
BenchPress: Dynamic Workload Control in the
OLTP-Bench Testbed

Dana Van Aken Djellel E. Difallah
Carnegie Mellon University University of Fribourg
dvanaken@cs.cmu.edu djelleleddine.difallah@unifr.ch

Andrew Pavlo Carlo Curino Philippe Cudré-Mauroux
Carnegie Mellon University Microsoft Corporation University of Fribourg

pavlo@cs.cmu.edu ccurino@microsoft.com philippe.cudre-mauroux@unifr.ch

ABSTRACT
Benchmarking is an essential activity when choosing
database products, tuning systems, and understanding
the trade-offs of the underlying engines. But the
workloads available for this effort are often restrictive and
non-representative of the ever changing requirements of
the modern database applications. We recently introduced
OLTP-Bench, an extensible testbed for benchmarking
relational databases that is bundled with 15 workloads.
The key features that set this framework apart is its ability
to tightly control the request rate and dynamically change
the transaction mixture. This allows an administrator
to compose complex execution targets that recreate
real system loads, and opens the doors to new research
directions involving tuning for special execution patterns
and multi-tenancy. In this demonstration, we highlight
OLTP-Bench’s important features through the BenchPress
game. It allows users to control the benchmark behavior in
real time for multiple database management systems.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation

General Terms
Experimentation, Performance

Keywords
Benchmarking, Configuration, Tuning

1. INTRODUCTION
New database initiatives are motivated by either emerg-

ing use-cases or the need to improve existing deployments.
For these efforts to be successful, it is important to use pre-
cise and flexible measurement tools for comparing database
management systems (DBMSs) and stressing them under

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735354 .

different circumstances. One such way is to use benchmarks,
as it allows one to understand and compare the performance
of these systems. Over the years, benchmarking has evolved
from a set of simple routines that generate a single perfor-
mance number to become what is now often a complex effort
involving different workloads, parameters, system configura-
tions, and other variables [4].

Database administrators and researchers test DBMSs us-
ing either common industry standard benchmarks or, if need
be, custom workloads [2, 5]. In the latter case, the code
and the data sets (if any) for these workloads are not always
available or are not well maintained. Thus, this makes it dif-
ficult for others to verify results from previous projects, or to
port the benchmarks to additional DBMSs. In addition to
this, although a number of prominent benchmarks have been
proposed in the past, to the best of our knowledge an ex-
tensive and adaptable testbed was previously not available.
Researchers and practitioners often “reinvent the wheel” for
each new project, and repeatedly spend time gathering data,
constructing real or synthetic workloads, deploying database
systems, building software that drives their systems, and fi-
nally creating tools to gather and analyze the results. Over
the years, we noticed that many of the software components
that we and others built for evaluating DBMSs are reusable.

Aside from the redundant work, the lack of an existing
tool significantly limits the opportunities to compare related
systems and approaches, since setting up testing conditions
for heterogeneous deployments is time-consuming. Making
this software available to the database community fosters
and encourages experimental repeatability.

For these reasons, we developed the OLTP-Bench bench-
marking testbed that is aimed at making it easier to reliably
and repeatedly evaluate DBMSs [3]. OLTP-Bench is capa-
ble of dynamically controlling the transaction rate, mixture,
and workload skew during the execution of an experiment.
This allows one to simulate a multitude of practical scenar-
ios that are typically hard to test (e.g., time-evolving access
skew). Our framework provides an easy way to monitor the
performance and resource consumption of the database sys-
tem under test. It currently supports over 15 benchmarks,
including synthetic micro-benchmarks, OLTP benchmarks,
and real-world Web applications. These were ported by the
authors of this work and as well as from several contributors
in the community.

One challenging aspect that we focused on while building
OLTP-Bench is the ability to control the rate of requests

1069

mailto:dvanaken@cs.cmu.edu
mailto:djelleleddine.difallah@unifr.ch
mailto:pavlo@cs.cmu.edu
mailto:ccurino@microsoft.com
mailto:philippe.cudre-mauroux@unifr.ch

config.xml trace.txt

Workload
Manager

Statistics
Collection

DBMS

Server

SQL-Dialect
Management

Resource
Monitoring

Trace
Analyzer

Data
Dumpsworkloads

Data
Generators

...

