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Abstract

Six years ago, Google released an invaluable set of
scheduler logs which has already been used in more than
450 publications. We find that the scarcity of other data
sources, however, is leading researchers to overfit their
work to Google’s dataset characteristics. We demon-
strate this overfitting by introducing four new traces
from two private and two High Performance Computing
(HPC) clusters. Our analysis shows that the private clus-
ter workloads, consisting of data analytics jobs expected
to be more closely related to the Google workload, dis-
play more similarity to the HPC cluster workloads. This
observation suggests that additional traces should be con-
sidered when evaluating the generality of new research.

To aid the community in moving forward, we release
the four analyzed traces, including: the longest publicly
available trace spanning all 61 months of an HPC clus-
ter’s lifetime and a trace from a 300,000-core HPC clus-
ter, the largest cluster with a publicly available trace. We
present an analysis of the private and HPC cluster traces
that spans job characteristics, workload heterogeneity,
resource utilization, and failure rates. We contrast our
findings with the Google trace characteristics and iden-
tify affected work in the literature. Finally, we demon-
strate the importance of dataset plurality and diversity by
evaluating the performance of a job runtime predictor us-
ing all four of our traces and the Google trace.

1 Introduction

Despite intense activity in the areas of cloud and job
scheduling research, publicly available cluster workload
datasets remain scarce. The three major dataset sources
today are: the Google cluster trace [58] collected in
2011, the Parallel Workload Archive [19] of High Per-
formance Computing (HPC) traces collected since 1993,
and the SWIM traces released in 2011 [10]. Of these,
the Google trace has been used in more than 450 publi-
cations making it the most popular trace by far. Unfor-
tunately, this 29-day trace is often the only one used to
evaluate new research. By contrasting its characteristics
with newer traces from different environments, we have
found that the Google trace alone is insufficient to accu-
rately prove the generality of a new technique.

Our goal is to uncover overfitting of prior work to the
characteristics of the Google trace. To achieve this, our

first contribution is to introduce four new traces: two
from the private cloud of Two Sigma, a hedge fund, and
two from HPC clusters located at the Los Alamos Na-
tional Laboratory (LANL). Our Two Sigma traces are
the longest, non-academic private cluster traces to date,
spanning 9 months and more than 3 million jobs. The
two HPC traces we introduce are also unique. The
first trace spans the entire 5-year lifetime of a general-
purpose HPC cluster, making it the longest public trace
to date, while also exhibiting shorter jobs than existing
public HPC traces. The second trace originates from the
300,000-core current flagship supercomputer at LANL,
making it the largest cluster with a public trace, to our
knowledge. We introduce all four traces, and the envi-
ronments where they were collected, in Section 2.

Our second contribution is an analysis examining the
generality of workload characteristics derived from the
Google trace, when our four new traces are considered.
Overall, we find that the private Two Sigma cluster work-
loads display similar characteristics to HPC, despite con-
sisting of data analytics jobs that more closely resemble
the Google workload. Table 1 summarizes all our find-
ings. For those characteristics where the Google work-
load is an outlier, we have surveyed the literature and list
affected prior work. In total, we surveyed 450 papers that
reference the Google trace study [41] to identify popu-
lar workload assumptions, and we constrast them to the
Two Sigma and LANL workloads to detect violations.
We group our findings into four categories: job charac-
teristics (Section 3), workload heterogeneity (Section 4),
resource utilization (Section 5), and failure analysis (Sec-
tion 6).

Our findings suggest that evaluating new research us-
ing the Google trace alone is insufficient to guarantee
generality. To aid the community in moving forward,
our third contribution is to publicly release the four
traces introduced and analyzed in this paper. We further
present a case study on the importance of dataset plu-
rality and diversity when evaluating new research. For
our demonstration we use JVuPredict, the job runtime
predictor of the JamaisVu scheduling system [51]. Orig-
inally, JVuPredict was evaluated using only the Google
trace [51]. Evaluating its performance with our four new
traces, however, helped us identify features that make
it easier to detect related and recurring jobs with pre-
dictable behavior. This enabled us to quantify the im-
portance of individual trace fields in runtime prediction.



