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Abstract

Sensor devices and embedded processors are becoming ubiquitous, especially in measurement
and monitoring applications. Automatic discovery of patterns and trends in the large volumes
of such data is of paramount importance. The combination of relatively limited resources
(CPU, memory and/or communication bandwidth and power) poses some interesting chal-
lenges. We need both powerful and concise “languages” to represent the important features
of the data, which can (a) adapt and handle arbitrary periodic components, including bursts,
and (b) require little memory and a single pass over the data.
This allows sensors to automatically (a) discover interesting patterns and trends in the data,
and (b) perform outlier detection to alert users. We need a way so that a sensor can discover
something like “the hourly phone call volume so far follows a daily and a weekly periodic-
ity, with bursts roughly every year,” which a human might recognize as, e.g., the Mother’s
day surge. When possible and if desired, the user can then issue explicit queries to further
investigate the reported patterns.
In this work we propose AWSOM (Arbitrary Window Stream mOdeling Method), which
allows sensors operating in remote or hostile environments to discover patterns efficiently and
effectively, with practically no user interventions. Our algorithms require limited resources
and thus can be incorporated in individual sensors, possibly alongside a distributed query
processing engine [CCC+02, BGS01, MSHR02]. Updates are performed in constant time,
using sub-linear (in fact, logarithmic) space. Existing, state of the art forecasting methods
(AR, SARIMA, GARCH, etc) fall short on one or more of these requirements. To the best of
our knowledge, AWSOM is the first method that has all the above characteristics.
Experiments on real and synthetic datasets demonstrate that AWSOM discovers meaningful
patterns over long time periods. Thus, the patterns can also be used to make long-range
forecasts, which are notoriously difficult to perform automatically and efficiently. In fact,
AWSOM outperforms manually set up auto-regressive models, both in terms of long-term
pattern detection and modeling, as well as by at least 10× in resource consumption.



1 Introduction

Several recent applications produce huge amounts of data in the form of a semi-infinite stream
of values [GKMS01, GKS01, DGGR02, GG02]. Formally, a stream is a time sequence of
numbers X0, X1, . . . , Xi, . . . like samples or measurements at discrete time ticks.

Time sequences have attracted a lot of attention in the past [BJR94], for forecasting
in financial, sales, environmental, ecological and biological time series, to mention a few.
However, several new and exciting applications have recently become possible.

The emergence of cheap and small sensors has attracted significant attention. Sensors
are small devices that gather measurements—for example, temperature readings, road traf-
fic data, geological and astronomical observations, patient physiological data, etc. There are
numerous, fascinating applications for such sensors and sensor networks, such as: (a) health
care, where potentially wearable sensors can monitor blood pressure, heart rate, temperature
etc. and detect patterns and abnormalities, (b) industrial applications, keeping track of man-
ufacturing process parameters and production, (c) civil infrastructure, with sensors embedded
in bridges and highways [CGN00] monitoring vibrations and material deterioration, (d) road
traffic conditions and safety, (e) smart houses and elderly care.

Although current small sensor prototypes [HSW+00] have limited resources (512 bytes
to 128Kb of storage), dime-sized devices with memory and processing power equivalent to
a PDA are not far away. In fact, PDA-like devices with data gathering units are already
being employed in some of the above applications (such as highway and industrial monitor-
ing). The goal in the next decade is single-chip computers with powerful processors and
2–10Gb [CBF+00, SGNG00] of nonvolatile storage.

Furthermore, embedded processors are becoming ubiquitous and their power has yet to be
harnessed. A few examples of such applications are (a) intelligent (active) disks [RFGN00]
that learn common input traffic patterns and do appropriate prefetching and buffering, (b)
intelligent routers that can monitor data traffic and simplify network management.

From now on, we use the term “sensor” broadly, to refer to any embedded computing
device with fairly limited processing, memory and (optionally) communication resources and
which generates a semi-infinite sequence of measurements.

The resource limitations unavoidably imply the need for certain trade-offs—it is impossible
to store everything. Furthermore, we would like to make the most of available resources,
allowing the sensor to adapt and operate without supervision for as long as possible.

This is the problem we address in this work. The goal is a “language” (i.e., model or repre-
sentation) for efficient and effective, automatic stream mining. We want to collect information,
in real-time and without any human intervention, to answer questions such as “what is the
typical temperature pattern during a year” and “what is a good guess for the next Christmas’
phone traffic?” Furthermore, we would ideally want to discover such patterns automatically
and receive appropriate alerts.

This problem is orthogonal to that of continuous query processing. We focus on an adaptive
algorithm that can look for arbitrary patterns and requires no initial human intervention to
guide it. There are situations when we do not know beforehand what we are looking for.
Furthermore, it may be impossible to guide the sensor as it collects data, due to the large
volume of data and/or limited or unavailable communication. If further exploration is desired,
users can issue further queries later on, guided by the general long-term patterns to quickly
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narrow down the “search space.”
In detail, the main requirements are:

• No human in the loop: The method should not require human intervention, nor
manually selected parameter values. In a general sensor setting we cannot afford human
intervention.

• Periodic component identification: Humans can achieve this task, visually, from
the time-plot. Our method should automatically spot multiple periodic components,
each of unknown, arbitrary period.

• Online, one-pass algorithm: We can afford neither the memory or time for offline
updates, much less multiple passes over the data stream.

• Limited memory: Sensor memory will soon be exhausted, unless our method carefully
detects redundancies (or equivalently, patterns) and exploits them to save space. Fur-
thermore, we ideally want our models to collect data even when network connectivity is
intermittent (e.g., due to power constraints) or even non-existent.

• Simple, but powerful patterns: We need simple patterns (i.e., equations, rules)
which can be easily communicated to other nearby sensors and/or to a central processing
site. These patterns should be powerful enough to capture most of the regularities in
real-world signals.

• Any-time forecasting/outlier detection: It is not enough to do compression (e.g.,
of long silence periods, or by ignoring small Fourier or wavelet coefficients). The model
should also be able to spot, store and report outliers. An outlier can be defined as any
value that deviates too much from our forecast (e.g., by two standard deviations). It
should be able to do so immediately, in real time.