Worker
Worker

Worker

JDBC
Pool

th
in

k_
tim

e

Phase
Transition

Simulated Clients

AP
I

B
en

ch
Pr

es
s

Figure 1: OLTP-Bench Architecture – The client-side handles workers and generates the transaction workload according
to a configuration provided by the user, or via the real-time control API. On the left side, BenchPress utilizes the API to send
the commands and to track the execution in real time. The framework also employs monitoring tools to gather server-side
resource utilization statistics.

with great precision. As we describe in Section 2, this is
hard to achieve for multiple DBMSs in a single codebase.
Moreover, OLTP-Bench also supports changing transaction
request rates dynamically during execution based on user-
defined workloads. With these two features, one is able to
design complex execution scenarios in OLTP-Bench. For
example, one can run multiple workloads in parallel to test
a DBMS’s ability to support multi-tenant deployments.

In this demonstration, we showcase the dynamic and flex-
ible control features of OLTP-Bench through BenchPress.
BenchPress is a graphical interface that allows users to con-
trol OLTP-Bench’s behavior in real-time. It supports the
dynamic modification of a benchmark’s transaction work-
load mixture and throughput rates, as well as the execu-
tion of additional benchmarks on-the-fly. The demonstra-
tion also allows users to compare different DBMSs within
the same framework.

We next provide an overview of the key technical contribu-
tions of OLTP-Bench in Section 2, and discuss the datasets
and benchmarks available in our demo in Section 3. Finally,
we discuss in Section 4 how BenchPress allows the user to
play with these various aspects in our testbed for the demo.

2. OVERVIEW
OLTP-Bench is an extensible, “batteries included”

database benchmarking testbed [3]. It works with a number
of single-node DBMSs, distributed DBMSs, and DBaaS
systems that supports SQL through JDBC. As shown in
Fig. 1, the architecture of our framework is comprised of
two main components: (1) the client-side benchmark driver
and (2) a server-side module. OLTP-Bench is written
entirely in Java, including all of the built-in benchmarks.
The client-side portion is small and portable (less than
5MB). The framework has been tested and deployed on a
variety of Unix-like platforms.

2.1 Architecture
OLTP-Bench’s client-side component contains a central-

ized Workload Manager that is responsible for tightly con-
trolling the characteristics of the workload via a centralized

request queue. It takes as input a configuration file describ-
ing a predefined workload with multiple execution phases,
where a phase is defined as (1) a target transaction rate, (2)
a transaction mixture, and (3) a time duration in seconds.

The Workload Manager spawns multiple client Worker
threads that each connect to the target DBMS using JDBC
and iteratively pull tasks from the request queue. For each
new transaction request, a Worker invokes the corresponding
transaction’s control code (i.e., program logic with param-
eterized queries) and either commits or aborts the trans-
action. The Worker thread then returns to the queue to
retrieve its next task.

To handle portability across multiple DBMS SQL dialects,
we decided to use support human-written dialect translation
instead of automatic tools. In that way, we allow experts
for individual systems to contribute specific SQL variants—
both for DML and DDL queries and operations—for differ-
ent systems.

On the server side, we use standard server monitoring
tools [7] that are launched in parallel to OLTP-Bench and
provide system performance metrics in real time as they are
collected on the host.

2.2 Features
In [3], we introduced the requirements that motivated the

design decisions behind OLTP-Bench. We provide below an
overview of these key features that we implemented.

2.2.1 Rate Control
The ability to control request rates with great precision

in a DBMS is important for understanding performance
anomalies. Even small oscillations in the throughput can
make the interpretation of results difficult. OLTP-Bench
can either execute transactions in an open loop fashion or
with a throttled transaction per second rate for predefined
periods of time [6]. This allows one to evaluate how well a
DBMS can sustain long periods of continuous load.

As described above, the runtime throughput is controlled
through the Workload Manager’s request queue. At run-
time, the manager generates new requests and adds them to
this queue. The Workers pull a request from the queue, ex-

1070

ecute it, sleep for an optional “think time” period, and then
return the queue for a new request. Using a centralized
queue allows us to control the throughput from one location
without needing to coordinate the multiple Worker threads.
The exact number of requests configured is added to the
queue each second, and each arrival is interleaved with a
uniform or exponential arrival time. When the workers can-
not keep up with all requests, the remainder is postponed in
such a way that the framework never exceeds the target rate.
In case an unlimited throughput is requested, the arrival is
set to a large configurable constant.

