure recovery, and achieved this without sacrificing performance to

any significant degree. Table 6.1 on page 190 summarizes the contributions of the thesis.

The introductory chapters of this thesis made the case that the ability to gracefully tol-

erate component failures is essential to many applications, notably transaction processing

systems and file servers, because in these areas, any interruption in the accessibility of

data causes significant disruption in the service provided or supported by the computing

system. They further showed that technology trends are leading inevitably to the condition

where the rapidly increasing demands for I/O throughput will be met by systems with

larger numbers of small disks, rather than the converse. The conclusion drawn from these

two observations was that existing redundant disk array technology provided insufficient

availability, and this served as the primary motivation for the work reported here.

The parity declustered disk array organization described in Chapter 3 provided the

most effective tool for improving recovery-mode performance. In a standard disk array

organization (RAID Level 5), each parity unit protects exactlyC-1 data units, whereC is

the number of disks in each of the independent groups comprising the array. In parity

184

declustering, each parity unit instead protectsG-1 data units, whereG is a parameter of the

array that can be selected arbitrarily between 2 andC. ReducingG improves degraded-

and reconstruction-mode performance by reducing the number of I/O operations required

to reconstruct any particular unit, but increases the capacity overhead for redundancy. At

the extremes, selectingG=2 yields a layout equivalent to disk mirroring (two copies of all

data), while selectingG=C yields a RAID Level 5 array. To achieve an even balance of

failure-induced workload across the disks comprising a group, Chapter 3 usedbalanced

incomplete block designs to derive the mapping of data and parity units to disks. This

chapter showed that a parity declustered array provides superior performance in the pres-

ence of failure than a RAID Level 5 disk array with an equivalent number of disks and

total user data capacity. It also showed that order-of-magnitude improvements in both

recovery time and response time during recovery are possible by reducingG to its mini-

mum value, while keeping the number of disks in the array fixed. The chapter further

showed that using a low ratio ofG to C allowed reconstruction time to be reduced to very

nearly its miminum possible value, which is the time required to write the entire contents

of one disk at the maximum possible transfer rate of the drive.

Defining a disk array architecture to support high performance operation during fail-

ure recovery addresses only half of the overall availability problem. Chapter 4 addressed

the other half; the design of the algorithm used to recover lost data. It showed that the stan-

dard approach of reconstructing a single parity stripe, or set of stripes, at one time yields

inefficient utilization of the disks, especially when applied to parity declustered disk

arrays. Thedisk-oriented reconstruction algorithm addressed this problem by structuring

the reconstruction process around disks, rather than parity stripes. Chapter 4 showed that

this algorithm is able to absorb nearly all of the disk bandwidth not absorbed by user pro-

cesses. It resulted in improvements in reconstruction time of up to 40% over a 16-way par-

allel stripe-oriented algorithm, using only a small and bounded amount of buffer memory,

and without significantly degrading user response time when compared to the stripe-ori-

ented case.

The goal of any availability study is to minimize the impact of the failure recovery

process on the systems’ users. This leads to the idea of attempting to tailor the reconstruc-

tion algorithm to the observed user workload, rather than simply viewing this workload as

185

an arbitrary set of accesses that must be completed while reconstruction is ongoing. Thus

the latter portion of Chapter 4 investigated a set ofhead following techniques, whereby the

reconstruction algorithm attempts to track the user-induced motion of the disk heads, and

reconstruct the parity stripes that are close to the position of the disk heads after each user

access. The intended benefit was that, at the time a disk switches between performing a

user access and a reconstruction access, the seek time to and from the reconstruction point

should be reduced, and thus reduce the positioning overhead incurred by both types of

accesses. However, evaluating this approach revealed that the efficiency of the reconstruc-

tion algorithm is tied most strongly to its sequentiality, and thus that head following actu-

ally degraded recovery-mode performance by interfering with this sequentiality. After

investigating several techniques for ameliorating this problem, Chapter 4 concluded that

head following is not viable in random-workload environments.

It is possible to view parity declustering and disk-oriented reconstruction as general

techniques for improving the degraded- and reconstruction-mode performance of any

ECC-based redundant disk array, rather than as a specific disk array organization and a

specific approach to reconstruction, respectively. Under this view, parity declustering sim-

ply amounts to the ability to decouple the number of units in a parity stripe (G), from the

number of disks in an independent group in the array (C), with the other details of the disk

array organization left unspecified. Similarly it is possible to view disk-oriented recon-

struction as simply using one recovery process per disk, with the actual code that each

executes left unspecified. This observation leads to the idea that it is possible to couple

these two techniques with essentially any other technique proposed for improving some

aspect of the performance of redundant disk arrays. In this light, the techniques presented

in Chapters 3 and 4 constitute an application of parity declustering and disk-oriented

reconstruction to RAID Level 5 arrays.

Chapter 5 investigated combining these two techniques with another type of disk

array, RAID Level 5 with distributed sparing. This approach to organizing spare space

allows the array to use the actuator on the spare drive to service user requests, and also

eliminates the replacement disk as the reconstruction bottleneck. Combining distributed

sparing with parity declustering and disk-oriented reconstruction achieved all the advan-

tages of each. Specifically, this combination led to the development of an array that exhib-

186

its extremely fast reconstruction at low declustering ratios. Note that a low declustering

ratio does not necessarily imply a high capacity overhead, since it is possible to reduceα

by increasingC as well as by decreasingG.

Of course, this observation about parity declustering and distributed sparing leads

directly to a number of ideas for future work. Foremost among them is the ability to com-

bine these two techniques with parity logging [Stodolsky93]. RAID Level 5 arrays have

always been viewed as having two primary drawbacks: they exhibit poor performance on

small write operations, and they exhibit poor performance during failure recovery. Thus,

combining parity declustering with parity logging would yield an array organization that

overcomes both these limitations. The layout and control mechanisms for such an organi-

zation would be complex, but the resultant design would have advantages that are not

achievable by other organizations: low redundancy overhead, high performance on all

types of operations, low performance degradation during reconstruction, and rapid recon-

struction.

Another promising area for future work would be to investigate the possibilities and

performance implications of relaxing the requirement that parity and failure-induced

workload be perfectly balanced across the disks comprising the array. This idea is moti-

vated by the observation that parity-update workload and failure-induced workload will be

perfectly balanced across the disks of the array only if the workload applied by the appli-

cation is perfectly balanced, which is unlikely. One approach would be to use an approxi-

mately-balanced block design, that is, a design in which the number of tuples containing

each pair of objects can vary slightly, to lay out the data and parity. An alternative to this

would be to use a layout which perfectly balances the failure-induced workload, but which

relaxes the requirement that parity be perfectly balanced. Schwabe and Sutherland

[Schwabe94] have promising results that these techniques might greatly expand the range

of combinations ofC (number of disks in the array) andG (number of units per parity

stripe) that are supportable in the block-design-based layout, but the performance implica-

tions of this remain to be investigated.

A third area worth investigating is the implication of parity declustering on the archi-

tecture of arrays containing very large numbers of disks. In order to achieve both low

capacity overhead and good failure-recovery performance, it may be necessary to selectC

187

to be a large value. For example, to keep the capacity overhead below 10% in a parity

declustered array withα = 0.1,C must be approximately 100. This would be difficult or

impossible in a bus-based disk array controller such as the one in Figure 2.5a, because of

the requirement that no two disks sharing a path to the controller should reside in the same

group (criterion 1 in Section 3.2.1). Thus the desire to achieve a low declustering ratio

might have strong implications on the overall architecture chosen for the storage sub-

system. The main challenge in designing such a system would be to assure that there are at

least two independent paths to all disks, without paying the cost of full duplication of the

interconnect.

Fourthly, several of the techniques used in this dissertation to reduce reconstruction

time caused the user responsiveness to be slightly degraded (see, for example, Sections

4.3.1 and 5.5). In all cases, this was caused by the fact that disk accesses are non-preempt-

ible. In order to reduce reconstruction time, it’s necessary to initiate reconstruction

accesses more often, which causes user accesses to more often block in the disk queues

waiting for a reconstruction access to complete. Much of this loss in responsiveness could

be recaptured by supporting preemptible disk accesses. If the component disks had the

ability to suspend an ongoing reconstruction access in order to service a user access, the

user accesses would not spend as much time blocked in the disk queues. It is possible that

the overhead associated with preemption would eliminate any benefit, but this remains to

be investigated.

There are a number of less significant items that might be pursued. As mentioned in

Sections 3.5.2.2 and 5.3, we have never observed the block design reordering algorithm

used to compact the full block design table and to balance parity in reconfigured mode to

fail, but we have not formally proven that it always succeeds. Constructing these proofs

would validate the methods used.

Finally, Chapter 5 essentially defined away the problem of copying reconstructed data

from distributed spare space to a new disk when a failed disk is physically replaced. The

assumption that this copyback can be deferred until a period of low utilization, or even

scheduled maintenance, is valid for most environments. However, in some environments

there may be no such periods, or the system requirements may make it desirable to initiate

the copyback as soon as the failed disk is replaced, so as to minimize the (already small)

188

possibility of encountering the poor performance that would occur should a second failure

occur while the array operates in reconfigured mode. Defining goals for the copyback

operation and designing algorithms to meet them would improve the overall availability of

the system.

189

190

Technique Objectives Summary Results

Parity declustering Faster reconstruction.
Improved responsiveness.

Distribute parity stripes
over larger-than-minimal
collection of disks.
Use block designs to bal-
ance workload.

Up to 10x faster reconstruction.
Up to 6x shorter response time.
Better MTTDL at moderate-to-high load.
No fault-free degradation.
Supports higher fault-free workload.
Small penalty for large accesses.

Disk-oriented reconstruction Absorb all unused disk
bandwidth for reconstruc-
tion.

Use one reconstruction
process per disk, instead
of one per stripe.

Up to 40% faster reconstruction.
Small response time penalty.

Distributed sparing Remove spare disk as
reconstruction bottleneck.
Ultra-fast reconstruction
in large arrays.

Modify layout to distrib-
ute spare space over
array.

Reconstruction time monotone-decreasing
in C.
~25 second reconstruction in large array.

Adjusting the reconstruction
unit size

Optimize tradeoff between
reconstruction time and
response time.

Modify layout to pack
multiple stripe units into
a reconstruction unit.

Track-sized units yield best tradeoff.

Compacting the full block
design table

Better balance of parity-
update workload.
Support smaller disks.

Re-order tuples and
objects to balance parity.

Minimum possible table size achieved for
all C,G combinations.

Improving adherence to
criterion 6

Improved fault-free large-
access performance.

Use simulated annealing
to optimize tuple and
object ordering.

Mixed results (case-specific). Typically
about 50% of lost large-access performance
reclaimed.

Table 6.1: Summary of thesis contributions.

191

Reconstruction
 options

Redirection

Faster reconstruction.
Improved responsiveness.

Service reads of previ-
ously reconstructed data
from spare disk.

Halves reconstruction time at highα, but
doubles it at lowα.
Uniform benefit to response time.

Piggybacking Write data reconstructed
to service a user read to
spare disk.

Little effect on OLTP-like workloads.

User-writes Send user writes of unre-
constructed data to
spare disk.

Little effect on OLTP-like workloads.

Monitored redirection Optimal reconstruction
time at allα.

Redirect only if spare
disk utilization < aver-
age surviving disk utili-
zation.

Optimal reconstruction time at allα.
Small response time penalty at lowα.

Head following Minimize positioning
overhead incurred by
reconstruction.

Reconstruct in region of
array being accessed by
users.

Negative results on nearly every workload
due to loss of sequentiality and inability to
focus memory resources.

Technique Objectives Summary Results

Table 6.1: Summary of thesis contributions.

192

193

References

[ANSI86] American National Standard for Information Systems -- Small Computer Sys-
tem Interface (SCSI), ANSI X3.132-1986, New York NY, 1986.

[ANSI91] American National Standard for Information Systems -- High Performance
Parallel Interface -- Mechanical, Electrical, and Signalling Protocol Specification, ANSI
X3.183-1991, New York NY, 1991.

[Arulpragasam80] J. Arulpragasam and R. Swarz, “A Design for State Preservation on
Storage Unit Failure,”Proceedings of the International Symposium on Fault Tolerant
Computing, 1980, pp. 47-52.