Our AWSOM model has all of these characteristics, while none of the previously published
methods (AR and derivatives, Fourier analysis, wavelet decomposition—see Section 2.1) can
claim the same.

The rest of the paper is organized as follows: Section 2 discusses the related work. Section 3
briefly presents relevant background (some further information is contained in the appendices).
Section 4 describes the proposed method and its algorithms. Section 5 presents experimental
results on real and synthetic datasets. section 6 gives the conclusions.

2 Related work

An interesting method for discovering representative trends in time series using so-called
sketches was proposed by Indyk et. al. [IKM00]. A representative trend is a section of the time
series itself that has the smallest sum of “distances” from all other sections of the same length.
The proposed method employs random projections [JL84] for dimensionality reduction and
FFT to quickly compute the sum of distances. However, it cannot be applied to semi-infinite
streams, since each section has to be compared to all others.

Recent work by Gilbert et. al. [GKMS01] uses wavelets to “compress” the data into a fixed
amount of memory, by keeping track of the largest Haar wavelet coefficients and updating them

2



on-line (in the following, we will use the name Incremental DWT or IncDWT for short). The
work in [GGI+02a] presents this in the context of piecewise-constant histogram maintenance
(see also [GKS02]). Also, [GGI+02b] presents a novel method for approximate estimation of
the largest Fourier coefficients by sampling only a portion of the series and proves bounds based
on the uncertainty principle. However, all the above methods do not try to discover patterns
and trends in the data. Thus, they cannot compete directly with our proposed method, which
employs a generative model for pattern and trend detection.

More recently, Garofalakis et. al. [GG02] presented an approach for accurate data com-
pression using probabilistic wavelet synopses. However, this method has an entirely different
focus and cannot be applied to semi-infinite streams.

Further work on streams focuses on providing exact answers to pre-specified sets of queries
using a minimum amount of memory. Arvind et. al. [ABB+02] study the memory requirements
of continuous queries over relational data streams. Datar et. al. [DGI+02] keep exact summary
statistics and provide theoretical bounds in the setting of a bitstream.

There is also some recent work on approximate answers to various types of continuous
queries. Gehrke et. al. [GKS01] presents a comprehensive approach for answering correlated
aggregate queries (e.g., “find points below the (current) average”), using histogram “sum-
maries” to approximate aggregates. Dobra et. al. [DGGR02] present a method for approximate
answers to aggregate multi-join queries over several streams, by using random projections and
boosting.

Finally, a comprehensive system for linear regression on multi-dimensional time series
data was presented very recently in [CDH+02]. Although this framework employs varying
resolutions in time, it does so by straight aggregation, using pre-specified aggregation levels
(although the authors discuss the use of a geometric progression of time frames) and can only
deal with linear trends, using straight linear regression (as opposed to auto-regression).

2.1 Previous approaches

None of the continuous querying methods deal with pattern discovery and forecasting. The
typical method for forecasting (i.e., generative time series modeling) uses the traditional auto-
regressive (AR) models or their generalizations, auto-regressive moving average (ARMA),
auto-regressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA)—see
Appendix A. Although popular, these methods fail to meet many of the requirements listed
in the introduction. The most important failure is that they need human intervention and
fine-tuning. As mentioned in statistics textbooks such as [BD91]:

“The first step in the analysis of any time series is to plot the data. [...] Inspection
of a graph may also suggest the possibility of representing the data as a realization
of [the ‘classical decomposition’ model].”

Thus, such methods are not suited for remote, unsupervised operation.
Furthermore, these methods have a number of other limitations:

• Existing methods for fitting models are typically batch-based, that is, they do not allow
for recursive updating of model parameters.

While recursive least squares is effective in solving this problem for AR models, it does
not generalize to handle the more general class of ARMA models.
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• Established methods for determining model structure (i.e., period of seasonal compo-
nents and order of the ARIMA model) are at best computationally intensive, besides
not easily automated.

• If there are non-sinusoidal periodic components, ARIMA models will miss them com-
pletely, unless specifically instructed to use a large window (for instance, Mother’s day
traffic will not be captured with a window less than 365 days long).

Large window sizes introduce further estimation problems, both in terms of resource
requirements as well as accuracy. SARIMA models provide a workaround, but can deal
only with one or, at best, a few pre-determined, constant periods.

• In addition, ARIMA models do not do a good job of handling “bursty” time series.
ARIMA’s linear difference equations eventually lead to to sinusoidal signals of constant
or exponentially decreasing amplitude (or mixtures of thereof). Thus, it can not generate
signals with strong bursts, like, e.g., disk traffic [WMC+02] or LAN traffic [RMSCB99],
even when these bursts are re-occurring (in fact, such bursts may even lead to exponential
divergence in a generated sequence).

While GARCH models introduced by [Bol86] provide a means of modeling the class
of bursty white noise sequences, and a combined SARIMA-GARCH model can indeed
model bursty time series with seasonal components, the computational difficulties in-
volved with such models are far greater than those for the SARIMA models.

Recently, the ARIMA model has been extended to ARFIMA (auto-regressive fractionally
integrated moving average), which handles the class of self-similar bursty sequences (such
as Fractional Gaussian Noise [Ber94]). However, ARFIMA and its generalizations are
even harder than ARIMA to use and require human expert intervention to determine
yet another coefficient, the Hurst exponent [CB96].

All the above methods deal with linear forecasting. Non-linear modeling, using chaos and
fractals, has been attracting increasing interest [WG94]. However, these methods also require
the intervention of a human to choose the appropriate windows for (non-linear) regression or
to configure an artificial neural network.

Data streams are essentially signals. There is a huge body of work in the signal pro-
cessing literature related to compression and feature extraction. Typical tools include the
celebrated Fast Fourier Transform (FFT) [OS75], as well as the Discrete Wavelet Transform
(DWT) [PW00]. However, most of the algorithms (a) deal with fixed length signals of size N ,
and (b) cannot do forecasting (i.e., do not employ a generative model).

Thus the authors believe that there is a need for straightforward methods of time series
model building which can be applied in real-time to semi-infinite streams of data, using limited
memory.

3 Background material

In this section we give a very brief introduction to some necessary background material.

