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Abstract

As database application performance depends on
the utilization of the memory hierarchy, smart data
placement plays a central role in increasing local-
ity and in improving memory utilization. Existing
techniques, however, do not optimize accesses to
all levels of the memory hierarchy and for all the
different workloads, because each storage level
uses different technology (cache, memory, disks)
and each application accesses data using different
patterns. Clotho is a new buffer pool and stor-
age management architecture that decouples in-
memory page layout from data organization on
non-volatile storage devices to enable indepen-
dent data layout design at each level of the storage
hierarchy.Clotho can maximize cache and mem-
ory utilization by (a) transparently using appropri-
ate data layouts in memory and non-volatile stor-
age, and (b) dynamically synthesizing data pages
to follow application access patterns at each level
as needed.Clotho creates in-memory pages indi-
vidually tailored for compound and dynamically
changing workloads, and enables efficient use of
different storage technologies (e.g., disk arrays or
MEMS-based storage devices). This paper de-
scribes theClotho design and prototype imple-
mentation and evaluates its performance under a
variety of workloads using both disk arrays and
simulated MEMS-based storage devices.

1 Introduction

Page structure and storage organization have been the sub-
ject of numerous studies [1, 3, 6, 9, 10], because they play
a central role in database system performance. Research
continues as no single data organization serves all needs
within all systems. In particular, the access patterns re-
sulting from queries posed by different workloads can vary
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significantly. One query, for instance, might access all the
attributes in a table (full-record access), while another ac-
cesses only a subset of them (partial-record access). Full-
record accesses are typical in transactional (OLTP) appli-
cations where insert and delete statements require the en-
tire record to be read or written, whereas partial-record
accesses are often met in decision-support system (DSS)
queries. Moreover, when executing compound workloads,
one query may access records sequentially while others ac-
cess the same records “randomly” (e.g., via non-clustered
index). Currently, database storage managers implement a
single page layout and storage organization scheme, which
is utilized by all applications running thereafter. As a re-
sult, in an environment with a variety of workloads, only a
subset of query types can be serviced well.

Several data page layout techniques have been proposed
in the literature, each targeting different query type. No-
tably, the N-ary Storage Model (NSM) [ 13] stores records
consecutively, optimizing for full-record accesses, while
penalizing partial-record sequential scans. By contrast, the
Decomposition Storage Model (DSM) [ 7] stores values of
each attribute in a separate table, optimizing for partial-
record accesses, while penalizing queries that need the en-
tire record. More recently,PAX [ 1] optimizes cache per-
formance, but not memory utilization. Fractured mirrors
[14] reduceDSM’s record reconstruction cost by using an
optimized structure and scan operators, but need to keep
anNSM-organized copy of the database as well to support
full-record access queries. None of the previously proposed
schemes provides a universally efficient solution, however,
because they all make a fundamental assumption that the
pages used in main memory must have the same contents
as those stored on disk.

This paper proposesClotho, a buffer pool and storage
management architecture that decouples the memory page
layout from the non-volatile storage data organization. This
decoupling allows memory page contents to be determined
dynamically according to queries being served and offers
two significant advantages. First, it optimizes storage ac-
cess and memory utilization by requesting only the data
accessed by a given query. Second, it allows new two-
dimensional storage mechanisms to be exploited to miti-
gate the trade-off between theNSM andDSM storage mod-
els. Clotho chooses data layouts at each level of the mem-
ory hierarchy to matchNSM where it performs best,DSM
where it performs best, and outperforms both for query
mixes and access types in between. It leverages theAtro-
pos logical volume manager [16] to efficiently access two



dimensional data structures stored both in disk arrays and
in MEMS-based storage devices (MEMStores) [19, 22].

This paper also describes and evaluates a prototype im-
plementation ofClotho within the Shore database storage
manager [4]. Experiments with disk arrays show that, with
only a single storage organization, performance of DSS and
OLTP workloads is comparable to the page layouts best
suited for the respective workload (i.e.,DSM andPAX, re-
spectively). Experiments with a simulated MEMStore con-
firm that similar benefits will be realized with these future
devices as well.

The remainder of this paper is organized as follows.
Section2 gives background and related work. Section3
describes the architecture of a database system that enables
decoupling of the in-memory and storage layouts. Sec-
tion 4 describes the design of a buffer pool manager that
supports query-specific in-memory page layout. Section5
describes the design of a volume manager that allows effi-
cient access when an arbitrary subset of table attributes are
needed by a query. Section6 describes our initial imple-
mentation, and Section7 evaluates this implementation for
several database workloads using both a disk array logical
volume and a simulated MEMStore.

2 Background and related work

Conventional relational database systems store data in
fixed-size pages (typically 4 to 64 KB). To access indi-
vidual records of a relation (table) requested by a query,
a scan operator of a database system accesses main mem-
ory. Before accessing data, a page must first be fetched
from non-volatile storage (e.g., a logical volume of a disk
array) into main memory. Hence, a page is the basic allo-
cation and access unit for non-volatile storage. A database
storage manager facilitates this access and sends requests
to a storage device to fetch the necessary blocks.

A single page contains a header describing what records
are contained within and how they are laid out. In order to
retrieve data requested by a query, a scan operator must un-
derstand the page layout, (a.k.a. storage model). Since the
page layout determines what records and which attributes
of a relation are stored in a single page, the storage model
employed by a database system has far reaching implica-
tions on the performance of a particular workload [2].

The page layout prevalent in commercial database sys-
tems, called N-ary storage model (NSM), is optimized for
queries with full-record access common in an on-line trans-
action processing (OLTP) workload.NSM stores all at-
tributes of a relation in a single page [13] and full records
are stored within a page one after another. Accessing a
full record is accomplished by accessing a particular record
from consecutive memory locations. Using an unwritten
rule that access to consecutive logical blocks (LBNs) in the
storage device is more efficient than random access, a stor-
age manager maps single page to consecutiveLBNs. Thus,
an entire page can be accessed by a single I/O request.