[Bell89] C.G. Bell, “The Future of High Performance Computers in Science and Engi-
neering,”Communications of the ACM, vol. 32 no. 9, 1989, pp. 1091-1101.

[Bitton88] D. Bitton and J. Gray, “Disk Shadowing,”Proceedings of the 14th Conference
on Very Large Data Bases, 1988, pp. 331-338.

[Bitton89] D. Bitton, “Arm Scheduling in Shadowed Disks,”Proceedings of the Com-
puter Society International Conference (COMPCON 89), 1989, pp. 132-136.

[Blaum94] M. Blaum, J. Brady, J. Bruck, and J. Menon, Evenodd: An Optimal Scheme
for Tolerating Double Disk Failures in RAID Architectures,Proceedings of the Interna-
tional Symposium on Computer Architecture, 1994, pp. 245-254.

[Burkhard93] W. Burkhard and J. Menon, “Disk Array Storage System Reliability,”Pro-
ceedings of the International Symposium on Fault-Tolerant Computing, 1993, pp. 432-
441.

[Buzen87] J.P. Buzen and A.W. Shum, “A Unified Operational Treatment of RPS Recon-
nect Delays,”Proceedings of the 1987 ACM Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Performance Evaluation Review, vol. 15 no. 1, 1987.

[Cabrera91] L.-F. Cabrera and D. Long, “Swift: Using Distributed Disk Striping to Pro-
vide High I/O Data Rates,”Computing Systems, vol. 4 no. 4, 1991, pp. 405-439.

[Cao93] P. Cao, S.B. Lim, S. Venkataraman, and J. Wilkes, “The TickerTAIP parallel
RAID architecture,”Proceedings of the International Symposium on Computer Architec-
ture, 1993, pp. 52-63.

[Chee90] Y.M. Chee, C. Colbourn, D. Kreher, “Simplet-designs withv < 30,” Ars Combi-
natoria, vol. 29, 1990.

[Chen90a] P. Chen, et. al., “An Evaluation of Redundant Arrays of Disks using an
Amdahl 5890,”Proceedings of the Conference on Measurement and Modeling of Com-
puter Systems, 1990, pp. 74-85.

[Chen90b] P. Chen and D. Patterson, “Maximizing Performance in a Striped Disk Array,”

194

Proceedings of International Symposium on Computer Architecture, 1990, pp. 322-331.

[Copeland88] G. Copeland, W. Alexander, E. Boughter, and T. Keller, “Data Placement in
Bubba,”Proceedings of the ACM Conference on Management of Data, 1988, pp. 99-108.

[Copeland89] G. Copeland and T. Keller, “A Comparison of High-Availability Media
Recovery Techniques,”Proceedings of the ACM Conference on Management of Data,
1989, pp. 98-109.

[DEC86] Digital Equipment Corporation,Digital Large System Mass Storage Handbook,
1986.

[Dibble90] P. Dibble, “A Parallel Interleaved File System,” University of Rochester Tech-
nical Report 334, 1990.

[Fibre91] Fibre Channel -- Physical Layer, ANSI X3T9.3 Working Document, Revision
2.1, May 1991.

[Fujitsu2360] Fujitsu Corporation, Model M2360A product information.

[Gelsinger89] P.P. Gelsinger, P.A. Gargini, G.H. Parker, A.Y.C. Yu, “Microprocessors
circa 2000,”IEEE Spectrum, October 1989, pp. 43-74.

[Gibson89] G. Gibson, L. Hellerstein, R. Karp, R. Katz, D. Patterson, “Coding Tech-
niques for Handling Failures in Large Disk Arrays,”Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, 1989, pp. 123-132.

[Gibson92] G. Gibson,Redundant Disk Arrays: Reliable, Parallel Secondary Storage,
MIT Press, 1992.

[Gibson93] G. Gibson and D. Patterson, “Designing Disk Arrays for High Data Reliabil-
ity,” Journal of Parallel and Distributed Computing, vol. 17, 1993, pp. 4-27.

[Gray90] G. Gray, B. Horst, and M. Walker, “Parity Striping of Disc Arrays: Low-Cost
Reliable Storage with Acceptable Throughput,”Proceedings of the Conference on Very
Large Data Bases, 1990, pp. 148-160.

[Hall86] M. Hall, Combinatorial Theory (2nd Edition), Wiley-Interscience, 1986.

[Hanani75] H. Hanani, “Balanced Incomplete Block Designs and Related Designs,”Dis-
crete Mathematics, vol. 11, 1975.

[Harker81] J.M Harker, D.W. Brede, R.E. Pattison, G.R. Santana, L.G. Taft, “A Quarter
Century of Disk File Innovation,”IBM Journal of Research and Development, vol. 25 no.
5, 1981, pp. 677-689.

[Hartman93] J. Hartman and J. Ousterhout, “The Zebra Striped Network File System,”
Proceedings of the Symposium on Operating System Principles, 1993.

[Holland92] M. Holland and G. Gibson, “Parity Declustering for Continuous Operation in
Redundant Disk Arrays,”Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, 1992, pp. 23-25.

[Holland93] M. Holland, G. Gibson, and D. Siewiorek, “Fast, On-Line Failure Recovery
in Redundant Disk Arrays,”Proceedings of the International Symposium on Fault-Toler-

195

ant Computing, 1993, pp. 422-431.

[Hou93] R. Hou, J. Menon, and Y. Patt, “Balancing I/O Response Time and Disk Rebuild
Time in a RAID5 Disk Array,”Proceedings of the Hawaii International Conference on
Systems Sciences, 1993, pp. 70-79.

[Howard88] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Side-
botham, and M. West, “Scale and Performance in a Distributed File System,”ACM Trans-
actions on Computer Systems, vol. 6 no. 1, 1988, pp. 51-81.

[HPC3013] HP Corporation, Disk Drive Model HP C3013 (Kittyhawk) product informa-
tion.

[Hsiao90] H. Hsiao and D. DeWitt, “Chained Declustering: A New Availability Strategy
for Multiprocessor Database Machines,”Proceedings of the International Data Engineer-
ing Conference, 1990.

[Hsiao91] H. Hsiao and D. DeWitt, “A Performance Study of Three High-Availability
Data Replication Strategies,”Proceedings of the International Conference on Parallel and
Distributed Information Systems, 1991, pp. 18-28.

[IBM0661] IBM Corporation, IBM 0661 Disk Drive Product Description, Model 370,
First Edition, Low End Storage Products, 504/114-2, 1989.

[IBM0664] IBM Corporation, IBM 0664 Disk Drive Product Information.

[IBM3380] IBM Corporation,IBM 3380 Direct Access Storage Introduction, Manual
GC26-4491-0, 1987.

[IBM3390] IBM Corporation,IBM 3390 Direct Access Storage Introduction, Manual
GC26-4573-0, 1989.

[IEEE89] Proposed IEEE Standard 802.6 -- Distributed Queue Dual Bus (DQDB) -- Met-
ropolitan Area Network, Draft D7, IEEE 802.6 Working Group, 1989.

[IEEE93] IEEE High Performance Serial Bus Specification, P1394/Draft 6.2v0, New
York, NY, June, 1993.

[Jain91] R. Jain,The Art of Computer Systems Performance Evaluation, John Wiley &
Sons, 1991.

[Jones91]J. Jones, Jr., and T. Liu, “RAID: A Technology Poised for Explosive Growth,”
Montgomery Securities Industry Report, Montgomery Securities, San Francisco, 1991.

[Katz89] R. Katz, et. al., “A Project on High Performance I/O Subsystems,”ACM Com-
puter Architecture News, vol. 17 no. 5, 1989, pp. 24-31.

[Katz93] R. Katz, P. Chen, A. Drapeau, E. Lee, K. Lutz, E. Miller, S. Seshan, and D.
Patterson, “RAID-II: Design and Implementation of a Large Scale Disk Array Controller,”
Symposium on Integrated Systems, 1993.

[Katzman77] J. Katzman, “System Architecture for Nonstop Computing,”Proceedings of
the Computer Society International Conference (COMPCON 77), 1977.

[Kim86] M. Kim, “Synchronized Disk Interleaving,”IEEE Transactions on Computers,
vol. 35 no. 11, 1986, pp. 978-988.

196

[Kirkpatrick83] S. Kirkpatrick, D. Gelatt, and M. Vecchi, “Optimization by Simulated
Annealing,”Science, vol. 220, 1983.

[Kistler92] J. Kistler and M. Satyanarayanan, “Disconnected Operation in the Coda File
System,”ACM Transactions on Computer Systems, vol. 10 no. 1, 1992, pp. 3-25.

[Kung86] H.T. Kung, “Memory Requirements for Balanced Computer Architectures,”
Proceedings of the International Symposium on Computer Architecture, 1986, pp. 49-54.

[Lee90] E. Lee, “Software and Performance Issues in the Implementation of a RAID Pro-
totype,” University of California Technical Report UCB/CSD 90/573, 1990.

[Lee91] E. Lee and R. Katz, “Performance Consequences of Parity Placement in Disk
Arrays,” Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1991, pp. 190-199.

[Lee93] E. Lee and R. Katz, “An Analytic Performance Model of Disk Arrays,”Proceed-
ings of the Conference on Measurement and Modeling of Computer Systems, 1993.

[Leffler89] S. Leffler, M. McKusick, M. Karels, J. Quarterman,The Design and Imple-
mentation of the 4.3BSD UNIX Operating System, Addison-Wesley, 1989.

[Livny87] M. Livny, S. Khoshafian, H. Boral, “Multi-disk Management Algorithms,”
Proceedings of the ACM Conference on Measurement and Modeling of Computer Sys-
tems, 1987, pp. 69-77.

[MacWilliams78] F. MacWilliams and N. Sloane,The Theory of Error-Correcting Codes,
North Holland, 1978.

[Mathon90] R. Mathon and A. Rosa, “Tables of Parameters of BIBDs withr < 41 Includ-
ing Existence, Enumeration and Resolvability Results: An Update,”Ars Combinatoria,
vol. 30, 1990.

[Maxtor89] Maxtor Corporation,XT-8000S Product Specification and OEM Technical
Manual, Document 1015586, 1989.

[McKeown83] D. McKeown,MAPS: The Organization of a Spatial Database System
Using Imagery, Terrain, and Map Data, Department of Computer Science Technical
Report CMU-CS-83-136, Carnegie Mellon University, 1983.

[Menon89] J. Menon and J. Kasson,Methods for Improved Update Performance of Disk
Arrays, IBM Research Division Computer Science Report RJ 6928 (66034), 1989.

[Menon92a] J. Menon and J. Kasson, “Methods for Improved Update Performance of
Disk Arrays,” Proceedings of the Hawaii International Conference on System Sciences,
1992, pp. 74-83.

[Menon92b] J. Menon and D. Mattson, “Comparison of Sparing Alternative for Disk
Arrays,” Proceedings of the International Symposium on Computer Architecture, 1992,
pp. 318-329.

[Menon92c] J. Menon and D. Mattson, “Performance of Disk Arrays in Transaction Pro-
cessing Environments,”Conference on Distributed Computing Systems, 1992, pp. 302-
309.

197

[Menon93] J. Menon and J. Cortney, “The Architecture of a Fault-Tolerant Cached RAID
Controller,”Proceedings of the International Symposium on Computer Architecture, 1993,
pp. 76-86.

[Merchant92a] A. Merchant and P. Yu, “Design and Modeling of Clustered RAID,”Pro-
ceedings of the International Symposium on Fault-Tolerant Computing, 1992, pp. 140-
149.

[Merchant92b] A. Merchant and P. Yu, “Performance Analysis of A Dual Striping Strat-
egy for Replicated Disk Arrays,”Proceedings of the Second International Conference on
Parallel and Distributed Information Systems, 1992.

[Mills92] W.H. Mills and R.C. Mullin, “Coverings and Packings,” Chapter 9 inContem-
porary Design Theory: A Collection of Surveys, John Wiley & Sons, Inc., 1992, pp. 371-
399.

[Muntz90] R. Muntz and J. Lui, “Performance Analysis of Disk Arrays Under Failure,”
Proceedings of the Conference on Very Large Data Bases, 1990, pp. 162-173.

