Efficient Use of the Query Optimizer for Automated
Physical Design

Stratos Papadomanolakis

Debabrata Dash

Anastasia Ailamaki

Computer Science Department
Carnegie Mellon University
{stratos,ddash,natassa}@cs.cmu.edu

ABSTRACT

State-of-the-art database design tools rely on the query op-
timizer for comparing between physical design alternatives.
Although it provides an appropriate cost model for physi-
cal design, query optimization is a computationally expen-
sive process. The significant time consumed by optimizer
invocations poses serious performance limitations for phys-
ical design tools, causing long running times, especially for
large problem instances. So far it has been impossible to re-
move query optimization overhead without sacrificing cost
estimation precision. Inaccuracies in query cost estimation
are detrimental to the quality of physical design algorithms,
as they increase the chances of “missing” good designs and
consequently selecting sub-optimal ones. Precision loss and
the resulting reduction in solution quality is particularly un-
desirable and it is the reason the query optimizer is used in
the first place.

In this paper we eliminate the tradeoff between query cost
estimation accuracy and performance. We introduce the IN-
dex Usage Model (INUM), a cost estimation technique that
returns the same values that would have been returned by
the optimizer, while being three orders of magnitude faster.
Integrating INUM with existing index selection algorithms
dramatically improves their running times without precision
compromsises.

1. INTRODUCTION

As database applications become more sophisticated and
human time becomes increasingly expensive, algorithms for
automated design and performance tuning for databases are
rapidly gaining importance. A database design tool must se-
lect a set of design objects (e.g. indexes, materialized views,
table partitions) that minimizes the execution time for an
input workload while satisfying constraints on parameters
such as available storage or update performance. Design
tasks typically translate to difficult optimization problems
for which no efficient exact algorithms exist [5] and there-
fore current state-of-the-art design tools employ heuristics

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Workload

L

Candidate Selection Optimizer
call
L
Query Optimizer
L
Enumeration ql?grgrg?aln
. & cost
Tuning s DBMS

Algorithm

Figure 1: Database design tool architecture.

to search the design space. Such heuristics trade accuracy
for performance by pruning possible designs early without
spending time evaluating them. Recent trends, however,
dictate that application schemas become richer and work-
loads become larger — which increases the danger of com-
promising too much accuracy for the sake of performance.
Automated data management cannot rely entirely on ag-
gressive pruning techniques anymore to remain efficient; we
need a way to efficiently evaluate large portions of the design
space without compromising accuracy and with acceptable
performance.

1.1 Accuracy vs. efficiency

Figure 1 outlines the two-stage approach typically em-
ployed by database design tools [1,6,10,17]. The candidate
selection stage has the task of identifying a small subset
of “promising” objects, the Candidates, that are expected
to provide the highest performance improvement. The enu-
meration stage processes the candidates and selects a subset
that optimizes workload performance while satisfying given
resource constraints.

Although tools differ in how they implement Figure 1’s ar-
chitecture, they all critically rely on the query optimizer for
comparing different candidates, because it provides accurate
estimates of query execution times. The downside of rely-
ing on the optimizer is that query optimization is extremely
time-consuming. State-of-the-art tools spend most of their
time optimizing queries instead of evaluating as many of
the “promising” candidates or candidate subsets as possi-
ble. Quoting from a recent study [3]: “...we would require
hundreds of optimizer’s calls per iteration, which becomes
prohibitively expensive”. Indeed, our experiments show that
on average 90% of the running time of an index selection al-

gorithm is spent in the query optimizer.

1.2 Our approach

This paper presents the INdex Usage Model (INUM), a
novel technique for deriving query cost estimates that recon-
ciles the seemingly contradictory goals of high performance
and estimation accuracy. INUM is based on the intuition
that, although design tools consider an immense space of
different of alternative designs, the number of different op-
timal query execution plans and therefore the number of
different possible optimizer outputs is much lower. Thus, it
makes sense to cache and reuse the set of plans output by the
optimizer, instead of performing multiple invocations only
to compute the same plan multiple times.

Like the optimizer-based approaches, INUM takes as in-
put a query and a physical design (a set of indexes) and
produces as output an estimate for the query cost under
the input physical design. Unlike the optimizer-based ap-
proaches, however, INUM returns the same value that would
have been returned by an equivalent optimizer invocation,
without actually performing that invocation. As a conse-
quence from drastically decreasing the dominant overhead
of query optimization, INUM allows automated design tools
to execute 1.3 to 4 times faster without sacrificing precision.

1.3 Relationship to previous work

There are other studies that have recognized the impor-
tance of the accuracy vs. efficiency tradeoff and have de-
signed solutions that follow the cache-and-reuse principle.
Recently proposed approaches [3,4] compute the cost of a
query @ for a set of indexes C (called a “configuration” [1]),
by “locally modifying” the plan generated by the optimizer
for another configuration C>. The plan generated for Cs,
however, is not necessarily the optimal plan for Ci, as the
indexes in C'1 might enable the use of different, more efficient
join orders or join algorithms. Therefore, the techniques
proposed in [3,4] compute upper bounds and not the actual
query costs, thereby avoiding optimizer calls at the cost of
sacrificing accuracy. Using upper bounds instead of actual
cost leads to underestimating the “benefit” of configurations
and is likely to result in disregarding useful designs.

This paper extends the previous work by showing how to
apply the cache-and-reuse principle of [3,4] while still deriv-
ing accurate cost estimates. We develop a novel framework
for matching configurations to their corresponding optimal
plans, instead of simply reusing sub-optimal plans. Our pri-
mary consideration in this paper is to guarantee that its
output is equal to the optimizer’s output when presented
with the same input.

We describe our technique to accurately and efficiently
estimate costs for physical design in the context of index
selection algorithms; our approach, however, is also appli-
cable to other physical design features (e.g. materialized
views, table partitions) with modifications which are left for
future work.

1.4 Contributions

This paper’s contribution to automated index selection
algorithms is as follows:

1. Faster index selection. Our experiments demonstrate
that an index selection algorithm with INUM provides
three orders of magnitude faster cost estimation. When
factoring in the precomputation phase that involves

the optimizer, we measured execution time improve-
ments of 1.3x to 4x — without implementing any of
the techniques proposed in the literature for optimiz-
ing the number of cost estimation calls, which would
result in even higher speedup for INUM. From a dif-
ferent point of view, faster index selection can also
be translated to that, given a time limit, an INUM-
enabled tool can evaluate a wider design space than
an optimizer-based tool.

2. Improved solution quality. INUM allows existing search
algorithms (such as greedy search [1,6]) to examine
three orders of magnitude more candidates. Evaluat-
ing more candidates benefits solution quality because
it reduces the number of “promising” candidates that
are overlooked as a result of pruning. According to our
experiments, INUM evaluates a candidate set of more
than a hundred thousand indexes for a TPC-H based
workload, performing the equivalent of millions of op-
timizer invocations within four hours — a prohibitively
expensive task for existing optimizer-based tools. The
solution derived from this “power” test improves the
solution given by a commercial tool by 20%-30% for
“constrained” problem instances with limited storage
available for indexes.

3. 100% Compatibility with existing index selection tools.
INUM can be directly integrated into existing tools
and database systems, because it simply provides a
cost estimation interface without any further assump-
tions about the algorithm used by the tool.