4



Symbol Definition
Xt Stream value at time tick t = 0, 1, . . ..
N Number of points so far from {Xt}.
Wl,t Wavelet coefficient (level l and time t).
Vl,t Scaling coefficient (level l and time t).
βδl,δt AWSOM coefficient, (δl, δt) ∈ D).
D Window offsets for AWSOM (window “size” is |D|).
AWSOMλ(n0, . . . , nλ) Number of level offsets (λ) and offsets per level

(n0, . . . , nλ) in D—see Definition 2. (n0, . . . , nλ) is also
called the AWSOM order.

NΛ, Λ, T Parameters that determine the number of equations
in the full model, AWSOMΛ,T (n0, . . . , nλ)—see Defini-
tion 3.

Table 1: Symbols and definitions.

3.1 Auto-regressive modeling

Auto-regressive models (also known as the Box-Jenkins method [BJR94]) are the most widely
used. A more complete enumeration of AR models can be found in Appendix A. The main
idea is to express Xt as a function of its previous values, plus (filtered) noise εt:

Xt = φ1Xt−1 + . . . + φWXt−W + εt (1)

where W is a window that is determined by trial and error, or by using a criterion that
penalizes model complexity (i.e., large values of W ), like the Akaike Information Criterion
(AIC).

AR(I)MA requires manual preprocessing by trained statisticians to remove trends and
seasonalities, typically by visual inspection of the sequence itself, as well as itsAuto-Correlation
Function (ACF).

3.2 Recursive least squares

Recursive Least Squares (RLS ) is a method that allows dynamic update of a least-squares fit.
More details are given in Appendix C and in [You84].

3.3 Wavelets

The N -point discrete wavelet transform (DWT) of a length N time sequence gives N wavelet
coefficients. Each coefficient is responsible for a frequency range within a time window (the
higher the frequency, the smaller the time window). Figure 1 shows the scalogram, that
is, the magnitude of each wavelet coefficient versus the location in time and frequency it is
“responsible” for.

The DWT of a sequence can be computed in O(N) time. Furthermore, as new points
arrive, it can be updated in O(1) amortized time. This is made possible by the structure of
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Figure 1: Haar bases and correspondence to time/frequency (for signal length N = 16). Each
wavelet coefficient is a linear projection of the signal to the respective basis.

the decomposition into time and frequency (which we will explain shortly) which is unique to
wavelets. For instance, the Fourier transform also decomposes a signal into frequencies (i.e.,
sum of sines), but requires O(N lgN) time to compute and cannot be updated as new points
arrive. A brief introduction to the wavelet transform can be found in Appendix B.

For our purposes here, we shall restrict ourselves to wavelets of the Daubechies family,
which are easy to compute (even in the case of infinite streams), have desirable smoothness
properties and successfully compress many real signals. In practice, although by far the most
commonly used (largely due to their simplicity), Haar wavelets are too unsmooth and introduce
significant artifacting [PW00]. In fact, unless otherwise specified, we use Daubechies-6.

Incremental wavelets This part is a very brief overview of how to compute the DWT
incrementally. This is the main idea of IncDWT [GKMS01], which uses Haar wavelets. In
general, when using a wavelet filter of length L, the wavelet coefficient at a particular level
is computed using the L corresponding scaling coefficients of the previous level. Recall that
L = 2 for Haar, and L = 6 for Daubechies-6 that we typically use. Thus, we need to remember
the last L− 1 scaling coefficients at each level. We call these the wavelet crest.
Definition 1 (Wavelet crest). The wavelet crest at time t is defined as the set of scal-
ing coefficients (wavelet smooths) that need to be kept in order to compute the new wavelet
coefficients when Xt arrives.

Lemma 1 (DWT update). Updating the wavelet crest requires space (L − 1) lgN + L =
O(L lgN) = O(lgN), where L is the width of the wavelet filter (fixed) and N the number of
values seen so far.

Proof. See [GKMS01]. Generalizing to non-Haar wavelets and taking into account the wavelet
filter width is straightforward.
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Contin. Trends / Auto-
Method Streams Forecast matic Memory
DFT (N -point) NO NO — —
SWFT (N -point) YES(?) NO — —
DWT (N -point) NO NO — —
IncDWT [GKMS01] YES NO — —
Sketches [IKM00] NO YES(?) — —
AR / ARIMA YES YES NO [BJR94] W 2

AWSOM YES YES YES m|D|2

Table 2: Comparison of methods.

3.3.1 Wavelet properties

In this section we focus on some of the properties of the DWT which are relevant to AWSOM.
Time/frequency decomposition. Notice (see scalogram in Figure 1) that higher level

coefficients are highly localized in time, but involve uncertainty in frequency and vice-versa.
This is a fundamental trade-off of any time/frequency representation and is a manifestation
of the uncertainty principle, according to which localization in frequencies is inversely propor-
tional to localization in time. This is a fundamental principle that implies certain trade-offs
in any method! When dealing with semi-infinite streams in limited memory, we unavoidably
need to make certain trade-offs. Given this, the wavelet representation is an excellent choice:
it “compresses” well many real signals, while it is fast to compute and can be updated online.

Wavelets and decorrelation. A wavelet transform with length 2L filter can decorrelate
only certain signals provided their L-th order (or less) backward difference is a stationary
random process [PW00]. For real signals, this value of L is not known in advance and may be
impractically large: the space complexity of computing new wavelet coefficients is O(L lgN)—
see Lemma 1.

Wavelet variance. One further benefit of using wavelets is that they decompose the
variance across scales. Furthermore, the plot of log-power versus scale can be used to detect
self-similar components (see Appendix B.1 for a brief overview).

4 Proposed method

In this section we introduce our proposed model.

4.1 Intuition behind our method

What equations should we be looking for to replace ARIMA’s (see Equation 1)? In particular,
how can we capture periodic components of arbitrary period?

First part—information representation As explained in section 3.3.1, given our limited
resources, we have to make a choice about how to efficiently and effectively capture the im-
portant information in the sequence. Traditional models (such as ARIMA) operate directly
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Figure 2: AWSOM—Intuition and demonstration. AWSOM captures intra- and inter-scale
correlations. Also, the left figure demonstrates why we fit different models per level.

in the time domain. Thus, they cannot deal with redundancies, seasonalities, long-range be-
havior, etc. This is where a human expert is needed to manually detect these phenomena and
transform the series to match ARIMA’s assumptions.

