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Abstract
Database management system (DBMS) extensibility is a feature that enables

users to extend the DBMS with user software. However, the DBMS extensibility
environment is fraught with perils, and DBMS developers have to resort to unspec-
ified methods of developing extensions, including copying core DBMS source code
and casing between different versions of the DBMS. Extending a DBMS to support
new functionality is challenging due to the tight coupling between the system’s inter-
nal components. This thesis studies and evaluates the design of DBMS extensibility.
We first provide a comprehensive taxonomy of the types of extensibility supported
by DBMSs and the effects of supporting their functionality within the DBMS. Given
that PostgreSQL has the most variegated extensibility ecosystem, we also provide an
in-depth analysis of it, where we evaluate how compatible extensions were with one
another, extension source code quality, and extension complexity. To assist us with
this evaluation, we introduce an automated PostgreSQL extension analysis frame-
work that collects information on how an extension integrates into the DBMS. We
present results from static and dynamic analysis for over 100 extensions. We show
correlations between the lack of compatibility of extensions and several factors re-
lated to their complexity and source code. We conclude by discussing the design
decisions and trade-offs with supporting extensions in a DBMS.
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Chapter 1

Introduction

Database management systems (DBMSs) are the backbone of modern applications. They must
support various use cases, such as bioinformatics, artificial intelligence, geospatial, and web
applications. One method in which DBMSs achieve this is by allowing users the ability to extend
the capabilities of their system with custom software. We refer to this as extensibility, and the
software that extends the DBMS as an extension. Some examples of extensions include adding
a user-defined type, providing an additional password authentication protocol, or overriding a
component of a database system, such as its planner, execution engine, or storage engine.

There are several benefits to supporting extensibility within a DBMS. First, supporting ex-
tensibility allows the DBMS to support additional use cases in a lightweight manner explicitly
supported by the DBMS. Second, extensibility provides the ability to support multiple extra fea-
tures simultaneously without adding them to the core system. Adding too many features to the
core system can result in feature bloat, harming the system’s performance. Extensions can help
alleviate this problem by allowing developers to package important but niche features as exten-
sions. Lastly, supporting extensibility can improve the database system itself. In some cases,
features initially implemented as extensions were eventually supported as core features of the
DBMS. One example of this phenomenon is the PostgreSQL garbage collection feature [144],
which the committee merged as a feature instead of an extension in 2005. This occurrence shows
that extensions are a powerful development mechanism that leads to more DBMS innovation.
Overall, these benefits make extensibility helpful to support in a DBMS.

The database system industry recognizes the importance of extensibility. For example, many
leading systems support extensibility, including PostgreSQL, DuckDB, Oracle, MySQL, SQLite,
Microsoft SQL Server, Redis, and Elasticsearch [32, 38, 77, 80, 84, 142, 154, 171]. These
systems have thriving ecosystems containing many kinds of extensions. PostgreSQL has the most
vibrant extensibility ecosystem, with over a hundred commonly used extensions. Additionally,
the industry has realized the importance of extensions to users. For instance, Google Cloud’s and
Amazon Web Service’s PostgreSQL as-a-service offerings [2, 48] support almost one hundred
extensions.

Despite the benefits of DBMS extensibility and industry-wide adoption, there are still prob-
lems with database extension ecosystems. First, faults in the general API design of extensibility
support cause inefficient extension development. For example, when the extensibility API of-
fers limited support, extension developers may not be capable of implementing the extensions
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they want to implement. They may also have to restore to hacks or inefficient design protocols,
such as copying many core PostgreSQL code or using a different extensibility mechanism for
uses other than its intention to implement the extension they want. Additionally, a complicated
or convoluted extensibility API can cause extension developers to not fully understand their
code’s effects on the DBMS. Second, depending on the system and API provided, extensions are
prone to modify each other’s executions, which can cause unexpected errors, such as causing the
DBMS to crash, error out, or output incorrect results. This occurrence decreases the benefit of
using extensions.

1.1 Thesis Contributions
This thesis provides a thorough analysis of the existing DBMS extension ecosystems. After
discussing related work, we provide a complete definition of a DBMS that supports extensibility
and a formal definition of an extension within that system. We provide an overview of the
following:

1. The types of extensibility supported by DBMSs we surveyed

2. The design decisions we observed that each DBMS had to make about extensibility

3. The extensibility support mechanisms offered by the DBMSs we surveyed
Then, we provide a taxonomy of database system extensions, which provides an essential set of
distinctions to enhance our understanding of DBMS extensibility. We also profile five widely-
used DBMSs that support extensibility (PostgreSQL, DuckDB, SQLite, MySQL, Redis).

After reviewing our taxonomy, we introduce pgext cli, our automated analysis frame-
work for PostgreSQL extensions. This framework includes four main components: the com-
patibility analysis component, source code analysis component, function analysis component,
and API information analysis component. We analyze the results obtained from running our
framework on 97 PostgreSQL extensions. Then, we provide a comprehensive discussion on the
current state of affairs in the database extension sphere, determining the industry’s strengths and
weaknesses concerning supporting extensibility. Lastly, we conclude our thesis by presenting
our results and suggesting future work.
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Chapter 2

Related Work

We now discuss existing research on database extensibility, database composability, operating
system extensibility, and feature interactions.

2.1 Software System Extensibility

2.1.1 Database System Extensibility

To our knowledge, there exists only one survey and categorization of database extensibility [17].
The DBMSs mentioned in this paper include [9, 18, 86, 160, 176]. Carey and Haas categorize
three different types of database extensibility in this survey. First, they define user-interface
extensions, which include abstract data types (UDTs), UDAs, and relation-transformation exten-
sions. Second, they define query processing extensions, which they define as extensions support-
ing new execution operators. The third type of extension they mention is a data storage extension,
which involves creating extensible manners of storing data and index structures.

The ecosystem of database extensibility and extensions has changed a lot since 1990, so this
categorization is incomplete. First, our survey contains DBMSs that did not exist in 1990. Ad-
ditionally, the extension ecosystem of PostgreSQL has changed dramatically. It did not support
hooks until 2006 [49]. Hooks are a PostgreSQL extensibility mechanism that allow users to
override core PostgreSQL source code. They dramatically changed the types of extensions that
developers could create. Lastly, this thesis does not evaluate current systems’ versions of exten-
sibility and classify the design decisions that one should consider when creating or modifying an
extensible database system.

2.1.2 Operating System Extensibility

Understanding operating system extensibility is helpful because we can apply existing terminol-
ogy, techniques, and support mechanisms to categorize and analyze database system extensibil-
ity.

The current version of MacOS supports extensibility by allowing users to implement user-
space system extensions [179]. MacOS supports the implementation of networking extensions,
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security extensions, and device drivers in user space via various frameworks, APIs, and libraries.
These frameworks give this user code the privilege to run in kernel space. When finished de-
veloping these extensions, the developer packages their extension as an application and then use
Apple’s custom system extension tool to install it. Deleting the extension in user space is equiva-
lent to uninstalling the extension. Since MacOS 11, Apple has disallowed running extensions that
interact directly with the kernel unless the operating system is configured to a reduced security
mode [72]. Before switching to user space extensions, MacOS kernel extensions were imple-
mented as Mach-O shared object files, similar to many database system extensions, represented
as shared object libraries.

The Linux operating system’s extensibility is implemented via kernel modules. These small,
dynamically loaded shared libraries can extend the kernel’s functionality without requiring a
complete recompilation or system reboot. Linux kernel modules implement device drivers,
filesystem drivers, system calls, network drivers, and executable interpreters [185]. This im-
plementation of extensibility support is similar to database extensibility support.

Another method of extensibility is the Berkeley Packet Filter [74], kernel extensions initially
designed to filter network traffic. This project eventually morphed into the extended Berkeley
Packet Filter (eBPF) project [36] project, which runs sandboxed, verified programs in the operat-
ing system. eBPF has a variety of use cases, including security extensions, network extensions,
and performance monitoring. eBPF programs are written in a subset of C, then verified, JIT-
compiled, and dynamically loaded into the kernel. They are called after events occur that trigger
them. Possible events include network events and syscalls. eBPFs have also been used to im-
plement DBMS features. For example, Tigger [16] is a DBMS proxy implemented as an eBPF
extension.

The Spin Operating System [11] provides similar extensibility mechanisms to the current
eBPF project. Unlike the eBPF project, which provides an extensibility framework for Linux,
the Spin OS extensibility framework is built with a custom operating system. The researchers
explicitly designed Spin OS to be extensible. It exports an API, giving applications fine-grained
access to processors, memory, and I/O. It enables users to install extensions that happen in re-
sponse to events, such as a hardware interrupt or context switch. In addition, the language chosen
for Spin extensions (Modula-3) is type-safe. This choice ensures that the integrity of the kernel
is not compromised when the extension is loaded into the kernel.