Section Characteristic Google Two Sigma Mustang OpenTrinity

Job Characteristics (§3)
Majority of jobs are small 4 8 8 8

Majority of jobs are short 4 8 8 8

Workload Heterogeneity (§4)
Diurnal patterns in job submissions 8 4 4 4

High job submission rate 4 4 8 8

Resource Utilization (§5)
Resource over-commitment 4 8 8 8

Sub-second job inter-arrival periods 4 4 4 4

User request variability 8 4 4 4

Failure Analysis (§6)

High fraction of unsuccessful job outcomes 4 4 8 4

Jobs with unsuccessful outcomes consume
significant fraction of resources 4 4 8 8

Longer/larger jobs often terminate unsuccessfully 4 8 8 8

Table 1: Summary of the characteristics of each trace. Note that the Google workload appears to be an outlier.

We describe our findings in Section 7.
Finally, we briefly discuss the importance of trace

length in accurately representing a cluster’s workload in
Section 8. We list related work studying cluster traces in
Section 9, before concluding.

2 Dataset information

We introduce four sets of job scheduler logs that were
collected from a general-purpose cluster and a cutting-
edge supercomputer at LANL, and across two clusters
of Two Sigma, a hedge fund. The following subsections
describe each dataset in more detail, and the hardware
configuration of each cluster is shown in Table 2.

Users typically interact with the cluster scheduler by
submitting commands that spawn multiple processes, or
tasks, distributed across cluster nodes to perform a spe-
cific computation. Each such command is considered
to be a job and users often compose scripts that gener-
ate more complex, multi-job schedules. In HPC clusters,
where resources are allocated at the granularity of phys-
ical nodes similar to Emulab [4, 16, 27, 57], tasks from
different jobs are never scheduled on the same node. This
is not necessarily true in private clusters like Two Sigma.

2.1 Two Sigma clusters
The private workload traces we introduce originate from
two datacenters of Two Sigma, a hedge fund firm. The
workload consists of data analytics jobs processing fi-
nancial data. A fraction of these jobs are handled by
a Spark [49] installation, while the rest are serviced by
home-grown data analytics frameworks. The dataset
spans 9 months of the two datacenters’ operation starting
in January 2016, covering a total of 1313 identical com-
pute nodes with 31512 CPU cores and 328TB RAM. The
logs contain 3.2 million jobs and 78.5 million tasks, col-
lected by an internally-developed job scheduler running
on top of Mesos [28]. Because both datacenters expe-
rience the same workload and consist of homogeneous

Platform Nodes CPUs RAM Length

LANL Trinity 9408 32 128GB 3 months
LANL Mustang 1600 24 64GB 5 years

TwoSigma A 872 24 256GB
9 months

TwoSigma B 441 24 256GB

Google B 6732 0.50* 0.50*

29 days

Google B 3863 0.50* 0.25*
Google B 1001 0.50* 0.75*
Google C 795 1.00* 1.00*
Google A 126 0.25* 0.25*
Google B 52 0.50* 0.12*
Google B 5 0.50* 0.03*
Google B 5 0.50* 0.97*
Google C 3 1.00* 0.50*
Google B 1 0.50* 0.06*

Table 2: Hardware characteristics of the clusters ana-
lyzed in this paper. For the Google trace [41], (*) sig-
nifies a resource has been normalized to the largest node.

nodes, we collectively refer to both data sources as the
TwoSigma trace, and analyze them together.

We expect this workload to resemble the Google clus-
ter more closely than the HPC clusters, where long-
running, compute-intensive, and tightly-coupled scien-
tific jobs are the norm. First, unlike LANL, job runtime
is not budgeted strictly; users of the hedge fund clusters
do not have to specify a time limit when submitting a job.
Second, users can allocate individual cores, as opposed
to entire physical nodes allocated at LANL. Collected
data include: timestamps for job stages from submission
to termination, job properties such as size and owner, and
the job’s return status.

2.2 LANL Mustang cluster
Mustang was an HPC cluster used for capacity comput-
ing at LANL from 2011 to 2016. Capacity clusters such
as Mustang are architected as cost-effective, general-
purpose resources for a large number of users. Mustang
was largely used by scientists, engineers, and software



developers at LANL and it was allocated to these users at
the granularity of physical nodes. The cluster consisted
of 1600 identical compute nodes, with a total of 38400
AMD Opteron 6176 2.3GHz cores and 102TB RAM.

Our Mustang dataset covers the entire 61 months of
the machine’s operation from October 2011 to Novem-
ber 2016, which makes this the longest publicly available
cluster trace to date. The Mustang trace is also unique
because its jobs are shorter than those in existing HPC
traces. Overall, it consists of 2.1 million multi-node jobs
submitted by 565 users and collected by SLURM [45], an
open-source cluster resource manager. The fields avail-
able in the trace are similar to those in the TwoSigma
trace, with the addition of a time budget field per job,
that if exceeded causes the job to be killed.

