
MultiMap: Preserving disk locality for multidimensional datasets

Minglong Shao , Steven W. Schlosser†, Stratos Papadomanolakis , Jiri Schindler‡

Anastassia Ailamaki , Gregory R. Ganger

Carnegie Mellon University †Intel Research Pittsburgh ‡ Network Appliance, Inc

Abstract

MultiMap is an algorithm for mapping multidimensional
datasets so as to preserve the data’s spatial locality on
disks. Without revealing disk-specific details to applica-
tions, MultiMap exploits modern disk characteristics to pro-
vide full streaming bandwidth for one (primary) dimension
and maximally efficient non-sequential access (i.e., mini-
mal seek and no rotational latency) for the other dimen-
sions. This is in contrast to existing approaches, which
either severely penalize non-primary dimensions or fail to
provide full streaming bandwidth for any dimension. Exper-
imental evaluation of a prototype implementation demon-
strates MultiMap’s superior performance for range and
beam queries. On average, MultiMap reduces total I/O time
by over 50% when compared to traditional linearized lay-
outs and by over 30% when compared to space-filling curve
approaches such as Z-ordering and Hilbert curves. For
scans of the primary dimension, MultiMap and traditional
linearized layouts provide almost two orders of magnitude
higher throughput than space-filling curve approaches.

1 Introduction

Applications accessing multidimensional datasets are in-
creasingly common in modern database systems. The basic
relational model used by conventional database systems or-
ganizes information with tables or relations, which are 2-D
structures. Spatial databases directly manage multidimen-
sional data for applications such as geographic information
systems, medical image databases, multimedia databases,
etc. An increasing number of applications that process mul-
tidimensional data run on spatial databases, such as sci-
entific computing applications (e.g., earthquake simulation
and oil/gas exploration) and business support systems using
online analytical processing (OLAP) techniques.

Existing mapping algorithms based on the simple linear
abstraction of storage devices offered by standard interfaces
such as SCSI are insufficient for workloads that access out-

of-core multidimensional datasets. To illustrate the prob-
lem, consider mapping a relational database table onto the
linear address space of a single disk drive or a logical vol-
ume consisting of multiple disks. A naive approach requires
making a choice between storing the table in row-major or
column-major order, trading off access performance along
the two dimensions. While accessing the table in the pri-
mary order is efficient, with requests to sequential disk
blocks, access in the other order is inefficient: accesses at
regular strides incur short seeks and variable rotational la-
tencies, resulting in near-random-access performance. Sim-
ilarly, range queries are inefficient if they extend beyond a
single dimension. The problem is more serious for higher
dimensional datasets: sequentiality can only be preserved
for a single dimension and all other dimensions will be, es-
sentially, scattered across the disk.

The shortcomings of non-sequential disk drive accesses
have motivated a healthy body of research on mapping algo-
rithms using space-filling curves, such as Z-ordering [15],
Hilbert curves [11], and Gray-coded curves [7]. These ap-
proaches traverse the multidimensional dataset and impose
a total order on the dataset when storing data on disks. They
can help preserve locality for multidimensional datasets, but
they do not allow accesses along any one dimension to take
advantage of streaming bandwidth, the best performance a
disk drive can deliver. This is a high price to pay, since the
performance difference between streaming bandwidth and
non-sequential accesses is at least two orders of magnitude.

Recent work [22] describes a new generalized model of
disks, called the adjacency model, for exposing multiple ef-
ficient access paths to fetch non-contiguous disk blocks.
With this new model, it becomes feasible to create data
mapping algorithms that map multiple data dimensions to
physical disk access paths so as to optimize access to more
than one dimension.

This paper describes MultiMap, a data mapping algo-
rithm that preserves spatial locality of multidimensional
datasets by taking advantage of the adjacency model. Mul-
tiMap maps neighboring blocks in the dataset into specific
disk blocks on nearby tracks, called adjacent blocks, such

IEEE 23rd International Conference on Data Engineering (ICDE 2007) Istanbul, Turkey, April 2007.



that they can be accessed for equal positioning cost and
without any rotational latency. We describe a general al-
gorithm for MultiMap and evaluate MultiMap on a proto-
type implementation that uses a logical volume of real disk
drives with 3-D and 4-D datasets. The results show that,
on average, MultiMap reduces total I/O time by over 50%
when compared to the naive mapping and by over 30%
when compared to space-filling curve approaches.

The remainder of the paper is organized as follows. Sec-
tion 2 describes related work. Section 3 outlines the charac-
teristics of modern disk technology that enable MultiMap.
Section 4 introduces MultiMap in detail. Section 5 evalu-
ates the performance of MultiMap, and section 6 concludes.

2 Related work

Organizing multidimensional data for efficient access
has become increasingly important in both scientific com-
puting and business support systems, where dataset sizes are
terabytes or more. Queries on these datasets involve data
accesses on different dimensions with various access pat-
terns [10, 25, 29]. Data storage and management for mas-
sive multidimensional data have two primary tasks: data
indexing, for quick location of the needed data, and data
placement, which arranges data on storage devices for effi-
cient retrieval. There is a large body of previous work on
the two closely related but separate topics as they apply to
multidimensional datasets. Our work focuses on data place-
ment which happens after indexing.

Under the assumption that disks are one-dimensional de-
vices, various data placement methods have been proposed
in the literature, such as the Naive mapping, described in the
previous section, and spacing-filling curve mappings utiliz-
ing Z-ordering [15], Hilbert [11], or Gray-coded curve [7].
Their goal is to order multidimensional data such that spa-
tial locality can be preserved as much as possible within
the 1-D disk abstraction. The property of preserving spatial
locality, often called clustering [13], does not take advan-
tage of the disk characteristics; access along each dimen-
sion has (nearly) identical cost. However, the cost, equiv-
alent to short seek and a random rotational latency, is far
greater than the efficient sequential access. In contrast,
our MultiMap algorithm exploits the opportunity for effi-
cient sequential access along one dimension and a minimal-
overhead access for the remaining dimensions.