4. Improved flexibility and performance for new index se-
lection algorithms. Recent work on index selection im-
proves solution quality by dynamically generating can-
didates, based on a set of transformations and partial
enumeration results. The relazation-based search in [3]
generates thousands of new candidates combinations,
thereby making optimizer evaluation prohibitively ex-
pensive. INUM could help by replacing the approxi-
mation logic currently used [3], allowing the algorithm
to use exact query costs (as opposed to upper bounds)
thereby avoiding estimation errors and the correspond-
ing quality degradation. We propose a novel database
design approach, closely integrated with the INUM,
elsewhere [13].

The rest of the paper is organized as follows: Sections 2
and 3 present the foundation for the Index Usage Model.
Sections 4 and 5 describe our algorithms for caching and
reusing query execution plans. Section 6 presents the exten-
sions to basic INUM that are essential for handling the full
complexity of cost estimation. Sections 7 and 8 present our
experimental results, Section 9 reviews the related work and
Section 10 concludes the paper.

2. INUM FUNDAMENTALS

We show, through an example, how the INUM accurately
computes query costs while at the same time eliminating all
(but one) optimizer calls. For this section only, we make
certain restrictive assumptions on the indexes input to the
INUM. This section sets the stage for the complete descrip-
tion of the INUM in the next sections.

2.1 Setup: The Index Selection Session

Consider an index selection session with a tool having the
architecture of Figure 1. The tool takes as input a query
workload W and a storage constraint, and produces an ap-
propriate set of indexes. We will look at the session from
the perspective of a single query @@ in W. Let Q be a select-
project-join query accessing 3 tables (71, T2, T3). Each table
has a join column /D, on which it is joined with the other
tables. In addition, each table has a set of 4 attributes
(ary,bry,cry,dr, etc.) on which @ has numerical predi-
cates of the form x < ar, <y.

The automated design tool generates calls to the optimizer
requesting the evaluation of () with respect to some index
configuration C. For the remainder of this paper we use the
term “configuration” to denote a set of indexes, according
to the terminology in previous studies [6].

To facilitate the example presented in this section, we
assume that the configurations submitted by the tool to
the optimizer contain only non-join columns. No index in
any configuration contains any of the ID columns and the
database does not contain clustered indexes on I D columns.
This is an artificial restriction, used to facilitate the example
in this section only.

We assume that queries use at most one index per table.
For this example, the configurations submitted on behalf of
query @ are represented as tuples (T1: Ir,, To: Iy, T5: Imy),
where any of the I, variables can be empty. Our techniques
naturally extend to index unions or intersections, however
we maintain the single access method per table throughout
the paper, for simplicity *.

The optimizer returns the optimal query execution plan
for @, the indexes in C' utilized by the plan and the esti-
mated cost, along with costs and statistics for all the in-
termediate plan operators (Figure 2 (a) shows an example
optimal query plan). There will be multiple optimizer calls
for query @, one per configuration examined by the tool.
Ideally we would like to examine a large number of con-
figurations, to make sure that no “important” indexes are
overlooked. However, optimizer latencies in the order of
hundreds of milliseconds make evaluating large numbers of
configurations prohibitively expensive.

Existing tools employ pruning heuristics or approxima-
tions to reduce the number of optimizer evaluations. In the
next sections we show how to obtain accurate query cost
estimates efficiently, with minimal optimization overhead.

2.2 Reasoning About Optimizer Output

Assume we have already performed a single optimizer call
for query @ and a configuration C; and obtained an optimal
plan p;. We first specify the procedure for reusing the infor-
mation in plan pi, in order to compute @Q’s cost for another
configuration C2. The optimality of plan p; with respect to
configuration Cs is discussed later.

To compute the cost of Q under a new configuration Cs,
we first compute the internal subplan ip, from p;. The in-
ternal subplan is the part of the plan that remains after
subtracting all the operators relevant to data access (table
scans, index scans, index seeks and RID lookups). The inter-
nal structure of the plan (e.g. join order and join operators,

LOur technique only needs to characterize each index by its
access cost and the ordering it provides. Both properties can
be computed for sets of indexes combined through a union
or intersection operator.

Internal
subplan @ T, DT,)< Ty
ip4

cached
IScan IScan IScan IScan IScan IScan
Ty Tolpy Talrs Tl | Toln Tal'rs
Cost: 60 Cost: 60 Cost: 110 Cost: 20 iCost: 20 :Cost: 20

Configuration C; {l14, 15, 13} Configuration C, {I'ty, I'rp, I'13}
Query cost = 60+60+110+40+50 =320 Cost = 20+20+20+40+50 = 150

(a) (b)

Figure 2: Illustration of plan reuse. (a) The optimal
plan p; for configuration C;. (b) The cost for C; is
computed by reusing the cached internal nodes of
plan p; and adding the costs of the new index access
operators, under the assumptions of Section 2.

sort and aggregation operators) remains unchanged.

Next, for every table T;, we construct the appropriate
data access operator (index scan or seek with RID lookup)
for the corresponding index in C> (or a table scan operator
if the index does not exist). The data access operators are
appended to ip: in the appropriate position.

Finally, Q’s cost under C> can be computed by adding the
total cost for ip1 (which is provided by the optimizer) to the
cost of the new data access operators corresponding to the
indexes in Cs.

Given p; and a new configuration C2, replacing the opti-
mizer call by the above reuse procedure allows for dramat-
ically faster query cost estimation. Since we have already
computed plan p; (optimal for C1), most of the work is al-
ready done. The only additional cost is computing the costs
of the data access operators in the third step of the reuse
procedure: this can be done efficiently and precisely by in-
voking only the relevant optimizer cost models, without ne-
cessitating a full-blown optimization. The reuse procedure
is more efficient than an optimizer call because it avoids the
overhead of determining a new optimal plan. Figure 2 (b)
shows how plan p; is reused with a new configuration Cs
and the new query cost.

Since our goal is to maintain accuracy, we must also con-
sider the correctness of reusing a plan p with some input
configuration. For our example, reusing plan p; for C> will
yield erroneous results if the subplan ip; is not optimal for
C3. In other words, before we reuse plan p for some con-
figuration C' we must be in a position to prove that p is
optimal for C' and this without invoking the optimizer! Fo-
cusing on correctness is the differentiating factor between
our approach and existing techniques based on “local plan
modifications” [3,4]. The latter do not consider plan opti-
mality and therefore only guarantee the computation of an
upper bound for query costs.

We now present a correctness proof, based on simple rea-
soning about optimizer operation. Specifically, for the sce-
nario of this section, we prove that there exists a single op-
timal subplan for @, regardless of the configuration Cs, as
long as the non-join column constraint of Section 2.1 is sat-
isfied. Since p; is computed by the optimizer, it has to be

Og(l: ;ger Configuration

Index Access

hJ.
ash J Cost Estimation

T1>4T2) > T3
~_
—
Hash J.
T1><T2

Computed Index
Access Costs

INUM Space (Cached Plan)
Index Usage Model

(a)

FR——
Precomputation

=

Planpr plane, Jplan Matching |60 Simaon

Optimal
plan

INUM Space (Cached Plans)
Index Usage Model

|
|
(b)

Figure 3: (a) Cost estimation with INUM for the example of Section 2. (b) Complete INUM architecture.

the optimal plan and thus it can be safely reused according
to our reuse procedure.

We intuitively justify this argument by considering how
the indexes in Cy affect the query plan cost: Without the
join column, there is no reason for C to “favor” a particular
join order or join algorithm, other than those in p;. Since
the indexes in Cy are not more “powerful” than those in C,
there is no reason for p; to stop being optimal. Notice that
the non-join column restriction is critical: if it is violated,
the reuse procedure will yield incorrect results.

We formalize using the following theorem:

THEOREM 2.1. For a query Q, there is a single optimal
plan for all the configurations that do not contain indexes
on Q’s join attributes.