2.3 LANL Trinity supercomputer
In 2018, Trinity is the largest supercomputer at LANL
and it is used for capability computing. Capability clus-
ters are a large-scale, high-demand resource introducing
novel hardware technologies that aid in achieving crucial
computing milestones, such as higher-resolution climate
and astrophysics models. Trinity’s hardware was stood
up in two pre-production phases before being put into
full production use and our trace was collected before
the second phase completed. At the time of data collec-
tion, Trinity consisted of 9408 identical compute nodes,
a total of 301056 Intel Xeon E5-2698v3 2.3GHz cores
and 1.2PB RAM, making this the largest cluster with a
publicly available trace by number of CPU cores.

Our Trinity dataset covers 3 months from February
to April 2017. During that time, Trinity was operating
in OpenScience mode, i.e., the machine was undergoing
beta testing and was available to a wider number of users
than it is expected to have after it receives its final secu-
rity classification. We note that OpenScience workloads
are representative of a capability supercomputer’s work-
load, as they occur roughly every 18 months when a new
machine is introduced, or before an older one is decom-
missioned. The dataset, which we will henceforth refer
to as OpenTrinity, consists of 25237 multi-node jobs is-
sued by 88 users and collected by MOAB [1], an open-
source cluster scheduling system. The information avail-
able in the trace is the same as that in the Mustang trace.

2.4 Google cluster
In 2012, Google released a trace of jobs that ran in one of
their compute clusters [41]. It is a 29-day trace consist-
ing of 672074 jobs and 48 million tasks, some of which
were issued through the MapReduce framework, and ran
on 12583 heterogeneous nodes in May 2011. The work-
load consists of both long-running services and batch
jobs [55]. Google has not released the exact hardware
specifications of each cluster node. Instead, as shown in
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Figure 1: CDF of job sizes based on allocated CPU cores.

Table 2, nodes are presented through anonymized plat-
form names representing machines with different com-
binations of microarchitectures and chipsets [58]. Note
that the number of CPU cores and RAM for each node
in the trace have been normalized to the most powerful
node in the cluster. In our analysis, we estimate the to-
tal number of cores in the Google cluster to be 106544.
We derive this number by assuming that the most popu-
lar node type (Google B with 0.5 CPU cores) is a dual-
socket server, carrying quad-core AMD Opteron Barch-
elona CPUs that Google allegedly used in their datacen-
ters at the time [26]. Unlike previous workloads, jobs
can be allocated fractions of a CPU core [46].

3 Job characteristics

Many instances of prior work in the literature rely on the
assumption of heavy-tailed distributions to describe the
size and duration of individual jobs [2, 8, 13, 14, 40, 50].
In the LANL and TwoSigma workloads these tails appear
significantly lighter.

Observation 1: On average, jobs in the TwoSigma
and LANL traces request 3 - 406 times more CPU cores
than jobs in the Google trace. Job sizes in the LANL
traces are more uniformly distributed.

Figure 1 shows the Cumulative Distribution Functions
(CDFs) of job requests for CPU cores across all traces,
with the x-axis in logarithmic scale. We find that the 90%
of smallest jobs in the Google trace request 16 CPU cores
or fewer. The same fraction of TwoSigma jobs request
108 cores, and 1-16K cores in the LANL traces. Very
large jobs are also more common outside Google. This
is unsurprising for the LANL HPC clusters, where allo-
cating thousands of CPU cores to a single job is not un-
common, as the clusters’ primary use is to run massively
parallel scientific applications. It is interesting to note,
however, that while the TwoSigma clusters contain fewer
cores than the other clusters we examine (3 times fewer
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Figure 2: CDF of the durations of individual jobs.

than the Google cluster), its median job is more than an
order of magnitude larger than a job in the Google trace.
An analysis of allocated memory yields similar trends.

Observation 2: The median job in the Google trace is
4-5 times shorter than in the LANL or TwoSigma traces.
The longest 1% of jobs in the Google trace, however, are
2-6 times longer than the same fraction of jobs in the
LANL and TwoSigma traces.