Optimizations on naive mappings [19] such as dividing
the original space into multidimensional tiles based on pre-
dicted access patterns and storing multiple copies along dif-
ferent dimensions improve performance for pre-determined
workloads. However, the performance deteriorates dramat-
ically for workloads with variable access patterns, the same
problem as Naive.

Recently, researchers have focused on the lower level of

the storage system in an attempt to improve performance of
multidimensional queries. Part of that work proposes to ex-
pand the storage interfaces so that the applications can op-
timize data placement. Gorbatenko et al. [9] and Schindler
et al. [20] proposed a secondary dimension on disks which
has been utilized to store 2-D database tables. Multidimen-
sional clustering in DB2 [16] consciously matches the ap-
plication needs to the disk characteristics to improve the
performance of OLAP applications. Others have studied
the opportunities of building two dimensional structures to
support database applications with new alternative storage
devices, such as MEMS-based storage devices [21, 28].

Another body of related research focuses on how
to decluster multidimensional datasets across multiple
disks [1, 3, 4, 8, 17, 18] to optimize spatial access meth-
ods [12, 23] and improve throughput.

3 Multidimensional disk access

This section reviews the adjacency model on which we
build MultiMap. Detailed explanations and evaluation of
the disk technologies across a range of disks from a variety
of vendors are provided by Schlosser et al. [22]. The ad-
jacency model has two primary concepts: adjacent blocks
and semi-sequential access. As described by Schlosser et
al., the necessary disk parameters can be exposed to appli-
cations in an abstract, disk-generic way.

3.1 Adjacent disk blocks

The concept of adjacent blocks is based on two charac-
teristics of modern disks, shown in Figure 1 [22]:

1. Short seeks of up to some cylinder distance, C, are
dominated by the time to settle the head on a desti-
nation track;

2. Firmware features internal to the disk can identify and,
thus, access blocks that require no rotational latency
after a seek.

Figure 1(a) shows a conceptual view of seek time as a
function of cylinder distance for modern disks. For very
short distances of up to C cylinders, seek time is near con-
stant and dominated by the time it takes for the disk head
to settle on the destination track, referred to as settle time.
Supposing each of these cylinders is composed of R tracks,
up to D R C tracks can be accessed from a starting track
for equal cost. The growth of track density has been one of
the strongest trends in disk drive technology over the past
decade, while settle time has decreased very little [2]. With
such trends, more cylinders and, thus, more tracks, can be
accessed within the settle time.

While each of these D tracks contain many disk blocks,
there is one block on each track that can be accessed imme-
diately after the head settles on the destination track, with



C

0 MAX
0

Seek distance [cylinders]

S
ee

k 
tim

e 
[m

s]

(a) Conceptual seek profile of modern disks.

Last (D−th) adjacent block

first adjacent blocks

Semi−sequential path through

D
 a

dj
ac

en
t b

lo
ck

s

Adjacent disk block

Starting disk block

path
Semi−sequential

(b) Adjacent blocks and semi-sequential access.

Figure 1. Conceptual seek profile of modern disk drives and illustration of adjacent blocks.

no additional rotational latency. These blocks can be viewed
as being adjacent to the starting block. Accessing any of
these adjacent blocks takes just the settle time, the mini-
mum time to access a block on another track.

Figure 1(b) illustrates adjacent blocks on disk. For a
given starting block, there are D adjacent disk blocks, one
in each of the D adjacent tracks. All adjacent blocks are
at the same physical offset from the starting block because
the offset is determined by how many degrees disk platters
rotate within the settle time.

3.2 Semi-sequential access

Accessing successive adjacent disk blocks enables semi-
sequential disk access [9, 20], which is the second-most ef-
ficient disk access pattern after pure sequential access. Fig-
ure 1(b) shows two potential semi-sequential paths from a
starting disk block. Traversing the first semi-sequential path
accesses the first adjacent disk block of the starting block,
and then the first adjacent block of each successive desti-
nation block. Traversing the second path accesses succes-
sive last or Dth adjacent blocks. Either path achieves equal
bandwidth, despite the fact that the second path accesses
successive blocks that are physically further away from the
starting block. Recall that the first, second, or (up to) Dth
adjacent block can be accessed for equal cost.

Semi-sequential access outperforms nearby access
within D tracks by a factor of four, thanks to the elimi-
nation of all rotational latency. Modern disks can support
many semi-sequential access paths since D is on the order
of hundreds [22].

The adjacency model is exposed by our logical volume
manager (LVM) to applications through two interface func-
tions: and .

4 Mapping multidimensional data

To map an N-dimensional (N-D) dataset onto disks, we
first impose an N-D grid onto the dataset. Each discrete cell

in the grid is assigned to an N-D coordinate and mapped to
one or more disk blocks. A cell can be thought of as a page
or a unit of memory allocation and data transfer, containing
one or more points in the original geometric space. For clar-
ity of explanation, we assume that a single cell occupies a
single LBN (logical block number) on the disk, whose size
is typically 512 bytes. In practice, a single cell can occupy
multiple LBNs without any impact on the applicability of
our approach.

4.1 Examples

For simplicity, we illustrate MultiMap through three con-
crete examples for 2-D, 3-D, and 4-D uniform datasets. The
general algorithm for non-uniform datasets are discussed in
later sections.

Notation Definition
T disk track length (varies by disk zone)
D number of blocks adjacent to each LBN
N dimensions of the dataset
Dimi notations of the N dimensions
Si length of Dimi

Ki length of Dimi in the basic cube

Table 1. Notation definitions.