This is a crucial choice—is there a better one? We want a powerful and flexible represen-
tation that can adapt to the sequence, rather than expect someone to adapt the sequence to
the representation. Wavelets are extremely successful in compressing most real signals, such
as voice and images [Fal96, Fie93, PTVF92], seismic data [ZdZ98], biomedical signals [Aka97]
and economic time sequences [GSW01].

By using wavelet coefficients, we immediately discard many redundancies (i.e., near-zero
valued wavelet coefficients) and focus on the things that really matter. Furthermore, the DWT
can be computed quickly and updated online.

Second part—correlation structure In the wavelet domain, how can we capture arbi-
trary periodicities? The answers come from the properties of the DWT. A periodic signal
(even a spike train—e.g., Mother’s day traffic), will have high absolute values for the wavelet
coefficients at the scales that correspond to its frequency. Not only that, but successive co-
efficients on the same level should have related values (see Figure 2, left). Thus, in order
to capture periodic components, we should look for correlations between wavelet coefficients
within the same level.

Furthermore, how should we capture bursts? Short bursts carry energy in most frequencies.
Therefore wavelet coefficients across different scales (i.e., frequencies) will have large values
(see Figure 2, middle). If the phenomenon follows some pattern, then it is likely that there
will be an inter-scale correlation among several of the wavelet coefficients.

Third part—correlation modeling The last question we need to answer is: what type of
regression models should we use to quantify these correlations? Our proposed method tries to

8



UpdateCrest (X[t]):
Foreach l ≥ 0 s.t. 2l divides t:
Compute V [l, t/2l]
If 2l+1 divides t:
Compute W [l, t/2l+1]
Delete W [l, t/2l+1 − L]

Update (X[t]):
UpdateCrest(X[t])
Foreach new coefficient W [l, t′] in the crest:
Find the linear model it belongs to
based on l and t′ mod Λ
Update XTX and XT y for this model

Figure 3: High-level description of update algorithms.

capture inter- and intra-scale correlations by fitting a linear regression model in the wavelet
domain. These can also be updated online with RLS.

To summarize, we have argued for using the wavelet representation of the series and
capturing correlations within and across scales (see Figure 2, right). We have “substituted,”
in effect, the human expert with the DWT and this correlation structure. Thus, we expect
that linear regression will successfully capture these correlations with very few coefficients.

4.2 AWSOM modeling

Formally, our proposed method tries to fit models of the following form:

Wl,t = β0,1Wl,t−1 + β0,2Wl,t−2 + . . .
β1,0Wl−1,t/2+ β1,1Wl−1,t/2−1 + . . .

β2,0Wl−2,t/4+ . . .

. . .

or more concisely (where εl,t is the usual error term)

Wl,t =
∑

(δl,δt)∈D
βδl,δtWl+δl,t/2δl−δt + εl,t (2)

where D is a set of index offsets. The βδl,δt are called the AWSOM coefficients.

Definition 2 (AWSOM order). The set of offsets is always of the form

D = { (0, 1), (0, 2), . . . , (0, n0),

(1, 0), (1, 1), (1, 2), . . . , (1, n1 − 1),

. . . ,

(λ, 0), . . . , (λ, nλ − 1) }

i.e., each wavelet coefficient is expressed as a function of the previous n0 wavelet coefficients
on the same level, n1 coefficients from one level below and so on. For a particular choice of
D, we use AWSOMλ(n0, . . . , nλ) or simply

AWSOM(n0, n1, . . . , nλ)

to denote this instance of our model. We call (n0, . . . , nλ) the order of the AWSOM model.
The total order is the number of AWSOM coefficients k per equation, i.e., k =

∑λ
δl=0 nδl.
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Figure 4: Illustration of AWSOM2,2(1, 1) with NΛ = 2. The shade of each wavelet coefficient
corresponds to the model equation used to “predict” it. The unshaded wavelet coefficients
correspond to initial conditions (i.e., with incomplete AWSOM window D).

A fixed choice of D is sufficient for all signals. In most of our experiments we use
AWSOM(6, 4, 2) (k = 12).

The naive approach would be to fit Equation 2 to all data points (i.e., wavelet coefficients).
However, an approach that gives more accurate results is to fit one equation per level (see
Figure 2), as long as the level contains enough wavelet coefficients to get a good fit. Thus, in
actual use on a running stream, we would fit one equation for every level l < Λ, where Λ is
the level that has no more than, say, NΛ = 16 wavelet coefficients. For levels l ≥ Λ we can
either keep the exact wavelet coefficients (which would be no more than 16 + 8+ · · ·+ 1 = 31
in the above case) and/or fit one more equation. Thus, as more data points arrive, the value
of Λ gradually increases as necessary.

Besides fitting one equation per level (up to Λ), when we use AWSOMλ with λ ≥ 1,
we also fit different equations depending on time location t. For instance, if we are using
AWSOM1(n0, 2), we should fit one equation for pairs Wl,2t and Wl−1,t and another for pairs
Wl,2t+1 and Wl−1,t (see Figure 4). In general, we need 2λ separate models to ensure that the
inter-scale correlations λ levels down are not “shoehorned” into the same regression model.

To summarize, the full AWSOM model fits a number of equations:

Wl,t =
∑

(δl,δt)∈D
βl′,t′

δl,δtWl+δl,t−δtεl,t (3)

where l′ ≡ min(l,Λ) and t′ ≡ t mod T . For example, if T = 2 and Λ = 1, we estimate one
linear equation for each set of wavelet coefficients W0,2i, W0,2i+1, Wl,2i and Wl,2k+1 (l ≥ 1,
i ≥ 0). The significant advantage of this approach is that we can still easily update the
AWSOM equations online, as new data values arrive. This is possible because the equation is
selected based only on l and t for the new wavelet coefficient.