[Myers86] G.J. Myers, A.Y.C. Yu, D.L. House, “Microprocessor Technology Trends,”
Proceedings of the IEEE, vol. 74 no. 12, 1986.

[Ng92a] S. Ng, and R. Mattson, “Maintaining Good Performance in Disk Arrays During
Failure Via Uniform Parity Group Distribution,”Proceedings of the First International
Symposium on High-Performance Distributed Computing, 1992, pp. 260-269.

[Ng92b] S. Ng and R. Mattson,Uniform Parity Group Distribution in Disk Arrays, IBM
Research Division Computer Science Research Report RJ 8835 (79217), 1992.

[Orji93] C. Orji and J. Solworth, “Doubly Distorted Mirrors,”Proceedings of the ACM
Conference on Management of Data, 1993, pp. 307-316.

[Ousterhout88] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch, “The
Sprite Network Operating System,”IEEE Computer, vol. 21 no. 2, 1988, pp. 23-36.

[Park86] A. Park and K. Balasubramanian, “Providing Fault Tolerance in Parallel Sec-
ondary Storage Systems,” Princeton University Technical Report CS-TR-057-86, 1986.

[Patterson88] D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant Arrays of
Inexpensive Disks (RAID),”Proceedings of the ACM Conference on Management of
Data, 1988, pp. 109-116.

[Peterson72] W. Peterson and E. Weldon Jr.,Error-Correcting Codes, second edition,
MIT Press, 1972.

[Polyzois93] C. Polyzois, A. Bhide, and D. Dias, “Disk Mirroring with Alternating
Deferred Updates,”Proceedings of the Conference on Very Large Data Bases, 1993, pp.
604-617.

[RAID93] The RAIDBook, A Source Book for RAID Technology, published by the RAID
Advisory Board, Lino Lakes, Minnesota, 1993.

[Ramakrishnan92] K. Ramakrishnan, P. Biswas, and R. Karedla, “Analysis of File I/O
Traces in Commercial Computing Environments,”Proceedings of the Conference on
Measurement and Modeling of Computer Systems, 1992, pp. 78-90.

198

[Rangan93] P.V. Rangan and H.M. Vin, “Efficient Storage Techniques for Digital Contin-
uous Multimedia,”IEEE Transactions on Knowledge and Data Engineering, vol. 5 no. 4,
1993.

[Reddy91] A.L.N. Reddy and P. Bannerjee, “Gracefully Degradable Disk Arrays,”Pro-
ceedings of the International Symposium on Fault-Tolerant Computing, 1991, pp. 401-
408.

[Rosenblum91] M. Rosenblum and J. Ousterhout, “The Design and Implementation of a
Log-Structured File System,”Proceedings of the Symposium on Operating System Princi-
ples, 1991, pp. 1-15.

[Rudeseal92] A. Rudeseal, Storage Technology Corporation, Presentation at Carnegie
Mellon University, March 5, 1992.

[Schulze89] M. Schulze, G. Gibson, R. Katz, and D. Patterson, “How Reliable is a
RAID?,” Proceedings of COMPCON,1989, pp. 118-123.

[Schwabe94] E. Schwabe and I. Sutherland, personal communications, and “Improved
Parity-Declustered Layouts for Disk Arrays,” draft submission to theSymposium on Par-
allel Algorithms and Architectures, 1994.

[Seltzer93] M. Seltzer, K. Bostic, M. McKusick, C. Staelin, “An Implementation of a
Log-Structured File System for UNIX,”Proceedings of the Winter USENIX Conference,
1993, pp. 201-220.

[Siewiorek92] D.P. Siewiorek and R.S. Swarz,Reliable Computer Systems Design and
Evaluation, Digital Press, 1992.

[Solworth90] J. Solworth and C. Orji, “Write-Only Disk Caches,”Proceedings of the
ACM Conference on Management of Data, 1990, pp. 123-132.

[Solworth91] J. Solworth and C. Orji, “Distorted Mirrors,”Proceedings of the Interna-
tional Conference on Parallel and Distributed Information Systems, 1991, pp. 10-17.

[ST9096] Seagate Corporation, Disk Drive Model ST9096 product information.

[Stodolsky93] D. Stodolsky, G. Gibson, and M. Holland, “Parity Logging: Overcoming
the Small-Write Problem in Redundant Disk Arrays,”Proceedings of the International
Symposium on Computer Architecture, 1993, pp. 64-75.

[Stonebraker90] M. Stonebraker and G. Schloss, “Distributed RAID -- A New Multiple
Copy Algorithm,” Proceedings of the IEEE Conference on Data Engineering, 1990, pp.
430-437.

[Stonebraker92] M. Stonebraker, “An Overview of the Sequoia 2000 Project,”Proceed-
ings of the 37th IEEE Computer Society International Conference (COMPCON), 1992,
pp. 383-388.

[Teradata85] Teradata Corporation, “DBC/1012 Data Base Computer System Manual,
Release 1.3,”C10-0001-01, Teradata Corporation, 1985.

[TMC87] Thinking Machines Corporation,Connection Machine Model CM-2 Technical
Summary, Thinking Machines Technical Report HA87-4, 1987.

199

[TPCA89] The TPC-A Benchmark: A Standard Specification, Transaction Processing Per-
formance Council, 1989.

[Wood93] C. Wood and P. Hodges, “DASD Trends: Cost, Performance, and Form Fac-
tor,” Proceedings of the IEEE, vol. 81 no. 4, 1993, pp. 573-585.

200

201

Appendix A: Data Mapping Algorithms

This appendix gives the algorithms used to perform the mapping from logical array

addresses to physical disk addresses, and vice versa. Section A.1 presents some prelimi-

nary information about the mapping functions, Section A.2 gives the algorithms for the

declustered parity organization described in Chapter 3, and Section A.3 gives the algo-

rithms for the distributed-sparing approach of Chapter 5. The four subsections in each

present (1) the variables and data structures used, and the values to which they are initial-

ized, (2)MapSector, which maps a logical array address to a physical disk address, (3)

MapParity, which maps a logical array address to the physical disk address of the corre-

sponding parity unit, and (4)MapPhysicalToStripeID, which maps a physical disk address

to the identifier of the stripe containing it. These mapping functions are sufficient to imple-

ment all of the techniques described in the previous chapters.

A.1. Preliminaries

The mapping code assumes that the storage subsystem is a two-dimensional array of

disks, so that each disk is identified by its row and column number. It further assumes that

each row of the array is an independent sub-array (refer to layout criterion 1 in Section

3.2.1).

Recall that under declustered parity, data is laid out infull block design tables. The

mapping code stripes the full tables across the rows comprising the array, to avoid cluster-

ing consecutive data on the disks in one row. For an array withR rows, full table number 0

is in row 0, number 1 is in row 1, …, numberR-1 is in rowR-1, numberR is in row 0, etc.

This allows user data to be striped across all disks in the array, even when the array con-

tains multiple independent sub-arrays. An alternative would be to interleave (stripe) the

parity stripes across the full block design tables, instead of filling each full block design

table with consecutive user data before switching to the next. The required modifications

to the mapping algorithms would be relatively minor, and we did not pursue them.

The number of units on a disk may not be an exact multiple of the number of units on

202

one disk in a full block design table. In order to reduce the wasted space at the end of each

disk, the mapping algorithms allow the last full block design table in each row to be

incomplete, that is, to contain fewer thank copies of the block design table1. This leads to

a special case in the mapping functions, which is handled by the call toadjust_parameters

in MapSector andMapParity, and is handled in-line inMapPhysicalToStripeID. The prob-

lem is that the identifier of the full block design table is computed by dividing the logical

offset by the number of data stripe units in one full table. Since the last full table may be

incomplete, it may contain a different number of stripe units. To simplify the code, this

case is handled by adjusting the values of the layout parameters used to perform the map-

ping, so that the same mapping code works for all regions of the array. Section A.4 gives

the code foradjust_parameters.

A.2. Mapping code for declustered parity

A.2.1. Data structures

Table A.1 shows the variables and data structures used by the three parity declustering

mapping routines, and how they are initialized from the parameters of the array and the

block design. Many of these are redundant, that is, they are easily derived from other

parameters, but including them makes the layout code more efficient and readable. For ref-

erence, recall that a block design consists ofb tuples, each containingk objects selected

from a set ofv objects, such that the number of tuples containing each element isr, and the

number of tuples containing each pair of elements isλp.

Recall from Section 3.5.1 that the layout decouples the size of the reconstruction unit

from that of the stripe unit. Thus the mapping code uses two different measures of the size

of a unit on a disk: one SU is the number of sectors in a stripe unit, and one RU is the num-

ber of sectors in a reconstruction unit.

In addition to the above terms, the layout code uses three tables, each proportional in

size to the number of elements in the block design. TheLayoutTable is ab by k array hold-

ing the block design, and is used by the mapping to code identify the disk on which a par-

1. Note that if desired, the amount of wasted space at the end of each disk could be reduced further
by allowing the last block design table in the last full block design table to be incomplete as well.
We did not implement this in order to avoid further complicating the mapping algorithms.

203

ticular unit is located. TheOffsetTable is alsob by k, and holds, for each unit in a table, the

disk offset of that unit from the start of the table. Recalling that the layout is constructed

by assigning each successive unit to the lowest available offset on the disk indicated by an

element of the block design, the offset table is initialized as follows:

Variable Initialization Description

CompleteFTsPerRow PUsPerDisk/(r·k) Number of full tables in each row,
not including any partial full table

ExtraTablesPerRow PUsPerDisk/rmod k Tables in the partial full table

FullTableDepthInPU r·k PUs on one disk in one full table

FullTableLimitInSU CompleteFTsPerRow·
k ·SUsPerFullTable

Number of stripe units per row that
occur in non-partial full tables

LastFTOffsetInSU CompleteFTsPerRow
· FullTableDepthInPU
· SUsPerPU

Disk offset of start of last full table

NoRotate Config parameter Suppresses parity rotation

NumCol Config parameter Columns in the array

NumParityReps k Tables in one full table

NumRow Config parameter Rows in the array

PUsPerDisk Config parameter Size of a disk in PUs

PUsPerTuple k-1 Total PUs of user data in one tuple

StripeUnitsPerDisk Config parameter Total SUs on one disk, adjusted to
ensure an integral number of tables

SUsPerFullTable k·SUsPerTable Total SUs of user data in one full
table

SUsPerPU Config parameter Number of SUs in one PU

SUsPerTable b(k-1)(SUsPerPU) Total SUs of user data in one table

TableDepthInPU r PUs on one disk in one table

TuplesPerTable b Parity stripes in one table

Table A.1: Variables used in declustered parity mapping functions.

204

for (i=0; i<v; i++) first_avail_unit[i] = 0;
for (i=0; i<b; i++) {

for (j=0; j<k; j++) {
OffsetTable[i][j] = first_avail_slot[LayoutTable[i][j]];
first_avail_unit[LayoutTable[i][j]]++;

}
}

The third table, called theTupleTable, is used only byMapPhysicalToStripeID to

implement the inverse mapping. It has one entry for each data or parity unit in a block

design table (that is, it isr·SUsPerPU by v), and identifies the tuple within the block

design that was used to lay out that unit. The following code initializes it:

TupleID=0;
for (l=0; l<SUsPerPU; l++) {

for (i=0; i<b; i++) {
for (j=0; j<k; j++) {

TupleTable[OffsetTable[i][j]*SUsPerPU +l][LayoutTable[i][j]] = TupleID;
}
TupleID++;

}
}

205

A.2.2.MapSector

The code to map a logical array address to a physical array address is as follows.