Like the Spin OS, the Nooks architecture [177] also provides higher reliability for device
drivers, a significant component of operating system extensibility. As motivation for this project,
the researchers noticed that most OS bugs were from third-party developer-written device drivers.
A lack of deep kernel knowledge caused these bugs, extensively copying code between device
drivers and poorly documented kernel features. Nooks ensures the operating system does not
crash due to faulty device drivers. It ensures device drivers run in protected environments called
“nooks”. The Nooks architecture also prevents device drivers from writing to memory outside its
protection domain and allows the OS to verify data that the device drivers have processed. The
motivations for this research and the Nooks project are incredibly similar–in PostgreSQL, people
develop extensions very similarly to kernel device drivers. Additionally, this paper explains an
architecture technique for solving this problem, which we can apply to DBMS extensibility.
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2.2 Software System Composability

2.2.1 Database System Composability

Recently, DBMS developers have argued that the databases community should prioritize database
composability in DBMS design [27, 90, 138]. DBMS composability refers to designing the
DBMS as a collection of well-defined components. Then, instead of building a DBMS when a
new use case is needed, one would construct one from these components. This method stream-
lines development processes and improves innovation. The shared insight of these papers is that
the DBMS stack is naturally composable and consists of a few well-defined parts, such as the
parser, the query planner, the query optimizer, the execution engine, and the data storage layer.

The arguments for database extensibility are similar to composability because both of them
advocate for reusable components of DBMSs that developers select according to specialized
uses. The design tenet of extensibility argues that given an existing system with full functional-
ity, we should allow users to override or extend a subset of its features. On the other hand, the
design tenet of database composability argues that the DBMS should consist of many compo-
nents that other parts can replace. Therefore, the composability movement argues that all major
components of the DBMS should be extensions. It focuses on the process of implementing full
DBMSs, with the existing literature discussing how to implement reusable execution engines or
query optimizers [10, 89, 169]. However, the usage of extensibility varies from this use case to
modifying a tiny part of an existing DBMS for more minimal purposes.

2.2.2 Operating System Composability

One pivotal example of operating system composability is the Exokernel project [39]. The main
idea behind the Exokernel is that it gives untrusted users access to the resource management of
the operating system. It does this by disaggregating protection mechanisms from resource man-
agement. Major benefits of using the Exokernel include a significant performance increase (since
applications are aware of their resource consumption) and easy prototyping of new ideas since
it is easier to understand which resources a new idea is using. The ideals behind the Exokernel
are relevant to DBMS extensibility because both the Exokernel project and DBMS extensibility
have motivations of giving untrusted users access to a portion of their system. This research also
provides a compelling argument for allowing extensions to override resource management for
the DBMS.

2.3 Feature Interactions

In the software engineering field, feature interactions research focuses on understanding how two
different features in a software system modify each other’s behavior. This research is relevant to
problems in the database system extensibility sphere because when we can view extensions as
additional features to the existing DBMS, then use the ideas, techniques, and results found from
their research and apply them to database extensibility.
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To help explore the feature interaction research space, Meinicke et al. developed VarexJ [75],
a dynamic analysis tool based on variability-aware execution that generates program traces of
software running at all possible configurations, allowing researchers to analyze the runtime state.
They used this tool on several medium-sized Java programs, including Eclipse Jetty [37] and
Checkstyle [19], to estimate the effort required to perform configuration-complete analysis on
these programs. They showed it was feasible to conduct this analysis since the configuration
complexity was low enough. VarXplorer [168] improves on VarexJ to support visualizations of
feature-interaction graphs based on VarexJ’s program traces.

Additionally, research has shown that variational traces improve the user development ex-
perience via a user study done with an Eclipse plugin, which supplied this functionality [76].
Lastly, researchers have investigated database systems concerning their feature interactions. In
2019, using static analysis, Kolesnikov et al. performed a case study [66] on SQLite’s feature
interactions. They found that there were 39 unique control flow interactions in SQLite, with each
interaction involving four to six features.

The currently available tools are not usable since they only work on software written in Java.
Tools similar to these, which also run static or dynamic analysis determining how extensions
interact with each other, could make extension development easier. This research also shows
that it is possible to examine database systems based on their features, as indicated by SQLite’s
performance feature analysis.
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Chapter 3

Overview of Extensibility

We will start by discussing our definition of extensibility. We will then discuss the types of
extensions we found via our survey. Then, we define the set of qualitative properties about
database extensions. Lastly, we will discuss the types of extensibility supported by the DBMSs
we surveyed.

We define extensibility as the capability of extending the capabilities of the database sys-
tem with custom software and an extension as an instance of the software used to supplement
a database system’s features. An extension can combine several types of extensibility to add
functionality or enhance performance. The DBMS must make extensibility a first-class feature.
For example, one must not use any naming hacks, unintended behaviors, or security breaches to
add an extension to the DBMS. There should be an intended and defined method of extending
the capabilities of the DBMS. For instance, if a developer hacks the DBMS by code injection to
run their code instead of the core DBMS code, we do not consider this to be extensibility, but a
security breach. However, if the DBMS explicitly claims that a mechanism allowing developers
to override function execution is allowed, then we consider this as extensibility support.

Furthermore, adding an extension should not rewrite the core DBMS source code; it should
only add its source code or modify symbols to link to the DBMS executable. This is the main
difference between an extension and a fork of a system. Although both extensions and forks
of DBMSs change the capabilities of a DBMS, an extension will do so without modifying the
original DBMS source code. In contrast, a fork of a system modifies the source code, making
the fork and the original system different systems.

Additionally, it should be possible to load multiple extensions to a DBMS simultaneously
using an intended mechanism, such as an exposed API or SQL. On the other hand, combining
multiple forks of a system without extensive effort is impossible.

3.1 Types of Extensibility

We define ten different types of extensibility.
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3.1.1 User-Defined Types (UDTs)

UDTs allow developers to implement a custom type that users can add to the DBMS. UDTs
can be combinations or aliases of already supported types in a system or custom-implemented
types. In the case of custom-implemented types, the user provides a set of functions, such as
comparators, access methods, and I/O methods, for the custom type and then loads the library
containing these functions into the system. Many well-known DBMSs, including PostgreSQL,
DuckDB, SQL Server, and Oracle RDBMS, support UDTs. Their many applications include the
geospatial, artificial intelligence, genomics, and game development domains. Examples of UDTs
include vector embedding [129], LiDaR point [106], and standardized address [175] types.

3.1.2 User-Defined Functions (UDFs)

UDFs allow developers to implement a custom function that users can add to the DBMS. DBMSs
typically support UDFs in higher-level languages, such as PL/SQL or Perl, and in the language of
the DBMS source code. These functions take in data returned from SQL queries or sub-queries
as input and are executed by the DBMS’s executor engine when a query runs. A subtype of UDF
is a user-defined aggregate (UDA). UDAs are UDFs that take in multiple rows of data as input
and return a single result. A different subset of a UDF is a user-defined operator (UDO) [192].
UDOs are operators that users can define to perform custom operations on user-defined types.
Examples of operators include comparison or arithmetic operators. Almost every well-known
DBMS supports user-defined functions, including PostgreSQL, DuckDB, SQLite, MySQL, and
Redis. UDFs are powerful and have a variety of use cases. Most extensions that we evalu-
ated utilize UDFs to provide a helpful utility, configure and initialize functionality implemented
via other kinds of extensibility, or define routines required by custom types and other database
objects. There are many extensions that utilize UDFs. Below are a few examples:

• SQLite extension ieee754 [54] provides functions for converting floating-point numbers
to their IEEE754 Binary64 floating-point representation.

• PostgreSQL extension citus columnar [22] defines a function
columnar.columnar handler that defines its table access method functions.

• PostgreSQL extension pg stat kcache [121] exposes a UDF called
pg stat kcache reset(), which resets the statistics collected by it.

3.1.3 External Tables

External table extensibility allows users to interact with external data sources as if the DBMS
stored them directly. The databases community also refers to external table extensions as connec-
tors. Developers can use external table extensibility to support reading and writing data stored as
CSVs, on the cloud, or in a different file format. Examples of connectors include PostgreSQL’s
foreign data wrappers [45] and several DuckDB extensions [33, 34]. Notably, DuckDB im-
plements this external table extensibility by overriding the catalog. On the other hand, most
extensions extend the execution engine or storage manager components to implement external
table extensibility. Many well-known DBMSs, including PostgreSQL, DuckDB, MySQL, and
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SQLite, support external table extensibility.

3.1.4 Utility Command Extensibility
Utility command extensibility allows developers to override or introduce new processing utility
commands. These commands process the updating of database objects, schemas, permissions, or
configuration settings. Utility command extensions also include extensions that provide logical
decoding support. Logical decoding support allows extensions to extract WAL data and display
it in an easy-to-read format. Utility command extensions can be minimal, such as the Post-
greSQL extension dont drop db [31], which determines a list of databases that the DBMS
should not drop. However, extensions that override utility commands have the potential to be ex-
tremely powerful. For example, the PostgreSQL Trusted Languages Extension (pg tle) frame-
work [188] overrides the general PostgreSQL utility command handling to change execution if a
user installs an extension through their framework.

3.1.5 Parser Extensibility
Parser extensibility allows developers to change or augment the parser. The parser of a DBMS is
responsible for validating the syntax of the SQL query and interpreting it into internal plan tree
structures used by the query execution layer. Developers modify the parser by modifying parser
source code or via query rewrite rules, enabling users to change queries that pattern match appro-
priately. Examples of parser extensions include MySQL’s Rewriter Query Rewrite Plugin [157],
which keeps a table of rules and applies them onto SQL queries at the parsing stage.