Definition 3. For the full model described above, we use the notation

AWSOMΛ,T (n0, n1, . . . , nλ)
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ModelSelection:
For each linear model:
Estimate SSR of complete model
For each subset of regression variables:
Compute SSR of reduced model
from 3
Estimate probability that reduction
in variance is not due to chance

Select the subset of variables with
highest probability (or keep all
if not within 95% confidence interval)

Figure 5: High-level description of basic selection algorithm.

The number of equations m is simply m = ΛT .

The value of Λ depends on N and the value of T is fixed and depends only on λ. In general,
we automatically pick the following values:

T ∼ 2λ and Λ ∼ lg
N

NΛT
= lgN − lgNΛ − λ

4.3 Model selection

When fitting a linear model, as we increase the number of variables (or, in the context of
forecasting, as we increase the window size), we expect in general to get a better fit. How-
ever, what we would really like to find are those variables that have a statistically significant
contribution to the output value (or, forecast). The reasons for this are twofold:

• Over -fitting the data may result in a good approximation of the past, but a number of
the correlations may in reality be due to noise and not carry over well in forecasts of the
future. Therefore, by picking only the important variables, we improve accuracy.

• More importantly, in the pattern-mining context, we want to filter out the effects of
noise and present only those patterns that are important to the user.

More details on model selection are given in Appendix D.
Model selection and combination needs to be done when interpreting the models; processing

on the sensor is possible, but not necessary. In fact, all operations can be performed using
only data gathered online and time complexity is independent of the stream size. The only
thing that needs to be decided in advance is the largest AWSOM(n0, . . . , nλ) order we may
want to fit. From the data collected, we can then automatically select any model of smaller
order (AWSOM(n′0, . . . , n′λ′), where λ′ ≤ λ and n′i ≤ ni).
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Dataset Size Description
Triangle 64K Triangle wave (period 256)
Mix 256K Square wave (period 256)

plus sine (period 64)
Impulses 64K Impulse train (every 256 points)
ARFIMA 2K Fractionally differenced ARIMA

(R package fracdiff).
Sunspot 2K Sunspot data
Disk 2K Disk access trace (from

Hewlett-Packard)
Automobile 32K Automobile traffic sensor trace

from large Midwestern state

Table 3: Description of datasets (sizes are in number of points, 1K=1024 points).

4.4 Complexity

In this section we show that our proposed AWSOM models can be easily estimated with a
single-pass, “any-time” algorithm. From Lemma 1, estimating the new wavelet coefficients
requires space O(lgN). In fact, since we typically use Daubechies-6 wavelets (L = 6), we need
to keep exactly 5 lgN + 6 values. The AWSOM models can be dynamically updated using
RLS.

Lemma 2 (Logarithmic space complexity). Maintaining the model requires O(lgN+mk2)
space, where N is the length of the signal so far, k is the number of AWSOM coefficients in
each equation and m the number of equations.

Proof. Keeping the wavelet crest scaling coefficients requires space O(lgN). If we use recursive
least squares, we need to maintain a k×k matrix for each of the m equations in the model.

Auto-regressive models with a comparable window size need space O(m2k2), since the
equivalent fair window size is W ≈ mk. Here, “fair” means that the number of total number
of AWSOM coefficients plus the number of initial conditions we need to store is the same for
both methods. This is the information that comprises the data synopsis and that would have
to be eventually communicated. However, the device gathering the measurements needs extra
storage space in order to update the models. The latter is, in fact, much larger for AR than
for AWSOM (see Figure 7). Thus this definition of equivalent window actually favors AR.

Theorem 1 (Time complexity). Updating the model when a new data point arrives requires
O(k2) time on average, where k is the number of AWSOM coefficients in each equation.

Proof. On average, the wavelet crest scaling coefficients can be updated in O(1) amortized
time. Although a single step may require O(lgN) time in the worst case, on average, the
(amortized) time required is O(

∑n
i=0 B(i)/N) = O(1) (where B(i) is the number of trailing

zeros in the binary representation of i)1.
1Seen differently, IncDWT is essentially an pre-order traversal of the wavelet coefficient tree.
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Figure 6: Disk and ARFIMA datasets.

Updating the k × k matrix for the appropriate linear equation (which can be identified in
O(1), based on level l and on t modT ), requires time O(k2).

Once again, auto-regressive models with a comparable window size need time O(m2k2) for
each update.

Corollary 1 (Constant-time update). When the model parameters have been fixed (typ-
ically k is a small constant ≈ 10 and m ∼ lgN), the model requires space O(lgN) and
amortized time O(1) for each update.

5 Experimental evaluation

We compared AWSOM against standard AR (with the equivalent, fair window size—see Sec-
tion 4.4), as well as hand-tuned (S)ARIMA (wherever possible). Our prototype AWSOM
implementation is written in Python, using Numeric Python for fast array manipulation. We
used the standard ts package from R (version 1.6.0—see http://www.r-project.org/) for
AR and (S)ARIMA models. We illustrate the properties of AWSOM and how to interpret the
models using synthetic datasets and then show how these apply to real datasets (see Table 3).

Only the first half of each sequence was used to estimate the models, which were then
applied to generate a sequence of length equal to that of the entire second half. For AR and
(S)ARIMA, the last values (as dictated by the lags) of the first half were used to initiate
generation. For AWSOM we again used as many of the last wavelet coefficients from each
DWT level of the first half as were necessary to start applying the model equations. We
should note that generating more than, say, 10 steps ahead is very rare: most methods in
the literature [WG94] generate one step ahead, then obtain the correct value of Xt+1, and
only then try to generate Xt+2. Nevertheless, our goal is to capture long-term behavior and
AWSOM achieves this efficiently, unlike ARIMA.
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Figure 7: Memory space requirements: Space needed to keep the models up-to-date (AWSOM
and AR with equivalent, fair window size.

5.1 Interpreting the models

Visual inspection A “forecast” is essentially a by-product of any generative time series
model: application of any model to generate a number of “future” values reveals precisely the
trends and patterns captured by that model. In other words, synthesizing points based on
the model is the simplest way for any user to get a quick, yet fairly accurate idea of what the
trends are or, more precisely, what the model thinks they are. Thus, what we expect to see
(especially in a long-range forecast) is the important patterns that can be identified from the
real data.