Figure 2 shows the CDFs of job durations for all
traces. We find that in the Google trace, 80% of jobs last
less than 12 minutes each. In the LANL and TwoSigma
traces jobs are at least an order of magnitude longer. In
TwoSigma, the same fraction of jobs last up to 2 hours
and in LANL, they last up to 3 hours for Mustang and
6 hours for OpenTrinity. Surprisingly, the tail end of
the distribution is slightly shorter for the LANL clus-
ters than for the Google and TwoSigma clusters. The
longest job is 16 hours on Mustang, 32 hours in Open-
Trinity, 200 hours in TwoSigma, and at least 29 days in
Google (the duration of the trace). For LANL, this is due
to hard limits causing jobs to be indiscriminately killed.
For Google, the distribution’s long tail is likely attributed
to long-running services.

Implications. These observations impact the imme-
diate applicability of job scheduling approaches whose
efficiency relies on the assumption that the vast majority
of jobs’ durations are in the order of minutes, and job
sizes are insignificant compared to the size of the clus-
ter. For example, Ananthanarayanan et al. [2] propose
to mitigate the effect of stragglers by duplicating tasks of
smaller jobs. This is an effective approach for Internet
service workloads (Microsoft and Facebook are repre-
sented in the paper) because the vast majority of jobs can
benefit from it, without significantly increasing the over-
all cluster utilization. For the Google trace, for example,
90% of jobs request less than 0.01% of the cluster each,
so duplicating them only slightly increases cluster uti-
lization. At the same time, 25-55% of jobs in the LANL
and TwoSigma traces each request more than 0.1% of

the cluster’s cores, decreasing the efficiency of the ap-
proach and suggesting replication should be used judi-
ciously. This does not consider that LANL tasks are also
tightly-coupled and the entire job has to be duplicated.

Another example is the work by Delgado et al. [14],
which improves the efficiency of distributed schedulers
for short jobs by dedicating them a fraction of the cluster.
This partition ranges from 2% for Yahoo and Facebook
traces, to 17% for the Google trace where jobs are sig-
nificantly longer, to avoid increasing job service times.
For the TwoSigma and LANL traces we have shown that
jobs are even longer than for the Google trace (Figure
2), so larger partitions will likely be necessary to achieve
similar efficiency. At the same time, jobs running in the
TwoSigma and LANL clusters are also larger (Figure 1),
so service times for long jobs are expected to increase
unless the partition is shrunk. Other examples of work
that is likely affected include task migration of short and
small jobs [50] and hybrid scheduling aimed on improv-
ing head-of-line blocking for short jobs [13].

4 Workload heterogeneity

Another common assumption about cloud workloads is
that they are characterized by heterogeneity in terms of
resources available to jobs, and job interarrival times
[7, 23, 31, 46, 56]. The private and HPC clusters we
study, however, consist of homogeneous hardware (see
Table 2) and user activity follows well-defined diurnal
patterns, even though the rate of scheduling requests
varies significantly across clusters.

Observation 3: Diurnal patterns are universal. Clus-
ters received more scheduling requests and smaller jobs
at daytime, with minor deviations for the Google trace.

In Figure 3 we show the number of job scheduling re-
quests for every hour of the day. We choose to show
metrics for the median day surrounded by the other two
quartiles because the high variation across days causes
the averages to be unrepresentative of the majority of
days (see Section 8). Overall, diurnal patterns are ev-
ident in every trace and user activity is concentrated at
daytime (7AM to 7PM), similar to prior work [38]. An
exception to this is the Google trace, which is most ac-
tive from midnight to 4AM, presumably due to batch jobs
leveraging the available resources.

Sizes of submitted jobs are also correlated with the
time of day. We find that longer, larger jobs in the LANL
traces are typically scheduled during the night, while
shorter, smaller jobs tend to be scheduled during the day.
The reverse is true for the Google trace, which prompts
our earlier assumption on nightly batch jobs. Long, large
jobs are also scheduled at daytime in the TwoSigma clus-
ters, despite having a diurnal pattern similar to LANL
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Figure 3: Hourly job submission rates for a given day.
The lines represent the median, while the shaded region
shows the distance between the 25th and 75th percentiles.
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Figure 4: Hourly task placement requests for a given day.
The lines represent the median, while the shaded region
shows the distance between the 25th and 75th percentiles.

clusters. This is likely due to TwoSigma’s workload con-
sisting of financial data analysis, which bears a depen-
dence on stock market hours.

Observation 4: Scheduling request rates differ by up
to 3 orders of magnitude across clusters. Sub-second
scheduling decisions seem necessary in order to keep up
with the workload.

One more thing to take away from Figure 3 is that the
rate of scheduling requests can differ significantly across
clusters. For the Google and TwoSigma traces, hundreds
to thousands of jobs are submitted every hour. On the
other hand, LANL schedulers never receive more than
40 requests on any given hour. This could be related to
the workload or the number of users in the system, as the
Google cluster serves 2 times as many user IDs as the
Mustang cluster and 9 times as many as OpenTrinity.