The notations used in the examples and later discussions
are listed in Table 1. In the following examples, we assume
that the track length is 5 (T 5), each block has 9 adjacent
blocks (D 9), and the disk blocks start from LBN 0.
Example of 2-D mapping. Figure 2 shows how MultiMap
maps a (5 3) 2-D rectangle to a disk. The numbers in each
cell are its coordinate in the form of x0 x1 and the LBN
to which the cell is mapped. Cells along the first dimension
(i.e., Dim0, or the row direction), are mapped sequentially
to consecutive LBNs on the same track. For example, the
five cells on the bottom row are mapped to LBN 0 through
LBN 4 on the same track.



Track0

Track1

Track2

(0,0)

0

(1,0)

1

(2,0)

2

(3,0)

3

(4,0)

4

(0,1)

5

(1,1)

6

(2,1)

7

(3,1)

8

(4,1)

9

(0,2)

10

(1,2)

11

(2,2)

12

(3,2)

13

(4,2)

14

Dim0

Dim1

S0 = T = 5

S
1

=
 3

Dim1 mapped to sequences 

of 1st adjacent blocks

Dim0 mapped to tracks 

Figure 2. Mapping 2-D dataset.

Dim0

Dim2

Dim1

S 1
= 

3

S0 = T = 5

S
2

=
 3

(4,1,0)

9
(0,0,0)

0

(1,0,0)

1

(2,0,0)

2

(3,0,0)

3

(4,0,0)

4

(0,1,0)

5

(1,1,0)

6

(2,1,0)

7

(3,1,0)

8

(0,2,0)

10

Track0

Track1

Track2

(4,1,0)

9
(0,0,0)

0

(1,0,0)

1

(2,0,0)

2

(3,0,0)

3

(4,0,0)

4

(0,1,0)

5

(1,1,0)

6

(2,1,0)

7

(3,1,0)

8

(0,2,0)

10

Track0

Track1

Track2

(0,0,1)

15

(1,0,1)

16

(2,0,1)

17

(3,0,1)

18

(4,0,1)

19

(0,1,1)

20

(0,2,1)

25

Track3

Track4

Track5

(0,0,1)

15

(1,0,1)

16

(2,0,1)

17

(3,0,1)

18

(4,0,1)

19

(0,1,1)

20

(0,2,1)

25

Track3

Track4

Track5

(0,0,2)

30

(1,0,2)

31

(2,0,2)

32

(3,0,2)

33

(4,0,2)

34

(0,1,2)

35

(0,2,2)

40

Track6

Track7

Track8

(0,0,2)

30

(1,0,2)

31

(2,0,2)

32

(3,0,2)

33

(4,0,2)

34

(0,1,2)

35

(0,2,2)

40

Track6

Track7

Track8

D
im

2
m

a
p
p
e
d
 t

o
 s

e
q
u
e

n
c
e
s
 

o
f 

3
rd

 a
d
ja

c
e
n
t 

b
lo

c
k
s

Figure 3. Mapping 3-D dataset.

Cells along the second dimension (Dim1, or the column
direction) are mapped to successive first adjacent blocks.
Suppose LBN 5 is the first adjacent block of LBN 0 and
LBN 10 is the first adjacent block of LBN 5, then the cells
of 0 1 and 0 2 are mapped to LBN 5 and 10, as shown
in Figure 2. In this way, spatial locality is preserved for both
dimensions: fetching cells on Dim0 achieves sequential ac-
cess and retrieving cells on Dim1 achieves semi-sequential
access, which is far more efficient than random access. No-
tice that once the mapping of the left-most cell 0 0 is de-
termined, mappings of all other cells can be calculated. The
mapping occupies S1 3 contiguous tracks.
Example of 3-D mapping. In this example, we use a 3-
D dataset of the size (5 3 3). The mapping is iterative,
starting with mapping 2-D layers. As shown in Figure 3,
the lowest 2-D layer is mapped in the same way described
above with the cell 0 0 0 stored in LBN 0. Then, we use
the third adjacent block of LBN 0, which is LBN 15, to store
the cell 0 0 1 . After that, the second 2-D layer can be
mapped in the similar way as the 2-D example. Continuing
this procedure, we map the cell 0 0 2 to the third adjacent
block of LBN 15 (LBN 30) and finish the mapping of all
cells on the last layer after that.

Since D 9, access along Dim2 also achieves semi-
sequential bandwidth by fetching successive adjacent
blocks. Therefore, the spatial locality of Dim2 is also pre-

Dim0

Dim2

S 1
= 

3

S0 = T = 5

S
2

=
 3

(0,0,0,0)

0

(1,0,0,0)

1

(2,0,0,0)

2

(3,0,0,0)

3

(4,0,0,0)

4

(0,0,0,0)

0

(1,0,0,0)

1

(2,0,0,0)

2

(3,0,0,0)

3

(4,0,0,0)

4

(0,0,1,0)

15

(0,0,1,0)

15

(0,0,2,0)

30

(0,1,2,0)

35

(0,2,2,0)

40

(0,0,2,0)

30

(0,1,2,0)

35

(0,2,2,0)

40

(0,0,0,1)

45

(0,0,0,1)

45

(0,0,1,1)

60

(0,0,1,1)

60

(0,0,2,1)

75

(0,1,2,1)

80

(0,2,2,1)

85

(0,0,2,1)

75

(0,1,2,1)

80

(0,2,2,1)

85

Dim3

S
3

=
 2

D
im

3
m

a
p
p
e
d
 t

o
 s

e
q
u
e

n
c
e
s
 

o
f 

9
th

 a
d
ja

c
e

n
t 

b
lo

c
k
s

Dim0

Dim2

Dim1

Figure 4. Mapping 4-D dataset.

served (the locality of Dim0 and Dim1 are guaranteed by the
2-D mapping). Note that the width of each layer (S1) is re-
stricted by the value of D to guarantee efficient access along
Dim2 as well. We will discuss the case where S1 D in the
general mapping algorithm. The resulting 3-D mapping oc-
cupies S1 S2 3 3 9 contiguous tracks.
Example of 4-D mapping. The 4-D example, shown in
Figure 4, maps a dataset of the size (5 3 3 2) (S0 T
5, S1 3, S2 3, S3 2). We start by mapping the first 3-
D cube in the 4-D space using the same approach described
in the 3-D example. Then, we use the ninth adjacent block
of LBN 0 (LBN 45) to store the cell 0 0 0 1 . Once the
mapping of 0 0 0 1 is determined, the second 3-D cube
can be mapped using the same 3-D mapping approach and
so on.