However, an expert user can extract even more precise information from the models. We
will now explain how the “AWSOM language” can be fully interpreted.

Variance test As explained in Appendix B.1, if the signal is self-similar, then the plot of
log-power versus scale is linear.

Definition 4 (Variance diagnostic). We call the log-power vs. scale plot the wavelet vari-
ance diagnostic plot (or just variance diagnostic). In particular, we use the correlation coeffi-
cient ρα to quantify the relation. If the plot is linear (in a range of scales), the slope α̂ is the
self-similarity exponent (−1 < α < 0, closer to zero the more bursty the series).

A large value of |ρα|, at least across several scales, indicates that it the series component in
those scales may be modeled using a fractional noise process with parameter dictated by α (see
Automobile dataset). However, we should otherwise be careful in drawing further conclusions
about the behavior within these scales.

We should note that after the observation by [LTWW94], fractional noise processes and,
in general, self-similar sequences have revolutionized network traffic modeling. Furthermore,
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Figure 8: Wavelet variance diagnostic.

self-similar sequences appear in atomic clock fluctuations, river minima, compressed video
bit-rates [Ber94, PW00], to mention a few examples.

Wavelet variance (energy and power) The magnitude of variance within each scale
serves as an indicator about which frequency components are the dominant ones in the se-
quence. To precisely interpret the results, we also need to take into account the fundamental
uncertainty in frequencies (see Figure 15). However, the wavelet variance plot quickly gives
us the general picture of important trends. Furthermore, it guides us to focus on AWSOM
coefficients around frequencies with large variance.

AWSOM coefficients Regardless of the energy within a scale, the AWSOM coefficients
provide further information about the presence of trends in the signal, which cannot be deduced
from the variance plots. In particular:

• Large intra-scale coefficients: These capture patterns at certain frequencies, regardless
of the contribution of these frequencies to overall energy. Furthermore, if the coefficients
are not the same for all regression models at the same level, this is an indication of
“seasonalities” within that scale and capture a different type of information about larger
frequencies.

• Large inter-scale coefficients: These occur when there are repeated bursts in the series.
The number of scales with large inter-scale coefficients depends on the duration of the
bursts (short bursts have large bandwidth).

To summarize, the steps are:

• Examine the variance diagnostic to identify sub-bands that correspond to a self-similar
component. These may be modeled using a fractional noise process, but otherwise we
cannot say much more.

• Examine the wavelet and energy and power spectrum to quickly identify important
sub-bands.

• Examine AWSOM coefficients, primarily within and around the sub-bands identified
during the second step.
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Figure 9: Forecasts—synthetic datasets. Note that AR gives the wrong trend (if any), while
seasonal AR fails to complete.
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5.2 Synthetic datasets

We present synthetic datasets to illustrate the basic properties of AWSOM, its behavior on
several characteristic classes of sequences, and the principles behind interpreting the models.
Applying the models to generate a number of “future” data points is the quickest way to see
if each method captures long-term patterns.

ARFIMA. This is a synthetic dataset of a fractional noise process, which illustrates the first
point about AWSOM model interpretation. As seen in Figure 8, this exhibits a clearly linear
relationship in the wavelet variance plot. The estimated fractional differencing (“burstiness”)
parameter δ̂ ≡ −α̂/2 ≈ 0.24 is close to the actual parameter used (δ = 0.3). It is clear that
no periodic component is present in this series.

Triangle. AR fails to capture anything, because the window is not large enough. SAR
estimation (with no differencing, no MA component and only a manually pre-specified lag-256
seasonal component) fails completely. In fact, R segfaults after several minutes, even without
using maximum-likelihood estimation (MLE). However, AWSOM captures the periodicity.
The AWSOM model visualization is similar to that for Mix.

Mix. Once again, AR is confused and does not capture even the sinusoidal component.
SAR estimation (without MLE) fails (R’s optimizer returns an error, after several minutes
of computation). Figure 14 shows the AWSOM coefficients. We show only the levels that
correspond to significant variance. These illustrate the first point in the interpretation of
AWSOM coefficients. We clearly see strong correlations in levels 6 and 8 (which correspond
to the periods 26 = 64 and 28 = 256 of the series components). Note that the variance alone
(see also Figure 15) is not enough to convey this information.

Impulses. Once again, AR fails to capture anything and SAR estimation fails. AR fails
because the window is too small. However, AWSOM captures the overall behavior. Figure 14
illustrates the second point in the interpretation of AWSOM coefficients. We clearly see
repeated presence of bursts, with strong inter-scale correlations across all levels up to the
impulse “period” (since the bursts have width one). We show those levels that correspond
to the bursts. At level 5, information from the impulse “period” begins to enter in the
wavelet coefficients (see also Figure 15). After level 7, the inter-scale correlations diminish in
significance and the interpretation is similar to that for Mix.

We should mention that we tried SAR(0)×(1)128 on an impulse train of period 128. On
a sequence with 1024 points, R takes over 4 minutes (on a signal with 64K points it did not
complete in over one hour). However, AWSOM estimates the parameters (with 64K points)
in approximately 50 seconds, although our prototype is implemented in Python.

5.3 Real datasets

For the real datasets, we show the so-called marginal distribution quantile-quantile plots (or
Q-Q plots—see Figure 12 and Figure 11). These are the scatter plots of (x, y) such that p%
of the values are below x in the real sequence and below y in the generated sequence. When
the distributions are identical, the Q-Q plot coincides with the bisector of the first quadrant.

Sunspot. This dataset is well-known and it has a time-varying period. AR again fails
completely. SAR (without a MA component, much less MLE) takes 40 minutes to estimate.
AWSOM (in Python) takes less than 9 seconds. SAR gives a completely fixed period, captures
a false downward trend and misses the marginal distribution (see Figure 12). On the other
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Figure 10: Forecasts—real datasets. Note that AR fails to detect any trend, while seasonal
AR either fails to complete or gives a wrong conclusion (decaying trend, fixed period) in 260×
time.

hand, AWSOM captures the general periodic trend, with a desirable slight confusion about
the period (since the period is varying and thus un-predictable).