Modifying the parser provides three benefits. First, it would allow developers to supplement
the query language with syntax appropriate for their extension. For example, users could support
different syntaxes to support new features in the query processing layer. Second, developers em-
ploying parser extensibility can change the validation of SQL queries. For example, an extension
using parser extensibility could reject queries from users if it deemed them a security threat to
the DBMS. Third, users can support different SQL dialects or special syntax for their extensions.
For example, PostgreSQL does not support parser extensibility, which results in extensions using
UDFs to express language syntax instead of introducing language constructs.

3.1.6 Query Processing Extensibility
Query processing extensibility allows developers to modify or extend the planner, optimizer,
or execution engine logic. Extensions that employ query processing extensibility fall into two
categories. First, we have query statistics collector extensions. These extensions collect query
execution metrics, such as performance, query information, table access, and plan representa-
tions. Then, they store them for users to examine via UDFs or tables or output them to logging.
Examples of query statistics collector extensions include pg stat statements [123] and
pg qualstats [109]. Second, extensions modify the query processing layer to support addi-
tional features. These can be minimal features, but they can also result in an overhaul of the whole
query processing layer. For example, Citus [21] and Timescale [187] leverage significant parts of
the query processing extensibility infrastructure to turn PostgreSQL into an entirely new database
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system while implementing their software as an extension. In particular, PostgreSQL has a very
non-restrictive environment for query processing extension support. PostgreSQL allows users
to completely rewrite both its planner and executor engine. Therefore, many extensions using
query processing extensibility found in our survey are PostgreSQL extensions.

3.1.7 Storage Engine Extensibility
Storage engine extensibility allows developers to modify or extend the storage engine logic of
a database system. The storage engine of the DBMS is responsible for efficiently managing the
storage of data, both in memory and on disk. Extensions employing storage engine extensibility
can either override the filesystem layer or the storage engine logic. Examples of extensions
which use storage engine extensibility include the S3 Storage Engine [159], which makes the
storage engine stores its data in S3, and unix [87], which overrides the SQLite filesystem API
to support running SQLite on a Unix OS. Extensions utilizing storage engine extensibility can
be beneficial, allowing users to store their data using different storage layouts or retrieve it via
a different protocol. They can also allow for compatibility of the DBMS across other operating
systems, especially on DBMSs with a filesystem layer.

3.1.8 Client Authentication Extensibility
Client authentication extensibility allows developers to modify or add to the client authentica-
tion logic of a database system. The client authentication logic is responsible for identifying the
client, determining the resources within the database they access, and determining the level of
permissions granted to the client. Client authentication extensions fall into several categories.
First, some extensions internally change how the DBMS handles user passwords. Usually, this
involves making the user’s password more protected, although the MySQL Client Cleartext ex-
tension [23] ensures that passwords get sent as plain text to the server. The second type of
extension changes the password rules within the DBMS. For example, the PostgreSQL exten-
sion passwordcheck [88] allows developers to modify the DBMS with additional password
rules. Lastly, client authentication extensions can change users’ privilege levels on database ob-
jects. For example, set user [164] is a PostgreSQL extension that allows switching users and
privilege levels.

3.1.9 Table and Index Access Methods
Table and index access methods extend the DBMS and provide additional ways of accessing data
via different storage methods. These differ from storage engine extensibility, which allows de-
velopers to override some of the core DBMS’s storage manager components directly. They also
differ from external table extensions, which store table data in auxiliary storage and allow the
user to interact with this data as if the main table stored it. Table access methods directly store
data where the core DBMS would store data, just in a different manner than the default storage
manager. An example of a table access method extension is Citus Columnar [22], which pro-
vides table columnar storage with projection pushdown and compression. Index access methods
provide an additional index implementation to the DBMS and store their data within the internal
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DBMS, making them different from external table extensions. PostgreSQL has leveraged the
existence of index access method extensions to implement many new auxiliary indexes, such as
lsm3 [69] (log-structured merge tree index) and bloom [12] (bloom filter index). Some index
access methods like GIN and GiST [47] are extensible for new user-defined types.

We acknowledge that access methods can have similar use cases to the external table and stor-
age manager extensions. For example, Citus [21] includes a columnar storage implementation
using table access methods. Its implementation was directly derived from cstore fdw [25],
which used external tables. A table access method intends to continue using the storage man-
ager, buffer cache, and write ahead log of the DBMS while also supporting secondary indexes.
Conversely, external tables are typically stored and modifiable outside the DBMS.

3.1.10 Catalog Extensibility
Catalog extensibility allows developers to modify or access database metadata directly. Catalog
extensions can be helpful when there is an internal database system state that developers want to
display to users. One example of a catalog extension is the MariaDB plugin userstat [193],
which creates tables in the catalog storing statistics on user activity, client connections, index
usage, and table usage. These extensions can keep track of and allow users to access query cache
data, session-level state, and user-defined variables. Notably, many other types of extensibility
can indirectly modify database metadata. For example, user-defined type and customized op-
erator metadata are stored in the DBMS catalog, and utility command extensions can modify
DBMS metadata by influencing the execution of schema and object modification commands.
Our survey found that only MySQL directly supports pure database metadata extensions. How-
ever, PostgreSQL allows the extension to write to their catalog database [178]. This method
effectively achieves the same effect as MySQL’s extensibility.

3.2 Database Extension Properties
Developers implement extensions to enhance DBMS usage or add new features. In this sec-
tion, we define the qualitative categorizations to improve our understanding of what attributes
differentiate database extensions from one another. We will discuss these categorizations in the
subsections below. s

3.2.1 Types of Extensibility
Developers typically utilize multiple types of extensibility to create an extension. Although it
is possible to create an extension with just one kind of extensibility, it is relatively rare. An
example of an extension that would utilize one type of extensibility is an extension that provides
helpful arithmetic UDFs. Even extensions that seem like they would only utilize one type of
extensibility usually do not. For instance, an extension that introduces a custom type will also
introduce custom comparison operators. It is also possible to simultaneously leverage many
kinds of extensibility to create a cohesive extension. Citus [21], an extension for distributed
PostgreSQL, leverages six different types of extensibility. Overall, categorizing an extension by
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the types of extensibility an extension allows us to identify the bare bones of its structure. It also
allows us to understand the scope of an extension’s impact across the DBMS.

3.2.2 Extending vs. Overriding the DBMS

The second categorization is whether the extension extends or overrides the DBMS. Notably,
extensions that override the DBMS modify the core execution of the DBMS, while extensions
that extend the DBMS do not. For instance, an extension that adds statistics collectors to the
planner and executor of a DBMS overrides the DBMS. In contrast, an extension that introduces
a user-defined type and custom operators on that type extends the DBMS. This categorization is
helpful because it allows us to categorize an extension by the impact of its code on the DBMS.

3.2.3 State Modification

The third categorization to consider is which state that an extension modifies. When invoked,
extensions can either modify (1) no state, (2) database state, or (3) system state. Notably, an
extension can also modify multiple states simultaneously. We define database state as the data
stored in the database itself. For instance, table data, relation metadata, and indexes all count as
database state. We define the system state as the DBMS’s internal data structures. If an extension
has the potential to modify these internal data structures, we say that it modifies the DBMS state.
Extensions that have access to the DBMS state can also choose to either read the state or modify
it; in our categorization, types of extensions that have access to the state are all grouped in the
same category, but when reviewing existing extensions and their behavior, it is essential to note
this. This categorization allows us to understand an extension’s impact on a DBMS’s state: the
data within the databases and the metadata stored during DBMS runtime.

3.2.4 Isolation

The fourth categorization to consider is whether an extension is isolated from other extensions,
which means determining if an extension has the potential to modify other extensions’ execution
or output. For instance, if two extensions receive the same modifiable input data structures, one
after the other, we could claim that these extensions are not isolated since the latter extension
can change or even revert the internal data structure changes of the former extension. This
categorization allows us to categorize whether extensions can affect each other’s execution.

We note that determining whether extensions are isolated from one another depends on the
implementation of extensibility support in the DBMS. For instance, when extension developers
gain the ability to write their extensions in C/C++, it is easy for extension developers to develop
hacks or even malicious behavior to modify the output of other extensions deliberately. How-
ever, we will base all future categorizations on excluding malicious or deliberate behavior. Our
definition focuses on the isolation of extensions when developers are trying to implement their
functionality without deliberately messing up the execution of other extensions.
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System Name Number of Extensions
PostgreSQL 375+

DuckDB 30+
SQLite 61+
MySQL 47+
Redis 57+

Table 3.1: Number of extensions per DBMS

PostgreSQL DuckDB SQLite MySQL Redis
Functions Yes Yes Yes Yes Yes

Types Yes Yes No No Yes
External Tables Yes Yes Yes Yes Yes

Utility Commands Yes No No No No
Parser No Yes No Yes No

Query Processing Yes Yes No No No
Storage Engine No Yes Yes Yes No

Access Methods Yes No No No No
Client Authentication Yes No No Yes No

Catalog Yes Yes No Yes No

Table 3.2: Overview of types of extensibility supported by each DBMS

3.3 DBMSs that Support Extensibility
We discuss several systems that support extensibility and provide an overview of the types of
extensibility they support and how the systems implement them. Table 3.1 notes how many
extensions we were able to observe for each DBMS. Table 3.2 contains a general overview of the
types of extensions each DBMS supports.

In the following subsections, we will provide a small overview of what each DBMS supports
and the key differences we found within each DBMS’s extensibility support.