2.2.2 Mixture Control
While the Workload Manager inserts work requests into

the queue, the workers choose the benchmark’s specific
transactions to execute by sampling from a predefined
distribution (or mixture). In OLTP-Bench, we added the
ability to change the mixture of transactions used in a
given benchmark in every phase, or on demand via the new
control API (cf. Section 2.2.4). This allows the user to
experiment with different combinations [3], for example by
transitioning from read-heavy to write-heavy workloads.

2.2.3 Multi-tenancy
OLTP-Bench can be configured to run multiple workloads

and benchmarks in parallel. A novel feature that we intro-
duce allows the users to perform multi-tenancy tests that
isolate different workloads within the same instance.

2.2.4 Application Programming Interface
For the purpose of this demo and in response to user feed-

back, we created a RESTful application programming in-
terface (API) for OLTP-Bench that exposes the ability to
programmatically control its execution at the runtime. This
includes changing the current phase parameters (cf. Sec-
tion 2.1) by throttling the throughput or changing the work-
load mixture. In addition, this API also provides instanta-
neous feedback about the current execution throughput and
average latency per transaction type. As we discuss in Sec-
tion 4, this API enables us to turn our benchmark system
into the BenchPress interactive game. As users control their
character in the game, their input is are converted into API
commands that adjust the current benchmark running in
OLTP-Bench. The game then receives status updates from
the API and then modifies the games’ visuals accordingly.

Beyond BenchPress, this API for controlling the execu-
tion load facilitates the integration of OLTP-Bench in the
context of broader test infrastructures. This could be useful
to dynamically create new workload mixtures in response to
application-level observations.

3. BENCHMARK DATA & WORKLOADS
The recent growth in Web and mobile-based applications

requiring transactional support pushed the boundaries of
traditional benchmarks. Instead of trying to be exhaustive,
we chose an initial set of benchmarks that covers a number of
currently popular applications. Table 1 gives an overview of
the 15 benchmarks currently ported to OLTP-Bench, along
with their application domain. We believe that each bench-
mark in that table is useful in modeling a specific application
domain. We note that the size of the database correspond-
ing to each benchmark is configurable by the administrator
and that the working set size can be automatically scaled.

Class Benchmark Application Domain

Transactional

AuctionMark On-line Auctions
CH-benCHmark Mixture of OLTP and OLAP
SEATS On-line Airline Ticketing
SmallBank Banking System
TATP Caller Location App
TPC-C Order Processing
Voter Talent Show Voting

Web-Oriented

Epinions Social Networking
LinkBench Social Networking
Twitter Social Networking
Wikipedia On-line Encyclopedia

Feature Testing

ResourceStresser Isolated Resource Stresser
YCSB Scalable Key-value Store
JPAB Object-Relational Mapping
SIBench Transactional Isolation

Table 1: The set of benchmarks supported in OLTP-Bench.

More detailed information, including descriptions of the in-
dividual transactions in each benchmark and their source
code, is available on our website [1].

4. DEMONSTRATION DESCRIPTION
BenchPress is a game that allows users to control the be-

havior of OLTP-Bench through its API. The objective is to
be able to navigate a game character throughout a horizon-
tally scrolling obstacle course. The vertical height of the
character at a given point in time is based on the current
throughput (transactions per second) of the target DBMS.
The user controls their character by increasing or decreas-
ing the target throughput using the keyboard or the con-
troller. The character, however, only responds to the actual
throughput delivered by the DBMS as measured by OLTP-
Bench. The boundaries of obstacles correspond to different
target throughput rates. If the DBMS cannot deliver the re-
quested transaction rate, then the character will crash into
an obstacle.

BenchPress is a JavaScript application that runs in a
browser. It connects to a Web-based application server that
connects to OLTP-Bench. The benchmark framework is
deployed on a machine that contains several target DBMSs.

Our system features many tests to challenge the user, for
example by linearly increasing or decreasing the execution
patterns using higher and lower obstacles. This demonstra-
tion allows users to (1) gain insight about the benchmarks
included in OLTP-Bench, (2) become familiar with the func-
tionalities offered by OLTP-Bench, and (3) stir a discussion
on how a specific execution pattern might influence the per-
formance of a DBMS and potentially expose hidden weak-
nesses. We now describe the different components of the
BenchPress demonstration.