Local variables can be distinguished from the parameters given in Table A.1 by the fact

that they all start with a lower-case letter.

void MapSector(logicalSU, col, row, offset)
unsigned long logicalSU; /* input: logical stripe unit address */
long *col, *row; /* output: disk identifier */
unsigned long *offset; /* output: physical stripe unit offset */

{
unsigned long fullTableID, fullTableOffset, tableID, tableOffset;
unsigned long tupleID, tupleOffset, repIndex;
unsigned long sus_per_fulltable = SUsPerFullTable;
unsigned long fulltable_depth = FullTableDepthInPU * SUsPerPU;
unsigned long base_suid = 0, outSU;

adjust_params(&logicalSU, &sus_per_fulltable, &fulltable_depth, &base_suid);

/* find fulltable ID within array (across rows) */
fullTableID = logicalSU / sus_per_fulltable;
*row = fullTableID % numRow;

/* convert to fulltable ID on this disk */
fullTableID /= numRow;

/* find offset within full block design table */
 fullTableOffset = logicalSU % sus_per_fulltable;

/* compute offsets into block design table and tuple within table */
tableID = fullTableOffset / SUsPerTable;
tableOffset = fullTableOffset % SUsPerTable;
tupleID = (tableOffset / PUsPerTuple) % TuplesPerTable;
tupleOffset = tableOffset % PUsPerTuple;

/* compute parity slot in table. optionally supress rotation */
repIndex = PUsPerTuple - tableID;
if (!NoRotate) tupleOffset += ((tupleOffset >= repIndex) ? 1 : 0);

/* compute the disk identifier */
*col = LayoutTable[tupleID][tupleOffset];

 /* sum components to find the stripe unit offset within disk */
outSU = base_suid;
outSU += fullTableID * fulltable_depth;
outSU += tableID * TableDepthInPU * SUsPerPU;
outSU += OffsetTable[tupleID][tupleOffset] * SUsPerPU;
outSU += tableOffset / (TuplesPerTable * PUsPerTuple);

*offset = outSU;
}

206

A.2.3.MapParity

MapParity is identical toMapSector except that the column is selected according to

the location of the parity rather than the location of the data.

void MapParity(logicalSU, col, row, offset)
unsigned long logicalSU; /* input: logical stripe unit address */
long *col, *row; /* output: disk identifier */
unsigned long *offset; /* physical stripe unit offset */

{
unsigned long fullTableID, fullTableOffset, tableID, tableOffset;
unsigned long tupleID, tupleOffset, repIndex;
unsigned long sus_per_fulltable = SUsPerFullTable;
unsigned long fulltable_depth = FullTableDepthInPU * SUsPerPU;
unsigned long base_suid = 0, outSU;

adjust_params(&logicalSU, &sus_per_fulltable, &fulltable_depth, &base_suid);

/* this section is identical to MapSector */
fullTableID = logicalSU / sus_per_fulltable;
*row = fullTableID % numRow;
fullTableID /= numRow;
fullTableOffset= logicalSU % sus_per_fulltable;
tableID = fullTableOffset / SUsPerTable;
tableOffset = fullTableOffset % SUsPerTable;
tupleID = (tableOffset / PUsPerTuple) % TuplesPerTable;
tupleOffset = tableOffset % PUsPerTuple;

/* the parity block is in the position indicated by repIndex */
repIndex = (NoRotate) ? PUsPerTuple : PUsPerTuple - tableID;
*col = LayoutTable[tupleID][repIndex];

/* compute as before, except use repIndex instead of tupleOffset */
outSU = base_suid;
outSU += fullTableID * fulltable_depth;
outSU += tableID * TableDepthInPU * SUsPerPU;
outSU += OffsetTable[tupleID][repIndex] * SUsPerPU;
outSU += tableOffset / (TuplesPerTable * PUsPerTuple);

*offset = outSU;
}

207

A.2.4.MapPhysicalToStripeID

Unlike MapSector and MapParity, MapPhysicalToStripeID does not calladjust_-

params to handle the case where the locations to be mapped reside in the partial full block

design table at the end of a row. The functionality required here is slightly different, and so

the code to handle this case is included in-line.

void MapPhysicalToStripeID(col, row, offset, outStripeID)
long col, row, offset; /* input: physical disk address */
unsigned long outStripeID; /* output: stripe identifier */

{
unsigned long fullTableID, tableID, tupleID;
unsigned long ft_limit = NumCompleteFullTablesPerDisk;
unsigned long ftDepthInSU = FullTableDepthInPU * SUsPerPU;
unsigned long tDepthInSU = TableDepthInPU * SUsPerPU;

/* compute fulltable, table, and tuple this disk unit resides in */
fullTableID = (offset / ftDepthInSU) * NumRow + row;
tableID = (offset % ftDepthInSU) / tDepthInSU;
tupleID = TupleTable[offset % tDepthInSU][col];

if (fullTableID >= ft_limit) {

*outStripeIDPtr = ft_limit * NumParityReps * TuplesPerTable * SUsPerPU +
row * (ExtraTablesPerDisk * TuplesPerTable) * SUsPerPU;

*outStripeIDPtr += tableID * TuplesPerTable * SUsPerPU + tupleID;

} else {

*outStripeIDPtr = fullTableID * NumParityReps * TuplesPerTable * SUsPerPU +
 tableID * TuplesPerTable * SUsPerPU + tupleID;

}
}

208

A.3. Mapping code for declustered parity with distributed sparing

The distributed-sparing layout code uses the following terms in addition to those

listed in Table A.1.

The initialization ofLastSpareOffsetInSU is too complex to put in the above table.

This term is necessary because, since the last full block design table may be partial, the

start of the last region of spare space does not occur at the expected location. It is initial-

ized by multiplying the number of spare regions per row by the depth of one spare region,

and adding to this the number of extra tables per row times the depth of one block design

table.

In addition to the above terms, the distributed-sparing layout uses two tables to map

failed units to spare locations and vice versa. TheSpareTable is a two-dimensional array

of sizeTablesPerSpareRgn by TuplesPerTable. Each entry in this array is a structure con-

taining two elements:spareDisk and spareBlockOffsetInSU. When the mapping code

determines that a requested unit is failed, it uses the table ID within the spare region and

the tuple ID within the table to index into the SpareTable. ThespareDisk field within this

entry indicates the disk to which this unit has been spared, and thespareBlockOffsetInSU

field gives the offset into the spare block within this spare region on the indicated disk.

Variable Initialization Description

FTPerSpareRegion LCM(v-1,r)/r Number of full block design tables
in one spare region

TablesPerSpareRgn k·LCM(v-1,r)/r Block design tables per spare region

SpDepthPerRgnInSU (k·LCM(v-1,r)/(v-1))
· SUsPerPU

SUs of spare space on one disk in
one spare region

SpRegionDepthInSU TablesPerSpareRgn ·
TableDepthInPU ·
SUsPerPU +
SpDepthPerRgnInSU

Total SUs on one disk in one spare
region

LastSpareOffsetInSU See text Disk offset of last spare region

NumCompleteSRs SUsPerDisk /
SpRegionDepthInSUs

Number of spare regions in array,
not including last (partial) region.

Table A.2: Additional layout terms used in distributed sparing.

209

This table is initialized at the time a disk failure occurs by reading the corresponding

sparemap computed according to the technique given in Chapter 5.

The second table used by the distributed sparing code is theInverseSpareTable, which

is the exact inverse of the SpareTable. It is used byMapPhysicalToStripeID to compute

the inverse mapping, and contains, for each spare unit in a spare region, the table ID

within the spare region and the tuple ID within the indicated table for the failed unit that

was remapped to the indicated spare unit.

The mapping code uses the functionremap_to_spare_space to index into the spare

table and find the corresponding spare unit. This function is described in Section A.3.4.

Each of the three routines has the ability to optionally suppress the remapping of failed

units to spare units, or vice versa in the case ofMapPhysicalToStripeID, which is con-

trolled by theremap argument. This is necessary in order for the array controller to dis-

criminate between accesses that encounter a failed unit and those that do not.

210

A.3.1.MapSector

void MapSector(logicalSU, col, row, offset, remap)
unsigned long logicalSU; /* input: logical stripe unit address */
long *col, *row; /* output: disk identifier */
unsigned long *offset; /* physical stripe unit offset */
char remap; /* whether or not we are allowed to remap to spare space */

{
unsigned long fullTableID, fullTableOffset, tableID, tableOffset;
unsigned long tupleID, tupleOffset, repIndex;
unsigned long sus_per_fulltable = SUsPerFullTable;
unsigned long fulltable_depth = FullTableDepthInPU * SUsPerPU;
unsigned long base_suid = 0, outSU, spareRegion, spareSpace=0;

adjust_params(&logicalSU, &sus_per_fulltable, &fulltable_depth, &base_suid);

fullTableID = logicalSU / sus_per_fulltable;
*row = fullTableID % numRow;
fullTableID /= numRow;

spareRegion = fullTableID / FTPerSpareRegion;
spareSpace = spareRegion * SpDepthPerRgnInSU;

fullTableOffset= logicalSU % sus_per_fulltable;
tableID = fullTableOffset / SUsPerTable;
tableOffset = fullTableOffset % SUsPerTable;
tupleID = (tableOffset / PUsPerTuple) % TuplesPerTable;
tupleOffset = tableOffset % PUsPerTuple;
repIndex = PUsPerTuple - tableID;

if (!NoRotate) tupleOffset += ((tupleOffset >= repIndex) ? 1 : 0);
*col = LayoutTable[tupleID][tupleOffset];

/* remap to distributed spare space if indicated */
if (remap) {

remap_to_spare_space(*row, fullTableID, tableID, tupleID, (base_suid) ? 1 : 0,
spareRegion, col, &outSU);

} else {

outSU = base_suid;
outSU += fullTableID * fulltable_depth;
outSU += spareSpace;
outSU += tableID * TableDepthInPU * SUsPerPU;
outSU += OffsetTable[tupleID][tupleOffset] * SUsPerPU;

}
outSU += tableOffset / (TuplesPerTable * PUsPerTuple);
*offset = outSU;

}

211

A.3.2.MapParity

void MapParityDeclustered(logicalSU, col, row, offset, remap)
unsigned long logicalSU; /* input: logical stripe unit address */
long *col, *row; /* output: disk identifier */
unsigned long *offset; /* physical stripe unit offset */
char remap; /* whether or not we are allowed to remap to spare space */

{
unsigned long fullTableID, fullTableOffset, tableID, tableOffset;
unsigned long tupleID, tupleOffset, repIndex;
unsigned long sus_per_fulltable = SUsPerFullTable;
unsigned long fulltable_depth = FullTableDepthInPU * SUsPerPU;
unsigned long base_suid = 0, outSU, spareRegion, spareSpace=0;

adjust_params(&logicalSU, &sus_per_fulltable, &fulltable_depth, &base_suid);

fullTableID = logicalSU / sus_per_fulltable;
*row = fullTableID % NumRow;
fullTableID /= NumRow;

spareRegion = fullTableID / FTPerSpareRegion;
spareSpace = spareRegion * SpDepthPerRgnInSU;

fullTableOffset= logicalSU % sus_per_fulltable;
tableID = fullTableOffset / SUsPerTable;
tableOffset = fullTableOffset % SUsPerTable;
tupleID = (tableOffset / PUsPerTuple) % TuplesPerTable;
tupleOffset = tableOffset % PUsPerTuple;
repIndex = (NoRotate) ? PUsPerTuple : PUsPerTuple - tableID;
*col = LayoutTable[tupleID][repIndex];

if (remap) {
remap_to_spare_space(*row, fullTableID, tableID, tupleID, (base_suid) ? 1 : 0,

spareRegion, col, &outSU);
} else {

outSU = base_suid;
outSU += fullTableID * fulltable_depth;
outSU += spareSpace;
outSU += tableID * TableDepthInPU * SUsPerPU;
outSU += OffsetTable[tupleID][repIndex] * SUsPerPU;

}

outSU += tableOffset / (TuplesPerTable * PUsPerTuple);
*offset = outSU;

}

212

A.3.3.MapPhysicalToStripeID

void MapPhysicalDeclustered(col, row, offset, outStripeID, outSpare, remap)
unsigned long col, row; /* input: disk identifier */
unsigned long offset; /* input: offset into disk */
unsigned long *outStripeID; /* output: stripe identifier */
char *outSpare; /* output: flag indicating whether or not mapped unit is spare */
char remap; /* whether or not we are allowed to remap to spare space */

{
unsigned long fullTableID, tableID, tupleID;
unsigned long ft_limit = numCompleteFullTablesPerDisk;
unsigned long ftDepthInSU = FullTableDepthInPU * SUsPerPU;
unsigned long tDepthInSU = TableDepthInPU * SUsPerPU;
unsigned long srDepthInSU, spRegion, spareBlockOffsetInSU;
unsigned long tableInSpareRegion, tableOffset, ftOffset;