Automobile. This dataset has a strongly linear variance diagnostic in scales 1–6 (Figure 8).
However, the lower frequencies contain the most energy, as can be seen in the variance plot
(Figure 13. This is an indication that we should focus at these scales. The lowest frequency
corresponds to a daily periodicity (approximately 4000 points per day, or about 8 periods
in the entire series) and next highest frequency corresponds to the morning and afternoon
rush-hour.

In this series, low frequencies can be modeled by fractional noise. Figure 11 shows a
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Figure 11: Automobile—forecast with fractional noise.
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generated sequence with fractional noise, as identified by AWSOM. The fractional difference
parameter is estimated as δ̂ ≡ −α̂/2 ≈ 0.276 and the amplitude is chosen to match the total
variance in those scales.

However, for unsupervised outlier detection, this is not necessary: what would really con-
stitute an outlier would be, for instance, days that (a) do not follow the daily and rush-hour
patterns, or (b) whose variance in the fractional noise scales is very different. This can be
captured automatically by the series components in the appropriate frequency sub-bands that
AWSOM identifies as a periodic component and bursty noise, respectively.

Disk. This is a very difficult data set to characterize (even by humans). It exhibits a
linear variance diagnostic (see Figure 8) across all scales. Therefore, the regression models
are of little use in this case. However, from the variance plot, we see moderate spikes at
frequencies that correspond to daily periodicities (48 points per day) and, to a lesser extent,
weekly periodicities. However, the presence in those frequencies is fairly week and the points
(2K) are too few to safely draw any further conclusions; AWSOM provides the necessary
information to judge what conclusions can be drawn. Both AR and SAR (with a hand-picked
lag of 48 to capture the daily periods) fail completely and do not even provide a hint about
the weak (compared to the bursts) periodic components.

6 Conclusions

Sensor networks are becoming increasingly popular, thanks to falling prices and increasing
storage and processing power. In this work we presented AWSOM (Arbitrary-Window Stream
mOdeling Method). Our method is the only one that achieves all our goals: (1) Unsupervised
operation: once we decide the largest AWSOM order we want, no further intervention is
needed: the sensor can be left alone to collect information. (2) ‘Any-time’, one-pass algorithm
to incrementally update the patterns. (3) Automatic detection of periodic components with
arbitrary period. (4) Limited memory: our method requires O(lgN) memory (where N is the
length of the sequence so far). (5) Simplicity: AWSOM provides linear models which have
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Figure 13: Wavelet variances.

a straightforward interpretation. (6) Power: AWSOM provides information across several
frequencies and can diagnose self-similarity and long-range dependence. (7) Immediate outlier
detection: our method, despite its simplicity and its automatic, unsupervised operation, is
nevertheless able to do forecasting. It can do so directly, for the estimated model. We showed
real and synthetic data, where our method captures the periodicities and burstiness of the
input sequence, while the traditional ARIMA method fails completely.

AWSOM is an important first step toward successful, hands-off data mining in infinite
streams, combining simplicity with modeling power. Continuous queries are useful for evidence
gathering and hypothesis testing once we know what we are looking for. AWSOM is the first
method to deal directly with the problem of automatic, unsupervised stream mining and
pattern detection and fill the gap. Among the many future research directions, the most
promising seems to be the extension of AWSOM to multiple, co-evolving time sequences,
beyond MUSCLES [YSJ+00] and multi-variate ARIMA.
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A Auto-regressive modeling

In their simplest form, an auto-regressive model of order p, or AR(p) express Xt as a linear
combination of previous values, i.e., Xt = φ1Xt−1 + · · ·+ φpXt−p + εt or, more concisely

φ(L)Xt = εt

where L is the lag operator and φ(L) is a polynomial defined on this operator:

LXt ≡ Xt−1

φ(L) = 1− φ1L− φ2L
2 − · · · − φpL

p

and εt is a white noise process, i.e.,

E[εt] = 0 and Cov[εt, εt−k] =

{
σ2 if k = 0
0 otherwise

Using least-squares, we can estimate σ2 from the sum of squared residuals (SSR). This is used
as a measure of estimation error; when generating “future” points, εt is set to E[εt] ≡ 0.

The next step up are auto-regressive moving average models. An ARMA(p, q) model
expresses values Xt as

φ(L)Xt = θ(L)εt

where θ(L) = 1 − θ1L − · · · − θqL
q. Estimating the moving average coefficients θi is fairly

involved. State of the art methods use maximum-likelihood (ML) algorithms, employing
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iterative methods for non-linear optimization, whose computational complexity depends ex-
ponentially on q.

ARIMA(p, d, q) models are similar to ARMA(p, q) models, but operate on (1−L)dXt, i.e.,
the d-th order backward difference of Xt:

φ(L)(1− L)dXt = θ(L)εt

Finally, SARIMA(p, d, q)×(P,D,Q)T models are used to deal with seasonalities, where:

φ(L)Φ(LT )(1− L)d(1− LT )DXt = θ(L)Θ(LT )εt

where the seasonal difference polynomials

Φ(LT ) = 1− Φ1L
T − Φ2L

2T − · · · − ΦPL
PT

Θ(LT ) = 1−Θ1L
T −Θ2L

2T − · · · −ΘQL
QT

are similar to φ(L) and θ(L) but operate on lags that are multiples of a fixed period T . The
value of T is determined purely by trial and error, or by utilizing prior knowledge about the
series Xt.

B Discrete Wavelet Transform

Wavelets are best introduced with the Haar transform, because of its simplicity. At each level
l of the construction we keep track of two sets of coefficients, each of which “looks” at a time
window of size 2l:

• Wl,t: The smooth component, which consists of the N/2l scaling coefficients. These
capture the low-frequency component of the signal; in particular, the range [0, 1/2l].

• Vl,t: The detail component, which consists of theN/2l wavelet coefficients. These capture
the high-frequency component; in particular, the range [1/2l, 1/2l−1].

The construction starts with V0,t = Xt and W0,t is not defined. At each iteration l =
1, 2, . . . , lgN we perform two operations on Vl−1,t to compute the coefficients at the next level:

• Differencing, to extract the high frequencies:

Wl,t = (Vl−1,2t − Vl−1,2t−1)/
√
2

• Smoothing, averages2 each consecutive pair of values and extracts the low frequencies:

Vl,t = (Vl−1,2t + Vl−1,2t−1)/
√
2

2The scaling factor of 1/
√
2 in both the difference and averaging operations is present in order to preserve

total signal energy (i.e., sum of squares of all values).
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Figure 15: Daubechies-6 cascade gain (levels 3–5).