Access along Dim3 also achieves semi-sequential band-
width, as long as S1 and S2 satisfy the restriction: S1

S2 D.

4.2 The MultiMap algorithm

As illustrated in the previous section, mapping an N-D
space is an iterative extension of the problem of mapping
(N 1)-D spaces. In addition, the size of the dataset one
can map to disks while preserving its locality is restricted
by disk parameters. We define a basic cube as the largest
data cube that can be mapped without losing spatial locality.
Ki, the length of Dimi in the basic cube, must satisfy the
following requirements:

K0 T (1)

KN 1
Number of tracks in a zone

∏N 2
i 1 Ki

(2)

N 2

∏
i 1

Ki D (3)

Equation 1 restricts the length of the first dimension of



L : x 0 x 1 x N 1 :
: x 0 T T T

: 1
i : 1
repeat

for j 0 to x i 1 do
:

end for
: K i

i : i 1
until i N

K i = Ki

= 1st LBN of basic cube (storing cell 0 0 )
: get -th adjacent block of

Figure 5. Mapping a cell in space to an LBN.

the basic cube to the track length. Note that track length
is not a constant value due to zoning on disks, but is found
through the interface function ex-
ported by our LVM. Equation 2 indicates that the last di-
mension of the basic cube is subject to the total number of
tracks in each zone, and zones with the same track length
are considered a single zone. Equation 3 sets a limit on the
lengths of K1 to KN 2. The volume of the N 2 -D space,
∏N 2

i 1 Ki, must be less than D. Otherwise, the locality of the
last dimension cannot be preserved because accessing the
consecutive cells along the last dimension cannot be done
within the settle time.

The basic cube is mapped as follows: Dim0 is mapped
along each track; Dim1 is mapped to the sequence of suc-
cessive first adjacent blocks; . . . ; Dimi 1 1 i N 2 is
mapped to a sequence of successive ∏i

i 1 Ki -th adjacent
blocks.

The MultiMap algorithm, shown in Figure 5, generalizes
the above procedure. The inputs of are the coor-
dinate of a cell in the basic cube, and the output is the LBN
to store that cell. starts from the cell 0 0 0 .
Each inner iteration proceeds one step along Dimi, which on
a disk corresponds to a jump over K1 K2 Ki 1 adja-
cent blocks. Therefore, each iteration of the outer loop goes
from cell x 0 x i 1 0 0 to cell x 0 x i
1 x i 0 0 .

Because of the zoning on disks, the track length de-
creases from the outer zones to the inner zones. The param-
eter of T in the algorithm refers to the track length within
a single zone. User applications can obtain the track length
information from the proposed call
implemented either in the storage controller or in a device
driver. A large dataset can be mapped to basic cubes of
different sizes in different zones. MultiMap does not map
basic cubes across zone boundaries.

MultiMap preserves spatial locality in data placement.

Dim0 is mapped to the disk track so that accesses along this
dimension achieve the disk’s full sequential bandwidth. All
the other dimensions are mapped to a sequence of adjacent
blocks with different steps. Any two neighboring cells on
each dimension are mapped to adjacent blocks at most D
tracks away (see Equation 3). So, requesting these (non-
contiguous) blocks results in semi-sequential accesses.

4.3 Number of dimensions supported by a disk

The number of dimensions that can be supported by Mul-
tiMap is bounded by D and Ki. Realistic values of D and Ki

allow for a substantial number of dimensions. The first di-
mension, Dim0, is mapped along disk tracks, and the last
dimension, DimN 1, is mapped along successive last (D-th)
adjacent blocks. The remaining N 2 dimensions must fit
in D tracks (refer to Equation 3). Consider basic cubes with
equal length along all dimensions, K1 KN 2 K.
Based on Equation 3, we get:

N 2 logK D K 2 (4)

Nmax 2 log2 D (5)

For modern disks, D is typically on the order of hun-
dreds [22], allowing mapping for more than 10 dimensions.
For most physical simulations and OLAP applications, this
number is sufficient.

4.4 Mapping large datasets

The basic cube defined in Section 4.2 serves as an al-
location unit when we map larger datasets to disks. If the
original space is larger than the basic cube, we partition it
into basic cubes to get a new N-D cube with a reduced size
of

S0

K0

SN 1

KN 1

Under the restrictions of the rules about the basic cube
size, a system can choose the best basic cube size based on
the dimensions of its datasets. Basically, the larger the basic
cube size, the better the performance because the spatial lo-
cality of more cells can be preserved. The least flexible size
is K0, because the track length is not a tunable parameter. If
the length of the dataset’s, and hence basic cube’s, S0 (also
K0) is less than T , we simply pack as many basic cubes next
to each other along the track as possible. Naturally, if at all
possible, it is desirable to select a dimension whose length
is at least T and set it as Dim0.

In the case where S0 K0 T , MultiMap will waste
T mod K0 ∏N 1

i 1 Ki blocks per T K0 basic cubes due
to unmapped space at the end of each track. The percentage
of the wasted space is T mod K0 T . In the worst case,
it can be 50%. Note this only happens to datasets where



all dimensions are much shorter than T . If space is at a
premium and datasets do not favor MultiMap, a system can
simply revert to linear mappings. In the case where S0

K0 T , MultiMap will only have unfilled basic cubes at the
very end. Within a cell, MultiMap uses the same format
as other mapping algorithms, and therefore it has the same
in-cell space efficiency.