*outSpare = 0;

srDepthInSU = ftDepthInSU * FullTablesPerSpareRgn+SpDepthPerRgnInSU;
spRegion = offset / srDepthInSU;

/* check if unit we are trying to inverse-map is a spare unit */
if ((offset >= LastSpareOffsetInSU && offset < stripeUnitsPerDisk) ||

(((spRegion+1)*srDepthInSU - SpDepthPerRgnInSU <= offset) &&
((spRegion+1)*srDepthInSU > offset))) {

*outSpare = 1;
if (!remap) return; /* don’t waste any more time */

/* the indicated unit is in a spare space region */
if (offset >= LastSpareOffsetInSU) {

spareBlockOffsetInSU = offset - LastSpareOffsetInSU;
} else {

spareBlockOffsetInSU = (offset % SpareRegionDepthInSU) -
 TablesPerSpareRgn * (TableDepthInPU * SUsPerPU);

}
tableInSpareRegion =

 InverseSpareTable[spareBlockOffsetInSU][col].tableInSpareRegion;
tupleID = InverseSpareTable[spareBlockOffsetInSU][col].offsetInTable;

tableOffset = spRegion * TablesPerSpareRgn + tableInSpareRegion;
ftOffset = tableOffset / NumParityReps;
fullTableID = ftOffset * NumRow + row;
tableID = tableInSpareRegion % NumParityReps;

} else {

/* not in a spare space region */
offset -= spRegion * SpDepthPerRgnInSU;
fullTableID = (offset / ftDepthInSU) * NumRow + row;
tableID = (offset % ftDepthInSU) / tDepthInSU;
tupleID = TupleTable[offset % tDepthInSU][col];

}

213

if (fullTableID >= ft_limit) {

*outStripeID = ft_limit * NumParityReps * TuplesPerTable * SUsPerPU +
 row * (ExtraTablesPerDisk * TuplesPerTable) * SUsPerPU;

*outStripeID += tableID * TuplesPerTable * SUsPerPU + tupleID;

} else {

*outStripeID = fullTableID * NumParityReps * TuplesPerTable * SUsPerPU +
tableID * TuplesPerTable * SUsPerPU + tupleID;

}
}

214

A.3.4. remap_to_spare_space

void remap_to_spare_space(row, fullTableID, tableID, tupleID,
base_suid, spareRegion, outCol, outSU)

unsigned long row; /* input */
unsigned long fullTableID, tableID, tupleID; /* input */
unsigned long base_suid, spareRegion; /* input */
unsigned long *outCol, *outSU; /* output: new column and disk offset */
{

unsigned long ftID, spareTableStartSU, tableInSpareRegion;

/* FullTableID may have gotten tweaked by adjust_params.
* Detect this by noticing that base_suid is not 0.
*/
ftID = (base_suid==0) ? fullTableID :

LastFTOffsetInSU / (FullTableDepthInPU * SUsPerPU);
tableInSpareRegion = (ftID * NumParityReps + tableID) % TablesPerSpareRgn;

*outCol = SpareTable[tableInSpareRegion][tupleID].spareDisk;

spareTableStartSU = (spareRegion == NumCompleteSRs) ?
LastFTOffsetInSU + ExtraTablesPerRow * TableDepthInPU * SUsPerPU :
(spareRegion+1) * SpRegionDepthInSU - SpDepthPerRgnInSU;

*outSU = spareTableStartSU +
 SpareTable[tableInSpareRegion][tupleID].spareBlockOffsetInSUs;

}

215

A.4. adjust_params

void adjust_params(logicalSU, sus_per_fulltable, fulltable_depth, base_suid)
unsigned long *logicalSU; /* input/output: logical stripe unit */
unsigned long *sus_per_fulltable; /* input/output */
unsigned long *fulltable_depth; /* input/output */
unsigned long *base_suid; /* input/output */

{
if (*logicalSU >= FullTableLimitInSU) {

/* new full table size is size of last full table on disk */
*sus_per_fulltable = ExtraTablesPerRow * SUsPerTable;

/* new full table depth is corresponding depth */
*fulltable_depth = ExtraTablesPerRow * TableDepthInPU * SUsPerPU;

/* set up the new base offset */
*base_suid = LastFTOffsetInSU;

/* convert logical address to an offset into the last fulltable */
*logicalSU -= FullTableLimitSUID;

}
}

216

217

Appendix B: Block Designs

This chapter summarizes the block designs that are known to us. As discussed in

Chapter 3, Hanani [Hanani75] gives a list of designs and a set of techniques which

together allow the generation of a design with anyk whenv < 43. Section B.1 therefore

summarizes known designs onv > 43. Section B.2 gives a chart indicating the designs that

exist in the block design database mentioned in Chapter 3. Section B.3 gives the block

designs onv = 40 that were used to generate the simulation results in Chapters 3 through

5.

B.1. Block designs onv > 43

Each of the designs in Table B.1 can be found in the tables of Hall [Hall86, pp. 404-

423], Chee [Chee90], or Mathon [Mathon90]. Given a block designB with parametersb,

v, andk, acomplementary block designB’ with parametersb’ = b, v’ = v, andk’ = v - kcan

be constructed by forming the set ofb tuples such that tuplei in B’ contains exactly those

elements that do not appear in tuplei of B. Thus, the table presents only designs with

k < v/2. There also exist a large number of general construct techniques that can be used

when the parameters of the design meet certain criteria [Hall86, Hanani75], so this list is

by no means exhaustive.

B.2. Designs in the database

Table B.2 lists the designs in the block design database used in this study. The data-

base contains the trivial designs onk = 2, k = v-1, k = v-2, andk = v for all v < 40. We are

actively adding designs, so this list may not be exhaustive.

The database is available via anonymous ftp from the machineftp.cs.cmu.edu (inter-

net address 128.2.206.173) in the file project/nectar-io/Declustering/BD_database.tar.Z.

This file was generated using the UNIX utilitiestar andcompress. The designs are given

in expanded form, so none of the encoding rules described in subsequent sections are nec-

essary. There are 846 designs in the database. The above-named file is about 2.8 MB com-

218

pressed, and 21.5 MB uncompressed. A README file in the database describes the block

design file format.

B.3. Block designs used in the simulations

The designs are presented in compacted form, since many of them are quite large.

Tuples in a design are always specified using angle brackets, for example, <0,1,2>. The

notationmod p after a tuple indicates that all the possible residues modulop should be

added to every element in the tuple, and the results should be expressed modulop. If a

tuple contains the symbol∞, that symbol should not be modified when adding the modulo

values. For example, the notation<∞,1,2>mod3 expands to the following set of tuples:

<∞,1,2>,<∞,2,0>, and<∞,0,1>. Amod p clause that is marked “of periodx” indicates that

only the firstx tuples generated by adding the residues modulop should be used, and the

v k v k v k

45 3, 5, 9, 11, 12 46 4, 6, 10, 16 47 23
49 3, 4, 7, 9, 16, 21 50 8, 15 51 3, 5, 6, 25
52 4, 13, 18 53 13, 14 55 3, 4, 5, 10, 27
56 6, 11, 12, 16 57 3, 7, 8 58 4
59 29 61 3, 4, 5, 6, 10, 15, 16, 25 63 3, 7, 31
64 4, 8, 16, 28 65 5 66 6, 11, 26
67 3, 11, 12, 33 69 3, 17 70 24
71 5, 7, 8, 15, 21, 35 73 3, 4, 9, 10 75 3, 5, 15, 37
76 4, 6, 16, 19 77 7 78 22
79 3, 13, 27, 39 81 3, 5, 6, 9, 15, 21, 27 83 41
85 4, 5, 7, 21 88 4 91 6, 7, 10
96 6, 20 97 4 100 4, 25
101 5, 25 105 5 106 6
109 4, 9, 28 111 6 112 4, 7
113 8 117 9 120 8
121 4, 5, 6, 11, 25, 40 124 4 125 5, 25
126 6 133 12, 33 136 6
141 5 145 5, 9, 25 151 6
153 9 156 6, 31 161 5
165 5 169 7, 13 175 30
181 6, 10 183 14 186 6, 31
217 7 223 37 232 8
256 16 273 17 288 8
289 17 307 18 361 19
381 20 496 16 529 23
553 24 625 25 651 26
729 27 757 28 841 29
871 30 961 31 993 32
1024 32 1057 33 1369 37
1407 38

Table B.1: Known block designs onv > 43.

219

remaining tuples discarded.

Often the elements of the tuples are specified as ordered pairs, instead of as integers.

For example, the notation <(0,1),(1,2),(0,2)> indicates a tuple containing three elements,

each of which is an ordered pair. In this case, themod addendum takes the formmod (p,q),

and indicates that all the residues modulop should be added to the first number in each

order pair of the tuple, and for each tuple so generated, all the residues moduloq should be

added to the second number. For example, <(∞,1),(1,2)> mod (2,3) expands to following

set of tuples: <(∞,1),(1,2)>, <(∞,2),(1,0)>, <(∞,0),(1,1)>, <(∞,1),(0,2)>, <(∞,2),(0,0)>,

<(∞,0),(0,1)>. After the expansion is complete, each unique ordered pair should be

replaced by a unique integer in the range [0, v-1] to produce the final design. In some

designs, themod suffix contains a dash, for example,mod (-,19). This indicates that no

residues should be added to the first ordered pair, but residues should be added to the sec-

ond. Equivalently, the dash can be interpreted as a “1”.

v k v k

v <20 all 2< k < v 20 2, 4-16, 18-20
21 2-21 22 2-22
23 2-23 24 2-3, 5, 7-17, 19, 21-24
25 2-25 26 2, 4-6, 8-18, 20-22, 24-26
27 2-27 28 2-3, 5-23, 25-28
29 2-29 30 2-3, 6-9, 11-19, 21-24, 27-30
31 2-31 32 2-3, 5-27, 29-32
33 2-3, 6-8, 10, 12-21, 23, 25-27, 30-33 34 2-3, 5-11, 13-21, 23-29, 31-34
35 2-2, 5-14, 16-19, 21-30, 33-35 36 2-3, 6-7, 9-27, 29-30, 33-36
37 2-37 38 2-2, 6-32, 36-38
39 2-3, 5-34, 36-39 40 2-4, 6-34, 36-40
41 2-41 42 10, 16-17, 25-26, 32
43 7, 21-22, 36 44 22
49 4, 7, 42, 45 51 6, 45
52 4, 48 56 11, 16, 40, 45
57 8, 49 61 4-5, 56-57
62 5,57 64 8, 56
66 6, 11, 55, 60 67 33-34
68 34 73 9, 64
76 6, 70 78 22, 56
79 4, 13, 66, 75 81 9, 72
91 6-7, 10, 81, 84-85 97 4
121 11, 110 133 12, 121
151 4 273 17, 256
289 17, 272 307 18, 289
361 19, 342 381 20, 361

Table B.2: Block designs in the database.

220

Some designs in this section are specified as “residual” or “derived” designs, which

means that they are generated from other designs [Hall86]. Given a block design with

v = b (called asymmetric design), the residual design is formed by deleting one of the

tuplesTi, and then deleting all the objects contained inTi from all other tuples in the

design. A derived design is generated from a symmetric design by selecting one tupleT0

and constructing tuplesT’1 throughT’b-1 whereT’i contains theλp objects common toT0

andTi.

B.3.1. Designs onv = 40

Block designs onv = 40 used in the simulations includek = 2, 3, 10, 20, 30, and 40.

The only possible block design onv=40, k=2 is the complete design, which hasb=780,

r=39, andλp=1. This design consists of all possible 2-element subsets of the set of inte-

gers in [0, 39].

1. v=40,k=3, b=520,r=39,λp=2:

<∞,0,19> mod 39

<0,13,26> mod 39 of period 13

<0,1,12> mod 39 <0,2,11> mod 39 <0,3,10> mod 39 <0,4,9> mod 39

<0,5,8> mod 39 <0,6,7> mod 39 <0,2,20> mod 39 <0,4,21> mod 39

<0,6,22> mod 39 <0,8,23> mod 39 <0,10,24> mod 39 <0,12,25> mod 39

2. v=40,k=10,b=156,r=39,λp=9:

<(∞,∞) (1,1) (1,3) (1,9) (2,2) (2,8) (2,6) (2,11) (2,5) (2,7)> mod (3,13)

<(0,0) (0,4) (0,12) (0,10) (1,8) (1,11) (1,7) (2,4) (2,12) (2,10)> mod (3,13)

<(0,0) (0,4) (0,12) (0,10) (1,8) (1,11) (1,7) (2,4) (2,12) (2,10)> mod (3,13)

<(0,0) (0,1) (0,3) (0,9) (1,2) (1,6) (1,5) (2,1) (2,3) (2,9)> mod (3,13)

Note that the second block is used twice.