4.1 Gameplay
Our demo is a side-scrolling game where the character

is indirectly controlled using a keyboard or an external in-
put device. As shown in Fig. 2a, the user starts the game
by picking the desired benchmark. Each benchmark corre-
sponds to a different character in the game. They then select
the target DBMS (Fig. 2b). Each DBMS corresponds to a
different stage with varying environment conditions. For ex-
ample, the screenshot in Fig. 2c shows that MySQL is the
forest level.

The character has to progress through a series of obstacles
by either jumping over them or letting the character fall due

1071

Select
Benchmark

BenchPress

TPC-C YCSB SEATS

Voter SmallBank TATP

(a) Selecting the Target Benchmark

BenchPress

Select DBMS

PostgreSQL

Oracle Apache Derby

(b) Selecting the Target DBMS

BenchPress

(c) Main Game Screen

BenchPress

Default

Read-only

Super-writes

CancelOKCustom

Workload Mixture

(d) Dynamically Change the Workload Mixture

Figure 2: The BenchPress game screenshots.

to the simulated gravity. We now describe these concepts in
the context of database benchmarking in further detail:

• An obstacle is a set of vertical “pipes” that limits the
character’s movement within a defined range. This range
is given by the height of the pipes and represents the
expected throughput at which the challenge is preset for
a given period of time. If the user fails to navigate their
character past these obstacles, then the game is over.
This will cause BenchPress to halt the benchmark and
reset the database.

• A jump requests a higher throughput rate and makes
the game character move upwards. The movement of
the character however only reflects the actual throughput
delivered by the DBMS rather than the requested one.
This measures the ability of the DBMS to changes in the
OLTP-Bench’s requested load, thereby allowing the user
to easily perceive the different system’ responsiveness.

• A fall makes the game character go down following some
simulated gravity, in the sense that the throughput auto-
matically decreases linearly until reaching 0 transactions
per second, at which point the character falls on the floor.
A different setup would allow the user to manually de-
crease the throughput using the commands.

4.1.1 Mixture Control
In addition to the basic controls described above, the user

can alter the benchmark mixture on-the-fly. That is, the
user can pause BenchPress at any moment in time to change
the workload parameters order to avoid an obstacle. This
will cause OLTP-Bench to temporarily block any Worker
thread from executing a transaction request. Beside the abil-
ity to fully customize a workload by manually assigning new
probability distributions for the transactions, BenchPress in-
cludes preset mixtures. As shown in Fig. 2d, these include
“read-heavy” and “write-heavy” workload mixtures. Modi-
fying the workload mixture allows players to have a tighter

1072

control of the character (effectively on the throughput) when
the DBMS struggles at maintaining the rate required to pass
some difficult obstacle. For example, switching the workload
mixture to a “read-heavy” workload will boost the DBMS’s
throughput due to reduced lock contention.

4.1.2 Challenges
Our goal is to create a simulated load that the DBMS

must respond to. To that end, the challenges represent the
throughput to achieve during the game at any given point
in time. In BenchPress, challenges take the form of pairs of
vertical obstacles with a narrow opening between them. This
opening serves as a visual representation of the expected
throughput range to achieve.

Other challenges in the game are auto-pilot zones, where
the user has to identify the right throughput and mixture
that allows the character to pass through the obstacles suc-
cessfully without any external input. That is, users are not
able to control the throughput as their game character moves
through these zones. In that case, the obstacle is a target
throughput that must be achieved for a given period of time.
This challenge will make the user reflect on the different pa-
rameters that can be used to reach a given target execution.

For this demo, we created challenges following four dif-
ferent shapes (although this list is not exhaustive, and new
challenges can be created using a configuration file):

Steps: The character has to go through a set of increasing
or decreasing throughput levels. This simulates an in-
creasing load on the database; at some point the DBMS
will become saturated and be unable to process any more
transactions. In the worst case, the performance may ac-
tually get worse depending on the workload.

Sinusoidal: The character has to move up and down in a
recurring pattern. This demonstrates a fluctuating load
and tests the ability of the DBMS to gracefully respond
without much jitter.