Implications: Previous work such as Omega [46] and
ClusterFQ [56] propose distributed scheduling designs
especially applicable to heterogeneous clusters. This
does not seem to be an issue for environments such as
LANL and TwoSigma, which intentionally architect ho-
mogeneous clusters to lower performance optimization
and administration costs.

As cluster sizes increase, so does the rate of scheduling
requests, urging us to reexamine prior work. Quincy [31]
represents scheduling as a Min-Cost Max-Flow (MCMF)
optimization problem over a task-node graph and contin-
uously refines task placement. The complexity of this
approach, however, becomes a drawback for large-scale
clusters such as the ones we study. Gog et al. [23] find
that Quincy requires 66 seconds (on average) to converge
to a placement decision in a 10,000-node cluster. The
Google and LANL clusters we study already operate on
that scale (Table 2). We have shown in Figure 3 that
the average frequency of job submissions in the LANL
traces is one job every 90 seconds, which implies that
this scheduling latency may work, but this will not be the
case for long. Trinity is currently operating with 19,000
nodes and, under the DoE’s Exascale Computing Project
[39], 25 times larger machines are planned within the
next 5 years. Note that when discussing scheduling so
far we refer to jobs, since HPC jobs have a gang schedul-
ing requirement. Placement algorithms such as Quincy,
however, focus on task placement.

An improvement to Quincy is Firmament [23], a
centralized scheduler employing a generalized approach
based on a combination of MCMF optimization tech-
niques to achieve sub-second task placement latency
on average. As Figure 4 shows, sub-second latency is
paramount, since the rate of task placement requests in
the Google and TwoSigma traces can be as high as 100K
requests per hour, i.e. one task every 36ms. Firmament’s
placement latency, however, increases to several seconds
as cluster utilization increases. For the TwoSigma and
Google traces this can be problematic.

5 Resource utilization

A well-known motivation for the cloud has been resource
consolidation, with the intention of reducing equipment
ownership costs. An equally well-known property of the
cloud, however, is that its resources remain underutilized
[6, 15, 35, 36, 41]. This is mainly due to a disparity
between user resource requests and actual resource us-
age, which recent research efforts try to alleviate through
workload characterization and aggressive consolidation
[15, 33, 34]. Our analysis finds that user resource re-
quests in the LANL and TwoSigma traces are character-
ized by higher variability than in the Google trace. We
also look into job inter-arrival times and how they are
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Figure 5: CDF of job interarrival times.

approximated when evaluating new research.

Observation 5: Unlike the Google cluster, none of the
other clusters we examine overcommit resources.

Overall, we find that the fraction of CPU cores al-
located to jobs is stable over time across all the clus-
ters we study. For Google, CPU cores are over provi-
sioned by 10%, while for other clusters unallocated cores
range between 2-12%, even though resource overprovi-
sioning is supported by their schedulers. Memory alloca-
tion numbers follow a similar trend. Unfortunately, the
LANL and TwoSigma traces do not contain information
on actual resource utilization. As a result, we can nei-
ther confirm, nor contradict results from earlier studies
on the imbalance between resource allocation and uti-
lization. What differs between organizations is the mo-
tivation for keeping resources utilized or available. For
Google [41], Facebook [10], and Twitter [15], there is
a tension between the financial incentive of maintaining
only the necessary hardware to keep operational costs
low and the need to provision for peak demand, which
leads to low overall utilization. For LANL, clusters are
designed to accommodate a predefined set of applica-
tions for a predetermined time period and high utilization
is planned as part of efficiently utilizing federal fund-
ing. For the TwoSigma clusters, provisioning for peak
demand is more important, even if it leads to low overall
utilization, since business revenue is heavily tied to the
response times of their analytics jobs.

Observation 6: The majority of job interarrivals pe-
riods are sub-second in length.

Interarrival periods are a crucial parameter of an ex-
perimental setup, as they dictate the load on the sys-
tem under test. Two common configurations are second-
granularity [15] or Poisson-distributed interarrivals [29],
and we find that neither characterizes interarrivals accu-
rately. In Figure 5 we show the CDFs for job interarrival
period lengths. We observe that 44-62% of interarrival
periods are sub-second, implying that jobs arrive at a
faster rate than previously assumed. Furthermore, our at-
tempts to fit a Poisson distribution on this data have been
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Figure 6: CDF of the number of tasks per job.

unsuccessful, as Kolmogorov-Smirnov tests [37] reject
the null hypothesis with p-values < 2.2× 10−16. This
result does not account for a scenario where there is an
underlying Poisson process with a rate parameter chang-
ing over time, but it suggests that caution should be used
when a Poisson distribution is assumed.