Proor. We prove Theorem 2.1 by contradiction. Let
plans p; and p2 be optimal plans for configurations C; and
C'y respectively and let p1, p2 differ in their internal nodes
(different join order, for instance). Let ip: and ip2 be the
internal subplans of p1, p2 and cip,, cip, their total costs,
with Cipy < Cipgy-

We first show that the cost of accessing the indexes in C}
and Cs is independent of the internal structure of the plan
chosen. Since the join attributes are not indexed, any op-
erator in ip1 and ip2 will scan its corresponding index (or
table) with an optional RID lookup. The cost of the scan
depends only on the columns of the index and the selectivi-
ties of relevant query predicates and is the same regardless
of the plan. Thus the index access costs for the indexes in
C1 and C5 are the same for plans p; and pa.

Next, we show that the internal subplans ¢p1 and ip2 can
be used with the indexes of both C7 and C> (according to
the reuse procedure) and that their costs will be the same:
Since we assume no join columns, there is no reason why ip;
cannot use the indexes in C3 and vice-versa. In addition,
since C'1, C2 do not involve join orders, the only other way
a data access operator can affect the internal subplan is
through the size and the cardinality of its output, which is
the same regardless of the access method used.

Thus ip1 and ip2 can use the indexes in C; and C2 in-
terchangeably and the index access costs and internal plan
costs remain the same. Since cip, < cip, and the index ac-
cess costs are the same, using ip1 for C2 is cheaper than
using ip2, and thus ps2 is not the optimal plan for C2. A
contradiction. []

Theorem 2.1 means that only a single call is sufficient to
efficiently estimate Q’s cost for any configuration, under the
no-join column restriction. Our result can be generalized
using the notion of an interesting order:

DEFINITION 2.1. An interesting order is a tuple ordering
specified by the columns in a query’s join, group-by or order-
by clause [16].

DEFINITION 2.2. An index covers an interesting order if
it is sorted according to that interesting order. A configura-
tion covers an interesting order if it contains an index that
covers that interesting order.

Although we used a select-project-join query to derive
Theorem 2.1, the same reasoning could be applied to queries
involving group-by or order-by clauses. For a query with
joins, group-by or order-by clauses, only a single plan (and
a single optimizer call!) is sufficient to estimate its cost, for
all the configurations that do not cover the query’s interest-
ing orders.

Figure 3 (a) shows the cost estimation architecture for
the restricted tuning session of this section. For every query
there is a setup phase, where the single optimal plan is ob-
tained through an optimizer call with a representative con-
figuration. The representative configuration could contain
any set of indexes satisfying the non-join or non-interesting
order column restrictions (we could even use an empty con-
figuration). The resulting internal subplan is saved in the
INUM Space, which is the set of optimal plans maintained
by the INUM.

Whenever we need to evaluate the query cost for some
input configuration C, we use the Index Access Cost Esti-
mation module to estimate the cost of accessing the indexes
in C. The sum of the index access costs for C is added to
that of the internal subplan to obtain the final query cost.

We assume that the Index Access Cost Estimation mod-
ule is implemented by interfacing to the corresponding esti-
mation modules of the optimizer. Computing only the in-
dividual index access costs is much faster than a full-blown
optimizer call and does not affect reuse efficiency. Assuming
additional optimizer interfaces does not limit INUM’s flex-
ibility. There are other ways to obtain index access costs,
for instance through reverse-engineering the optimizer’s an-
alytical cost models. Our evaluation of the INUM with a
commercial query optimizer uses pre-computed index access

costs, which are obtained by invoking the optimizer with
simplified, “sample” queries.

3. INUM OVERVIEW

Unlike the scenario of Section 2, in a real index selection
session the “no join column” restriction is invalid, as we
would typically consider indexes on join columns. The key
difference with the previous section is that the assumptions
supporting Theorem 2.1 are not valid and thus there might
exist more than one optimal plan for a given query.

3.1 Caching Multiple Optimal Plans

Ignoring the applicability of multiple feasible plans (with
different join orders and algorithms) as a function of multi-
ple index configurations, results in inaccurate cost estimates.
To see why, consider the example query of Section 2 and as-
sume a configuration C7 with indexes on T1.1D and T5.1D.
The optimal plan for C first joins 771 and 75> using a merge
join and then joins the result with 75 using a hash join. Now
assume a configuration Cy, with indexes on 7> and 73. Now
the merge join between T3, T» is only feasible by inserting a
sort operator on T7. Existing approximation techniques [3,4]
will perform such insertions, ignoring the fact that indexes
on Ty and T3 favor an alternative plan that joins 75 and T3
with a merge join, without requiring additional sort opera-
tors.

To accommodate multiple optimal plans per query, we in-
troduce the concept of the INUM Space, a set that contains,
for each query, a number of alternative execution plans.
Each plan in the INUM Space is optimal for one or more pos-
sible input configurations. The INUM Space is essentially
a “cache”, containing plans that can be correctly reused to
derive query costs. To guarantee correctness, we require the
two properties defined below.

DEFINITION 3.1. The INUM Space for a query Q is a set
of internal subplans such that:

1. Each subplan is derived from an optimal plan for some
configuration.

2. The INUM Space contains all the subplans with the
above property.

According to Definition 3.1, the INUM Space will con-
tain the optimal plan for any input configuration. Reusing
that optimal plan results in accurate cost estimates without
invoking the optimizer.

The key intuition of this paper is that during the operation
of an index design tool, the range of different plans that
could be output by the optimizer will be much smaller than
the number of configurations evaluated by the tool. In other
words we take advantage of the fact that an index design
tool might consider thousands of alternative configurations
for a query, but the number of different optimal plans for
that query is much lower. For example, plans that construct
huge intermediate results will never be optimal and thus are
not included in the INUM Space.

In addition, the optimality of a plan does not change very
easily by changing index configurations, because it is deter-
mined by additional parameters such as intermediate result
sizes. This paper shows that the degree of plan reuse is high

enough to amortize the initial effort in obtaining the set of
optimal plans, by the huge number of optimizer calls that
can be performed almost instantly afterward.

INUM formalizes the intuitive idea that if a plan is op-
timal for some configuration C7, it might in fact remain
optimal for a set of configurations that are “similar” to Cj.
We use strict rules to determine the optimality of the reused
plans, in the form of a matching logic that efficiently assigns,
for each configuration input to INUM, the corresponding op-
timal plan.

3.2 System Architecture

Figure 3 (b) extends Figure 3 (a) with the modules re-
quired to implement the full INUM functionality. The INUM
takes as input requests from an index selection tool consist-
ing of a query and a configuration for evaluation. The output
is the optimal plan and cost for the query.

The INUM Space contains, for each query, the set of plans
specified by Definition 3.1. The Precomputation module
populates the INUM Space at initialization time, by invok-
ing the optimizer in order to reveal the set of optimal plans
that need to be cached per query. When invoking the INUM,
the Matching module first maps the input configuration to
its corresponding optimal plan and derives the query cost
without going to the optimizer, simply by adding the cached
cost to the index access costs computed on-the-fly.

In the remainder of the paper we develop the INUM in
two steps. In the first step we exclude from consideration
query plans with nested-loop join operators, while allowing
every other operator (including sort-merge and hash joins).
We call such allowable plans MHJ plans. Section 6 extends
our approach to include all join operators. Our two-step
approach is necessary because nested-loop join operators re-
quire special treatment.

4. USING CACHED MHJ PLANS

We derive a formula for the query cost given an index
configuration and use it to match an input configuration to
its corresponding optimal MHJ plan.