3. v=40,k=20,b=78,r=39,λp=19:

Construct the block design onv=39, k=19, λp=9 from the set of tuples given below.

This yields a designB with objects 0 through 38. Construct the complement designB’,

which has parametersv=39,k=20, λp=10. Append to each tuple inB the object 39. Con-

221

catenate together the tuples ofB andB’ to form the required design.

The required design onv=39,k=19,λp=9 is generated from:

<(∞,∞) (0,1) (0,4) (0,16) (0,7) (0,9) (0,17) (0,11) (0,6) (0,5) (1,1) (1,4) (1,16) (1,7) (1,9)

(1,17) (1,11) (1,6) (1,5)> mod (-,19)

<(0,0) (0,2) (0,8) (0,13) (0,14) (0,18) (0,15) (0,3) (0,12) (0,10) (1,1) (1,4) (1,16) (1,7) (1,9)

(1,17) (1,11) (1,6) (1,5)> mod (-,19)

<(1,0) (1,1) (1,2) (1,4) (1,8) (1,16) (1,13) (1,7) (1,14) (1,9) (1,18) (1,17) (1,15) (1,11) (1,3)

(1,6) (1,12) (1,5) (1,10)>

4. v=40,k=30,b=156,r=117,λp=87:

This design is generated as the complement of thev=40, k=10, b=156, r=39, λp=9

design given above.

5. v=40,k=40:

In order to achieve criterion six, we use a special design wheneverv = k. The design

hasb = r = λp = v = k, and is constructed by listing one tuple containing all the objects in

order, duplicating it until there arev copies, and rotating each tuple one slot to the right

with respect to the previous. By suppressing the rotation of parity in the mapping algo-

rithms, this design implements the left-symmetric RAID Level 5 layout. Since the design

onv = 40 is large, we demonstrate the structure of the design forv = 10 here.

0 1 2 3 4 5 6 7 8 9
9 0 1 2 3 4 5 6 7 8
8 9 0 1 2 3 4 5 6 7
7 8 9 0 1 2 3 4 5 6
6 7 8 9 0 1 2 3 4 5
5 6 7 8 9 0 1 2 3 4
4 5 6 7 8 9 0 1 2 3
3 4 5 6 7 8 9 0 1 2
2 3 4 5 6 7 8 9 0 1
1 2 3 4 5 6 7 8 9 0

B.3.2. Designs onk = 4

This section gives the designs onk=4 used in Section 5.5.2.

222

1. v=10,k=4, b=15,r=6, λp=2 is the residual design of v=16, b=16,r=6, k=6, λp=2:

<(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,0,0), (0,0,1,1)> mod (2,2,2,2)

2. v=20, b=95,r=19,k=4, λp=3 (all tuples mod 19):

<∞, 0, 1, 6> <0, 1, 3, 7> <0, 1, 8, 11> <0, 2, 5, 9> <0, 2, 6, 11>

3. v=40, b=130,r=13,k=4, λp=1 (all tuples mod 40):

<0, 1, 26, 32> <0, 7, 19, 36> <0, 3, 16, 38>
<0, 10, 20, 30> of period 10

4. v=61,k=4, b=305,r=20,λp=1 (all tuples mod 61):

<0, 3, 18, 23> <0, 4, 6, 33> <0, 7, 8, 24> <0, 9, 19, 30> <0, 13, 25, 39>

5. v=79,k=4, b=1027,r=52,λp=2 (all tuples mod 79):

<0, 1, 23, 55> <0, 3, 69, 7> <0, 9, 49, 21> <0, 27, 68, 63>
<0, 2, 46, 31> <0, 6, 59, 14> <0, 18, 19, 42> <0, 54, 57, 47>
<0, 4, 13, 62> <0, 12, 39, 28> <0, 36, 38, 5> <0, 29, 35, 15>
<0, 8, 26, 45> <0, 24, 78, 56> <0, 72, 76, 10> <0, 58, 70, 30>
<0, 16, 52, 11> <0, 48, 77, 33> <0, 65, 73, 20> <0, 37, 61, 60>
<0, 32, 25, 22> <0, 17, 75, 66> <0, 51, 67, 40> <0, 74, 43, 41>
<0, 64, 50, 44> <0, 34, 71, 53>

6. v=97,k=4, b=1552,r=64,λp=2 (all tuples mod 97):

<0, 1, 35, 61> <0, 5, 78, 14> <0, 25, 2, 70> <0, 28, 10, 59>
<0, 43, 50, 4> <0, 21, 56, 20> <0, 8, 86, 3> <0, 40, 42, 15>
<0, 6, 16, 75> <0, 30, 80, 84> <0, 53, 12, 32> <0, 71, 60, 63>
<0, 64, 9, 24> <0, 29, 45, 23> <0, 48, 31, 18> <0, 46, 58, 90>
<0, 36, 96, 62> <0, 83, 92, 19> <0, 27, 72, 95> <0, 38, 69, 87>
<0, 93, 54, 47> <0, 77, 76, 41> <0, 94, 89, 11> <0, 82, 57, 55>
<0, 22, 91, 81> <0, 13, 67, 17> <0, 65, 44, 85> <0, 34, 26, 37>
<0, 73, 33, 88> <0, 74, 68, 52> <0, 79, 49, 66> <0, 7, 51, 39>

7. v=151,k=4, b=3775,r=100,λp=2 (all tuples mod 151):

<0, 1, 32, 118> <0, 6, 41, 104> <0, 36, 95, 20> <0, 65, 117, 120>
<0, 88, 98, 116> <0, 75, 135, 92> <0, 148, 55, 99> <0, 133, 28, 141>
<0, 43, 17, 91> <0, 107, 102, 93> <0, 38, 8, 105> <0, 77, 48, 26>
<0, 9, 137, 5> <0, 54, 67, 30> <0, 22, 100, 29> <0, 132, 147, 23>
<0, 37, 127, 138> <0, 71, 7, 73> <0, 124, 42, 136> <0, 140, 101, 61>
<0, 85, 2, 64> <0, 57, 12, 82> <0, 40, 72, 39> <0, 89, 130, 83>
<0, 81, 25, 45> <0, 33, 150, 119> <0, 47, 145, 110> <0, 131, 115, 56>
<0, 31, 86, 34> <0, 35, 63, 53> <0, 59, 76, 16> <0, 52, 3, 96>
<0, 10, 18, 123> <0, 60, 108, 134> <0, 58, 44, 49> <0, 46, 113, 143>

223

<0, 125, 74, 103> <0, 146, 142, 14> <0, 121, 97, 84> <0, 122, 129, 51>
<0, 128, 19, 4> <0, 13, 114, 24> <0, 78, 80, 144> <0, 15, 27, 109>
<0, 90, 11, 50> <0, 87, 66, 149> <0, 69, 94, 139> <0, 112, 111, 79>
<0, 68, 62, 21> <0, 106, 70, 126>

224

225

Appendix C: Simulation and Model Data

This appendix gives the raw data for each plot in the thesis. Recall that for fault-free

and degraded-mode simulations, the simulation was not terminated until the 95% confi-

dence interval on the average user response time had fallen to less than 5% of the mean. In

reconstruction mode, the response-time confidence intervals are uniformly small because

the simulation is continued until reconstruction is complete, and thus a very large number

of accesses are run. For these reasons, the tables do not report confidence intervals on user

response time.

Read Fraction
Workload

Increase Factor

0.0 1.23
0.1 1.25
0.2 1.28
0.3 1.31
0.4 1.34
0.5 1.38
0.6 1.44
0.7 1.51
0.8 1.62
0.9 1.76
1.0 2.00

Table C.1: Workload increase factor data from Figure 2.2.

40/10 Declustered 4x 9+1 RAID Level 5

90th percentile average 90th percentile average

Acc
Rate

Resp
Time

Acc
Rate

Resp
Time

Acc
Rate

Resp
Time

Acc
Rate

Resp
Time

202.1 77.4 202.1 36.6 201.1 77.8 201.1 36.7
406.2 86.0 406.2 42.2 406.9 85.8 406.9 42.0
612.2 103.8 612.2 50.7 616.2 103.6 616.2 50.9
696.1 115.0 696.1 56.1 697.7 116.2 697.7 56.6
828.0 141.0 828.0 68.2 824.3 142.8 824.3 68.7
992.5 216.0 992.5 101.2 991.7 216.2 991.7 101.4

Table C.2: Response time data from Figure 3.5.

226

40/10 Declustered 4x 9+1 RAID Level 5

90th percentile average 90th percentile average

Acc
Rate

Resp
Time

Acc
Rate

Resp
Time

Acc
Rate

Resp
Time

Acc
Rate

Resp
Time

198.9 77.8 198.9 37.2 201.6 78.4 201.6 37.6
406.8 90.6 406.8 44.6 406.4 92.8 406.4 45.8
610.0 119.4 610.0 58.1 610.2 153.0 610.2 71.1
697.8 141.0 697.8 67.7 675.3 301.4 675.3 113.2
817.0 195.4 817.0 93.2
908.2 279.6 908.2 130.1

Table C.3: Response time data from Figure 3.6.

40/10 Declustered 4x 9+1 RAID Level 5

90th percentile average 90th percentile average

Acc
Rate

Resp
Time

Acc
Rate

Resp
Time

Acc
Rate

Resp
Time

Acc
Rate

Resp
Time

201.1 90.4 201.1 45.0 201.5 82.0 201.5 40.5
405.0 108.8 405.0 55.2 401.0 98.8 401.0 49.0
606.9 139.6 606.9 71.4 600.6 153.2 600.6 71.6
806.5 212.4 806.5 105.0 679.6 337.8 679.6 123.5
882.4 284.0 882.4 136.2

Table C.4: Response time data from Figure 3.7.

40/10 Declustered 4x 9+1 RAID Level 5

Acc
Rate

Recon
Time

95%
Conf

Acc
Rate

Recon
Time

95%
Conf

200.0 210.2 0.7 200.0 355.2 4.7
400.0 218.6 0.4 400.0 716.8 5.4
600.0 260.0 2.3 600.0 2551.0 38.8
800.0 572.4 19.6 680.0 11610.6 785.1
1000.0 970.8 6.7

Table C.5: Reconstruction time data from Figure 3.8.

227

40/10 Declustered 4x 9+1 RAID Level 5

Acc
Rate

P(Loss)
95%
Conf

Acc
Rate

P(Loss)
95%
Conf

5.0 1.8e-4 1.0e-6 5.0 6.9e-5 1.0e-6
10.0 1.8e-4 0.0 10.0 1.4e-4 1.0e-6
15.0 2.2e-4 2.0e-6 15.0 5.0e-4 8.0e-6
20.0 4.8e-4 1.7e-5 17.0 2.3e-3 1.5e-4
25.0 8.2e-4 6.0e-6

Table C.6: Reliability data from Figure 3.9a.

40/10 Declustered 4x 9+1 RAID Level 5

Acc
Rate

P(Loss)
95%
Conf

Acc
Rate

P(Loss)
95%
Conf

5.0 3.5e-04 1.0e-06 5.0 1.4e-04 2.0e-06
10.0 3.7e-04 1.0e-06 10.0 2.8e-04 2.0e-06
15.0 4.4e-04 4.0e-06 15.0 9.9e-04 1.5e-05
20.0 9.7e-04 3.3e-05 17.0 4.5e-03 3.0e-04
25.0 1.6e-03 1.1e-05

Table C.7: Reliability data from Figure 3.9b.

α 90% average

0.03 (Mirroring) 82.6 37.5
0.03 (G=2) 80.6 35.3
0.05 93.4 46.6
0.23 99.8 48.7
0.49 99.2 48.5
0.74 99.6 48.7
1.00 100.2 48.9

Table C.8: Response time data from Figure 3.10.