An alternative page layout, called the Decomposition
Storage Model (DSM) [7], is optimized for decision sup-
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Table 1:Summary of performance with current page layouts.

port systems (DSS) workloads. Since DSS queries typi-
cally access a small number of attributes and most of the
data in the page is not touched in memory by the scan op-
erator,DSM stores only one attribute per page. To ensure
efficient storage device access, a storage manager maps
DSM pages with consecutive records containing the same
attribute into extents of contiguousLBNs. In anticipation of
a sequential scan through records stored in multiple pages,
a storage manager can prefetch all pages in one extent with
a single large I/O, which is more efficient than accessing
each page individually by a separate I/O.

A page layout optimized for CPU cache performance,
calledPAX [1], offers good CPU-memory performance for
both individual attribute scans of DSS queries and full-
record accesses in OLTP workloads. ThePAX layout par-
titions data across into separate minipages. A single mini-
page contains data of only one attribute and occupies con-
secutive memory locations. Collectively, a single page con-
tains all attributes for a given set of records. Scanning indi-
vidual attributes inPAX accesses consecutive memory lo-
cations and thus can take advantage of cache-line prefetch
logic. With proper alignment to cache-line sizes, a single
cache miss can effectively prefetch data for several records,
amortizing the high latency of memory access compared to
cache access. However,PAX does not address memory-
storage performance.

All of the described storage models share the same char-
acteristics. They (i) are highly optimized for one workload
type, (ii) focus predominantly on one level of the mem-
ory hierarchy, (iii) use a static data layout that is deter-
mineda priori when the relation is created, and (iv) apply
the same layout across all levels of the memory hierarchy,
even though each level has unique (and very different) char-
acteristics. As a consequence, there are inherent perfor-
mance trade-offs for each layout that arise when a work-
load changes. For example,NSM or PAX layouts waste
memory capacity and storage device bandwidth for DSS
workloads, since most data within a page is never touched.
Similarly, aDSM layout is inefficient for OLTP queries ac-
cessing random full records. To reconstruct a full record
with n attributes,n pages must be fetched andn� 1 joins
on record identifiers performed to assemble the full record.
In addition to wasting memory capacity and storage band-
width, this access is inefficient at the storage device level;
accessing these pages results in random one-page I/Os. In
summary, each page layout exhibits good performance for
a specific type of access at a specific level of memory hier-
archy. as shown in Table1.

Several researchers have proposed solutions to address
these performance trade offs. Ramamurthy et al. proposed



fractured mirrors that store data in bothNSM andDSM lay-
outs [14] to eliminate the need to reload and reorganize
data when access patterns change. Based on the work-
load type, a database system can choose the appropriate
data organization. Unfortunately, this approach doubles the
required storage space and complicates data management;
two physically different layouts must be maintained in syn-
chrony to preserve data integrity. Hankins and Patel [9]
proposed data morphing as a technique to reorganize data
within individual pages based on the needs of workloads
that change over time. Since morphing takes place within
memory pages that are then stored in that format on the
storage device, these fine-grained changes cannot address
the trade-offs involved in accessing non-volatile storage.
The multi-resolution block storage model (MBSM) [23]
groupsDSM table pages together into superpages, improv-
ing DSM performance when running decision-support sys-
tems. TheLachesis database storage manager [15] exploits
unique disk drive characteristics to improve performance
of DSS workloads and compound workloads that consist
of DSS and OLTP queries competing for the same storage
device. It matches page allocation and access policies to
leverage these characteristics, but the storage model itself is
not different;Lachesis transparently stores the in-memory
NSM pages in the storage device’s logical blocks.

MEMStores [5] are a promising new type of storage
device that has the potential to provide efficient accesses
to two-dimensional data. Schlosser et al. proposed data
layout for MEMStores that exploits their inherent access
parallelism [19]. Yu et al. devised an efficient map-
ping of database tables to this layout that takes advantage
of the unique characteristics of MEMStores [22] to im-
prove query performance. Similarly, Schindler et al. [16]
proposed data organization for two-dimensional access to
database tables mapped to logical volumes composed of
several disk drives. However, these initial works did not
explore the implications of this new data organization on
in-memory access performance.

In summary, these solutions either address only some
of the performance trade-offs or are applicable to only one
level of the memory hierarchy.Clotho builds on the previ-
ous work and uses a decoupled data layout that can adapt to
dynamic changes in workloads without the need to main-
tain multiple copies of data, reorganize data layout, or to
compromise between memory and I/O access efficiency.

3 Decoupling data layouts

From the discussion in the previous section, it is clear that
designing a static scheme for data placement in memory
and on non-volatile storage that performs well across dif-
ferent workloads and different device types and technolo-
gies is difficult. Instead of accepting the trade-offs inherent
to a particular page layout that affects all levels of the mem-
ory hierarchy, we propose a new approach.

As each level of the memory hierarchy have vastly dif-
ferent performance characteristics, the data organization at
each level should be different. Therefore,Clotho decou-
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Figure 1:Decoupled storage device and in-memory layouts.

ples the in-memory data layout from the storage organiza-
tion and implements different data layouts tailored to each
level, without compromising performance at the other lev-
els. The challenge is to ensure that this decoupling works
seamlessly within current database systems. This section
introduces the different data organizations and describes
the key components of theClotho architecture.

3.1 Data organization inClotho

Clotho allows for decoupled data layouts and different rep-
resentations of the same table at the memory and storage
levels. Figure1 depicts an example table,R, with three at-
tributes:��, ����, and���. At the storage level, the data is
organized into A-pages. An A-page contains all attributes
of the records; only one A-page needs to be fetched to re-
trieve a full record. Exploiting the idea used inPAX [ 1],
an A-page organizes data into minipages that group values
from the same attribute for efficient predicate evaluation,
while the rest of the attributes are in the same A-page. To
ensure that the record reconstruction cost is minimized re-
gardless of the size of the A-page,Clotho allows the device
to use optimized methods for placing the contents of the
A-page onto the storage medium. Therefore, not only does
Clotho fully exploit sequential scan for evaluating predi-
cates, but it also places A-pages carefully on the device
to ensure near-sequential (or semi-sequential [16]) access
when reconstructing a record. The placement of A-pages
on the disk is further explained in Section5.1.