3.3.1 PostgreSQL
Out of all the DBMSs we surveyed, PostgreSQL has the most support for different types of exten-
sibility. PostgreSQL supports seven of the nine kinds of extensibility we identified. Due to this
comprehensive extensibility support, PostgreSQL also has a thriving ecosystem of extensions.
Our survey found over 1000 PostgreSQL extensions, whereas other DBMSs had less than 100
per system. PostgreSQL even packages itself with 50 extensions approved by the PostgreSQL
development committee.

In particular, PostgreSQL has comprehensive support for query processing extensions. For
example, PostgreSQL extensions can completely rewrite the planner. However, PostgreSQL also
allows extensions to rewrite smaller components of the planner code. It is also possible to insert
custom scanning or joining protocols via the planner extensibility mechanisms in PostgreSQL.
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These lower-level, more minor in-scope planner extensibility mechanisms have also proven use-
ful to inject monitoring into the planner. Additionally, PostgreSQL has the most exhaustive
executor extension support and allows extensions to overwrite the executor engine fully or par-
tially if needed. As a result of this extensive support, there are many query-processing extensions
in PostgreSQL of varying degrees of complexity. PostgreSQL is the only DBMS we surveyed
that supports utility command extensions.

3.3.2 DuckDB
Similar to PostgreSQL and MySQL, DuckDB has comprehensive support for different kinds of
extensibility. For example, DuckDB supports optimizer extensibility that allows developers to
add customized optimizer passes. DuckDB supports vectorized UDFs, which means that each
invocation of the UDF processes a large batch of values (i.e., a vector). This technique allows
for faster execution, one of the main reasons users do not utilize UDFs in their applications.
Additionally, DuckDB enables developers to override its catalog implementation with a custom
one. In two DuckDB extensions, postgres scanner [33] and sqlite scanner [34],
this feature implements support for integrating PostgreSQL and SQLite tables into a DuckDB
instance.

3.3.3 SQLite
SQLite is the only DBMS we surveyed supporting filesystem extensibility. This feature enables
developers to override SQLite’s default filesystem under the hood. Users can use this extensi-
bility to optimize their filesystem layer for different workloads, support portability between dif-
ferent operating systems, and implement security features such as encryption. SQLite restricts
overriding more than one filesystem simultaneously. Apart from the filesystem extensibility
support, extensibility support in SQLite is minimal and not invasive compared to PostgreSQL,
MySQL, and DuckDB.

3.3.4 MySQL/MariaDB
Compared to other DBMSs, MySQL has a thriving storage engine extensibility ecosystem. It
has a selection of 9 storage engine extensions, including InnoDB [61], the memory storage en-
gine [186], which supports main-memory execution, and the federated storage engine [184],
which allows users to access remote MySQL databases. MySQL even supports joining tables
backed up by two different storage engines. Besides these storage engines, MySQL 8.0 has 44
extensions packaged with the core DBMS software. However, even though it supports many
extensions in its core system and contains support for many types of extensibility, MySQL lacks
the large open-source ecosystem that PostgreSQL has.

MariaDB’s extensibility mechanisms are identical to MySQL. However, MariaDB supports
more extensions than MySQL. For instance, MariaDB 11.0 includes support for 22 storage en-
gines. These storage engines are more specialized than MySQL’s storage engines. Some of their
applications include text search [78], S3 backup [158], highly parallel workloads [73], and flash-
storage [79]. MariaDB 11.0 has 65 extensions packaged with the core DBMS software. Mari-
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aDB’s third-party extensibility ecosystem is minimal despite the effort to include more built-in
extensions.

3.3.5 Redis
Redis has the least support for different types of extensibility. Of nine kinds of extensibility, Re-
dis only supports functions, types, and external tables. However, despite this restrictive support,
Redis has an active, thriving extensibility environment. Redis’ extensibility environment con-
tains 57 extensions, and its most popular extension is RedisSearch [155], a query and indexing
engine built on top of Redis. Redis supports two types of UDFs. First, it allows for developers to
write functions in Lua, which perform operations on Redis tables and auxiliary data processing.
Second, it allows developers to code modules, which are extensions with an interface of loadable
C UDFs built on top of Redis.
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Chapter 4

Design Decisions for DBMS Extensibility

We discuss the design decisions included in the process of supporting extensibility. These design
decisions are the (1) programming languages provided to extensions developers, (2) methods
provided by the DBMS to help extensions development, (3) integration of extensions into the
core system, and (4) installation techniques. Figure 4.1 provides a general overview of these
design decisions. We elaborate on them in the following sections.

4.1 Programming Languages
The first is choosing the languages in which developers can write extensions. The DBMS can
allow developers to write extensions in the language of the DBMS source code or support ex-
tensions written in a different, usually higher-level programming language. The benefits of al-
lowing developers to write extensions in the source code’s language include the support of more
involved extensions. For instance, writing an extension for overriding a significant component of
the DBMS, such as the planner or storage engine, is significantly more straightforward to support
if developers write extensions in the same language as the source code. Additionally, given that
database systems are usually written in lower-level languages, such as C/C++, writing extensions
in the source code language may also result in a performance benefit. However, coding an ex-
tension in the source code language requires a lot of knowledge of the source code language and
the internals of the specific DBMS. On the other hand, the DBMS can also allow developers to
write extensions in a higher-level language, such as Perl, Python, or JavaScript. One benefit of
this approach is that it results in less faulty code. This method allows unprivileged users to create
extensions without accessing the database’s internals. Lastly, it is also possible for a DBMS to
support writing extensions (particularly UDFs) in SQL. One benefit of supporting SQL is that
the DBMS can easily inline the function body of a UDF into a calling query.

4.2 Methods
The second design decision is determining the methods provided by the DBMS for extension
development. The DBMS can choose to expose a well-defined API, where functions in this API
are the only functions usable by developers. On the other hand, the DBMS can allow developers
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Figure 4.1: Overview of DBMS extensibility design decisions

to use any instance of the source code in their extension implementations, which is common
when the source code is in C/C++. Providing a well-defined API limits the capabilities and
scope of the extensions written, but it also prevents extensions from potentially breaking the
DBMS’s functionality. Allowing extension developers more freedom in using the source code as
it suits them results in the opposite trade-offs.

4.3 Integration
The third major design decision is to consider how to integrate extensions within the DBMS. The
DBMS can choose to do this in two manners. First, an extension can be an addition to a system,
where the system execution is unchanged due to its addition unless the user is explicitly using
the extension’s functionality. Examples of this include adding a user-defined type or adding a
user-defined function. Second, an extension can overwrite a specific system component’s source
code. For instance, a DBMS can provide hooks, which are function pointers at places in a
DBMS’s source code. An extension developer can then set the value of these hooks to point to
the extension code. When the DBMS source code calls the hook, the developer has the guarantee
that the DBMS will execute their code. Hooks can be a powerful extensibility method, as it
allows extension developers to override significant components of a DBMS, such as the planner
or storage engine.

4.4 Installation
The last design decision is to decide how extensions are installed and uninstalled within a system.
A DBMS’s most typical way to manage extensions is by providing an SQL interface. Users
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can enter something similar to LOAD EXTENSION NAME to enable an extension in a system
and UNLOAD EXTENSION NAME to ensure it is not enabled. These SQL statements have the
prerequisite that the extension is already in DBMS-readable form (e.g., a shared or dynamic
library). However, DBMSs will also sometimes provide an extension manager as a separate
executable; instead of providing a SQL interface, one can pass in the extensions they would
like to have integrated as command line arguments to this extension manager. A DBMS may
also require a developer to register their extensions in their source code or edit a configuration
file to enable an extension. The DBMS may utilize these methods to ensure an extension is
fully integrated within a system. For instance, PostgreSQL extensions are required to provide a
configuration file and a SQL script that runs when the extension is loaded and may optionally
provide a shared library.
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Chapter 5

Mechanisms of DBMS Extensibility

This section covers the mechanisms used to build DBMS extensions and provides an overview
of the mechanisms each DBMS provides to support extensions developers.

5.1 Common Mechanisms Used to Build Extensions

In our survey, we also found five common mechanisms that DBMSs give to developers intended
to simplify and enhance extension development.

5.1.1 Background Workers

Background workers are a supplied mechanism that allows extensions to spawn separate pro-
cesses or threads that execute custom code. The DBMS actively manages background workers,
which means they can be stopped, monitored, and restarted as needed. They have access to both
DBMS memory and internal state. As a result, they can be leveraged in powerful extensions and
can perform tasks like garbage collection (pg autovacuum [93]), index structure background
jobs (e.g., lsm3 [69]), and periodic job scheduling (pg cron [97]). Our survey found that
background workers are supported by both PostgreSQL and MySQL.

5.1.2 Memory Allocation

Memory allocation mechanisms provide developers with a dynamic means of declaring memory
for their extensions. The DBMS actively manages this memory and provides an accessible API
for extensions to interact with it. Extensions use this auxiliary memory for a variety of purposes,
including the support of auxiliary data structures for metadata storage (RedisGraph [156]),
tables for storing statistics (pg stat statements [123]), or the storage for an in-memory
column store (imcs [55]). Our survey found that both Redis and PostgreSQL support dynamic
memory allocation for their extensions.
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PostgreSQL DuckDB SQLite MySQL Redis
Background Workers Yes No No Yes No
Memory Allocation Yes No No No Yes

Custom Configuration Options Yes No No Yes Yes
Source Code Yes Yes Yes Yes No

Table 5.1: Extensibility support mechanisms supported by DBMSs

5.1.3 Custom Configuration Options

Custom configuration options and user-defined variables empower extension developers to pro-
vide users with tailored control over their extensions. Developers achieve this by enabling users
to pass variables or flags to the DBMS during startup or execution, allowing the extension to
adapt its functionality based on specified settings. When extension developers want to utilize
these customized options, they declare variables explicitly in the source code and then utilize
their values in the code logic. This powerful customization feature can be used in a variety of
smaller extensions, such as password validators and text search dictionaries. It can also be uti-
lized in more involved extensions, such as timescaledb [187]. timescaledb, an extension
allows users to treat PostgreSQL as a time series DBMS, offer users the flexibility to customize
the behavior of their extensions through specified variables.