α 90% average

0.03 (Mirroring) 82.6 37.9
0.03 (G=2) 79.4 35.3
0.05 95.6 47.5
0.23 111.6 54.6
0.49 133.4 64.7
0.74 162.0 77.6
1.00 212.8 100.7

Table C.9: Response time data from Figure 3.11.

228

α Recon Time 95% Conf

0.03 (Mirroring) 925.4 16.5
0.03 (G=2) 232.0 3.4
0.05 229.0 2.1
0.23 228.2 1.4
0.49 448.8 3.1
0.74 895.4 11.8
1.00 1757.8 32.0

Table C.10: Reconstruction time data from Figure 3.12.

α
5 Years 10 Years

P(Failure) 95% Conf P(Failure) 95% Conf

0.03 (Mirroring) 2.0e-05 0.0e+00 4.0e-05 1.0e-06
0.03 (G=2) 2.0e-04 3.0e-06 3.9e-04 5.0e-06
0.05 1.9e-04 2.0e-06 3.9e-04 3.0e-06
0.23 1.9e-04 1.0e-06 3.9e-04 2.0e-06
0.49 3.8e-04 3.0e-06 7.6e-04 5.0e-06
0.74 7.5e-04 1.0e-05 1.5e-03 2.0e-05
1.00 1.5e-03 2.8e-05 3.0e-03 5.5e-05

Table C.11: Reliability data from Figure 3.13.

α w=0.0 w=0.2 w=0.4 w=0.6 w=0.8 w=1.0

0.00 2.00 1.70 1.54 1.44 1.37 1.32
0.10 1.82 1.59 1.46 1.38 1.32 1.28
0.20 1.67 1.49 1.39 1.32 1.27 1.24
0.30 1.54 1.40 1.33 1.27 1.23 1.20
0.40 1.43 1.33 1.27 1.22 1.19 1.17
0.50 1.33 1.26 1.21 1.18 1.16 1.14
0.60 1.25 1.20 1.16 1.14 1.12 1.11
0.70 1.18 1.14 1.12 1.10 1.09 1.08
0.80 1.11 1.09 1.08 1.07 1.06 1.05
0.90 1.05 1.04 1.04 1.03 1.03 1.02
1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table C.12: Workload increase factor data from Figure 3.14.

229

α
Applied Load Avg Surviving Disk Utilization

λ=14 λ=12 λ=10 λ=8 λ=14 λ=12 λ=10 λ=8

0.05 18.73 16.05 13.38 10.70 0.79 0.67 0.56 0.44
0.23 17.60 15.09 12.57 10.06 0.80 0.68 0.56 0.44
0.49 16.21 13.90 11.58 9.27 0.80 0.67 0.56 0.44
0.74 15.02 12.88 10.73 8.59 0.80 0.67 0.56 0.44
1.00 14.00 12.00 10.00 8.00 0.79 0.68 0.56 0.45

Table C.13: Data from Figure 3.15.

α λ = 8 λ = 10 λ = 12 λ = 14

0.03 35.2 38.0 42.3 49.2
0.05 46.3 54.8 69.7 102.6
0.23 48.4 56.8 72.3 107.6
0.49 48.2 56.7 71.3 102.8
0.74 47.9 56.0 69.5 102.0
1.00 47.9 55.6 68.9 95.7

Table C.14: Response time data from Figure 3.16.

Access
Size

α=0.05 α=0.23 α=0.49 α=0.74 α=1.0

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

22 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0

23 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0

24 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0

25 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0

26 1.6 0.0 1.6 0.0 1.6 0.0 1.7 0.0 1.7 0.0

27 2.9 0.0 3.1 0.0 3.1 0.0 3.2 0.0 3.4 0.0

28 5.0 0.0 5.3 0.1 6.0 0.1 6.1 0.0 6.5 0.0

29 7.7 0.1 7.1 0.1 8.8 0.0 12.0 0.1 12.8 0.2

210 11.4 0.2 10.1 0.1 13.2 0.2 15.7 0.3 20.2 0.2

211 14.3 0.1 14.1 0.1 17.5 0.1 22.3 0.2 22.7 0.2

212 16.3 0.3 18.0 0.2 20.8 0.2 26.7 0.4 28.4 0.2

Table C.15: Transfer rate data from Figure 3.17a.

230

Access
Size

α=0.05 α=0.23 α=0.49 α=0.74 α=1.0

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

22 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0

23 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0

24 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0

25 0.5 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0

26 0.8 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0

27 1.9 0.0 1.4 0.0 1.2 0.0 1.2 0.0 1.2 0.0

28 3.1 0.0 2.6 0.0 2.5 0.0 2.7 0.0 2.5 0.0

29 5.8 0.1 5.0 0.0 4.8 0.0 4.5 0.0 5.2 0.1

210 8.9 0.1 8.3 0.1 9.1 0.1 9.5 0.1 9.0 0.2

211 11.1 0.2 12.6 0.1 14.8 0.2 14.9 0.1 16.2 0.3

212 13.2 0.2 16.3 0.1 18.6 0.2 22.0 0.1 24.4 0.1

Table C.16: Transfer rate data from Figure 3.17b.

Access
Size

α=0.05 α=0.23 α=0.49 α=0.74 α=1.0

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

22 0.03 0.00 0.03 0.00 0.02 0.00 0.03 0.00 0.02 0.00

23 0.03 0.00 0.02 0.00 0.03 0.00 0.03 0.00 0.03 0.00

24 0.02 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00

25 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00

26 0.06 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00

27 0.11 0.00 0.12 0.00 0.12 0.00 0.13 0.00 0.13 0.00

28 0.18 0.00 0.19 0.00 0.23 0.00 0.23 0.00 0.25 0.00

29 0.27 0.00 0.25 0.00 0.32 0.00 0.44 0.00 0.48 0.00

210 0.36 0.01 0.33 0.00 0.43 0.01 0.52 0.00 0.71 0.00

211 0.41 0.00 0.41 0.00 0.51 0.01 0.65 0.00 0.68 0.00

212 0.42 0.01 0.47 0.00 0.54 0.01 0.70 0.00 0.74 0.00

Table C.17: Transfer rate data from Figure 3.18a.

231

Access
Size

α=1.0 α=0.74 α=0.49 α=0.23 α=0.05

22 0.17 0.17 0.17 0.17 0.17

23 0.31 0.27 0.30 0.31 0.30

24 0.51 0.52 0.48 0.52 0.52

25 0.88 0.86 0.87 0.88 0.89

26 1.68 1.70 1.69 1.65 1.71

27 3.35 3.39 3.33 3.35 3.48

28 6.52 6.59 6.52 6.69 6.80

29 12.82 13.06 13.21 13.72 13.87

210 20.18 21.49 21.94 21.81 22.42

211 22.69 23.18 23.45 23.64 23.92

212 28.43 28.16 28.39 28.34 28.64

Table C.18: Normalized transfer rate data from Figure 18b.

α
ReconTime 90th percentile User Resp Time Average User Resp Time

Time
95%
Conf

Recon Degraded Fault-Free Recon Degraded Fault-Free

0.11 507 57 280.80 263.40 255.20 147.29 129.70 128.66
0.21 523 21 270.60 249.20 231.80 148.98 127.13 120.97
0.47 1039 14 281.60 265.20 223.80 165.59 142.05 123.14
0.74 1899 40 294.80 277.00 213.80 179.65 152.37 122.69
1.00 3180 290 319.60 309.20 220.40 191.12 167.17 127.54

Table C.19: Data from Figure 3.19.

α

Reconstruction Time Avg Response Time

1 Track 7 Tracks 14 Tracks
1

Track
7

Track
14

TrackTime
95%
Conf

Time
95%
Conf

Time
95%
Conf

0.03 247.4 6.3 224.0 0.6 221.0 0.6 36.3 38.1 40.9
0.05 234.0 9.0 224.4 1.2 223.2 0.7 51.4 55.8 63.1
0.23 228.8 1.1 229.4 0.7 227.2 0.4 67.9 93.4 129.4
0.49 450.4 1.3 331.2 5.4 283.8 4.7 78.2 146.1 323.5
0.74 897.2 6.5 634.2 20.4 89.6 352.0
1.00 1773.8 38.5 111.2

Table C.20: Data from Figure 3.24.

232

α 1 Track 7 Tracks 14 Tracks

0.03 0.2 0.6 1.2
0.05 0.9 1.9 3.6
0.23 4.4 10.3 18.4
0.49 13.2 32.3 78.0
0.74 36.6 191.9
1.00 110.6

Table C.21: Cumulative degradation data from Figure 3.25.

Access
Size

RAID5
G=3 G=10 G=20 G=30

Opt Unopt Opt Unopt Opt Unopt Opt Unopt

22 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

23 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

24 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

25 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

26 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7

27 3.4 2.9 2.9 3.0 3.1 3.1 3.1 3.1 3.2

28 6.5 5.1 5.0 5.4 5.3 5.9 6.0 5.9 6.1

29 12.8 7.8 7.7 8.0 7.1 9.6 8.8 11.1 12.0

210 20.2 12.2 11.4 12.3 10.1 15.2 13.2 15.4 15.7

211 22.7 16.8 14.3 17.0 14.1 20.7 17.5 21.9 22.3

212 28.4 21.2 16.3 22.1 18.0 26.6 20.8 26.4 26.7

Table C.22: Transfer rate data from Figure 3.33.

α
1-Thread 8-Thread 16-Thread Disk-Oriented

Recon
Time

95%
Conf

Recon
Time

95%
Conf

Recon
Time

95%
Conf

Recon
Time

95%
Conf

0.05 1393.6 8.0 278.2 0.7 262.2 2.5 229.0 2.1
0.23 2970.6 11.0 561.0 2.3 382.4 1.2 228.2 1.4
0.49 4763.2 23.3 1106.6 6.9 792.0 2.5 448.8 3.1
0.74 6704.6 36.0 1765.4 16.5 1345.0 6.9 895.4 11.8
1.00 9141.4 43.7 2684.4 14.4 2139.8 10.5 1757.8 32.0

Table C.23: Reconstruction time data from Figure 4.1a.

233

α
1-Thread 8-Thread 16-Thread Disk-Oriented

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.05 43.8 0.1 46.7 0.1 46.7 0.1 51.6 0.2
0.23 50.5 0.0 56.5 0.1 59.5 0.2 67.6 0.4
0.49 57.0 0.1 63.4 0.1 66.0 0.1 78.1 0.3
0.74 64.0 0.2 70.4 0.2 72.9 0.2 90.1 0.6
1.00 72.2 0.1 78.6 0.2 81.9 0.1 111.9 1.5

Table C.24: Average response time data from Figure 4.1.

α
1-Thread 8-Thread 16-Thread Disk-Oriented

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.05 88.0 0.0 94.4 0.4 94.2 0.4 102.4 0.7
0.23 105.0 0.0 117.4 0.4 122.4 0.4 131.4 0.7
0.49 121.0 0.0 133.0 0.0 136.6 0.4 152.0 0.6
0.74 138.2 0.4 148.8 0.7 151.8 0.7 177.8 1.3
1.00 157.8 0.4 167.2 0.4 170.4 0.4 223.6 3.0

Table C.25: 90th percentile response time data from Figure 4.1.

α
40+40 Buffers 40+80 Buffers 40+120 Buffers 40+500 Buffers

Recon
Time

95%
Conf

Recon
Time

95%
Conf

Recon
Time

95%
Conf

Recon
Time

95%
Conf

0.05 297.6 13.6 248.0 9.9 229.0 2.1 232.2 0.7
0.23 248.0 1.7 230.2 0.7 228.2 1.4 236.4 0.7
0.49 520.6 2.4 465.8 5.1 448.8 3.1 439.6 5.7
0.74 1025.2 14.4 914.4 14.8 895.4 11.8 917.0 12.7
1.00 1971.6 34.5 1806.4 47.4 1757.8 32.0 1978.6 44.8

Table C.26: Reconstruction time data from Figure 4.2a.