We stop when Wl,t consists of one coefficient (which happens at l = lgN + 1). The scaling
coefficients are needed only during the intermediate stages of the computation. The final
wavelet transform is the set of all wavelet coefficients along with Vlg N+1,0. Starting with
Vlg N+1,0 (which is also referred to as the signal’s scaling coefficient) and following the inverse
steps, we can reconstruct each Vl,t until we reach V0,t ≡ Xt.

Figure 1 illustrates the final effect for a signal with N = 16 values. Each wavelet coefficient
is the result of projecting the original signal onto the corresponding basis signal.

In general, there are many wavelet transforms, but they all follow the pattern above: a
wavelet transform uses a pair of filters, one high-pass and one low-pass. In the case of the Haar
transform Different wavelet families (e.g., Coiflets, least-asymmetric, to mention a few) achieve
different trade-offs with respect to (un)smoothness of the projections, phase shift properties,
etc [PW00].

Frequency properties Wavelet filters employed in practice can only approximate an ideal
bandpass filter, since they are of finite length L. This is an unavoidable consequence of
the uncertainty principle. The practical implications are that wavelet coefficients at level l
correspond roughly to frequencies [1/2l+1, 1/2l] (or, equivalently, periods [2l, 2l+1] (see Table 4
and Figure 15 for the actual correspondence). This has to be taken into account for precise
interpretation of AWSOM models.

B.1 Wavelet variance and self-similarity

The wavelet variance decomposes the variance of a sequence across scales. Here we mention
the definitions and basic facts; details can be found in [PW00].

Definition 5 (Wavelet variance). If {Wl,t} is the DWT of a series {Xt} then the wavelet
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variance Vl is defined as
Vl = Var[Wl,t]

Under certain general conditions

V̂l =
2l

N

N/2l∑
t=1

Wl,t

is an unbiased estimator of Vl. Note that the sum is precisely the energy of {Xt} at scale l.
Definition 6 (Self-similar sequence). A sequence {Xt} is said to be self-similar following
a pure power-law process if

SX(f) ∝ |f |α

where −1 < α < 0 and SX(f) is the SDF3

It can be shown that

Vl ≈ 2
∫ 1/2l

1/2l+1

SX(f)df

thus if {Xt} is self-similar, then
logVl ∝ l

i.e., the plot of logVl versus the level l should be linear. In fact, slope of the log-power versus
scale plot should be approximately equal to the exponent α. This fact and how to estimate
Vl are what the reader needs to keep in mind.

C Recursive Least Squares (RLS)

Let us assume that X is an m×k matrix of m measurements (one set of k input variables per
row), b is the k × 1 vector of regression coefficients and y the m × 1 vector of outputs. The
LS solution to the overdetermined system Xb = y is the solution of

XTXb = XTy (4)
3The spectral density function (SDF) is the Fourier transform of the auto-covariance sequence (ACVS)

SX,k ≡ Cov[Xt, Xt−k]. Intuitively, it decomposes the variance into frequencies.

Periods
Ideal Non-zero Dominant Peak

4 16–32 11–45 14–28 23
5 32–64 23–109 29–57 45
6 64–128 41–205 58–111 91
7 128–256 157–440 111–212 181

Table 4: Frequency information content of Daubechies-6 wavelet coefficients per level.
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When a new vector xm+1 and output ym+1 arrive, we can update the k× k projection matrix
XTX by adding the outer product xm+1xT

m+1 to it. Similarly, we can update X
Ty by adding

ym+1xm+1. Since all we need for the solution are

P ≡ XTX and q ≡ XTy

we need only space O(k2 + k) = O(k2) to keep the model up to date. In fact, it is possible to
update the regression coefficient vector b at each step without explicitly solving Equation 4
(see [You84]).

D Model selection

We show how feature selection with model combination can be done from the data gathered
online (i.e., P and q for each AWSOM equation).

D.1 Model testing

Lemma 3 (Square sum of residuals). If b is the least-squares solution to the overdeter-
mined equation Xb = y, then

sn ≡
n∑

i=1

(xi
Tb− yi)2 = bTPb− 2bTq+ y2

Proof. Straightforward from the definition of sn, which in matrix form is sn = (Xb−y)2.

Thus, besides P and q, we only need to update y2 (a single number), by adding y2
i to it

as each new value arrives.
Now, if we select a subset I = {i1, i2, . . . , ip} ⊆ {1, 2, . . . , k} of the k variables x1, x2, . . . , xk,

then the solution bI for this subset is given by PIbI = qI and the SSR by sn =
bT
IPIbI − 2bIqI + y2 where the subscript I denotes straight row/column selection (e.g.,
PI = [pij ,ik ]ij ,ik∈I)

The F-test (Fisher test) is a standard method in statistics to determine whether a reduction
in variance is statistically significant. In particular, if f is the ratio of the sample variance of
the simplified model (i.e., one with fewer variables) to the sample variance of the complete
model, then the F-distribution describes the probability that f takes a certain value, assuming
that the difference is due to chance.

The F-test is based on the sample variances, which can be computed directly from the SSR,
as explained in Lemma 3. The F-distribution holds precisely (i.e., non-asymptotically) under
normality assumptions. However, in practice it works well in most circumstances, especially
when the population size is large. This is clearly the case with semi-infinite streams.

D.2 Model combination

If we split measurements xi into two subsets X1 and X2 with corresponding outputs y1 and
y2, then the LS solution for both subsets combined is given by b = (XTX)−1XT y where
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X =
[
XT

1 X
T
2

]T and y = [yT
1 y

T
2 ]

T , i.e.,

b = (XT
1 X1 +XT

2 X2)−1(XT
1 y1 +XT

2 y2) = (P1 + P2)−1(q1 + q2)

Therefore, it is possible to combine sub-models when reducing the number of levels (effectively
reducing the T parameter). Model selection as presented above can be extended to include
this case.
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