5.1.4 Source Code

Developers also use the source code of the DBMS to build extensions. Most of this is an arti-
fact of the fact that the DBMSs we surveyed are implemented in C/C++, which easily allows
developers to import source code headers. This feature is compelling, as users can now access
and use the whole DBMS implementation as they please. Many developers import or directly
copy DBMS types, functions, and classes and use them in their extensions. Although recogniz-
ing which functionality to use from the DBMS source code requires a deep understanding of the
DBMS, using the source code effectively can reduce developer efforts.

5.2 Mechanisms Given by Database Systems that Support Ex-
tensibility

In this section, we discuss several well-known systems that support extensibility and provide an
overview of the mechanisms they give developers to help them create extensions. First, Table
5.1 provides a general overview of the mechanisms each DBMS supports.

In the following subsections, we will provide a small overview of the mechanisms provided
by each DBMS and the key differences we found within each DBMS’s extensibility mechanism
support.
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5.2.1 PostgreSQL

By far, PostgreSQL provides the most extensive extensibility mechanism support. PostgreSQL
provides a specialized background worker implementation designed to work with its process
per-worker model and shared memory infrastructure. PostgreSQL also allows extensions to take
advantage of their memory allocation interface by providing two hooks that extensions can over-
ride to request and initialize a fixed amount of shared memory. One of PostgreSQL’s unique
features is its customized configuration support. PostgreSQL allows users to edit configuration
variables via SQL or by directly editing the configuration file to load the DBMS with these
customized values. Allowing users to edit these files directly is unique to PostgreSQL.

Additionally, PostgreSQL provides essential building and testing infrastructure to developers.
PostgreSQL’s tooling helps users compile and test their extensions. PostgreSQL provides two
tools: PGXS [133] and pg regress [113]. With PGXS, users can write a simple Makefile to
test and develop extensions against an installed PostgreSQL server. pg regress enables users
to conduct black box testing on their extensions to ensure robustness and compatibility with the
PostgreSQL environment. Overall, these internal PostgreSQL tools significantly improve the
efficiency of PostgreSQL extension development. Although there are a few other examples of
PostgreSQL extensibility infrastructure tools, such as pg tle [188] (support extension creation
without superuser permissions)and pgrx [117] (a Rust framework for PostgreSQL extensions
development). However, third-party developers have created these extensions, and they are not
features of PostgreSQL’s extensibility.

5.2.2 DuckDB

DuckDB’s extensibility mechanism support is relatively limited, and it only allows users to im-
port source code into its extensions. They also technically have a malloc wrapper that exten-
sions could use. Still, we did not count this as memory allocation support since they do not
explicitly provide this API to extension developers.

5.2.3 SQLite

SQLite’s extensibility mechanism support is also relatively limited. SQLite only allows users to
access the core DBMS source code and utilize it for extension development.

5.2.4 MySQL

MySQL provides a decently comprehensive set of extensibility mechanisms to developers. For
instance, MySQL provides daemon extensibility, which allows developers to run logic adjacent to
the DBMS within the DBMS. This extensibility form is similar to background workers’ purpose,
although it is supported differently within the DBMS. Additionally, MySQL allows extensions
to define custom variables, which users can then set via SQL statements.
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5.2.5 Redis
Redis provides a dynamic memory allocation API that allows extensions to allocate and free
memory as they please. In addition to this memory allocation API, Redis provides an exten-
sive utility API that allows extension developers to call Redis’s internal commands from their
extension code. Besides this utility API, Redis does not offer its core source code for extension
developers. Instead, extension developers choose to build extensions using the key-value store
as needed instead of directly modifying Redis.
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Chapter 6

PostgreSQL Extensibility Analysis
Framework

This section provides an overview of the analysis framework we developed to collect data on
PostgreSQL’s extensibility ecosystem. We evaluated PostgreSQL’s extensibility ecosystem be-
cause it is the most prolific by far (3.1). PostgreSQL has many open-source, third-party-created
extensions compared to the other DBMSs we surveyed. We evaluate PostgreSQL’s extensibility
ecosystem on three main facets: compatibility, source code quality, and extension API usage.
Then, we determine whether there are any correlations between the source code quality or exten-
sion API usage and the compatibility results.

We developed pgext cli to assist with our evaluation. To our knowledge, pgext cli is
the first automated analysis framework for PostgreSQL extensions. pgext cli is implemented
in Python. We run all of our extensibility analysis using extensions compatible with PostgreSQL
15.3 [143]. The framework supports 97 PostgreSQL extensions. We primarily collected the
extensions used in our analysis from three main sources:

• PostgreSQL’s contrib directory [24], which contains extension modules supported di-
rectly by the PostgreSQL core developers (once again, using version 15.3)

• Supported PostgreSQL extensions from AWS Relational Database Service [2], Google
Cloud SQL [48], and Azure Database for PostgreSQL [6]

• Other popular and widely used extensions, over 2,000 Github Stars (e.g., Citus [21],
TimescaleDB [187])

We wanted to ensure that we were running our analysis on widely used and reasonably popular
extensions. All the extensions also had to be open-source to ensure that we could conduct our
source code analysis. The framework includes four main components, which we describe below.

6.1 Extension API Information Analysis

pgext cli includes a mode where we can extract the types of extensibility used within a
PostgreSQL extension. As mentioned previously, we note that PostgreSQL supports seven types
of extensibility: functions, types, access methods, external tables, client authentication, query
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processing, and utility commands. pgext cli’s API information analysis tool can list the
types of extensibility and the hooks used by each of the 97 PostgreSQL extensions.

pgext cli extracts the extension repository code, then looks for keywords within the
source code and SQL files. For instance, the analysis framework will check if the extension
initializer function sets the hook global variables or if the source SQL code declares user-defined
functions or types.

6.2 Extension Source Code Analysis
pgext cli includes a mode that conducts source code analysis on the extensions. First, the
source code analysis mode collects two metrics: the total lines of source code in the extension
and the total lines of directly copied PostgreSQL source code. We used a static analysis tool
called the PMD Copy/Paste Detector (CPD) [43] tool to determine the number of lines of directly
copied PostgreSQL source code. The PMD CPD tool finds duplicate code blocks in codebases.
In our analysis, we only kept track of code blocks with a minimum length of 100 tokens (where
a token is the smallest unit of a programming language with meaning). Our tool also ensures that
these copied code blocks are from the PostgreSQL 15.3 core DBMS codebase.

Second, the source code analysis mode analyzes the presence of versioning logic in the ex-
tension source code. Versioning logic is when the extension source code explicitly cases on the
version of PostgreSQL in their source code. For instance, the developers may intend to call a
different function when loading their extension onto a PostgreSQL 11 database instance versus a
PostgreSQL 12 database instance. Extension developers write code that cases on the PostgreSQL
version via C-style macros. We tracked whether the extension source code used version casing
and, if so, how many lines of code were encapsulated between these versioning case statements.

6.3 Extension Compatibility Analysis
pgext cli includes a mode that tests the compatibility of PostgreSQL extensions with each
other. Given a set of extensions, the compatibility analysis framework will test extensions pair-
wise (where order matters) for basic compatibility. More concretely, the framework takes pairs
of extensions, downloads and installs them onto the same PostgreSQL 15.3 instance, starts the
database, and runs each extension’s unit tests on this instance. Then, with both of these exten-
sions installed, it runs pgbench [94], primarily as a basic check. If all of these checks pass,
then the extensions pass this compatibility test and are compatible. At the end of its execution,
the framework outputs the results of this compatibility testing.

6.4 Function Analysis
pgext cli includes a mode that conducts static analysis on the extensions that entirely copied
functions from the PostgreSQL source code into their codebases. The framework keeps track of
the total number of function code lines for each of these extensions, then performs static analysis
on the functions to determine if they are read-only or modified. It also keeps track of the number
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of copied functions and the number of functions that modify state. We used Semgrep [162], a
source code static analysis tool, to determine whether a function modifies DBMS state.
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Chapter 7

Results

In this section, we present the main results that we collected through the pgext cli framework.
Additional results are located in the Appendix.

7.1 API Information Analysis
The API information analysis extracts the types of extensibility used within a PostgreSQL ex-
tension. For each hook, it also indicates whether the hook is utilized in our extension.

On average, PostgreSQL extensions utilized 1.59 types of extensibility per extension, al-
though the maximum types of extensibility utilized in an extension was 6. Citus [21], which
provides support for distributed PostgreSQL, utilized every type of extensibility in its implemen-
tation except for external tables. Figure 7.1 is a bar chart which shows how many extensions
utilized how many API components in their implementations. We can see that most extensions
only utilized about 1 to 2 different types of extensibility in their implementations.