When using multiple disks, MultiMap can apply existing
declustering strategies to distribute the basic cubes of the
original dataset across the disks comprising a logical vol-
ume just as traditional linear disk models decluster stripe
units across multiple disks. The key difference lies in how
multidimensional data is organized on a single disk. Mul-
tiMap thus works nicely with existing declustering methods
and can enjoy the increase in throughput brought by paral-
lel I/O operations. In the rest of our discussion, we focus
on the performance of MultiMap on a single disk, with the
understanding that multiple disks will scale I/O throughput
by adding disks. The access latency for each disk, however,
remains the same regardless of the number of disks.

4.5 Mapping non-grid structure datasets

MultiMap can be directly applied to datasets that are
partitioned into regular grids, such as the satellite obser-
vation data from NASA’s Earth Observation System and
Data Information System (EOSDIS) [14] and tomographic
(e.g., the Visible Human Project for the National Library of
Medicine) or other volumetric datasets [6]. When the dis-
tribution of a dataset is skewed, a grid-like structure applied
on the entire dataset would result in poor space utilization.
For such datasets, one should detect uniform subareas in the
dataset and apply MultiMap locally.

Since the performance improvements of MultiMap stem
from the spatial locality-preserving mapping within a basic
cube, non-grid datasets will still benefit from MultiMap as
long as there exist subareas that can be modeled with grid-
like structures and are large enough to fill a basic cube. The
problem of mapping skewed datasets thus reduces to iden-
tifying such subareas and mapping each of them into one or
more basic cubes.

There are several existing algorithms that one can adopt
to find those areas, such as density-based clustering meth-
ods. In this paper, we use an approach that utilizes index
structures to locate the sub-ranges. We start at an area with
a uniform distribution, such as a leaf node or an interior
node on an index tree. We grow the area by incorporating
its neighbors of similar density. The decision of expanding
is based on the trade-offs between the space utilization and
any performance gains. We can opt for a less uniform area
as long as the suboptimal space utilization will not cancel
the performance benefit brought by MultiMap. As a last
resort, if such areas can not be found (e.g, the subarea di-

mensions do not fit the dimensions of the basic cubes), one
can revert to traditional linear mapping techniques.

We demonstrate the effectiveness of this method by map-
ping a real non-uniform dataset used in earthquake simula-
tions [26] that uses an octree as its index. Experimental
results with this dataset are shown in Section 5.

4.6 Supporting variable-size datasets

MultiMap is an ideal match for the static, large-scale
datasets that are commonplace in science. For example,
physics or mechanical engineering applications produce
their datasets through simulation. After a simulation ends,
the output dataset is heavily queried for visualization or
analysis purposes, but never updated [5]. Observation-
based applications, such as telescope or satellite imaging
systems [10], generate large amounts of new data at regular
intervals and append the new data to the existing database
in a bulk-load fashion. In such applications, MultiMap can
be used to allocate basic cubes to hold new points while
preserving spatial locality.

For applications that need to perform online updates to
multidimensional datasets, MultiMap can handle updates
just like existing linear mapping techniques. To accommo-
date future insertions, it uses a tunable fill factor of each cell
when the initial dataset is loaded. If there is free space in
the destination cell, new points will be stored there. Other-
wise, an overflow page will be created. Space reclaiming of
underflow pages are triggered also by a tunable parameter
and done by dataset reorganization, which is an expensive
operation for any mapping technique.

5 Evaluation

We evaluate MultiMap’s performance using a prototype
implementation that runs queries against multidimensional
datasets stored on a logical volume comprised of real disks.
The three datasets used in our experiments are a synthetic
uniform 3-D grid dataset, a real non-uniform 3-D earth-
quake simulation dataset with an octree index, and a 4-D
OLAP data cube derived from TPC-H. For all experiments,
we compare MultiMap to three linear mapping algorithms:
Naive, Z-order, and Hilbert. Naive linearizes an N-D space
along Dim0. Z-order and Hilbert order the N-D cells ac-
cording to their curve values.

We also developed an analytical model to estimate the
I/O cost for any query against a multidimensional dataset.
The model calculates the expected cost in terms of total I/O
time for Naive and MultiMap given disk parameters, the di-
mensions of the dataset, and the size of the query. Due to
space limitations, we refer the interested reader to a techni-
cal report [24], which shows the details of this model.



5.1 Experimental setup

We use a two-way 1.7 GHz Pentium 4 Xeon workstation
running Linux kernel 2.4.24 with 1024 MB of main mem-
ory and one Adaptec Ultra160 SCSI adapter connecting two
36.7 GB disks: a Seagate Cheetah 36ES and a Maxtor At-
las 10k III. Our prototype system consists of a logical vol-
ume manager (LVM) and a database storage manager. The
LVM exports a single logical volume mapped across multi-
ple disks and identifies adjacent blocks [22]. The database
storage manager maps multidimensional datasets by utiliz-
ing high-level functions exported by the LVM.

The experiment datasets are stored on multiple disks.
The LVM generates requests to all the disks during our ex-
periments, but we report performance results from a sin-
gle disk. This approach keeps the focus on average I/O re-
sponse times, which depend only on the characteristics of a
single disk drive. Using multiple drives improves the over-
all throughput of our experiments, but does not affect the
relative performance of the mappings we are comparing.

We run two classes of queries in the experiments. Beam
queries are 1-D queries retrieving data cells along lines par-
allel to the dimensions. Queries on the earthquake dataset
examining velocity changes for a specific point over a pe-
riod of time are examples of beam query in real applica-
tions. Range queries fetch an N-D equal-length cube with a
selectivity of p%. The borders of range queries are gener-
ated randomly across the entire domain.

5.2 Implementation

Our implementation of the Hilbert and Z-order map-
pings first orders points in the N-D space, according to the
corresponding space-filling curves. These points are then
packed into cells with a fill factor of 1 (100%). Cells are
stored sequentially on disks with each occupying one or
more disk blocks, depending on the cell size. As we are
only concerned with the cost of retrieving data from the
disks, we assume that some other method (e.g., an index)
has already identified all data cells to be fetched. We only
measure the I/O time needed to transfer the desired data.