The rightmost part of Figure1 depicts a C-page, which
is the in-memory representation of a page. The page frame
is sized by the buffer pool manager and is on the order of
8 KB. A C-page is similar to an A-page in that it also con-
tains attribute values grouped in minipages, to maximize
processor cache performance. Unlike an A-page, however,
a C-pageonly contains values for the attributes the query
accesses. Since, the query in the example only uses the
�� and���, the C-page only includes these two attributes,
maximizing memory utilization. Note that the C-page uses
data from two A-pages to fill up the space “saved” from
omitting ����. In the rest of this paper, we refer to the
C-page layout as theClotho storage model (CSM).



3.2 System architecture

The difficulty in building a database system that can de-
couple in-memory page layout from storage organization
lies in implementing the necessary changes without undue
increase in system and code complexity. To allow decou-
pled data layouts,Clotho changes parts of two database
system components, namely the buffer pool manager and
the storage manager. The changes span limited areas in
these components and do not alter the query processing in-
terface.Clotho also takes advantages of theAtropos logical
volume manager (LVM) that allows efficient access to two
dimensional structures in both dimensions.

Figure2 shows the relevant components of a database
system to highlight the interplay betweenClotho and other
components. Each component can independently take ad-
vantage of enabling hardware/OS technologies at each level
of the memory hierarchy, while hiding the details from the
rest of the system. This section outlines the role of each
component. The changes to the components are further ex-
plained in Sections4 and5.1 while details specific to our
prototype implementation are provided in Section6.
The operators are essentially predicated scan and store
procedures that access data from in-memory pages stored
in a common buffer pool. They take advantage of the
query-specific page layout of C-pages that leverages the
L1/L2 CPU cache characteristics and cache prefetch logic
for efficient access to data.
The buffer pool managermanages C-pages in the buffer
pool and enables sharing across different queries that need
the same data. In traditional buffer pool managers, a buffer
page is assumed to have the same schema and contents as
the corresponding relation. InClotho, however, this page
may contain a subset of the table schema attributes. To
ensure sharing, correctness during updates, and high mem-
ory utilization, theClotho buffer pool manager maintains
a page-specific schema that denotes which attributes are
stored within each buffered page (i.e., the page schema).
The challenge of this approach is to ensure minimal I/O
by determining sharing and partial overlapping across con-
current queries with minimal book-keeping overhead. Sec-
tion 4 details the buffer pool manager operation in detail.
The storage managermaps A-pages to specific logical
volume’s logical blocks, calledLBNs. Since the A-page
format is different from the in-memory layout, the storage
manager rearranges A-page data on-the-fly into C-pages
using the query-specificCSM layout. Unlike traditional
storage managers where pages are also the smallest ac-
cess units, theClotho storage manager selectively retrieves
a portion of a single A-page. With scatter/gather I/O and
direct memory access (DMA), the pieces of individual A-
pages can be delivered directly into the proper memory
frame(s) in the buffer pool as they arrive from the logi-
cal volume. The storage manager simply sets up the ap-
propriate I/O vectors with the destination address ranges
for the requestedLBNs. The data is placed directly to its
destinations without the storage manager’s involvement or
the need for data shuffling and extraneous memory copies.

buffer
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disk 0

payload data directly placed 

via scatter/gather I/O

access to payload 

logical volumedisk array

page hdr

BUFFER POOL Manager

OPERATORS                           (tblscan, idxscan, ... )
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storage interface exposes efficient 
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Figure 2:Interaction of Clotho with other components.

To efficiently access data for a variety of access patterns,
the storage manager relies on explicit hints provided by the
logical volume manager. These hints convey whichLBNs
can be accessed together efficiently andClotho uses them
for allocating A-pages.
The logical volume manager(LVM) maps volumeLBNs
to the physical blocks of the underlying storage device(s).
It is independent of the database system and is typically im-
plemented with the storage system (e.g., disk array). The
Atropos LVM leverages device-specific characteristics to
create mappings that yield efficient access to a collection
of LBNs. In particular, theAtropos storage interface ex-
ports two functions that establish explicit relationships be-
tween individualLBNs of the logical volume and enable the
Clotho storage manager to effectively map A-pages to in-
dividualLBNs. One function returns the set of consecutive
LBNs that yield efficient access (e.g., all blocks mapped
onto one disk or MEMStore track).Clotho maps mini-
pages containing the same attribute to theseLBNs for ef-
ficient scans of a subset of attributes. Another function re-
turns a set of non-contiguousLBNs that can be efficiently
accessed together (e.g., parallel-accessibleLBNs mapped
to different MEMStore tips or disks of logical volume).
Clotho maps a single A-page to theseLBNs. TheAtropos
LVM is briefly described in Section5.1 and detailed else-
where [16, 19]. Clotho need not rely onAtropos LVM to
create query-specific C-pages. With conventional LVMs,
it can map a full A-page to a contiguous run ofLBNs
with each minipage mapped to one or more discreteLBNs.
However, with these conventional LVMs, access only along
one dimension will be efficient.

3.3 Benefits of decoupled data layouts

The concept of decoupling data layouts at different levels
of the memory hierarchy offers several benefits.
Leveraging unique device characteristics.At the volatile



(main memory) level,Clotho usesCSM, a data layout
that maximizes processor cache utilization by minimiz-
ing unnecessary accesses to memory.CSM organizes
data in C-pages and also groups attribute values to ensure
that only useful information is brought into the processor
caches [1, 9]. At the storage-device level, the granularity
of accesses is naturally much coarser. The objective is to
maximize memory utilization for all types of queries by
only bringing into the buffer pool data that the query needs.
Query-specific memory layout. With memory organi-
zation decoupled from storage layout,Clotho can decide
what data is needed by a particular query, request only the
needed data from a storage device, and arrange the data
on-the-fly to an organization that is best suited for the par-
ticular query needs. This fine-grained control over what
data is fetched and stored also puts less pressure on buffer
pool and storage system resources. By not requesting data
that will not be needed, a storage device can devote more
time to servicing requests for other queries executing con-
currently and hence speed up their execution.
Dynamic adaptation to changing workloads. A system
with flexible data organization does not experience perfor-
mance degradation when query access patterns change over
time. Unlike systems with static page layouts, where the
binding of data representation to workload occurs during
table creation, this binding is done inClotho only during
query execution. Thus, a system with decoupled data orga-
nizations can easily adapt to changing workloads and also
fine-tune the use of available resources when they are under
contention.