For each type of extensibility that PostgreSQL supports, we also show the number of exten-
sions which utilize this type of extensibility in Table 7.1. Here, we can see that user-defined func-
tions are the most popular type of extensibility, with 83 extensions of 97 using it. Our analysis
framework revealed that 33 of 97 extensions that we surveyed used hooks. Out of the hooks, the
six most popular hooks were shmem startup hook [167], shmem request hook [166],
post parse analyze hook [150], ExecutorStart hook [41], ExecutorEnd hook [40],

Extensibility Type Percentage of Extensions Which Utilized It
Functions 86%

Types 25%
Access Methods 4.1%
External Tables 5.1%

Client Authentication 7.2%
Query Processing 20%
Utility Command 12%

Table 7.1: Percentage of extensions using each type of extensibility
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Figure 7.1: Number of components extensions utilized in their implementations

and ProcessUtility hook [152]. The shmem hooks allow extensions developers to request
and intiialize dynamic memory for storing extension metadata. The post parse analyze hook
allows the DBMS to secondarily parse a query. The ExecutorStart hook and ExecutorEnd hook
allow the user to read or modify DBMS state before and after query execution, and the
ProcessUtility hook allows for users to override utility commands (e.g. CREATE DATABASE)
and other query processing functionality.

7.2 Source Code Analysis

The source code analysis determines whether the extension copies core PostgreSQL source code
and whether the extension uses versioning logic in its source code.

We determined that 41 of 97 extensions copied PostgreSQL source code in their codebases.
For each of these extensions, we collected the percentage of of an extension’s codebase that con-
sisted of copied PostgreSQL DBMS code. The average percentage was 10.8%, and the maximum
percentage was 75.5% percent. Figure 7.2 provides a histogram of these percentages.

We also determined that 38 of 97 extensions used versioning logic in their codebases. For
each of these extensions, we collected the percentage of an extension’s source code that was
encapsulated between versioning logic. The average percentage was 7.0% percent, and the max-
imum percentage was 23.9% percent. Figure 7.3 provides a histogram of these percentages.
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Figure 7.2: Percentage of copied PostgreSQL code in extensions

Figure 7.3: Percentage of encapsulated versioning code in extensions
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Figure 7.4: Compatibility test failure percentages

7.3 Compatibility Analysis
We ran compatibility testing on 97 different extensions. We kept track of the percentage of
compatibility tests that failed for each of these extensions. The average compatibility test failure
rate was 16.9%. The highest test failure rate was 91.6% (pgextwtlist [146]), and the lowest
was 2.6% (basebackup to shell [7]). Figure 7.4 provides a histogram showing these test
failure percentages.

7.4 Correlation Analysis
We wanted to see whether there was a significant difference in the compatibility of extensions
that utilized certain types of extensibility, copied PostgreSQL source code, or used versioning
logic. Therefore, we ran paired t-tests on the compatibility percentages. We split the percentages
into two groups, based on whether the extensions:

• Used a certain hook in their source code
• Utilized a certain type of extensibility
• Copied code from the core PostgreSQL source
• Utilized versioning logic
• Had more than n lines of source code in their codebases (n = 500, 750, 1000)
• Whether an extension utilized strictly more than n types of extensibility (for n = 1, 2, 3, 4)

We found that there were four main factors with a p-value lower than 0.1, which means with
at least a probability of 0.9, the average of the compatibility percentages of the two groups is
significantly different. Therefore, we can claim that extensions with these factors are significantly

32



Extension Name Copied Function LOC Num. Functions Num. State Modifying Functions
citus [21] 6281 119 31
cube [26] 776 34 2

orafce [85] 1031 38 3
pg hint plan [101] 1426 19 6

pg ivm [102] 6653 113 29
pg queryid [110] 34 1 1
pg repack [114] 87 2 1

pg stat monitor [122] 64 2 2
pg strom [91] 134 3 1
pg tle [188] 873 15 1

pglogical [104] 267 5 3
seg [161] 771 34 2

timescaledb [187] 884 16 4

Table 7.2: Function analysis results

less compatible with other extensions than extensions without these factors. These factors are:
• Utilization of versioning logic (p = 0.01)
• Whether an extension utilized strictly more than n types of extensibility (for n = 1, 2, 3, 4,
p1 = 0.08, p2 = 0.07, p3 = 0.07, p4 = 0.08)

• Had more than n lines of source code in their codebases (n = 500, 750, p500 = 0.01, p750 =
0.09)

• Usage of ProcessUtility hook (p = 0.08)

7.5 Function Analysis
The function analysis mode runs static analysis on the fully copied functions from PostgreSQL
source code. We conducted this analysis on 10 of 97 extensions, since these were the only
extensions which copied whole functions from source code. We present our results in Table 7.2.
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Chapter 8

Discussion

Ultimately, our survey and evaluation yielded many fruitful observations about the current database
system extensibility ecosystem. We summarize these findings below in the following sections.

8.1 Extensibility Design Trade-offs

Our comprehensive survey identified two significant design trade-offs concerning extensibility
within DBMSs. The first trade-off is the safety-flexibility trade-off. Within extensibility, safety
guarantees include a guarantee that the DBMS will not crash or that an extension does not modify
another extension’s execution. SQLite demonstrates an example of this trade-off. Its filesystem
extensibility support guarantees users can install only one filesystem extension simultaneously.

On the other hand, another example of a system opting for more flexibility over safety is
when PostgreSQL allows an extension to disallow previously loaded extension’s hooks from
executing. For instance, Citus completely overrides the planner hook and ensures that no other
previously loaded extension has access to the planner hook. Our survey found that PostgreSQL
had the most flexible extensibility support, and Redis, a system where extension developers
cannot modify source code, had the safest version of extensibility. To illustrate this trade-off, we
provide Figure 8.1, which shows the five DBMSs we surveyed on the safety-flexibility spectrum.

The second trade-off we identified is the usability-conciseness trade-off. To support more
concise or niche forms of extensibility, the DBMS will make their extensibility less accessible
to developers without a deep understanding of the DBMS they are working on. For instance,
some forms of planner extensibility within PostgreSQL are concise and niche (e.g., adding a
new join path to the plan tree). This extensibility requires a deep knowledge of PostgreSQL’s
internal plan representation. However, in PostgreSQL, the executor hooks are designed with
more usability in mind. There are four executor hooks: run at the beginning of an execution of
a query plan, during execution (this hook overrides the executor’s runtime completely), after the
execution engine runs a query plan, and after the execution engine finishes running the last query
plan. These hooks are more intuitive for DBMS developers without a deep understanding of
PostgreSQL. However, this means it is impossible to make small changes to the executor engine
code without rewriting these coarser hooks.
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Figure 8.1: Safety vs. flexibility trade-off visualization

8.2 Extension Composability
Our survey also showed that DBMS extensibility was not inherently composable. There was
no built-in way to reference another extension’s code, components, or state from an extension.
Rather, extension developers have to rely on deeply understanding the behavior of an extension
and then code up their extension to match this behavior. However, this did not stop extension de-
velopers from setting other extensions as dependencies and utilizing the behavior of other exten-
sions in their implementations. For instance, many PostgreSQL extensions [101, 110, 118, 121]
rely on pg stat statements [123], a built-in PostgreSQL extension that tracks planning and ex-
ecution statistics. These extensions usually interpret these statistics differently or add auxiliary
statistics collection. Another example of this phenomenon is the collection of InnoDB-specific
catalog extensions in MariaDB. InnoDB [57, 61] is a widely used storage engine plugin for
MySQL and MariaDB. Both of these DBMSs include extensions that collect statistics related
to InnoDB and store them in the catalog [56, 58]. These extensions store statistics about the
transactions executing inside InnoDB, locks that InnoDB transactions have requested, and infor-
mation about compressed tables. These examples provide a compelling argument to formally
support database extension composability within commonly used DBMSs.

8.3 DBMS Extension Ecosystem Similarity
Analyzing extensions via our survey revealed that many extensions implemented for different
DBMSs performed remarkably similar functions. We provide the following four examples of
extensions with similar purposes.

1. Both MySQL and PostgreSQL support a DBMS job queuing extension. PostgreSQL’s
version of the job queue extension is pg cron [97], while MySQL’s version is
mysql query queue [82]. Both extensions support user interaction via UDFs.
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2. Both DuckDB and PostgreSQL support a SQLite external table extension [34, 172], which
allows users to interact with a SQLite database in DuckDB/PostgreSQL. Most DBMSs
supported external table extensions that processed other widely used DBMS file formats.

3. Both SQLite and PostgreSQL support vector embedding extensions [129, 173], which
allow the user to perform vector similarity searches on their data. They implement these
extensions slightly differently. PostgreSQL gives users a custom type and a custom HNSW
index implementation. Since SQLite does not support UDTs, it provides a custom index
implementation based on Faiss and allows users to insert their data as JSON or raw bytes
into these tables.

A few high-impact, motivating examples exist where extension developers implement similar
extensions in different systems. Ideally, there would be methods of writing extensions where
developers would not have to write multiple extensions performing the same capabilities.

8.4 PostgreSQL’s Popularity
Table 3.1 highlights that PostgreSQL’s extensibility ecosystem is much more popular, well-used,
and active than the other four DBMSs’ extensibility ecosystems. We observe that a few factors
contribute to PostgreSQL’s immense popularity.