Another common assumption is that jobs are very
rarely big, i.e., made up of multiple tasks [29, 56]. In
Figure 6 we show the CDFs for the number of tasks
per job across organizations. We observer that 77% of
Google jobs are single-task jobs, but the rest of the clus-
ters carry many more multi-task jobs. We note that the
TwoSigma distribution approaches that of Google only
for larger jobs. This suggests that task placement may be
a harder problem outside Google, where single-task jobs
are common, exacerbating the evaluation issues we out-
lined in Section 4 for existing task placement algorithms.

Observation 7: User resource requests are more vari-
able in the LANL and TwoSigma traces than in the
Google trace.

Resource under-utilization can be alleviated through
workload consolidation. To ensure minimal interference,
applications are typically profiled and classified accord-
ing to historical data [15, 33]. Our analysis suggests that
this approach is likely to be less successful outside the In-
ternet services world. To quantify variability in user be-
havior we examine the Coefficient of Variation1 (CoV)
across all requests of individual users. For the Google
trace we find that the majority of users issue jobs within
2x of their average request in CPU cores. For the LANL
and TwoSigma traces, on the other hand, 60-80% of users
can deviate by 2-10x of their average request.

Implications: A number of earlier studies of Google
[41], Twitter [15], and Facebook [10] data have high-
lighted the imbalance between resource allocation and
utilization. Google tackles this issue by over-committing
resources, but this is not the case for LANL and
TwoSigma. Another proposed solution is Quasar [15],
a system that consolidates workloads while guaranteeing

1The Coefficient of Variation is a unit-less measure of spread, de-
rived by dividing a sample’s standard deviation by its mean.



a predefined level of QoS. This is achieved by profiling
jobs at submission time and classifying them as one of
the previously encountered workloads; misclassifications
are detected by inserting probes in the running applica-
tion. For LANL, this approach would be infeasible. First,
jobs cannot be scaled down for profiling, as submitted
codes are often carefully configured for the requested al-
location size. Second, submitted codes are too complex
to be accurately profiled in seconds, and probing them
at runtime to detect misclassifications can introduce per-
formance jitter that is prohibitive in tightly-coupled HPC
applications. Third, in our LANL traces we often find
that users tweak jobs before resubmitting them, as they
re-calibrate simulation parameters to achieve a success-
ful run, which is likely to affect classification accuracy.
Fourth, resources are carefully reserved for workloads
and utilization is high, which makes it hard to provision
resources for profiling. For the TwoSigma and Google
traces Quasar may be a better fit, however, at the rate of
2.7 jobs per second (Figure 3), 15 seconds of profiling
[15] at submission time would result in an expected load
of 6 jobs being profiled together. Since Quasar requires
4 parallel and isolated runs to collect sufficient profil-
ing data, we would need resources to run at least 360
VMs concurrently, with guaranteed performance isola-
tion between tham to keep up with the average load.
This further assumes the profiling time does not need to
be increased beyond 15 seconds. Finally, Quasar [15]
was evaluated using multi-second inter-arrival periods,
so testing would be necessary to ensure that one order of
magnitude more load can be handled (Figure 5), and that
it will not increase the profiling cost further.

Another related approach to workload consolidation is
provided by TSF [56], a scheduling algorithm that at-
tempts to maximize the number of task slots allocated
to each job, without favoring bigger jobs. This ensures
that the algorithm remains starvation-free, however it re-
sults in significant slowdowns in the runtime of jobs with
100+ tasks, which the authors define as big. This would
be prohibitive for LANL, where jobs must be scheduled
as a whole, and such “big” jobs are much more prevalent
and longer in duration. Other approaches for schedul-
ing and placement assume the availability of resources
that may be unavailable in the clusters we study here,
and their performance is shown to be reduced in highly-
utilized clusters [25, 29].

6 Failure analysis

Job scheduler logs are often analyzed to gain an under-
standing of job failure characteristics in different envi-
ronments [9, 17, 21, 22, 43]. This knowledge allows for
building more robust systems, which is especially im-
portant as we transition to exascale computing systems
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Figure 7: Breakdown of the total number of jobs, as well
as CPU time, by job outcome.

where failures are expected every few minutes [48], and
cloud computing environments built on complex soft-
ware stacks that increase failure rates [9, 44].