For Hilbert and Z-order mappings, the storage manager
issues I/O requests for disk blocks in the order that is opti-
mal for each technique. After identifying the LBNs con-
taining the desired data, the storage manager sorts those
requests in ascending LBN order to maximize disk perfor-
mance. While the disk’s internal scheduler should be able
to perform this sorting itself (if all of the requests are issued
together), it is an easy optimization for the storage manager
that significantly improves performance in practice.

When executing beam queries, MultiMap utilizes se-
quential (along Dim0) or semi-sequential (along other di-
mensions) accesses. The storage manager identifies those

LBNs that contain the data and issues them directly to the
disk. No sorting is required. For instance, in Figure 2, if
a beam query asks for the first column (LBN 0, 5, and 10),
the storage manager generates an I/O request for each block
and issues them all at once. The disk’s internal scheduler
will ensure that they are fetched in the most efficient way,
i.e., along the semi-sequential path.

When executing a range query using MultiMap, the
storage manager will favor sequential access over semi-
sequential access. Therefore, it will fetch blocks first along
Dim0, then Dim1, and so on. Looking at Figure 2 again, if
the range query is for the first two columns of the dataset
(0, 1, 5, 6, 10, and 11), the storage manager will issue three
sequential accesses along Dim0 to fetch them. That is, three
I/O requests for (0, 1), (5, 6), and (10, 11). Favoring sequen-
tial over semi-sequential access for range queries provides
better performance as sequential access is still significantly
faster than semi-sequential access. In our implementation,
each cell is mapped to a single disk block of 512 bytes.

5.3 Synthetic 3-D dataset

For these experiments, we use a uniform synthetic
dataset with 1024 1024 1024 cells. We partition the
space into chunks of at most 259 259 259 cells that fit
on a single disk and map each chunk to a different disk of
the logical volume. For both disks in our experiments, Mul-
tiMap uses D 128.
Beam queries. The results for beam queries along Dim0,
Dim1, and Dim2 are presented in Figure 6(a). The graphs
show the average I/O time per cell (disk block). The values
are averages over 15 runs, and the standard deviation is less
than 1% of the reported times. Each run selects a random
value between 0 and 258 for the two fixed dimensions and
fetches all cells (0 to 258) along the remaining dimension.

As expected, Naive performs best along Dim0, the ma-
jor order, as it utilizes efficient sequential disk accesses
with average time of 0.035 ms per cell. However, accesses
along the non-major orders take much longer, since neigh-
boring cells along Dim1 and Dim2 are stored 259 and 67081
(259 259) blocks apart, respectively. Fetching each cell
along Dim1 experiences mostly just rotational latency; two
consecutive blocks are often on the same track. Fetching
cells along Dim2 results in a short seek of 1.3 ms for each
disk, followed by rotational latency.

True to their goals, Z-order and Hilbert achieve balanced
performance across all dimensions. They sacrifice the per-
formance of sequential accesses that Naive can achieve for
Dim0, resulting in 2.4 ms per cell in Z-order mapping and
2.0 ms per cell in Hilbert, versus 0.035 ms for Naive (57 –
69 worse). Z-order and Hilbert outperform Naive for the
other two dimensions, achieving 22%–136% better perfor-
mance for each disk. Hilbert shows better performance than



 0

 1

 2

 3

 4

 5

 6

Dim0 Dim1 Dim2

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Maxtor Atlas 10k III

 0

 1

 2

 3

 4

 5

 6

Dim0 Dim1 Dim2

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Seagate Cheetah 36ES

Naive
Z-order
Hilbert

MultiMap

(a) Beam queries.

 0

 1

 2

 3

 4

0.
01 0.
1 1 5 10 20 40 60 80 10
0

S
pe

ed
up

 r
el

at
iv

e 
to

 N
ai

ve

selectivity (%)

Maxtor Atlas 10k III

 0

 1

 2

 3

 4

0.
01 0.
1 1 5 10 20 40 60 80 10
0

S
pe

ed
up

 r
el

at
iv

e 
to

 N
ai

ve

selectivity (%)

Seagate Cheetah 36ES

Naive
Zorder
Hilbert

MultiMap

(b) Range queries.

Figure 6. Performance of queries on the synthetic 3-D dataset.

Z-order, which agrees with the theory that Hilbert curve has
better clustering properties [13].

MultiMap delivers the best performance for beam
queries along all dimensions. It matches the streaming
performance of Naive along Dim0 despite paying a small
penalty when jumping from one basic cube to the next one.
As expected, MultiMap outperforms Z-order and Hilbert
for Dim1 and Dim2 by 25%–35% and Naive by 62%–214%
for each disk. Finally, MultiMap achieves almost identical
performance on both disks, unlike the other techniques, be-
cause these disks have comparable settle times, and thus the
performance of accessing adjacent blocks along Dim1 and
Dim2.
Range queries. Figure 6(b) shows the speedups of each
mapping technique relative to Naive as a function of selec-
tivity (from 0.01% to 100%). The X axis uses a logarithmic
scale. As before, the performance of each mapping follows
the trends observed for the beam queries. MultiMap out-
performs other mappings, achieving a maximum speedup
of 3 46 , while Z-order and Hilbert mappings observe a
maximum speedup of 1 54 and 1 11 , respectively.