4.1 A Formula for Query Cost

Consider a query @, an input configuration C' containing
indexes Ir,..Ir, for tables T1..T, and an MHJ plan p in
the INUM Space, not necessarily optimal for C'. The reuse
procedure of Section 2.2 describes how p is used with the
indexes in C. Let ¢;, be the sum of the costs of the operators
in the subplan ¢p and s7; be the index access cost for index
I1,. The cost of a query @ when using plan p is given by
the following equation:

cp = Cip + (s7y + 815 + o + 5T,) (1)

Equation (1) expresses the cost of any plan p as a “func-
tion” of the input configuration C. It essentially distin-
guishes between the cost of the internal operators of a plan
p (the internal-subplan, not necessarily optimal) and the
costs of accessing the indexes in C. This distinction is key:
An optimizer call spends most of its time computing the c¢;p
value. INUM essentially works by correctly reusing cached
cip values, which are then combined to sr; values computed
on-the-fly.

The following conditions are necessary for the validity of
Equation (1).

1. c¢ip is independent of the s7;’s. If ¢;, depends on some
st;, then Equation (1) is not linear.

2. The st;’s must be independent of p. Otherwise, al-
though the addition is still valid, Equation (1) is not
a function of the s, variables.

3. C must provide the orderings assumed by plan p. If
a plan expects a specific ordering (for instance, to use
with a merge join) but C' does not contain an index to
cover this ordering, then it is incorrect to combine p
with C.

We can show that conditions (1) and (2) hold for MHJ
plans through the same argument used in the proof of The-
orem 2.1. The indexes in C' are always accessed in the same
way regardless of the plan’s internal structure. Conversely,
a plan’s internal operators will have the same costs regard-
less of the access methods used (as long as condition (3)
holds). Note that the last argument does not mean that the
selection of the optimal plan is independent of the access
methods used.

Condition (3) is a constraint imposed for correctness. Equa-
tion (1) is invalid if plan p can not use the indexes in C'. We
define the notion of compatibility as follows:

DEFINITION 4.1. A plan is compatible with a configura-
tion and vice-versa if plan p can use the indexes in the con-
figuration without requiring additional operators.

Assuming conditions (1)-(3) hold, Equation (1) computes
query costs given a plan p and a configuration C'. Next,
we use Equation (1) to efficiently identify the optimal plan
for an input configuration C and to efficiently populate the
INUM Space.

4.2 Mapping Configurations to Optimal Plans

We examine two ways to determine which plan, among
those stored in the INUM Space, is optimal for a particular
input configuration: An exhaustive algorithm and a tech-
nique based on identifying a “region of optimality” for each
plan.

4.2.1 Exhaustive Search

Consider first the brute-force approach of finding the op-
timal plan for query @ and configuration C'. The exhaustive
algorithm iterates over all the MHJ plans in the INUM Space
for @ that are compatible with C' and uses Equation (1) to
compute their costs. The result of the exhaustive algorithm
is the plan with the minimum cost.

The problem with the above procedure is that Equation
(1) computes the total cost of a query plan p if all the in-
dezxes in C are used. If some indexes in C' are too expensive
to access (for example, non-clustered indexes with low se-
lectivity), the optimal plan is likely to be one that does not
use those expensive indexes. In other words, we also need
to “simulate” the optimizer’s decision to ignore an index.
For this, the exhaustive algorithm needs to also search for
the optimal plan for all the configurations C’ C C and re-
turn the one with the overall minimum cost. We call this
iteration over C’s subsets atomic subset enumeration.

If the INUM Space is constructed according to Definition
3.1, the exhaustive search with atomic subset enumeration
is guaranteed to return correct results, but has the disad-
vantage of iterating over all the plans in the INUM Space
and over all the subsets of C. In the next sections we show

Hash join

lan
b Merge join

cost

450

Index 44 Sy

Figure 4: The cost functions for MHJ plans form
parallel hyper-surfaces.

how to avoid the performance problems of the exhaustive
search by exploiting the properties of Equation (1).

4.2.2 Regions of Optimality

Consider a query @ accessing 2 tables, T} and T, with
attributes {ID, a1, b1} and {ID, as, ba}. Q joins Ty and T»
on ID and projects attribute a; of the result.

Let C be a configuration with two indexes, I, and Ir,, on
attributes {Tl.ID, Ti.a1, T1.b1} and {TQ.ID, Tg.ag,Tg.bg}
respectively. Let p1 be a merge join plan that is the optimal
MHJ plan for C'. We ignore the subset enumeration problem
for this example, assuming that we have no reason not to
use I, and I,.

What happens if we change C to C1, by replacing I+, with
It : {ID, a1}? We can show that plan p; remains optimal
and avoid a new optimizer call, using an argument similar
to that of Section 2.2. Assume that the optimal plan for C;
is p2 that uses a hash join. Since the index access costs are
the same for both plans, by Equation (1) the ¢;p value for
p2 must be lower than that for p; and therefore p; cannot
be optimal for C, which is a contradiction.

The intuition is that since both C' and C are capable of
“supporting” exactly the same plans (both providing order-
ing on the ID columns), a plan p found to be optimal for
C must be optimal for C'; and any other configuration cov-
ering the same interesting orders. The set O of interesting
orders that is covered by both C' and C} is called the region
of optimality for plan p. We formalize the above with the
following theorem.

THEOREM 4.1. Forall the configurations covering the same
set of interesting orders O there exists a single optimal MHJ
plan p, such that p accesses all the indexes in a configura-
tion.

PROOF. Let C(O) be a set of configurations covering the
given interesting order O. Also, consider the set P of all the
MHJ plans that are compatible with the configurations in
C(0).

For every configuration C' in C(O) containing indexes
on tables Ti,...,T,, we can compute the index access costs
STy ,---,8T, independently of a specific plan. Conceptually,
we map C to an n-dimensional point (s, , sy, ..., $7,,). The
cost function ¢, for a plan p in P is a linear function of the
st;, parameters and corresponds to a hypersurface in the
(n+1)-dimensional space formed by the index access cost
vector and ¢,. To find the optimal plan for a configuration
C, we need to find the plan hypersurface that gives us the
lowest cost value.

plan : Merge join
st i Hash join
Mergef Hash
optimal optimal
T Sm
scan cost

Figure 5: Modified plan comparison taking into ac-
count index I/O costs. The optimal plan for expen-
sive indexes (to the right of the thick line) performs
a sequential scan and uses a hash join.

By the structure of Equation (1) all hypersurfaces are par-
allel, thus for every configuration in C(O) there exists a sin-
gle optimal plan. [

Figure 4 shows the cost hypersurfaces for a merge and
a hash join plan, joining tables 77 and 7. To avoid 2-
dimensional diagrams, assume we fix the index built on 75
and only compute the plan cost for the indexes on 77 that
cover the same interesting order. The optimal plan for an
index Ir, corresponds to the hypersurface that first inter-
sects the vertical line starting at the point Ir,. Since the
plan cost lines are parallel, the optimal plan is the same for
all the indexes regardless of their s7; values.

The INUM Space exploits Theorem 4.1 by storing for each
plan its region of optimality. The INUM identifies the opti-
mal plan for a configuration C' by first computing the set of
interesting orders O covered by C'. O is then used to find the
corresponding plan in the INUM Space. By Theorem 4.1 the
retrieved plan will be the optimal plan that accesses all the
indexes in C'. Like in the case of the exhaustive algorithm, to
obtain the globally optimal plan the above procedure must
be repeated for every subset C’ of C.