4 Buffer pool manager
The Clotho buffer pool manager organizes relational ta-
ble data in C-pages using theCSM data layout. CSM is
a query-optimized in-memory page layout that stores only
the subset of attributes needed by a query. Consequently,
a C-page can contain a single attribute (similar toDSM),
a few attributes, or all attributes of a given set of records
(similar toNSM andPAX) depending on query needs. This
section describes how the buffer pool manager constructs
and maintains C-pages and ensures data sharing and con-
sistency in the buffer pool.

4.1 In-memory C-page layout

Figure3 depicts two examples of C-pages for a table with
four attributes of different sizes. In our design, C-pages
only contain fixed-size attributes. Variable-size attributes
are stored separately in other page layouts (see Section6.2).
A C-page contains a page header and a set of minipages,
each containing data for one attribute and collectively hold-
ing all attributes needed by queries. In a minipage, a single
attribute’s values are stored in consecutive memory loca-
tions to maximize processor cache performance. The cur-
rent number of records and presence bits are distributed
across the minipages. Because the C-page only handles
fixed-size attributes, the size of each minipage is deter-
mined at the time of table creation.
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Figure 3:C-page layout.

The page header stores the following information: page
id of the first A-page, the number of partial A-pages con-
tained, the starting address of each A-page, a bit vector in-
dicating the schema of the C-page’s contents, and the max-
imal number of records that can fit in an A-page.

Figure3(a) and Figure3(b) depict C-pages with com-
plete and partial records, respectively. The leftmost C-page
is created for queries that access full records, whereas the
rightmost C-page is customized for queries touching only
the first two attributes. The space for minipages 3 and 4
on the left are used to store more partial records from ad-
ditional A-pages on the right. In this example, a single C-
page can hold the requested attributes from three A-pages,
increasing memory utilization by a factor of three.

On the right side of the C-page we list the number of
storage device blocks each minipage occupies. In our ex-
ample each block is 512 bytes. Depending on the relative
attribute sizes, as we fill up the C-page using data from
more A-pages there may be some unused space. Instead
of performing costly operations to fill up that space, we
choose to leave it unused. Our experiments show that, with
the right page size and aggressive prefetching, this unused
space does not cause a detectable performance deteriora-
tion (details about space utilization are in Section7.6).

4.2 Data sharing in buffer pool

Concurrent queries do not necessarily access the same sets
of attributes; concurrent sets of accessed attributes may be
disjoint, inclusive, or otherwise overlapping. TheClotho
buffer pool manager must (a) maximize sharing, ensuring
memory space efficiency, (b) minimize book-keeping to
keep the buffer pool operations light-weight, and (c) main-
tain consistency in the presence of updates.

As an example, query Q1 asks for attributesa1 anda2
while query Q2 asks for attributesa2 anda3. Using a sim-
ple approach, the buffer manager could create two sepa-
rate C-pages tailored to each query. This approach ignores
the sharing possibilities in case these queries scan the ta-
ble concurrently. To achieve better memory utilization,
the buffer manager can instead dynamically reorganize the
minipages ofa1 anda2 inside the two C-pages, fetching
only the needed values and keeping track of the progress of
each query, dynamically creating new C-pages for Q1 and



if read-only querythen
if �p sch� q schthen

Do nothing
else ifq sch�allp sch�� then

Add q sch to the schema list
else

New p sch =��q sch,�p sch� p sch�q sch	��
�
Add the new psch to the list

end if
else if it is a write query (update/delete/insert)then

Use full schema as the qsch
Modify the list: only one full psch now

end if

Figure 4:Buffer pool manager algorithm.

Q2. However, this approach incurs too much book-keeping
overhead, and is inefficient in practice.

The Clotho buffer pool manager balances memory uti-
lization and management complexity. Each frame in the
buffer pool stores a C-page which conforms to apage
schema, a bitvector that describes which attributes the C-
page holds. For each active table, we keep a list of the
different page schemas for C-pages that belong to the ta-
ble and are currently in the buffer pool. Finally, each ac-
tive query keeps aquery schema, a bitvector that describes
which attributes the query needs for each accessed table.

Whenever a query starts executing, the buffer pool man-
ager notes the query schema and inspects the other, already
active, page schemas. If the new query schema accesses
a disjoint set of attributes from the over active queries, if
any, the buffer pool manager creates a new C-page. Oth-
erwise, it merges the new schema with the most-efficient
overlapping one already in memory. The algorithm in Fig-
ure 4 modifies the page schema list (psch), which is ini-
tially empty, based on the query schema (qsch). Once the
query is complete, the system removes the corresponding
query schema from the list and adjusts the page schema list
accordingly using the currently active query schemas.

During query execution the page schema list dynami-
cally adapts to changing workloads depending on the con-
currency degree and the overlaps among attribute sets ac-
cessed by queries. This list ensures that queries having
common attributes can share data in the buffer pool while
queries with disjoint attributes will not affect each other. In
the above example, Q1 first comes along, the buffer pool
manager creates C-pages witha1 anda2. When Q2 arrives,
the buffer pool manager will create a C-page witha1, a2,
anda3 for these two queries. After Q1 finishes, C-pages
with only a2 anda3 will be created for Q2.

4.3 Maintaining data consistency

With the algorithm in Figure4, the buffer pool may con-
tain multiple copies of the same minipage. To ensure data
consistency when a transaction modifies a C-page,Clotho
uses the the mechanisms described below to fetch the latest
copy of the data to other queries.

When looking for a record, a traditional database buffer
manager looks for the corresponding page id in the page
table, and determines whether the record is in memory.
To support record lookup in the query-specific C-page in
Clotho, the page table of the buffer pool manager contains
the page ids of all the A-pages used to construct the active
C-pages, and is augmented with the page schema bitvec-
tors. To perform a record lookup,Clotho uses a key con-
sisting of the page id and the page schema requested. A hit
means that the page id matches one of the A-page page ids,
and the schema of the C-page subsumes the schema of the
requested record as described in the key.

In the case of insertions, deletions, and updates,Clotho
uses full-schema C-pages. Insertions and deletions need
full-record access and modify all respective minipages,
whereas full-schema pages for updates help keep buffer
pool data consistent at no additional cost. Queries asking
for updated records automatically obtain the correct dirty
page from the buffer pool. Since deletion of records always
operates on full C-pages, CSM can work with any existing
deletion algorithms, such as “pseudo deletion” [11].