Definitions. An important starting point for any fail-
ure analysis is defining what constitutes a failure event.
Across all traces we consider, we define as failed jobs all
those that end due to events whose occurrence was not
intended by users or system administrators. We do not
distinguish failed jobs by their root cause, e.g., software
and hardware issues, because this information is not re-
liably available. There are other job termination states
in the traces, in addition to success and failure. For the
Google trace, jobs can be killed by users, tasks can be
evicted in order to schedule higher-priority ones, or have
an unknown exit status. For the LANL traces, jobs can
be cancelled intentionally. We group all these job out-
comes as aborted jobs and collectively refer to failed and
aborted jobs as unsuccessful jobs.

There is another job outcome category. At LANL,
users are required to specify a runtime estimate for each
job. This estimate is treated as a time limit, similar to
an SLO, and the scheduler kills the job if the limit is ex-
ceeded. We refer to these killings as timeout jobs and
present them separately because they can produce useful
work in three cases: (a) when HPC jobs use the time limit
as a stopping criterion, (b) when job state is periodically
checkpointed to disk, and (c) when a job completes its
work before the time limit but fails to terminate cleanly.

Observation 8: Unsuccessful job terminations in the
Google trace are 1.4-6.8x higher than in other traces.
Unsuccessful jobs at LANL use 34-80% less CPU time.

In Figure 7, we break down the total number of jobs
(left), as well as the total CPU time consumed by all jobs
by job outcome (right). First, we observe that the fraction
of unsuccessful jobs is significantly higher (1.4-6.8x) for
the Google trace, than for the other traces. This compar-
ison ignores jobs that timeout for Mustang, because as
we explained above, it is unlikely they represent wasted
resources. We also note that almost all unsuccessful jobs
in the Google trace were aborted. According to the trace



1e−02 1e−01 1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of cores in job

F
ra

c
ti
o
n
 o

f 
to

ta
l 
jo

b
s

Mustang
OpenTrinity
TwoSigma
Google
Unsuccessful jobs
Successful jobs

Figure 8: CDFs of job sizes (in CPU cores) for unsuc-
cessful and successful jobs.

documentation [58] these jobs could have been aborted
by a user or the scheduler, or by dependent jobs that
failed. As a result, we cannot rule out the possibility that
these jobs were linked to a failure. For this reason, prior
work groups all unsuccessful jobs under the “failed” la-
bel [17], which we choose to avoid for clarity. Another
fact that further highlights how blurred the line between
failed and aborted jobs can be, is that all unsuccessful
jobs in the TwoSigma trace are assigned a failure status.
In short, our classification of jobs as “unsuccesful” may
seem broad, but it is consistent with the liberal use of the
term “failure” in the literature.

We also find that unsuccessful jobs are not equally
detrimental to the overall efficiency of all clusters. While
the rate of unsuccessful jobs for the TwoSigma trace is
similar to the rate of unsuccessful jobs in the OpenTrin-
ity trace, each unsuccessful job lasts longer. Specifically,
unsuccessful jobs in the LANL traces waste 34-80% less
CPU time than in the Google and TwoSigma traces. It is
worth noting that 49-55% of CPU time at LANL is allo-
cated to jobs that time out, which suggests that at least a
small fraction of that time may become available through
the use of better checkpoint strategies.

Observation 9: For the Google trace, unsuccessful
jobs tend to request more resources than successful ones.
This is untrue for all other traces.

In Figure 8, we show the CDFs of job sizes (in CPU
cores) of individual jobs. For each trace, we show sepa-
rate CDFs for unsuccessful and successful jobs. By sep-
arating jobs based on their outcome we observe that suc-
cessful jobs in the Google trace request fewer resources,
overall, than unsuccessful jobs. This observation has also
been made in earlier work [17, 21], but it does not hold
for our other traces. CPU requests for successful jobs in
the TwoSigma and LANL traces are similar to requests
made by unsuccessful jobs. This trend is opposite to
what is seen in older HPC job logs [59], and since these
traces were also collected through SLURM and MOAB
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Figure 9: Success rates for jobs grouped by CPU hours.

we do not expect this discrepancy to be due to semantic
differences in the way failure is defined across traces.

Observation 10: For the Google and TwoSigma
traces, success rates drop for jobs consuming more CPU
hours. The opposite is true for LANL traces.