4.2.3 Atomic Subset Enumeration

To find the query cost for an input configuration C' we
need to apply Theorem 4.1 for every subset of C' and return
the plan with the lowest cost. Enumerating C’s subsets for n
tables with an indexes for every table requires 2" iterations.
Since each “evaluation” corresponds to a fast lookup, the
exponent does not hurt performance for reasonable n values.
For n = 5, subset enumeration requires merely 32 lookups.

The overhead of subset enumeration might be undesirable
for queries accessing 10 or 20 tables. For such cases we can
avoid the enumeration by predicting when the optimizer will
not use an index of the input configuration C', or equivalently
use a specific subset C’. It can be shown that an index is not
used only if it has an access cost that is too high. By storing
with each plan the ranges of access costs for which it remains
optimal, the INUM can immediately find the indexes that
will actually be used.

Figure 5 shows an example of how the plan curves of Fig-
ure 4 change to incorporate index access costs. The hash
join cost flattens after the index access cost exceeds the ta-
ble scan cost (there is no need to access that index for a hash
join plan). The hash join is optimal for indexes in the region
to the right of the intersection point between the merge and
hash join lines.

Parametric Query Optimization (PQO) techniques [11,12]
can be directly applied to piecewise linear cost functions like
those in Figure 5, in order to directly find the optimal plan
given the index access cost values. We omit the details of a
PQO model due to lack of space.

S. COMPUTING THE INUM SPACE

Theorem 4.1 in Section 4.2.2 suggests a straightforward
way for computing the INUM Space. Let query @ reference
tables T1,...,T, and let O; be the set of interesting orders
for table T;. We also include the “empty” interesting order
in O;, to account for the indexes on T; that do not cover an
interesting order.

The set O = O1 X Oz X ... X Oy contains all the possi-
ble combinations of interesting orders that a configuration
can cover. By Theorem 4.1, for every member of O there
exists a single optimal MHJ plan. Thus, to compute the
INUM Space it is sufficient to invoke the optimizer once for
each member o of O, using some representative configura-
tion. The resulting internal subplan is sufficient, according
to Theorem 4.1, for computing the query cost for any con-
figuration that covers o. In order to obtain MHJ plans, the
optimizer must be invoked with appropriate hints to prevent
consideration of nested-loop join algorithms. Optimizer op-
eration is faster during the pre-computation phase because
the use of hints reduces the space of alternative plans that
must be examined for a query.

The precomputation phase requires fewer optimizer calls
compared to optimizer-based tools, as the latter deal with
different combinations of indexes, even if the combinations
cover the same interesting orders. The number of MHJ plans
in the INUM Space for a query accessing n tables is |O1] x
|O2| X ... X |Oy|. Consider a query joining n tables on the
same id attribute. There are 2 possible interesting orders
per table, the id order and the empty order that accounts
for the rest of the indexes. In this case the size of INUM
Space is 2". For n = 5, 32 optimizer calls are sufficient for
subsequently estimating the query cost for any configuration
without further optimizer invocation.

For larger n, for instance for queries joining 10 or 20 ta-
bles, precomputation becomes expensive, as more than a
thousand optimizer calls are required to fully compute the
INUM Space. Large queries are a problem for optimizer-
based tools as well, unless specific measures are taken to
artificially restrict the number of atomic configurations ex-
amined [6]. Fortunately, there are ways to optimize the per-
formance of INUM construction, so that it still outperforms
optimizer-based approaches. The main idea is to evaluate
only a subset of O without sacrificing precision. We propose
two ways to optimize precomputation, lazy evaluation and
cost-based evaluation.

Lazy evaluation constructs the INUM Space incremen-
tally, in-sync with the index design tool. Since the popular
greedy search approach selects one index at a time, there
is no need to consider all the possible combinations of in-
teresting orders for a query up-front. The only way that
the full INUM Space is needed is for the tool to evaluate an
atomic configuration containing n indexes covering various
interesting orders. Existing tools avoid a large number of
optimizer calls by not generating atomic configurations of
size more than k, where k is some small number (according
to [6] setting k = 2 is sufficient). With small-sized atomic
configurations, the number of calls that INUM needs is a lot

cost Plan p,

Plan p,

sNL

Figure 6: NLJ plan costs for a single table as a func-
tion of an index’s sy; parameter (System R opti-
mizer).

smaller.

Cost-based evaluation is based on the observation that not
all tables have the same contribution to the query cost. In
the common case, most of the cost is due to accessing and
joining a few expensive tables. We apply this idea by “ig-
noring” interesting orders which are unlikely to significantly
affect query cost. For a configuration covering an “ignored”
order, the INUM will simply return a plan that will not take
advantage of that order and thus have a slightly higher cost.
Notice that only the c¢;, parameter of Equation (1) is af-
fected and not the sr,’s. If an index on an “ignored” order
has a significant 1/O benefit (if for example, it is a covering
index) the I/O improvement will still correctly be reflected
in the cost value returned by the INUM. Cost-based eval-
uation is very effective in TPC-H style queries, where it is
important to capture efficient plans for joining the fact table
with one or two large dimension tables, while the joining of
smaller tables is not as important.

6. EXTENDING THE INUM

In this section we consider plans containing at least one
nested-loop join operator in addition to merge or hash join
operators. We call such plans NLJ plans. We explain why
plans containing nested-loop joins require additional model-
ing effort and present ways to incorporate NLJ plans in the
INUM.

6.1 Modeling NLJ Plans

The cost of an NLJ plan can not be described by Equa-
tion (1) of Section 4.1. Therefore we can no longer take
advantage of the linearity properties of Equation (1) for de-
termining the plans that must be stored in the INUM Space
and characterizing their regions of optimality.

We present an example based on System R’s query opti-
mizer [16] to illustrate the special properties of NLJ plans.
Note that we do not rely or use System R’s cost model in our
system. The techniques in this section are not dependent on
particular cost models, rather they capture the general be-
havior of NLJ plans. The System R example in this section
is for illustration purposes only.

For System R the cost of a plan using index nested-loop
join is expressed by cout + N X cCin, Where cout is the cost
of the outer input, c¢;, is the cost of accessing the inner
relation through index I and N is the number of qualifying
outer tuples.

Cin is given by c¢in = F X (Pages(I)+Card(T))+W x RSI,
where F' is the selectivity of the relevant index expressions,
Pages(I) is the index size and Card(T) is the number of

Cost Plan p,
Plan p,

p, is optimal p, is optimal

| |

min max S,
Figure 7: NLJ plan cost curves for a single table and
an unknown cost function of a single index parame-

ter sj.

tuples in the table. W and RST account for the CPU costs.
It is easy to see that N and RSI are not independent of the
plan, since both are determined by the number of qualifying
outer tuples.

We define the nested loop access cost sni as sy = F %
(Pages(I) + Card(T)) and set W = 0 for simplicity. The
nested-loop cost becomes: ¢, = cout + N X snL.

Figure 6 shows the cost of different plans as a function of
the nested-loop access cost for a single table. The difference
with Figure 4 is that the hypersurfaces describing the plan
costs are no longer parallel. Therefore for indexes covering
the same set of interesting orders there can be more than
one optimal plan. In Figure 6, plan ps gets better than p;
as the sy value increases, because it performs fewer index
lookups. (lower N value and lower slope).