When a write query is looking up a C-page, it invalidates
all of the other buffered C-pages that contain minipages
from one A-page. Thus, there is only one valid copy of
the modified data. Since the C-page with updated data has
a full schema, the updated page will serve all other queries
asking for records in this page until it is flushed to the disk.
Clotho does not affect locking policies because page data
organization is transparent to the lock manager.

5 Logical volume manager
This section briefly describes the storage device-specific
data organization and the mechanisms exploited by the
LVM in creating logical volumes that consist of either disk
drives or a single MEMStore. Much of this work builds
upon our previous work onAtropos disk array logical vol-
ume manager [16] and MEMStore [19]. This section de-
scribes the high-level points for each device type.

5.1 Atropos disk array LVM

The standard interface of disk drives and disk arrays uses
a simple linear abstraction, meaning that any two dimen-
sional data structure that is to be stored on disk needs
to be serialized. For example,NSM serializes along full
records (row-major) andDSM serializes along single at-
tributes (column-major). Once the table is stored, access
along the dimension of serialization is sequential and effi-
cient. However, access along the other dimension is ran-
dom and inefficient.Atropos uses the same linear abstrac-
tion as before, but solves this problem by using a new in-
ternal data organization and exposing a few abstractions to
the higher-level software.

By exposing enough information about its data orga-
nization, the database’s storage manager can achieve ef-
ficient access along either dimension.Atropos exploits
the request scheduler built into the disk’s firmware and
automatically-extracted knowledge of track switch delays



to support semi-sequential access: diagonal access to
ranges of blocks (one range per track) across multiple adja-
cent disk tracks. This second dimension of access enables
two dimensional data structures to be accessed efficiently.
To support efficient sequential access,Atropos exploits
automatically-extracted knowledge of disk track bound-
aries, using them as its stripe unit boundaries for achiev-
ing efficient sequential access. By also exposing these
boundaries explicitly, it allows theClotho storage manager
to use previously proposed “track-aligned extents” (trax-
tents), which provide substantial benefits for streaming pat-
terns interleaved with other I/O activity [17, 15]. Finally,
as with other logical volume managers, it delivers aggre-
gate bandwidth of all disks in the volume and offers the
same reliability/performance tradeoffs of traditional RAID
schemes [12].

5.2 Semi-sequential access

To understand semi-sequential access, imagine sending two
requests to a disk: one request for the firstLBN on the first
track, and one for the secondLBN on the second track.
These two adjacent tracks are typically in the same cylin-
der, but different heads are used to access them. First, the
disk will seek to the cylinder, then there will be some ini-
tial rotational latency before the firstLBN is read. Next,
the disk will switch to the next track, which takes some
fixed amount of time (typically around 1 ms), and access
the secondLBN. With properly chosenLBNs, the second
LBN is accessible right after a track switch, with no addi-
tional seek or rotational latency incurred. Requesting more
LBNs laid out in this fashion on successive tracks allows
further semi-sequential access.

Naturally, the sustained bandwidth of semi-sequential
access is less than that of sequential access. However,
semi-sequential access is more efficient than reading ran-
domly chosenLBNs spread across adjacent tracks, as
would be the case when accessing data inCSM along the
secondary dimension of a table withoutAtropos. Accessing
randomLBNs would incur an additional rotational latency
equal to half a revolution, on average.

5.3 Efficient database organization

With Atropos, Clotho storage manager can lay out A-pages
such that access in one dimension of the table is sequen-
tial, and access to the other dimension is semi-sequential.
Figure5 shows the mapping of a simple table with 12 at-
tributes and 1008 records to A-pages stored on anAtro-
pos logical volume with four disks. A single A-page in-
cludes 63 records and maps to the diagonal semi-sequential
LBNs, with each minipage mapped to a singleLBN. When
accessing one attribute from all records,Atropos can use
four track-sized, track-aligned reads. For example, a se-
quential scan of attribute A1 results in a access ofLBN 0
throughLBN 15 Accessing a full A-page) results in three
semi-sequential accesses, one to each disk. For example,
fetching attributes A1 through A12 for record 0 results in
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Figure 5:Mapping of a database table with 12 attributes ontoAtro-
pos logical volume with 4 disks. The numbers to the left of disk 0 are the
LBNs mapped to the gray disk locations connected by the arrow and not
the first block of each row. The arrow illustrates efficient semi-sequential
access fetching single A-page with 63 records. A single sequential I/O
for 16 LBNs can efficiently fetch one attribute from 1008 records striped
across four disks.

three semi-sequential accesses, each proceeding in parallel
on different disks, starting atLBNs 0, 64, and 128.

5.4 MEMS-based storage devices

Two groups have evaluated the use of internal access par-
allelism in MEMStores to efficiently access database ta-
bles [19, 22]. Clotho shows the benefit of using these tech-
niques in the context of a complete database management
system. As these devices are not yet available, we simulate
their behavior using the DiskSim simulator combined with
theAtropos logical volume manager.

Most MEMStore designs [5, 21] consist of a media sled
and an array of several thousand probe tips. Actuators po-
sition the spring-mounted media sled in the X-Y plane, and
the stationary probe tips access data as the sled is moved
in the Y dimension. Each read/write tip accesses its own
small portion of the media, which naturally divides the me-
dia into squares and reduces the range of motion required
of the media sled.

When a seek occurs, the media is positioned to a spe-
cific offset relative to the entire read/write tip array. As a
result, at any point in time, all of the tips access the same
locations within their squares. An example of this is shown
in Figure6 in whichLBNs at the same location within each
square are identified with ovals. Realistic MEMStores are
expected to have enough read/write tips to potentially ac-
cess 100LBNs in parallel. However, because of power and
shared-component constraints, only about 10 to 20 of those
LBNs could beactually accessed in parallel.