α
40+40 Buffers 40+80 Buffers 40+120 Buffers 40+500 Buffers

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.05 50.7 0.2 51.1 0.3 51.6 0.2 51.4 0.1
0.23 66.8 0.3 67.6 0.4 67.6 0.4 66.9 0.3
0.49 76.5 0.2 77.8 0.4 78.1 0.3 79.5 0.4
0.74 87.9 0.3 89.7 0.4 90.1 0.6 93.9 0.7
1.00 107.5 1.2 110.7 1.5 111.9 1.5 123.0 1.0

Table C.27: Average response time data from Figure 4.2b.

234

α
40+40 Buffers 40+80 Buffers 40+120 Buffers 40+500 Buffers

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.05 100.8 0.4 102.0 0.6 102.4 0.7 102.0 0.0
0.23 130.0 0.6 131.6 0.9 131.4 0.7 130.6 0.4
0.49 149.8 0.7 151.2 0.9 152.0 0.6 154.8 1.2
0.74 174.0 1.0 176.8 0.9 177.8 1.3 186.6 1.5
1.00 215.4 2.5 221.2 3.1 223.6 3.0 250.2 2.2

Table C.28: 90th percentile response time data from Figure 4.2b.

α
RPW 000 RPW 100 RPW 010 RPW 001 RPW 111

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.03 26.5 0.1 26.1 0.0 26.5 0.1 26.4 0.0 26.0 0.1
0.05 51.9 0.3 49.9 0.1 51.1 0.2 51.4 0.1 49.7 0.1
0.23 68.5 0.3 60.6 0.2 66.0 0.2 67.9 0.2 59.0 0.1
0.49 78.1 0.4 69.4 0.2 78.4 0.2 77.8 0.3 68.5 0.2
0.74 91.0 0.9 77.7 0.7 91.2 0.7 90.5 0.7 78.3 0.5
1.00 112.2 1.6 90.5 1.4 113.6 2.1 113.7 1.2 91.8 4.1

Table C.29: Average response time data from Figure 4.4.

α
RPW 000 RPW 100 RPW 010 RPW 001 RPW 111

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.03 40.0 0.0 39.2 0.4 40.0 0.0 40.0 0.0 39.2 0.4
0.05 103.2 0.7 100.0 0.0 101.6 0.4 102.0 0.6 99.8 0.4
0.23 132.8 0.9 120.2 0.4 130.0 0.6 131.8 0.7 118.6 0.4
0.49 152.0 0.6 135.8 0.7 153.4 0.4 151.0 0.8 135.4 0.4
0.74 179.6 2.1 152.0 1.3 180.4 1.6 178.4 1.7 153.8 1.1
1.00 224.4 3.6 179.6 3.2 228.0 4.5 227.4 2.9 183.0 9.0

Table C.30: 90th percentile response time data from Figure 4.4.

235

α
RPW 000 RPW 100 RPW 010 RPW 001 RPW 111

Recon
Time

95%
Conf

Recon
Time

95%
Conf

Recon
Time

95%
Conf

Recon
Time

95%
Conf

Recon
Time

95%
Conf

0.03 220.0 4.4 278.8 5.7 220.0 4.4 232.0 3.4 292.4 3.3
0.05 218.8 2.9 334.8 8.6 288.2 3.4 233.0 4.8 457.0 7.1
0.23 218.6 0.9 331.0 2.1 283.4 1.6 228.6 1.2 453.6 2.4
0.49 445.8 3.5 418.8 6.1 444.2 4.2 442.8 6.5 469.8 2.9
0.74 911.6 9.3 648.4 8.5 909.0 14.2 894.0 9.0 651.8 9.3
1.00 1801.6 43.9 1065.8 20.5 1838.2 53.5 1805.2 17.7 1060.0 62.8

Table C.31: Reconstruction time data from Figure 4.5.

α
Monitored Constant None

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.03 26.4 0.0 26.1 0.0 26.5 0.1
0.05 51.7 0.2 49.9 0.1 51.9 0.3
0.23 68.1 0.2 60.6 0.2 68.5 0.3
0.49 73.4 0.4 69.4 0.2 78.1 0.4
0.74 79.9 0.7 77.7 0.7 91.0 0.9
1.00 91.0 1.5 90.5 1.4 112.2 1.6

Table C.32: Average response time data from Figure 4.6.

α
Monitored Constant None

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.03 40.0 0.0 39.2 0.4 40.0 0.0
0.05 102.6 0.7 100.0 0.0 103.2 0.7
0.23 132.0 0.0 120.2 0.4 132.8 0.9
0.49 142.8 1.1 135.8 0.7 152.0 0.6
0.74 156.6 1.3 152.0 1.3 179.6 2.1
1.00 180.6 3.2 179.6 3.2 224.4 3.6

Table C.33: 90th percentile response time data from Figure 4.6.

236

α
Monitored Constant None

Recon
Time

95%
Conf

Recon
Time

95%
Conf

Recon
Time

95%
Conf

0.03 220.6 3.5 278.8 5.7 220.0 4.4
0.05 218.4 2.4 334.8 8.6 218.8 2.9
0.23 219.0 0.8 331.0 2.1 218.6 0.9
0.49 400.6 5.8 418.8 6.1 445.8 3.5
0.74 673.8 7.2 648.4 8.5 911.6 9.3
1.00 1077.2 23.6 1065.8 20.5 1801.6 43.9

Table C.34: Reconstruction time data from Figure 4.7.

α
No Following Following

Recon
Time

95%
Conf

Recon
Time

95%
Conf

0.05 215.2 0.4 461.0 0.0
0.23 217.4 0.9 437.0 1.0
0.49 442.0 2.1 479.6 5.2
0.74 896.0 17.7 915.4 6.5
1.00 1808.4 45.4 1839.4 31.7

Table C.35: Reconstruction time data from Figure 4.8a.

α

Average 90th Percentile

No Following Following No Following Following

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.05 52.0 0.0 48.7 0.0 103.4 0.7 97.0 0.0
0.23 68.2 0.0 63.1 0.0 132.4 0.9 124.6 0.4
0.49 78.8 0.0 78.7 0.0 152.8 0.7 152.2 0.9
0.74 90.9 0.0 89.7 0.0 178.8 1.8 176.2 0.9
1.00 113.1 0.0 114.1 0.0 226.4 2.9 228.0 3.2

Table C.36: Response time data from Figure 4.8b.

237

Access
Time

Surviving Replacement

No Following Following No Following Following

14 0 2 1 0
15 0 2 0 0
16 189 14 11364 144
17 64 18 177 115
18 448 40 935 140
19 102 35 71 126
20 245 56 53 219
21 45 44 35 226
22 65 51 31 224
23 28 84 46 448
24 105 73 38 311
25 44 152 48 564
26 207 109 45 448
27 60 145 61 694
28 207 101 31 511
29 83 163 39 726
30 54 142 35 563
31 85 172 54 803
32 69 131 26 595
33 80 131 17 604
34 116 183 23 777
35 66 123 13 600
36 112 145 15 678
37 65 120 14 500
38 92 125 21 591
39 65 117 8 433
40 75 123 6 494
41 47 81 8 279
42 47 81 16 358
43 45 55 5 210
44 25 57 5 182
45 33 48 7 210
46 25 39 1 113
47 29 34 5 148
48 12 17 1 72
49 15 22 3 78
50 4 11 1 27
51 3 7 1 27
52 0 2 0 11
53 2 3 0 3

Table C.37: Access time histograms from Figure 4.9.

238

α
Dedicated Distributed

Recon
Time

95%
Conf

Recon
Time

95%
Conf

0.03 277.6 6.4 34.6 0.4
0.05 233.0 4.8 65.8 0.9
0.08 231.8 3.7 79.0 1.0
0.13 256.2 20.9 122.8 3.1
0.23 228.6 1.2 208.0 2.4
0.49 442.8 6.5 471.6 3.5
0.74 894.0 9.0 938.4 14.7
0.97 1677.2 43.8 1723.8 32.1

Table C.38: Reconstruction time data from Figure 5.6a.

α

Dedicated Distributed

90th percentile Average 90th percentile Average

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.03 58.2 0.4 34.7 0.1 75.6 0.7 49.4 0.4
0.05 102.0 0.6 51.4 0.1 121.0 1.0 63.5 0.4
0.08 111.6 0.4 55.8 0.1 126.8 1.1 65.7 0.5
0.13 117.0 1.1 58.9 0.7 129.4 0.7 67.2 0.4
0.23 131.8 0.7 67.9 0.2 135.0 0.0 70.0 0.2
0.49 151.0 0.8 77.8 0.3 151.8 0.4 78.3 0.1
0.74 178.4 1.7 90.5 0.7 178.8 1.6 91.0 0.6
0.97 219.8 4.7 109.9 2.0 219.0 3.4 110.2 1.4

Table C.39: Response time data from Figure 5.6b.

C

Recon Time Avg Resp Time 90% Resp Time

Time
95%
Conf

Time
95%
Conf

Time
95%
Conf

10 385.2 4.3 130.8 0.7 69.1 0.3
20 173.8 2.8 127.6 0.9 66.6 0.2
40 79.0 1.0 126.8 1.1 65.7 0.5
61 56.6 1.1 128.6 0.4 66.6 0.3
79 44.8 0.4 127.4 0.7 65.8 0.4
97 36.4 0.7 128.2 0.7 66.2 0.3
151 24.2 0.4 129.2 0.4 66.6 0.3

Table C.40: Data from Figure 5.7.

239

C

5-year 10-year

Fail
Prob

95%
Conf

Fail
Prob

95%
Conf

10 1.9e-05 2.0e-07 3.8e-05 4.1e-07
20 3.6e-05 5.6e-07 7.2e-05 1.1e-06
40 6.7e-05 7.2e-07 1.3e-04 1.4e-06
61 1.1e-04 1.7e-06 2.3e-04 3.4e-06
79 1.5e-04 9.0e-07 3.0e-04 1.8e-06
97 1.9e-04 2.8e-06 3.7e-04 5.5e-06
151 3.0e-04 4.7e-06 6.0e-04 9.3e-06

Table C.41: Reliability data from Figure 5.8.

Access
Size

Reconfig, G=3 Reconfig, G=30 Fault-Free, G=3 Fault-Free, G=30

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

Xfer
Rate

95%
Conf

22 0.17 0.00 0.17 0.00 0.17 0.00 0.17 0.00

23 0.31 0.00 0.30 0.00 0.31 0.00 0.30 0.00

24 0.52 0.00 0.52 0.01 0.51 0.01 0.51 0.01

25 0.88 0.01 0.88 0.01 0.87 0.01 0.87 0.02

26 1.60 0.01 1.61 0.03 1.59 0.01 1.61 0.01

27 2.92 0.06 3.00 0.05 2.93 0.04 3.02 0.02

28 5.01 0.04 5.80 0.11 5.08 0.08 5.87 0.09

29 7.65 0.10 10.61 0.22 7.88 0.12 11.07 0.17

210 11.88 0.17 14.73 0.15 12.12 0.17 15.21 0.23

211 16.35 0.17 20.51 0.43 17.19 0.35 21.75 0.24

212 20.42 0.26 24.89 0.32 21.15 0.24 26.15 0.28

Table C.42: Transfer rate data from Figure 5.9.

α
Redirection Off Redirection On

Recon
Time

95%
Conf

Recon
Time

95%
Conf

0.03 34.2 0.7 34.4 0.7
0.05 64.6 0.4 65.0 1.6
0.23 205.2 1.8 191.8 0.9
0.49 473.2 2.6 393.6 1.6
0.74 943.4 10.7 683.4 6.3
0.97 1731.6 18.9 1083.4 19.7

Table C.43: Reconstruction time data from Figure 5.11a.

240

α

Average 90th Percentile

Redirection Off Redirection On Redirection Off Redirection On

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

Resp
Time

95%
Conf

0.03 48.1 0.3 48.0 0.2 73.4 0.4 73.0 0.6
0.05 62.9 0.3 62.9 0.3 120.2 0.7 120.6 0.9
0.23 69.4 0.2 67.2 0.2 133.8 0.7 129.6 0.4
0.49 77.6 0.1 71.7 0.2 150.4 0.4 139.0 0.6
0.74 89.6 0.6 78.3 0.5 176.0 1.6 152.6 1.2
0.97 106.3 0.9 87.9 0.9 210.2 2.1 172.6 1.9

Table C.44: Response time data from Figure 5.11b.