The System R optimizer example highlights two problems
posed by the NLJ operator. First, it is more difficult to find
the entire set of optimal plans because a single optimizer
call per interesting order combination is no longer sufficient.
For the example of Figure 6, finding all the optimal plans
requires at least two calls, using indexes with high and low
snr values. A third call might also be necessary to ensure
there is no other optimal plan for some index with an in-
termediate sy value. The second problem is that defining
regions of optimality for each plan is not as straightforward.
The optimality of an NLJ plan is now predicated on the sy,
values of the indexes, in addition to the interesting orders
they cover.

In modern query optimizers, the cost of a nested-loop join
operator is computed by more complicated cost models com-
pared to System R. Such models might require more pa-
rameters for an index (as opposed to the syr values used
for System R) and might have plan hypersurfaces with a
non-linear shape. Determining the set of optimal plans and
their regions of optimality requires exact knowledge of the
cost models and potentially the use of non-linear paramet-
ric query optimization techniques [12]. In this paper we
are interested in developing a general solution that is as ac-
curate as possible without making any assumptions about
optimizer internals. The development of optimizer-specific
models is an interesting area for future research.

6.2 Extending INUM with NLJ Plans

In this section we develop general methods for populating
the INUM Space with NLJ plans in addition to MHJ plans
and for determining the overall optimal plan given an input
configuration.

We begin with the problem of obtaining a set of optimal

NLJ plans from the optimizer. We assume that each index
is modeled by a single index parameter sy (like the sy pa-
rameter in Section 6.1) that relates to its properties but we
do not have access to the precise definition of s;. The for-
mula relating the s; parameters to the plan costs is also un-
known. Let Iin and Iqz be two indexes having minimum
and maximum s; values respectively. We also assume that
the plan’s cost function is monotonically increasing, thus ev-
ery plan has a minimum cost value for the most “efficient”
index Imin and maximum cost for Inaz.-

We present our approach using a simple example with a
single table and a single interesting order. Figure 7 shows
the plan costs for two different NLJ plans, as a function of a
single index parameter s;. Even without precise knowledge
of the cost functions, we can retrieve at least two plans. In-
voking the optimizer with I,,:, returns plan p;, while Iqx
returns plan p2. There is no way without additional infor-
mation to identify intermediate plans, but p; and p2 are a
reasonable approximation.

Identifying the Imin, Imaz indexes for a query is easy:
Imin provides the lowest possible cost when accessed through
a nested-loop join, thus we set it to be a covering index 2.
Using the same reasoning, we set Inq, to be the index con-
taining no attributes other than the join columns.

Performing 2 calls, one for I,,in and for I,.. leads to two
possible outcomes:

1. At least one call returns an NLJ plan. There might
be more plans for indexes in-between I,,4. and Iyin.
To reveal them we need more calls, with additional in-
dexes. Finding those intermediate plans requires ad-
ditional information on optimizer operation.

2. Both calls return an MHJ plan. If neither I,,;, nor
Imaz facilitates an NLJ plan, then no other index cov-
ering the same interesting order can facilitate an NLJ
plan. In this case, the results of the previous sections
on MHJ plans are directly applicable: By Theorem
4.1, the two calls will return the same MHJ plan.

For queries accessing more than one table, INUM first
considers all interesting order subsets, just like the case with
MHJ plans. For a given interesting order subset, there exist
an Imin and Ine, index per interesting order. The INUM
performs an optimizer call for every I, and Ipqs combi-
nation. This procedure results in more optimizer calls com-
pared to the MHJ case, which required only a single call per
interesting order combination. Multiple calls are necessary
because every individual combination of I, and Ipae in-
dexes could theoretically generate a different optimal plan.

We reduce the number of optimizer calls during NLJ plan
enumeration by caching only a single NLJ plan and ignor-
ing the rest. Instead of performing multiple calls for every
Imin, Imaz combination, the INUM invokes the optimizer
only once, using only the I, indexes. If the call returns
an NLJ plan then it gets cached. If not, then INUM as-
sumes that no other NLJ plans exist. The motivation for
this heuristic is that a single NLJ plan with a lower cost
than the corresponding MHJ plan is sufficient to prevent
INUM from overestimating query costs. If such a lower NLJ

2There exist cases where I, is a non-covering index, but
in this case the difference in costs must be small. Generally,
the covering index is a good approximation for Ipx,.

plan exists, invoking the optimizer using the most efficient
indexes (Imin) is very likely to reveal it.

Selecting the optimal plan for an input configuration when
the INUM Space contains both MHJ and NLJ plans is sim-
ple. The optimal MHJ plan is computed as before (Section
4.2). If the INUM Space also contains an NLJ plan, the
index access costs can be computed by the optimizer sepa-
rately (just like for an MHJ plan) and added to the cached
NLJ plan cost. INUM compares the NLJ and MHJ plans
and returns the one with the lowest cost.

6.3 Modeling Update Statements

The INUM can readily be extended to estimate the cost of
update statements (SQL INSERT, UPDATE and DELETE).
An update can be modeled as two sub-statements: The “se-
lect” part is the query identifying the rows to be modified
and the “modify” part is the actual data update. The for-
mer is just another query and can be readily modeled by the
INUM. The cost of the latter depends on factors such as the
number of updated rows, the row size and the number of
structures (indexes, views) that must be maintained. Simi-
larly to the individual index access costs, obtaining the cost
of an update operation is simply a matter of interfacing to
the relevant optimizer cost modules and involves a simple,
inexpensive computation.

Note that from a cost estimation perspective, handling
updates is simple. The impact of updates on the design
algorithms themselves and on their solution quality is an
extremely interesting research topic, but beyond the scope
of this paper, that focuses only on cost estimation.

7. EXPERIMENTAL SETUP

We implemented INUM using Java (JDK1.4.0) and in-
terfaced our code to the optimizer of a commercial DBMS,
which we will call System!. Our implementation demon-
strates the feasibility of our approach in the context of a
real commercial optimizer and workloads and allows us to
compare directly with existing index selection tools. To eval-
uate the benefits of INUM, we built on top of it a very simple
index selection tool, called eINUM. eINUM is essentially an
enumerator, taking as input a set of candidate indexes and
performing a simple greedy search, similar to the one used
in [6].

We chose not to implement any candidate pruning heuris-
tics because one of our goals is to demonstrate that the
high scalability offered by INUM can deal with large candi-
date sets that have not been pruned in any way. We “feed”
eINUM with two different sets of candidate indexes. The
exhaustive candidate set is generated by building an index
on every possible subset of attributes referenced in the work-
load. From each subset, we generate multiple indexes, each
having a different attribute as prefix. This algorithm gen-
erates a set of indexes on all possible attribute subsets, and
with every possible attribute as key.

The second candidate set, the heuristic, emulates the be-
havior of existing index selection tools with separate can-
didate selection modules. We obtain heuristic candidates
by running commercial tools and observing all the indexes
they examine through tracing. The purpose of the heuristic
candidate set is to approximate how INUM would perform
if integrated with existing index selection algorithms.

Besides the automated physical design tool shipping with
System1, we compare eINUM with the design tool of a sec-

Optimizer calls vs Time
100000000 80%

—-eINUM
—A— System2
1000000 —&-System1

60%

10000

Calls

40%

100
1 20%

0.1 10 _ 1000 100000 0 1
Time (s)

(a)

% Improvement

Solution Quality (TPCH15) 10000 Optimizer Calls vs. Time
- eINUM
—&—System1
1000

2
8 100
#*

—4-eINUM

- System1 10

—A- System2

1
3 4 5 0.1 1 10 100 1000
Storage (GB) Time (s)
(b) c

Figure 8: Experimental results for TPCH15. (a) Optimizer calls vs. time for an exhaustive candidate set (b)
Recommendation quality (c) Optimizer calls vs. time for a heuristic candidate set

ond commercial DBMS, System2. We were unable to port
eINUM to System?2 because it does not allow us to use index
hints. Since we never actually ran eI/NUM with System2’s
query optimizer, we cannot report on a direct comparison,
but we include System?2 results for completeness. Integrat-
ing INUM with more commercial and open source database
management systems is part of our ongoing work.