Given the simple device in Figure6, if one third of the
read/write tips can be active in parallel, a system could ac-
cess together up to 3LBNs out of the 9 shown with ovals.
The threeLBNs chosen could be sequential (e.g., 33, 34,
and 35), or could be disjoint (e.g., 33, 36, and 51). In each
case, all of thoseLBNs would be transferred to or from the
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Figure 6: Data layout with parallel-accessibleLBNs highlighted.
TheLBNs marked with ovals are at the same location within each square
and, thus, comprise an equivalence class. That is, they can potentially be
accessed in parallel.

media in parallel with the same efficiency. A-pages are ar-
ranged onto the rows and columns of read/write tips, much
as they are across sequential and semi-sequentialLBNs on
a disk drive. By activating the appropriate read/write tips,
parallel access to either the rows or columns of the table is
possible. In contrast to disk drives, in which access to one
dimension is less efficient than access to the other (semi-
sequential vs. sequential), the access along the rows and
along the columns are equally efficient.

6 Clotho implementation

Clotho is implemented within the Shore database storage
manager [4]. This section describes the implementation of
C-pages, scan operators, and the LVM. The implementa-
tion does not modify the layout of index pages.

6.1 Creating and scanning C-pages

We implementedCSM as a new page layout in Shore, ac-
cording to the format described in Section4.1. The only
significant change in the internal Shore page structure is
that the page header is aligned to occupy one block (512 B
in our experiments). As described in Section4, the orig-
inal buffer pool manager is augmented with schema man-
agement information to control and reuse C-page contents.
These modifications were minor and limited to the buffer
pool module. To access a set of records, a scan operator is-
sues a request to the buffer pool manager to return a pointer
to the the C-page with the (first of the) records requested.
This pointer consists of the first A-page id in the C-page
plus the page schema id.

If there is no appropriate C-page in the buffer pool to
serve the request, the buffer pool manager allocates a new
frame for the requested page. It then fills the page header
with schema information that allows the storage manager
to determine which data (i.e., minipages) is needed. This
decision depends on the number of attributes in the query
payload and on their relative sizes. Once the storage man-
ager determines from the header information what mini-
pages to request, it constructs an I/O vector with memory
locations for individual minipages and issues a batch of I/O
requests to fetch them. Upon completion of the individual

I/Os, the requested blocks with minipages are “scattered”
to their appropriate locations.

We implemented two scan operators: S-scan is similar
to a scan operator onNSM pages, with the only difference
that it only scans the attributes accessed by the query. (in
the predicate and in the payload).Clotho invokes S-scan
to read tuples containing the attributes in the predicate and
those in the payload, reads the predicate attributes, and if
the condition is true returns the payload. The second scan
operator, SI-scan, works similarly to an index scan. SI-
scan first fetches and evaluates only the attributes in the
predicates, then makes a list of the qualifying record ids,
and finally retrieves the projected attribute values directly.
Section7.2.1evaluates these two operators. To implement
the above changes, we wrote about 2000 lines of C++ code.

6.2 Storing variable-sized attributes

Our current implementation stores fixed-sized and variable-
sized attributes in separate A-pages. Fixed-sized attributes
are stored in A-pages as described in Section3.1. Each
variable-sized attribute is stored in a separate A-page
whose format is similar to aDSM page. To fetch the full
record of a table with variable-sized attributes, the storage
manager issues one (batch) I/O to fetch the A-page contain-
ing all of the fixed-size attributes and an additional I/O for
each variable-sized attribute in the table. As future work,
we plan to design storage of variable-sized attributes in
the same A-pages with fixed-sized attributes using attribute
size estimations [1] and overflow pages whenever needed.

6.3 Logical volume manager

The Atropos logical volume manager is implemented as a
standalone C++ application. It communicates with Shore
through a socket (control path) and shared memory (data
path) to avoid data copies between the two user-level pro-
cesses.Atropos determines how I/O requests are broken
into individual disk I/Os and issues them directly to the
attached SCSI disks using the�	�
��� Linux raw SCSI
device. With an SMP host, the process runs on a separate
CPU with minimal impact on Shore execution.

Since real MEMStores do not exist yet, theAtro-
pos MEMStore LVM implementation relies on simula-
tion. It uses an existing model of MEMS-based storage
devices [18] integrated into the DiskSim storage subsys-
tem simulator [8]. The LVM process runs the I/O timings
through DiskSim and uses main memory for storing data.

7 Evaluation

This section evaluates the benefits of decoupling in-
memory data layout from storage device organization us-
ing our Clotho prototype. The evaluation is presented in
two parts. The first part uses representative microbench-
marks [20] to perform a sensitivity analysis by varying
several parameters such as the query payload (projectiv-
ity) and the selectivity in the predicate. The second part
of the section presents experimental results from running
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Figure 7: Microbenchmark performance for different layouts. The graphs show the total microbenchmark query run time relative toNSM. The
performance of S-scan and SI-scan is shown for CSM layout running onAtropos disk array.

DSS and OLTP workloads, demonstrating the efficiency of
Clotho when running these workloads with only one com-
mon storage organization. The microbenchmarks include
queries with sequential and random access, point updates,
and bulk insert operations and evaluate the performance of
the worst- and best-case scenarios.

7.1 Experimental setup

The experiments are conducted on a two-way 1.7 GHz Pen-
tium 4 Xeon workstation running Linux kernel v. 2.4.24
and RedHat 7.1 distribution. The machine for the disk array
experiment has 1024 MB memory and is equipped with two
Adaptec Ultra160 Wide SCSI adapters, each controlling
two 36 GB Seagate Cheetah 36ES disks (ST336706LC).
The Atropos LVM exports a single 35 GB logical volume
created from the four disks in the experimental setup and
maps it to the blocks on the disks’ outermost zone.

An identical machine configuration is used for the
MEMStore experiments; it has 2 GB of memory, with half
used as data store. The emulated MEMStore parameters are
based on the G2 MEMStore [18] that includes 6400 probe
tips that can simultaneously access 16LBNs, each of size
512 bytes; the total capacity is 3.46 GB.