Given our dataset size and the range of selectivities from
0.01% to 100%, these queries fetch between 900 KB and
8.5 GB data from a single disk. The performance of range
queries are determined by two factors: the closeness of the
required blocks (the clustering property of the mapping al-
gorithm) and the degree of sequentiality in these blocks. In
the low selectivity range, the amount of data fetched is small
and there are few sequential accesses. Therefore, Hilbert
(up to 1%) and Z-order (up to 0.1%) outform Naive due to
their better clustering property. As the value of selectiv-
ity increases, Naive has relatively more sequential accesses.
Thus, its overall performance improves, resulting in lower
speedups of other mappings. This trend continues until
the selectivity hits a point (around 40% in our experiment)
where all mappings have comparable sequential accesses
but different degrees of clustering. In this case, Hilbert and
Z-order again outperform Naive. As we keep increasing the

value of selectivity to fetch nearly the entire dataset, the per-
formance of all mapping techniques converge, because they
all retrieve the cells sequentially. The exact turning points
depend on the track length and the dataset size. Most im-
portantly, MultiMap always performs the best except in the
selectivity range of 10%–40% on the Seagate Cheetah 36ES
disk where it is 6% worse than Naive.

5.4 3-D earthquake simulation dataset

The earthquake dataset models earthquake activity in a
14 km deep slice of earth of a 38 38 km area in the vicin-
ity of Los Angeles [27]. We use this dataset as an example
of how to apply MultiMap to skewed datasets. The points
in the 3-D dataset, called nodes, have variable densities and
are packed into elements such that the 64 GB dataset is
translated into a 3-D space with 113,988,717 elements in-
dexed by an octree, with each element as a leaf node.

In our experiments, we use an octree to locate the leaf
nodes that contain the requested points. Naive uses X as
the major order to store the leaf nodes on disks whereas
Z-order and Hilbert order the leaf nodes according to the
space-filling curve values. For MultiMap, we first utilize
the octree to find the largest sub-trees on which all the leaf
nodes are at the same level, i.e., the distribution is uniform
on these sub-trees. After identifying these uniform areas,
we start expanding them by integrating the neighboring el-
ements that are of the similar density. With the octree struc-
ture, we just need to compare the levels of the elements.
The earthquake dataset has roughly four uniform subareas.
Two of them account for more than 60% elements of the
total datasets. We then apply MultiMap on these subareas
separately.

The results, presented in Figure 7, exhibit the same
trends as the previous experiments. MultiMap again
achieves the best performance for all beam and range
queries. It is the only mapping technique that achieves
streaming performance for one dimension without compro-



 0

 1

 2

 3

 4

 5

 6

X Y Z

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Maxtor Atlas 10k III

 0

 1

 2

 3

 4

 5

 6

X Y Z

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Seagate Cheetah 36ES

Naive
Z-order
Hilbert

MultiMap

(a) Beam queries.

 0

 50

 100

 150

 200

0.0001 0.001 0.003

T
ot

al
 I/

O
 ti

m
e 

[m
s]

Selectivity (%)

Maxtor Atlas 10k III

 0

 50

 100

 150

 200

0.0001 0.001 0.003

T
ot

al
 I/

O
 ti

m
e 

[m
s]

Selectivity (%)

Seagate Cheetah 36ES

Naive
Z-order
Hilbert

MultiMap

(b) Range queries.

Figure 7. Performance of queries on the 3-D earthquake dataset.

 0

 1

 2

 3

 4

 5

Q1 Q2 Q3 Q4 Q5

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

(a) Maxtor Atlas 10k III.

 0

 1

 2

 3

 4

 5

Q1 Q2 Q3 Q4 Q5

I/O
 ti

m
e 

pe
r 

ce
ll 

[m
s]

Naive
Z-order
Hilbert

MultiMap

(b) Seagate Cheetah 36ES.

Figure 8. Performance of queries on the 4-D OLAP dataset.

mising the performance of spatial accesses in other dimen-
sions. For range queries, we select representative selectivi-
ties for the applications.

5.5 4-D OLAP dataset

In this section, we run experiments on an OLAP cube
derived from the TPC-H tables as follows:

This table schema is similar to the one used in the IBM’s
Multi-Dimensional Clustering paper [16]. We choose the
first four attributes as the four dimensions of the space and
form an OLAP cube of size (2361, 150, 25, 50) according
to the unique values of these attributes. Since each unique
combination of the four dimensions does not have enough
points to fill a cell or disk block, we roll up along
to increase the number of points per combination, i.e., com-
bine two cells into one cell along . This leads
to a cube of size (1182, 150, 25, 50) for a 100 GB TPC-H
dataset. Each cell in the cube corresponds to the sales of a
specific order size for a specific product sold to a specific
country within 2 days.

The original cube is partitioned into chunks to fit on each
disk, whose dimensions are (591, 75, 25, 25). The value of
D is the same as the 3-D experiments, and the results are
presented in Figure 8. For easy comparison across queries,
we report the average I/O time per cell. The details of
OLAP queries are as follows:

Q1: “How much profit is made on product P with a quan-
tity of Q to country C over all dates?”

Q2: “How much profit is made on product P with a quan-
tity of Q ordered on a specific date over all countries?”

Q1 and Q2 are beam queries on the major order (Order-
Day) and a non-major dimension (NationID), respectively.
As expected, Naive outperforms Hilbert and Z-order by two
orders of magnitude for Q1, while Z-order and Hilbert are
almost twice as fast as Naive for Q2. MultiMap achieves
the best performance for both.

Q3: “How much profit is made on product P of all quan-
tities to country C in one year?” The 2-D range query Q3
accesses the major order (OrderDay) and one non-major
order (Quantity), so Naive can take advantage of sequen-
tial access to fetch all requested blocks along the major di-
mension then move to the next line on the surface. Hence,
Naive outperforms Z-order and Hilbert. MultiMap matches
Naive’s best performance, achieving the same sequential ac-



cess on the major order.
Q4: “How much profit is made on product P over all

countries, quantities in one year?” Q4 is a 3-D range query.
Because it also involves the major order dimension, Naive
shows better performance than the space-filling curve map-
pings by at least one order of magnitude. MultiMap slightly
outperforms Naive because it also preserves locality along
other dimensions.