We experiment with two datasets. The 1GB version of
the TPC-H benchmark ® and the NREF protein database
described in [8]. The NREF database consists of 6 tables
and consumes 1.5 GBs of disk space. For TPC-H, we used
a workload consisting of 15 out of the 22 queries, which
we call TPCH15. We were forced to omit certain queries
due to limitations in our parser but our sample preserves
the complexity of the full workload. The NREF workload
consists of 235 queries involving joins between 2 and 3 tables,
nested queries and aggregation.

We use a dual-Xeon 3.0GHz based server with 4 giga-
bytes of RAM running Windows Server 2003 (64bit). We
report both tuning running times and recommendation qual-
ity, that is computed using optimizer estimates. Improve-
ments are computed by:

. .
%improvement = 1 — —2°

indexed
Costnot indexed

8. EXPERIMENTAL RESULTS

In this section we demonstrate the superior performance
and recommendation quality of eINUM compared to Sys-
tem1 and System?2 for our TPCH15 and NREF workloads.

8.1 TPCHI15 Results

8.1.1 Exhaustive Tuning Performance

We provided eINUM with an exhaustive candidate set for
TPCH15 consisting of 117000 indexes. For the exhaustive
experiment we ran all the tools without specifying a storage
constraint. Figure 8 (a) shows the number of cost estima-
tion calls performed by the 3 systems and the time it took
to complete them. The data for the two commercial sys-
tems come from traces of database activity. The horizontal
axis corresponds to optimization time: for each point in the
horizontal axis, the graph shows the number of estimation
calls up to that point. The graph focuses only on the tun-
ing time spent during cost estimation and not the overall

3We chose a relatively small version for TPC-H to speed-up
administrative tasks such as building statistics and “real”
indexes to validate our results. Dataset size affects the nu-
merical values returned by the cost models but not the ac-
curacy and speed of the INUM.

execution time, which includes the algorithm itself, virtual
index construction and other overheads. Query cost estima-
tion dominates the execution time for all cases, so we discuss
this first. We report on the additional overheads (including
the time to construct the INUM model) later.

According to Figure 8 (a), eINUM performs the equivalent
of 31 million optimizer (per query) invocations within 12065
seconds (about 3.5 hours), or equivalently, 0.3ms per call.
Although such a high number of optimizer invocations might
seem excessive for such a small workload, INUM’s ability to
support millions of evaluations within a few hours will be
invaluable for larger problems.

Compare eINUM’s throughput with that of the state-of-
the-art optimizer based approaches (notice that the graph is
in logarithmic scale). System! examines 188 candidates in
total and performs 178 calls over 220 seconds, at an average
1.2s per call. System?2 is even more conservative, examin-
ing 31 candidates and performing 91 calls over 7 seconds at
77ms per call. System2 is faster because it does not use the
optimizer during enumeration. However, as we see in the
next paragraph, it provides lower quality recommendations.
Another way to appreciate the results is the following: If we
had interrupted eINUM after 220 seconds of optimization
time (the total optimization time of System1, it would have
already performed about 2 million evaluations!

The construction of the INUM took 1243s, or about 21
minutes, spent in performing 1358 “real” optimizer calls.
The number of actual optimizer calls is very small com-
pared to the millions of INUM cost evaluations performed
during tuning. Also, note that this number corresponds to
an experiment with a huge candidate set. As we show later,
we can “compress” the time spent in INUM construction
for smaller problems. Systeml! required 246 seconds of to-
tal tuning time: For System1, optimization time accounted
for 92% of the total tool running time. System2 needed 3
seconds of additional computation time, for a total of 10
seconds. The optimization time was 70% of the total tuning
time.

8.1.2 Exhaustive Tuning Quality

Figure 8 (b) shows the recommendation quality for the
three systems under varying storage constraints, where
eINUM used the exhaustive candidate set. The percentage
improvements are computed over the unindexed database
(with only clustered indexes on the primary keys). The last
data point for each graph corresponds to a session with no
storage constraint. INUM’s recommendations have 8%-34%
lower cost compared to those of System1.

System2’s unconstrained result was approximately 900MB,

so we could not collect any data points beyond this limit.
To obtain the quality results shown in Figure 8 (b), we im-
plemented System?2 recommendations in System and used
System1’s optimizer to derive query costs. The results ob-
tained by this method are only indicative, since System?2 is
at a disadvantage: It never had the chance to look at cost
estimates from System! during tuning. It performs slightly
worse than System! (and is 37% worse than eINUM but the
situation is reversed when we implement System1’s recom-
mendation in System2 (we omit those results). The only
safe conclusion to draw from System?2 is that it fails to take
advantage of additional index storage space.

We attribute the superior quality of eINUM’s recommen-
dations is to its larger candidate set. Despite the fact that
eINUM is extremely simple algorithmically, it considers can-
didates that combine high improvements with low storage
costs, because they are useful for multiple queries. Those
indexes are missed by the commercial tools, due to their
restricted candidate set.

8.1.3 Heuristic Enumeration

In this section we demonstrate that using INUM in combi-
nation with existing index selection algorithms can result in
huge savings in tuning time without losing quality. We use
eINUM without a storage constraint and we provide it with
a candidate index set consisting of 188 candidate indexes
considered by System1. System! was configured exactly the
same way as in the previous session.

Figure 8 (c) shows the timing results for eINUM compar-
ing with SystemI, in a logarithmic plot. eINUM performs
more query cost estimation calls (7440 compared to 178),
yet cost estimation requires only 1.4 seconds compared to
the 220 seconds for System1. For a fair comparison, we
must also take into account the time to compute the INUM
Space. With lazy precomputation (Section 5), INUM con-
struction took 180.6 seconds. Overall, eINUM took 182
seconds compared to 246 seconds for System1. Note that
eINUM does not implement any of the atomic configuration
optimizations proposed in the literature for optimizer-based
tools [6]. Incorporating additional optimizations would have
reduced the precomputation overhead, since it would allow
a further reduction in the number of optimizer calls.

The quality reached by the two algorithms was the same,
which makes sense given that they consider exactly the same
candidates.

8.1.4 INUM Precision

INUM’s estimates do not ezactly match the query opti-
mizer’s output. Even the optimizer itself, due to various
implementation details such as variations in statistics, pro-
vides slightly different cost values if called for the same query
and the same configurations. These slight differences exist
between the plans saved by the INUM and the ones dynam-
ically computed by the optimizer.

We measure the discrepancy E between the optimizer es-
timate for the entire workload cost cop: and the INUM es-
timate c;num by E =1 — ernvum/copt. We compute E at
the end of every pass performed by eINUM over the entire
candidate set and we verify that the INUM cost estimate
for the solution computed up to that point agrees with the
“real” optimizer estimate. We never found E to be higher
than 10%, with an average value of 7%.

We argue that a 10% error in our estimate is negligible,

100000000 Optimizer calls vs. Time

-+ System1

1000000 . an— INUM
-e

10000

Calls

100

1 10 100 1000 10000
Time (s)

Figure 9: Optimizer calls vs. time for the NREF
workload

compared to the scalability benefits offered by the INUM.
Besides, existing optimizer-based tools that use atomic con-
figuration optimizations [6] or the benefit assignment method
for the knapsack formulation [10] already trade accuracy for
efficiency.