All experiments compareCSM to theNSM, DSM, and
PAX implementations in Shore.NSM and PAX are im-
plemented as described in [1], whereasDSM is imple-
mented in a tight, space-efficient form using the tuple-at-
a-time reconstruction algorithm [14]. For CSM, theAtro-
pos LVM uses its default configuration [16]. The NSM,
DSM, or PAX page layouts don’t take advantage of the
semi-sequential access thatAtropos provides. However,
they still run over the logical volume which is effectively
a conventional striped logical volume with the stripe unit
size equal to individual disks’ track size to ensure efficient
sequential access. Unless otherwise stated, the buffer pool
size in all experiments is set to 128 MB and page sizes for
NSM, PAX andDSM are 8 KB. ForCSM, both the A-page
and C-page sizes are also set to 8 KB. The TPC-H queries
used in our experiments (Q1, Q6, Q12, Q14) do not ref-
erence variable-sized attributes. TPC-C new-order trans-
action has one query asking for a variable-size attribute,
� ���, which is stored separately as described in Sec-
tion 6.2.

7.2 Microbenchmark performance

To establishClotho baseline performance, we first run a
range query of the form����� �������� ��������
��� ���� � ����� ��  ��  �!� R has 15 at-
tributes of type����, and is populated with 8 million
records (roughly 1 GB of data). All attribute values are
uniformly distributed. We show the results of varying the
query’s payload by increasing the number of attributes in
the select clause from one up to the entire record, and the
selectivity by changing the values ofLo andHi. We first
run the query using sequential scan, and then using a non-
clustered index to simulate random access. The order of
the attributes accessed does not affect the performance re-
sults, becauseAtropos uses track-aligned extents [17] to
fetch each attribute for sequential scans.

7.2.1 Queries using sequential scan
Varying query payload. Figure 7 compares the perfor-
mance of the microbenchmark query with varying projec-
tivity for the four data layouts.CSM uses the S-scan oper-
ator. The data are shown for a query with 10% selectivity;
using 100% selectivity exhibits the same trends.

Clotho shows the best performance at both low and high
projectivities. At low projectivity,CSM achieves compa-
rable performance toDSM, which is the best page layout
when accessing a small fraction of the record. The slightly
lower runtime ofDSM for the one attribute value in Fig-
ure 7(a) is caused by a limitation of the Linux operating
system that prevents us from using DMA-supported scat-
ter/gather I/O for large transfers1. As a result, it must read
all data into a contiguous memory region and do an extra
memory copy to “scatter” data to their final destinations.
DSM does not experience this extra memory copy; its pages
can be put verbatim to the proper memory frames. Like
DSM, CSM effectively pushes the project to the I/O level.
Attributes not involved in the query will not be fetched
from the storage, saving I/O bandwidth, memory space,
and accelerating query execution.

With increasing projectivity,CSM performance is better
than or equal to the best case at the other end of the spec-
trum, i.e.,NSM andPAX, when selecting the full record.

1The size of an I/O vector for scatter/gather I/O in Linux is limited to
16 elements, while commercial UNIX-es support up to 1024 elements.
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Figure 8:Microbenchmark performance for Atropos LVM.

DSM’s suboptimal performance at high projectivities is due
to the additional joins needed between the table fragments
spread out across the logical volume.Clotho, on the other
hand, fetches the requested data in lock-step from the disk
and places it in memory usingCSM, maximizing spatial
locality and eliminating the need for a join.Clotho per-
forms a full-record scan over 3� faster when compared
to DSM. As shown in Figure7(b), the MEMStore perfor-
mance shows the same results.
Comparison of S-scan and SI-scan.Figure7(c)compares
the performance of the above query for the S-scan and SI-
scan operators. We vary selectivity from 0.0001% to 20%
and use a payload of four attributes (the trend continues
for higher selectivities). As expected, SI-scan exhibits bet-
ter performance at low selectivities, whereas S-scan wins
as the selectivity increases. The performance gain comes
from the fact that only pages containing qualified records
are processed. The performance deterioration of SI-scan
with increasing selectivity is due to two factors. First, SI-
scan must process a higher number of pages than S-scan.
At selectivity equal to 1.6%, all pages will have qualifying
records, because of uniform data distribution. Second, for
each qualifying record, SI-scan must first locate the page,
then calculate the record address, while S-scan uses a much
simpler same-page record locator. The optimizer can use
SI-scan or S-scan depending on which one will perform
best given the estimated selectivity.

7.2.2 Point queries using random access
The worst-case scenario forClotho data placement
schemes is random point tuple access (access to a single
record in the relation through a non-clustered index). As
only a single record is accessed, sequential scan is never
used; on the contrary, as the payload increasesCSM is pe-
nalized more by the semi-sequential scan through the disk
to obtain all the attributes in the record. Figure8(a)shows
that, when the payload is only a few attributes,CSM per-
forms closely toNSM andPAX. As the payload increases
theCSM performance becomes slightly worse, although it
deteriorates much less thatDSM performance.

7.2.3 Updates
Bulk updates (i.e., updates to multiple records using se-
quential scan) exhibit similar performance to queries using
sequential scan, when varying either selectivity or payload.
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Figure 9: TPC-H performance for different layouts. The perfor-
mance is shown relative toNSM.

Similarly, point updates (i.e., updates to a single record)
exhibit comparable performance across all data placement
methods as point queries.Clotho updates single records
using full-schema C-pages, therefore its performance is al-
ways 22% worse thanNSM, regardless of payload. To alle-
viate this behavior, we are currently investigating efficient
ways to use partial–record C-pages for updates as we do for
queries. As with point queries, the performance ofDSM
deteriorates much faster.

7.2.4 Full table scans and bulk inserts
When scanning the full table (full-record, 100% selec-
tivity) or when populating tables through bulk insertions,
Clotho exhibits comparable performance toNSM andPAX,
whereasDSM performance is much worse, which corrobo-
rates previous results [1]. Figure8(b) shows the total run-
time when scanning tableR and accessing full records. The
results are similar when doing bulk inserts. Our optimized
algorithm issues track-aligned I/O requests and uses ag-
gressive prefetching for all data placement methods. Be-
cause bulk loading is an I/O intensive operation, space ef-
ficiency is the only factor that will affect the relative bulk-
loading performance across different layouts. The exper-
iment is designed so that each layout is as space-efficient
as possible (i.e., table occupies the minimum number of
pages possible).CSM exhibits similar space efficiency and
the same performance asNSM andPAX.

7.3 DSS workload performance

To quantify the benefits of decoupled layout for database
workloads, we run the TPC-H decision support benchmark
on our Shore prototype. The TPC-H dataset is 1 GB and
the buffer pool size is 128 MB.