1. PostgreSQL provides significant flexibility to its developers. It is possible to almost com-
pletely override the core system and create a new DBMS by only using PostgreSQL’s ex-
tensibility offerings. Unlike other DBMSs we surveyed, PostgreSQL has comprehensive
support for query processing extensions. This flexibility allows developers to implement
many kinds of extensions that may not be inherently doable in other DBMSs using Post-
greSQL.

2. PostgreSQL provides many extensibility mechanisms to developers. In fact, 5.1 notes that
PostgreSQL offers all the common mechanisms. PostgreSQL supports more comprehen-
sive versions of these mechanisms than other database systems. For instance, their config-
uration option support allows for extensions to declare custom configuration variables that
users can set in postgresql.conf, the main configuration file.

3. Compared to other extensions, PostgreSQL provides significant internal building and test-
ing infrastructure via pgxs, their internal build system tool for extensions, and pg regress,
their internal black box testing tool for extensions. Most PostgreSQL developers utilize
these tools when writing extensions.

8.5 PostgreSQL Analysis Discussion
Despite the PostgreSQL extensibility ecosystem’s inherent dominance over every other exten-
sibility ecosystem (in terms of its activity), our analysis framework highlighted some critical
problems with it, mainly regarding extension compatibility. In the first subsection, we discuss
the issues we found by manually analyzing the results of our compatibility analysis. In the second
subsection, we highlight the results of our correlation analysis and explain them in context.
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8.5.1 Qualitative Discussion

When manually inspecting the log files and output of the extension compatibility testing, we
found several issues with PostgreSQL’s extensibility ecosystem:

1. PostgreSQL does not have an extension manager. It relies on extensions to call the previ-
ous extension’s installed hook if the hook exists. This means that extensions can prevent
other extensions from executing their code. For example, Citus’s [21] implementation uses
this tactic. Citus overrides the planner and prevents previous extensions from running their
planner code. Apart from this concern, an extension manager could fix ordering issues,
where one ordering of extensions results in compatibility and another does not. It also
allows for a more effortless experience of installing and uninstalling extensions. Lastly,
some extensions require PostgreSQL with special compilation flags, and having an exten-
sion manager could ensure that this extension is only successfully loaded if PostgreSQL is
installed with the correct configurations.

2. Although pg regress is incredibly convenient and relatively easy for extension devel-
opers, its implementation has some problems. First, its only supported mode is black box
testing. As a result, most extensions do not support unit testing and only have black box
tests. Second, pg regress fails tests even when it is not supposed to since it tests for
correctness by comparing the text output of the SQL queries in the test file to an .out file,
a text file with the correct output of these SQL queries. As a result, even if two extensions
output the correct text for a query because the .out file does not take another extension’s
output into account, the test fails.

3. PostgreSQL should inform users via error messages if their extension fails due to incom-
patibility. Often, when extensions are incompatible, the outputted error messages are
seemingly unrelated to the incompatibility. For instance, when shared ispell and
plprofiler are unsuccessfully loaded together, the error message in the log is “re-
quested tranche is not registered”, which alludes to an error in the shared memory hooks,
but does not highlight the extension incompatibility as the problem.

4. PostgreSQL should determine when extension incompatibility is inherently unfixable. For
instance, Citus and Timescale completely override the planner and change significant por-
tions of the query plan’s internal representation to cater to their purposes. However, users
can install Citus and Timescale, even if their tests fail upon execution.

8.5.2 Correlation Discussion

The correlation analysis highlighted four key extension properties, resulting in a significantly
higher compatibility test failure rate. We explain why these factors led to a higher failure rate
below.

1. Extensions that utilize versioning logic in their source code have a significantly higher
failure rate than extensions that do not because versioning logic introduces a significant
amount of complexity that is hard to navigate. The versioning problem becomes even
more tricky when considering PostgreSQL’s dramatically changing core codebase. We
discovered that most extensions case on recent versions of PostgreSQL, as opposed to older
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ones. One of the reasons that versioning logic is tricky to handle is because extensions use
some unspecified states of the core PostgreSQL code to implement their extension’s logic.
When those states are changed, their extension no longer functions correctly.

2. Extensions with more lines of code (over 500 and 750 LOC) and extensions that utilized
more components have a significantly higher failure rate than those that did not. This phe-
nomenon makes sense, as this increased failure rate is due to increased extension complex-
ity. Shorter and more simple code is easier to understand and code correctly. Additionally,
extension developers who code extensions that utilize more types of extensibility have to
know how these components work with one another, which gets more difficult as they
utilize more types of extensibility.

3. Extensions that use the ProcessUtility hook have a significantly higher failure rate
than extensions that do not use this hook. The ProcessUtility hook allows users to
override utility commands, or essentially every database command except SELECT, IN-
SERT, UPDATE, and DELETE. Its calling location is also immediately after parsing, mak-
ing it convenient for extension developers to insert extra logic before executing queries.
The fact that the ProcessUtility hook is extremely powerful, along with its prime
location where extensions perform extra logic, seems to be why using this hook results in
a significantly higher failure rate.

Overall, we see a few solutions to the PostgreSQL extensibility problems. First, PostgreSQL
should reduce complexity in writing extensions. For instance, they can make extensions devel-
opment agnostic to the version of PostgreSQL the extension runs on. However, the trade-off
of this approach is that extensions are more restricted in their actions. Extension developers
may be unable to utilize hacks based on PostgreSQL’s internal state. They can also provide
utility APIs based on the types of functions extensions tend to copy and easier ways of porting
helpful functions besides copy-pasting them directly into the extension source code. Lastly, the
ProcessUtility hook’s great power, along with the power of other sledgehammer hooks,
such as planner hook, which can overwrite the whole planner, should not go unchecked.
PostgreSQL should provide a utility tool that determines the extension’s compatibility with the
core DBMS and other extensions.
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Chapter 9

Conclusion and Future Work

9.1 Future Work
There are several directions of future work that we could pursue due to this research endeavor.
First, we could design methods of identifying whether PostgreSQL extensions affect each other’s
execution. We could start by viewing extensions and other main components of the core DBMS
as features, then bring in the ideals of feature interaction research from the software engineer-
ing community as a starting point. Another exciting idea is to develop a better extensibility
infrastructure that guarantees safe extensibility. For example, we could draw on ideals from the
eBPF project, which uses sandboxing and verifying techniques to guarantee a semblance of safe
extensibility. Lastly, we could develop extensibility that is portable between different database
systems. One of our survey findings was that similar extensions existed across multiple DBMSs.
Developing portable extensibility would increase the usage of extensibility in systems that are
not just PostgreSQL and the impact of extensibility in the database systems sphere.

9.2 Conclusion
This thesis provides a comprehensive survey and evaluation of modern DBMS extensibility. We
provide a taxonomy identifying ten types of DBMS extensibility, four common mechanisms
provided to DBMS extension developers, four DBMS design decisions made about extensibil-
ity, and four main properties of DBMS extensions. We also offer a comprehensive analysis of
PostgreSQL’s extensibility ecosystem. To help with this analysis, we provide the first framework
that runs evaluative analysis on PostgreSQL extensions. Through the results provided by our
framework, we highlight that it sacrifices safety for high flexibility. This chosen trade-off is one
of several reasons why it is the most popular environment for extension development. Overall,
we hope this work can highlight existing problems of DBMS extensibility and motivate future
research on improving DBMS extensibility.

41



42



Appendix A

Additional Results

In this chapter, we place useful data collected with pgext cli.

A.1 API Information Analysis
Table A.1 shows the types of extensibility utilized for each extension.