Q5: “How much profit is made on 10 products with
10 quantities over 10 countries within 20 days?” Q5 is a
4-D range query. As expected, both Z-order and Hilbert
demonstrate better performance than Naive. MultiMap per-
forms the best. For the two different disks, it achieves
166%–187% better performance than Naive, 58%–103%
better performance than Z-order and 36%–42% better per-
formance than Hilbert.

6 Conclusions

MultiMap is a data placement technique for multidi-
mensional datasets that leverages technological trends of
modern disk drives to preserve spatial locality, delivering
streaming bandwidth for accesses along one dimension and
efficient semi-sequential accesses along the other dimen-
sions. We measure substantial improvement over traditional
mapping techniques for multidimensional datasets.

References

[1] K. A. S. Abdel-Ghaffar and A. E. Abbadi. Optimal Alloca-
tion of Two-Dimensional Data. International Conference on
Database Theory, pp. 409-418, 1997.

[2] D. Anderson, J. Dykes, and E. Riedel. More than an inter-
face: SCSI vs. ATA. FAST, pp. 245–257. USENIX, 2003.

[3] M. J. Atallah and S. Prabhakar. (Almost) Optimal Parallel
Block Access for Range Queries. ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp.
205-215. ACM, 2000.

[4] R. Bhatia, R. K. Sinha, and C.-M. Chen. Declustering Using
Golden Ratio Sequences. ICDE, pp. 271-280, 2000.

[5] The Office of Science Data-Management Challenge, 2005.
[6] T. T. Elvins. A survey of algorithms for volume visualiza-

tion. Computer Graphics, 26(3):194–201, 1992.
[7] C. Faloutsos. Gray codes for partial match and range

queries. Workshop on Software Testing Papers. Published as
IEEE Transactions on Software Engineering, 14(10):1381–
1393. IEEE, 1986.

[8] C. Faloutsos and P. Bhagwat. Declustering Using Fractals.
International Conference on Parallel and Distributed Infor-
mation Systems, 1993.

[9] G. G. Gorbatenko and D. J. Lilja. Performance of two-
dimensional data models for I/O limited non-numeric ap-
plications. Technical report ARCTiC–02–04. University of
Minnesota, 2002.

[10] J. Gray, D. Slutz, A. Szalay, A. Thakar, J. vandenBerg,
P. Kunszt, and C. Stoughton. Data Mining the SDSS Sky-
server Database. Technical report. MSR, 2002.

[11] D. Hilbert. Über die stetige Abbildung einer Linie auf
Flächenstück. Math. Ann, 38:459–460, 1891.

[12] I. Kamel and C. Faloutsos. Parallel R-trees. SIGMOD, pp.
195-204, 1992.

[13] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz.
Analysis of the clustering properties of Hilbert space-filling
curve. Technical report. UMCP, 1996.

[14] B. Nam and A. Sussman. Improving Access to Multi-
dimensional Self-describing Scientific Datasets. Interna-
tional Symposium on Cluster Computing and the Grid, 2003.

[15] J. A. Orenstein. Spatial query processing in an object-
oriented database system. SIGMOD, pp. 326–336. ACM,
1986.

[16] S. Padmanabhan, B. Bhattacharjee, T. Malkemus,
L. Cranston, and M. Huras. Multi-Dimensional Clustering:
A New Data Layout Scheme in DB2. SIGMOD, 2003.

[17] S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. E.
Abbadi. Efficient Retrieval of Multidimensional Datasets
through Parallel I/O. ICHPC, pp. 375–386. IEEE, 1998.

[18] S. Prabhakar, K. A. S. Abdel-Ghaffar, D. Agrawal, and
A. E. Abbadi. Cyclic Allocation of Two-Dimensional Data.
ICDE. IEEE, 1998.

[19] S. Sarawagi and M. Stonebraker. Efficient Organization of
Large Multidimensional Arrays. ICDE, pp. 328-336, 1994.

[20] J. Schindler, S. W. Schlosser, M. Shao, A. Ailamaki, and
G. R. Ganger. Atropos: a disk array volume manager for
orchestrated use of disks. FAST. USENIX, 2004.

[21] S. W. Schlosser, J. Schindler, A. Ailamaki, and G. R.
Ganger. Exposing and exploiting internal parallelism in
MEMS-based storage. Technical Report CMU–CS–03–125.
Carnegie-Mellon University, March 2003.

[22] S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao,
A. Ailamaki, C. Faloutsos, and G. R. Ganger. On multidi-
mensional data and modern disks. FAST. USENIX, 2005.

[23] B. Seeger and P. A. Larson. Multi-disk B-trees. SIGMOD,
pp. 436–445. ACM, 1991.

[24] M. Shao, S. Papadomanolakis, S. W. Schlosser, J. Schindler,
A. Ailamaki, C. Faloutsos, and G. R. Ganger. MultiMap:
Preserving disk locality for multidimensional datasets.
CMU–PDL–05–102. CMU, April 2005.

[25] K. Stockinger, D. Dullmann, W. Hoschek, and E. Schikuta.
Improving the Performance of High-Energy Physics Analy-
sis through Bitmap Indices. Database and Expert Systems
Applications, pp. 835–845, 2000.

[26] T. Tu, D. O’Hallaron, and J. Lopez. Etree: A Database-
oriented Method for Generating Large Octree Meshes.
Eleventh International Meshing Roundtable, pp. 127–138,
Sep 2002.

[27] T. Tu and D. R. O’Hallaron. A Computational Database Sys-
tem for Generating Unstructured Hexahedral Meshes with
Billions of Elements. SC, 2004.

[28] H. Yu, D. Agrawal, and A. E. Abbadi. Tabular placement of
relational data on MEMS-based storage devices. VLDB, pp.
680–693, 2003.

[29] H. Yu, K.-L. Ma, and J. Welling. A Parallel Visualization
Pipeline for Terascale Earthquake Simulations. ACM/IEEE
Conference on Supercomputing, pp. 49, 2004.