Figure9 shows execution times relative toNSM for four
representative TPC-H queries (two sequential scans and
two joins). The leftmost group of bars represents TPC-H
execution onAtropos, whereas the rightmost group repre-
sents queries run on a simulated MEMStore.NSM andPAX
perform the worst by a factor of 1.24� – 2.0� (except for
DSM in Q1) because they must access all attributes. The
performance ofDSM is better for all queries except Q1 be-
cause of the benchmark’s projectivity.CSM performs best
because it benefits from projectivity and avoids the cost of



the joins thatDSM must do to reconstruct records. Again,
results on MEMStore exhibit the same trends.

7.4 OLTP workload performance

The queries in a typical OLTP workload access a small
number of records spread across the entire database. In
addition, OLTP applications have several insert and delete
statements as well as point updates. WithNSM orPAX page
layouts, the entire record can be retrieved by a single-page
random I/O, because these layouts map a single page to
consecutiveLBNs. Clotho spreads a single A-page across
non-consecutiveLBNs of the logical volume, enabling ef-
ficient sequential access when scanning a single attribute
across multiple records and less efficient semi-sequential
scan when accessing full records.

The TPC-C benchmark approximates an OLTP work-
load on our Shore prototype with all four data layouts us-
ing 8 KB page size. TPC-C is configured with 10 ware-
houses, 100 users, no think time, and 60 s warm-up time.
The buffer pool size if 128 MB, so it only caches 10% of the
database. The completed transactions per minute (TpmC)
throughput is repeatedly measured over a period of 120 s.

Table2 shows the results of running the TPC-C bench-
mark. As expected,NSM andPAX have comparable perfor-
mance, whileDSM yields much lower throughput. Despite
the less efficient semi-sequential access,CSM achieves
only 6% lower throughput thanNSM andPAX by taking ad-
vantage of the decoupled layouts to construct C-pages that
are shared by the queries accessing only partial records. On
the other hand, the frequent point updates penalizeCSM’s
performance: the semi-sequential access to retrieve full
records. This penalty is in part compensated by the buffer
pool manager’s ability to create and share pages containing
only the needed data.

7.5 Compound OLTP/DSS workload

Benchmarks involving compound workloads are important
in order to measure the impact on performance when dif-
ferent queries access the same logical volume concurrently.
With Clotho, the performance degradation may be poten-
tially worse than with other page layouts. The originally
efficient semi-sequential access to disjointLBNs (i.e., for
OLTP queries) could be disrupted by competing I/Os from
the other workload creating inefficient access. This does
not occur for other layouts that map the entire page to con-
secutiveLBNs that can be fetched in one media access.

We simulate a compound workload with a single-user
DSS (TPC-H) workload running concurrently with a multi-
user OLTP workload (TPC-C) against ourAtropos disk
LVM and measure the differences in performance relative
to the isolated workloads. The respective TPC workloads
are configured as described earlier. In previous work [15],
we demonstrated the effectiveness of track-aligned disk ac-
cesses on compound workloads; here, we compare all of
the page layouts using these efficient I/Os to achieve com-
parable results for TPC-H.

Layout NSM DSM PAX CSM
TpmC 1115 141 1113 1051

Table 2:TPC-C benchmark results with Atropos disk array LVM.
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Figure 10:Compound workload performance for different layouts.
This figure shows the slowdown off TPC-H query 1 runtime when run
with TPC-C benchmark relative to the case when runs in isolation and the
impact on TPC-C performance.

As shown in Figure10, undue performance degrada-
tion does not occur:CSM exhibits the same or lesser rela-
tive performance degradation than the other three layouts.
The figure shows indicative performance results for TPC-
H query 1 (others exhibit similar behavior) and for TPC-C,
relative to the base case when OLTP and DSS queries run
separately. The larger performance impact of compound
workloads on DSS withDSM shows that small random I/O
traffic aggravates the impact of seeks necessary to recon-
struct aDSM page. ComparingCSM and PAX, the 1%
lesser impact ofPAX on TPC-H query is offset by 2% big-
ger impact on the TPC-C benchmark performance.

7.6 Space utilization

Since theCSM A-page partitions attributes into minipages
whose minimal size is equal to the size of a singleLBN,
CSM is more susceptible to the negative effects of internal
fragmentation thanNSM or PAX. Consequently, a signif-
icant amount of space may potentially be wasted, result-
ing in diminished access efficiency. WithPAX, minipage
boundaries can be aligned on word boundaries (i.e., 32 or
64 bits) to easily accommodate schemas with high variance
in attribute sizes. In that case,Clotho may use large A-page
sizes to accommodate all the attributes without undue loss
in access efficiency due to internal fragmentation.

To measure the space efficiency of theCSM A-page, we
compare the space efficiency ofNSM andCSM layouts for
the TPC-C and TPC-H schemas.NSM exhibits the best
possible efficiency among all four page layouts. Figure11
shows the space efficiency ofCSM relative toNSM for all
tables of TPC-C and TPC-H as a function of total page size.
Space efficiency is defined as the ratio between the maxi-
mum number of records that can be packed into aCSM
page and the number of records that fit into anNSM page.

A 16 KB A-page suffices to achieve over 90% space
utilization for all but the customer and stock tables of the
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TPC-C benchmark. A 32 KB A-page size achieves over
90% space efficiency for the remaining two tables. Both
customer and stock tables include an attribute that is much
larger than all other attributes. The customer table includes
a 500 byte long� ��� attribute containing “miscellaneous
information”, while the next largest attribute has a size of
20 bytes. The stock table includes a 50 byte� ��� at-
tribute, while the next largest attribute is 24 bytes. Both of
these attributes are rarely used in the TPC-C benchmark.

8 Conclusions

Clotho decouples in-memory page layout from in-storage
data organization, enabling independent data layout design
at each level of the storage hierarchy. Doing so allows
Clotho to optimize I/O performance and memory utiliza-
tion by only fetching the data desired for queries that ac-
cess partial records, while mitigating the trade-off between
NSM andDSM. Experiments with ourClotho implemen-
tation show substantial performance improvements across
a spectrum of query types, for both a real disk array and
future MEMS-based storage devices.
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