Extension Name Fns. Types Access
Methods

External
Tables

Client
Auth

Query
Processing

Utility
Commands

adminpack [1] Yes No No No No No No
amcheck [3] Yes No No No No No No
anon [145] Yes Yes No No No No No
auth delay [4] No No No No Yes No No
auto explain [5] No No No No No Yes No
basebackup to shell [7] No No No No No No No
basic archive [8] No No No No No No No
bloom [12] Yes No Yes No No No No
bool plperl [13] Yes No No No No No No
btree gin [14] Yes No No No No No No
btree gist [15] Yes Yes No No No No No
citext [20] Yes Yes No No No No No
citus [21] Yes Yes Yes No Yes Yes Yes
cube [26] Yes Yes No No No No No
dblink [28] Yes Yes No Yes No No No
decoderbufs [140] No No No No No No No
dict int [29] Yes No No No No No No
dict xsyn [30] Yes No No No No No No
dont drop db [31] No No No No No No Yes
earthdistance [35] Yes No No No No No No
file fdw [42] Yes No No Yes No No No
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fuzzystrmatch [46] Yes No No No No No No
hll [148] Yes Yes No No No Yes No
hstore [50] Yes Yes No No No No No
hstore plperl [51] Yes No No No No No No
hstore plpython3u [52] Yes No No No No No No
hypopg [53] Yes No No No No Yes Yes
imcs [55] Yes Yes No No No Yes No
intagg [59] Yes No No No No No No
intarray [60] Yes Yes No No No No No
ip4r [62] Yes Yes No No No No No
isn [63] Yes Yes No No No No No
jsonb plperl [64] Yes No No No No No No
jsonb plpython3u [65] Yes No No No No No No
lo [67] Yes No No No No No No
logerrors [68] Yes No No No No No No
lsm3 [69] Yes No Yes No No Yes Yes
ltree [70] Yes Yes No No No No No
ltree plpython3u [71] Yes No No No No No No
mysql fdw [81] Yes No No Yes No No No
old snapshot [83] Yes No No No No No No
oracle fdw [44] Yes No No Yes No No No
orafce [84] Yes Yes No No No No No
pageinspect [88] Yes No No No No No No
passwordcheck [88] No No No No Yes No No
pg bigm [95] Yes No No No No No No
pg buffercache [96] Yes No No No No No No
pg cron [97] Yes No No No No No No
pg freespacemap [100] Yes No No No No No No
pg hint plan [101] No No No No No Yes No
pg ivm [102] Yes No No No Yes No No
pg log userqueries [105]No No No No No Yes Yes
pg partman [149] Yes Yes No No No No No
pg prewarm [107] Yes No No No No No No
pg proctab [108] Yes No No No No No No
pg qualstats [109] Yes Yes No No No Yes No
pg query rewrite [112] Yes No No No No Yes No
pg queryid [110] Yes No No No No No No
pg querylog [111] Yes Yes No No No Yes No
pg repack [114] Yes Yes No No No No No
pg show plans [119] Yes No No No No No No
pg similarity [120] Yes No No No No No No
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pg stat kcache [121] Yes No No No No Yes No
pg stat monitor [122] Yes No No No Yes Yes Yes
pg stat statements [123]Yes No No No No Yes Yes
pg strom [91] Yes Yes No Yes Yes Yes No
pg surgery [125] Yes No No No No No No
pg tle [188] Yes Yes No No Yes No Yes
pg trgm [127] Yes Yes No No No No No
pg variables [128] Yes No No No No Yes No
pg visibility [130] Yes No No No No No No
pg wait sampling [131] Yes No No No No Yes No
pg walinspect [132] Yes No No No No No No
pgaudit [92] Yes No No No Yes Yes Yes
pgcrypto [98] Yes No No No No No No
pgextwlist [146] No No No No No No Yes
pgfincore [99] Yes No No No No No No
pgjwt [103] Yes No No No No No No
pglogical [104] Yes No No No Yes No Yes
pgrouting [115] Yes Yes No No No No No
pgrowlocks [116] Yes No No No No No No
pgsentinel [118] Yes No No No No No No
pgstattuple [124] Yes No No No No No No
pgtap [126] Yes No No No No No No
pgtt [147] No No No No No Yes Yes
plpgsql check [134] Yes No No No No No No
plprofiler [135] Yes No No No No No No
plproxy [136] Yes No No Yes No No No
plv8 [137] Yes No No No No No No
postgis [139] Yes Yes No No No Yes No
postgres fdw [141] Yes No No Yes No No No
prefix [151] Yes Yes No No No No No
rdkit [153] Yes Yes No No No No No
seg [161] Yes Yes No No No No No
sepgsql [163] Yes No No No Yes No Yes
set user [164] Yes No No No Yes No Yes
shared ispell [165] Yes No No No No No No
spi [170] Yes No No No No No No
sslinfo [174] Yes No No No No No No
tablefunc [180] Yes Yes No No No No No
tcn [181] Yes No No No No No No
tds fdw [182] No No No No No No No
test decoding [183] No No No No No No No
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timescaledb [187] Yes Yes No Yes No Yes Yes
tsm system rows [189] Yes No No No No No No
tsm system time [190] Yes No No No No No No
unaccent [191] Yes No No No No No No
uuid-ossp [194] Yes No No No No No No
vector [129] Yes Yes Yes No No No No
vops [195] Yes Yes No Yes No Yes No
wal2json [196] No No No No No No No
xml2 [197] Yes No No No No No No

Table A.1: Types of extensibility utilized by each extension

A.2 Source Code Analysis
Table A.2 shows the results of our duplicated PostgreSQL code analysis. Table A.3 shows the
results of our versioning code analysis. Notably, we do not include the results of extensions that
did not have copied PostgreSQL code or versioning logic in their respective tables.

Extension Name Total LOC Copied Postgres LOC Percent Copied Postgres LOC
bloom 1737 60 3.45
citus 236981 21418 9.04
cube 5683 2496 43.92
hstore 4471 57 1.27
hypopg 3576 76 2.13
orafce 22688 3242 14.29
pg cron 4691 18 0.38
pg hint plan 6990 1532 21.92
pg ivm 21260 15974 75.14
pg log userqueries 1479 52 3.52
pg queryid 1065 36 3.38
pg repack 5212 87 1.67
pg stat monitor 5127 589 11.49
pg strom 68081 376 0.55
pg tle 5281 2278 43.14
pg trgm 5156 123 2.39
pgcrypto 11668 36 0.31
pglogical 26192 1243 4.75
plpgsql check 19196 155 0.81
plv8 30819 59 0.19
seg 4705 2492 52.96
timescaledb 73501 2475 3.37
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Table A.2: Source code analysis data

Extension Name Total LOC Versioning LOC Percent Versioning LOC
anon 329 8 2.43
citus 236981 28650 12.09
decoderbufs 1520 7 0.46
dont drop db 195 24 12.31
hll 4214 332 7.88
hypopg 3576 853 23.85
imcs 15324 63 0.41
ip4r 8395 24 0.29
logerrors 776 20 2.58
lsm3 1301 40 3.07
mysql fdw 9418 1034 10.98
oracle fdw 9031 12 0.13
orafce 22688 1090 4.8
pg bigm 1265 87 6.88
pg cron 4691 86 1.83
pg ivm 21260 316 1.49
pg log userqueries 1479 325 21.97
pg partman 530 59 11.13
pg proctab 1287 20 1.55
pg qualstats 2616 253 9.67
pg query rewrite 897 90 10.03
pg queryid 1065 2 0.19
pg querylog 546 2 0.37
pg repack 5212 37 0.71
pg show plans 630 25 3.97
pg similarity 5066 95 1.88
pg stat kcache 1384 255 18.42
pg stat monitor 5127 1208 23.56
pg strom 68081 30 0.04
pg tle 5281 163 3.09
pg variables 3904 169 4.33
pg wait sampling 1598 136 8.51
pgextwlist 1235 4 0.32
pgfincore 1168 9 0.77
pglogical 26192 692 2.64
pgsentinel 2265 391 17.26
pgtt 2031 247 12.16
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plpgsql check 19196 2955 15.39
plprofiler 2341 30 1.28
plproxy 5332 28 0.53
plv8 30819 1012 3.28
postgis 245474 11 0
prefix 1879 2 0.11
rdkit 447861 55 0.01
set user 1163 161 13.84
shared ispell 1100 29 2.64
tds fdw 7087 524 7.39
timescaledb 73501 224 0.3
vector 7915 331 4.18
vops 8651 347 4.01
wal2json 3064 568 18.54

Table A.3: Versioning analysis data

A.3 Compatibility Analysis
Table A.4 provides the results of our compatibility data analysis. The Percent Not Compatible
column is the number of compatibility pairing tests that failed over the total number of tests ran.

Extension Name Percent Not Compatible
adminpack 5.73
amcheck 9.9
auth delay 2.6
auto explain 3.13
basebackup to shell 2.6
basic archive 5.73
bloom 8.85
bool plperl 10.94
btree gin 14.06
btree gist 16.15
citext 13.02
citus 30.73
cube 15.1
dblink 8.85
dict int 8.85
dict xsyn 9.38
dont drop db 5.21
earthdistance 82.29
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file fdw 12.5
fuzzystrmatch 8.85
hll 10.42
hstore 15.1
hstore plperl 16.15
hstore plpython3u 13.02
hypopg 9.38
imcs 12.5
intagg 5.73
intarray 13.02
ip4r 11.46
isn 21.35
jsonb plperl 10.94
jsonb plpython3u 10.42
lo 8.85
logerrors 10.42
lsm3 21.35
ltree 14.58
ltree plpython3u 13.02
old snapshot 6.77
orafce 7.29
pageinspect 9.9
passwordcheck 7.29
pg bigm 21.35
pg buffercache 6.77
pg cron 39.06
pg freespacemap 9.38
pg hint plan 21.35
pg ivm 13.02
pg log userqueries 3.13
pg partman 7.81
pg prewarm 6.77
pg proctab 6.77
pg qualstats 12.5
pg query rewrite 46.35
pg queryid 88.54
pg repack 16.15
pg show plans 26.56
pg stat kcache 40.63
pg stat monitor 83.85
pg stat statements 19.27
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pg surgery 9.9
pg tle 33.85
pg trgm 14.58
pg variables 9.38
pg visibility 9.38
pg wait sampling 9.9
pg walinspect 10.42
pgaudit 16.67
pgcrypto 9.38
pgextwlist 91.67
pgfincore 8.33
pgjwt 6.25
pgrowlocks 6.77
pgsentinel 37.5
pgstattuple 9.38
pgtap 6.77
pgtt 10.94
plprofiler 13.54
plv8 5.21
postgres fdw 14.06
prefix 16.15
seg 16.67
shared ispell 10.94
sslinfo 5.21
tablefunc 9.38
tcn 6.77
tds fdw 64.58
test decoding 8.33
timescaledb 87.5
tsm system rows 9.9
tsm system time 9.38
unaccent 9.9
uuid-ossp 7.29
vector 9.38
vops 10.42
wal2json 6.77
xml2 10

Table A.4: Compatibility data
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