Peak: After a period of low throughput simulating some
steady-state workload, a peak in throughput is created
for a short period before going back to normal. Again,
this will show the ability of a DBMS to respond to some
sporadic and sudden increase in load.

Tunnels: The auto pilot zones are long tunnels where the
target execution is fixed to a constant range of high
(or low) target throughput. This challenge expects the
DBMS to deliver a constant tight throughput for a long
period of time.

4.2 Performance Visualization
The BenchPress interface provides a visual overview about

the DBMS’s performance in terms of throughput and la-
tency. To complement this information, the OLTP-Bench
monitoring tool will display in real time the metrics col-
lected from the system on which the DBMS is running. This
information can be useful for the user to predict potential
drops in performance (e.g., when getting close to being CPU-
bound). Hence, the user can take the necessary actions to
prevent an eventual crash into an obstacle by tuning down
the transaction rate and potentially causing a performance
drop (see Section 4.1.1). For example, the user could in that
context lower the percentage of write-intensive transactions
if the disk IO activity seems to saturate.

4.3 Demo Takeways
The goals of this demo are threefold. First, we aim at en-

gaging the audience with an interactive demonstration that
goes beyond the typical back-end demonstrations of DBMSs.
Second, we seek to showcase OLTP-Bench’s ability to con-
trol a multiplicity of database benchmarking parameters dy-
namically. Lastly, we hope that the game provides users
with a number of key insights about DBMSs and transac-
tional workloads. Examples of this include understanding
a DBMS weaknesses and the idiosyncrasies of the various
workloads that are built into OLTP-Bench (cf. Table 1). The
player will learn that certain types of transactions are more
difficult to sustain than others, that some cannot be used to
achieve high throughput, or that certain DBMSs (and tun-
ing combinations) cannot pass the tunnel tests, since they
produce oscillating throughputs. Moreover, the two-player
version of the game allows the players to experience in real-
time the effects of multi-tenancy, with one player affecting
the other.

5. ACKNOWLEDGEMENTS
This research was funded (in part) by the U.S. National

Science Foundation (III-1423210), and the Swiss National
Science Foundation (PP00P2 128459). We also give props to
Peter Bailis, whose database and trapping skills are slaying
it. All doubters will be blown out when his mixtape drops.

6. CONCLUSION
BenchPress is a new approach in benchmarking DBMSs

that is based on defining execution expectations (i.e., chal-
lenges), and dynamically controlling the workload through a
game interface. In this demonstration, we propose an initial
set of predefined challenges that leverage the set of bench-
marks that are supported by our underlying OLTP-Bench
framework. This allows a user to explore their properties
through stress testing various DBMSs.

7. REFERENCES
[1] OLTPBenchmark.com. http://oltpbenchmark.com.

[2] C. Curino, E. Jones, R. A. Popa, N. Malviya, E. Wu,
S. Madden, H. Balakrishnan, and N. Zeldovich.
Relational Cloud: A Database Service for the Cloud. In
CIDR, pages 235–240, 2011.

[3] D. E. Difallah, A. Pavlo, C. Curino, and
P. Cudré-Mauroux. OLTP-Bench: An Extensible
Testbed for Benchmarking Relational Databases.
PVLDB, 7(4):277–288, 2013.

[4] J. Gray. Benchmark Handbook: For Database and
Transaction Processing Systems. Morgan Kaufmann
Publishers Inc., 1992.

[5] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive
modeling for optimizing transaction execution in
parallel OLTP systems. Proc. VLDB Endow., 5:85–96,
October 2011.

[6] B. Schroeder, A. Wierman, and M. Harchol-Balter.
Open versus closed: a cautionary tale. NSDI, pages
18–18, 2006.

[7] D. Wieers. Dstat: Versatile resource statistics tool.
http://dag.wiee.rs/home-made/dstat.

1073

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1423210
http://oltpbenchmark.com
http://dag.wiee.rs/home-made/dstat

	Introduction
	Overview
	Architecture
	Features
	Rate Control
	Mixture Control
	Multi-tenancy
	Application Programming Interface

	Benchmark Data & Workloads
	Demonstration Description
	Gameplay
	Mixture Control
	Challenges

	Performance Visualization
	Demo Takeways

	Acknowledgements
	Conclusion
	References