8.2 NREF Results

In this section, we present our results from applying e/NUM
with an exhaustive candidate index set on the NREF work-
load. NREF is different from TPCH15 in that it contains
more queries (235) that are simpler in terms of the num-
ber of attributes they access: Each query accesses 2 to 3
columns per table.

Figure 9 compares eINUM and System! in terms of the
time spent in query cost estimation. eINUM performed
1.2M “calls”, that took 180s (0.2ms per call). System1 per-
formed 952 optimizer calls that took 2700s (or 2.9s per call).
INUM construction took 494s (without any performance op-
timizations whatsoever), while the total time for SystemI
was 2800s. Interestingly, searching over the exhaustive can-
didate set with eINUM was about 6 times faster compared
to Systeml, despite the latter’s candidate pruning heuris-
tics. We also compare the recommendation quality for var-
ious storage constraints, and find that e/NUM and System1
produce identical results. This happens because NREF is
easier to index: Both tools converge to similar configura-
tions (with single or two-column indexes) that are optimal
for the majority of the queries.

9. RELATED WORK

They key elements of modern automated database design
tools are introduced in [1,6,10]. They strongly advocate
the tight integration of database design algorithms and the
query optimizer, in order to ensure that the recommended
designs do in fact reflect the “true” (at least, as perceived by
the system) query costs. The INUM, presented in this paper,
addresses the downside of relying on query optimization: its
large computational overhead and the aggressive heuristics
required to minimize it.

[5] shows that index selection is a computationally hard
problem and thus efficient exact solutions do not exist. De-
sign tools utilize some variation of a greedy search proce-
dure to find a design that satisfies resource constraints and
is locally-optimal. An example is the greedy(m, k) heuris-
tic introduced of [1,6]. Another approach uses a knapsack
formulation [10] that greedily selects candidates based on
their benefit to storage cost ratio. The knapsack-based ap-
proach is extended by [5], where a linear programming tech-

nique is used for accurate weight assignment. [14] applies
similar greedy heuristics, along with a genetic programming
algorithm, to the design problem of table partitioning in a
parallel SQL database.

The Index Merging [7] work extends the basic design frame-
work with more sophisticated techniques for performing can-
didate selection through merging candidate indexes. More
recent work [3] suggests combining candidate selection with
the actual search, so that the partial search results can
be used to generate more useful candidates through var-
ious transformations. Both studies highlight the impor-
tance of effective candidate selection algorithms, that do
not omit “potentially interesting” design candidates. INUM
improves algorithms for candidate selection (and the sub-
sequent search) by allowing large candidate spaces to be
constructed and traversed efficiently.

Modern database design tools support additional design
features such as materialized views [1,17], table partitions [2]
and multidimensional clustering [17]. Having multiple ob-
ject types increases the complexity of design algorithms, be-
cause combining design features generates very large joint
search spaces. INUM can be extended to handle physical
design features other than indexes and we expect its perfor-
mance benefits to be even more pronounced when dealing
with larger search spaces.

The work on Parametric Query Optimization (PQO) for
linear, piece-wise linear and non-linear functions [11,12] stud-
ies the change in the optimal plan for a query under changing
numerical parameters, such as predicate selectivities. The
INUM has the same goal, only that now the changing pa-
rameter is the underlying physical design, which cannot be
captured solely by numerical values. The PQO framework,
however, is invaluable in dealing with complex optimizer
cost functions, especially the non-linear ones described in
Section 6.1.

[15] presents an empirical study of the plan space gener-
ated by commercial query optimizers, again under varying
selectivities. Their results suggest that while the space of op-
timal plans determined by the optimizer for a query might
be very large, it can be substituted by another containing a
smaller number of “core” plans without much loss in quality,
an observation very similar to our own (See Section 3). [9]
presents a technique to avoid unnecessary optimizer calls,
by caching and sharing the same plan among multiple simi-
lar queries. They define query similarity based on a number
of query features (such as query structure and predicates).
Although a clustering approach is conceivable for our prob-
lem, it is not clear how to derive the necessary precision
guarantees.

10. CONCLUSION

Index selection algorithms are built around the query op-
timizer, but query optimization complexity limits their scal-
ability. We introduce INUM, a framework that solves the
problem of expensive optimizer calls by caching and effi-
ciently reusing a small number of key optimizer calls. INUM
provides accurate cost estimates during the index selection
process, without requiring further optimizer invocations. We
evaluate INUM in the context of a real commercial query op-
timizer and show that INUM improves enumeration perfor-
mance by orders of magnitude. In addition, we demonstrate
that being able to evaluate a larger number of candidate
indexes through INUM improves recommendation quality.

11.
1]

(15]

(16]

(17]

REFERENCES
Sanjay Agrawal, Surajit Chaudhuri, and Vivek R.

Narasayya. Automated selection of materialized views
and indexes in SQL databases. In Proceedings of the
VLDB Conference, 2000.

Sanjay Agrawal, Vivek Narasayya, and Beverly Yang.
Integrating vertical and horizontal partitioning into
automated physical database design. In Proceedings of
the SIGMOD Conference, 2004.

Nicolas Bruno and Surajit Chaudhuri. Automatic
physical database tuning: a relaxation-based
approach. In Proceedings of the SIGMOD Conference,
2005.

Nicolas Bruno and Surajit Chaudhuri. To tune or not
to tune? a lightweight physical design alerter. In
Proceedings of the VLDB Conference, 2006.

Surajit Chaudhuri, Mayur Datar, and Vivek
Narasayya. Index selection for databases: A hardness
study and a principled heuristic solution. IEEE
Transactions on Knowledge and Data Engineering,
16(11):1313-1323, 2004.

Surajit Chaudhuri and Vivek R. Narasayya. An
efficient cost-driven index selection tool for Microsoft
SQL server. In Proceedings of the VLDB Conference,
1997.

Surajit Chaudhuri and Vivek R. Narasayya. Index
merging. In Proceedings of the ICDE Conference, 1999.
Mariano P. Consens, Denilson Barbosa, Adrian
Teisanu, and Laurent Mignet. Goals and benchmarks
for autonomic configuration recommenders. In
Proceedings of the SIGMOD Conference, 2005.

A. Ghosh, J. Parikh, V. Sengar, and J. Haritsa. Plan
selection based on query clustering. In VLDB, 2002.
G.Valentin, M.Zuliani, D.Zilio, and G.Lohman. DB2
advisor: An optimizer smart enough to recommend its
own indexes. In Proceedings of the ICDE Conference,
2000.

Arvind Hulgeri and S. Sudarshan. Parametric query
optimization for linear and piecewise linear cost
functions. In VLDB, 2002.

Arvind Hulgeri and S. Sudarshan. AniPQO: Almost
non-intrusive parametric query optimization for
nonlinear cost functions. In Proceedings of the VLDB
Conference, 2003.

Stratos Papadomanolakis and Anastassia Ailamaki.
An integer linear programming approach to database
design. In ICDE Workshop on Self-Managing
Databases, 2007.

Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy
Lohman. Automating physical database design in a
parallel database. In Proceedings of the SIGMOD
Conference, 2002.

Naveen Reddy and Jayant R. Haritsa. Analyzing plan
diagrams of database query optimizers. In Proceedings
of VLDB, 2005.

P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie,
and T. Price. Access path selection in a relational
database management system. In SIGMOD 1979.
Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M.
Lohman, Adam Storm, Christian Garcia-Arellano, and
Scott Fadden. DB2 design advisor: Integrated
automatic physical database design. In VLDB, 2004.