For the traces we analyze, the root cause behind unsuc-
cessful outcomes is not reliably recorded. Without this
information, it is difficult to interpret and validate the re-
sults. For example, we expect that hardware failures are
random events whose occurrence roughly approximates
some frequency based on the components’ Mean Time
Between Failure ratings. As a result, jobs that are larger
and/or longer, would be more likely to fail. In Figure 9
we have grouped jobs based on the CPU hours they con-
sume (a measure of both size and length), and we show
the success rate for each group. The trend that stands out
is that success rates decrease for jobs consuming more
CPU hours in the Google and TwoSigma traces, but they
are increase and remain high for both LANL clusters.
This could be attributed to larger, longer jobs at LANL
being more carefully planned and tested, but it could also
be due to semantic differences in the way success and
failure are defined across traces.

Implications. The majority of papers analyzing the
characteristics of job failures in the Google trace build
failure prediction models that assume the existence of
the trends we have shown on success rates and resource
consumption of unsuccessful jobs. Chen et al. [9] high-
light the difference in resource consumption between
unsuccessful and successful jobs, and El-Sayed et al.
[17] note that this is the second most influential predic-
tor (next to early task failures) for their failure predic-
tion models. As we have shown in Figure 9, unsuc-
cessful jobs are not linked to resource consumption in
other traces. Another predictor highlighted in both stud-
ies is job re-submissions, with successful jobs being re-
submitted fewer times. We confirm that this trend is con-
sistent across all traces, even though the majority of jobs
(83-93%) are submitted exactly once. A final observa-
tion that does not hold true for LANL is that CPU time
of unsuccessful jobs increases with job runtime [17, 22].



7 A case study on plurality and diversity

Evaluating systems against multiple traces enables re-
searchers to identify practical sensitivities of new re-
search and prove its generality. We demonstrate this
through a case study on JVuPredict, the job runtime2

predictor module of the JamaisVu [51] cluster scheduler.
Our evaluation of JVuPredict with all the traces we have
introduced revealed the predictive power of logical job
names and consistent user behavior in workload traces.
Conversely, we found it difficult to obtain accurate run-
time predictions in systems that provide insufficient in-
formation to identify job re-runs. This section briefly de-
scribes the architecture of JVuPredict (Section 7.1) and
our evaluation results (Section 7.2).

7.1 JVuPredict background
Recent schedulers [12, 24, 32, 51, 52] use information
on job runtimes to make better scheduling decisions. Ac-
curate knowledge of job runtimes allows a scheduler to
pack jobs more aggressively in a cluster [12, 18, 54], or
to delay a high-priority batch job to schedule a latency-
sensitive job without exceeding the deadline of the batch
job. In heterogeneous clusters, knowledge of a job’s run-
time can also be used to decide whether it is better to im-
mediately start a job on hardware that is sub-optimal for
it, let it wait until preferred hardware is available, or sim-
ply preempt other jobs to let it run [3, 52]. Such sched-
ulers assume most of the provided runtime information is
accurate. The accuracy of the provided runtime is impor-
tant as these schedulers are only robust to a reasonable
degree of error [52].

Traditional approaches for obtaining runtime knowl-
edge are often as trivial as expecting the user to provide
an estimate, an approach used in HPC environments such
as LANL. As we have seen in Section 6, however, users
often use these estimates as a stopping criterion (jobs get
killed when they exceed them), specify a value that is too
high, or simply fix them to a default value. Another op-
tion is to detect jobs with a known structure that are easy
to profile as a means of ensuring accurate predictions,
an approach followed by systems such as Dryad [30],
Jockey [20], and ARIA [53]. For periodic jobs, simple
history-based predictions can also work well [12, 32].
But these approaches are still inadequate for consoli-
dated clusters without a known structure or history.

JVuPredict, the runtime prediction module of Ja-
maisVu [51], aims to predict a job’s runtime when it is
submitted, using historical data on past job characteris-
tics and runtimes. It differs from traditional approaches
by attempting to detect jobs that repeat, even when suc-
cessive runs are not declared as repeats. It is more ef-
fective, as only part of the history relevant to the newly

2The terms runtime and duration are used interchangeably here.
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Figure 10: Accuracy of JVuPredict predictions of run-
time estimates, for all four traces.

submitted job is used to generate the estimate. To do
this, it uses features of submitted jobs, such as user IDs
and job names, to build multiple independent predictors.
These predictors are then evaluated based on the accu-
racy achieved on historic data, and the most accurate one
is selected for future predictions. Once a prediction is
made, the new job is added to the history and the accu-
racy scores of each model are recalculated. Based on the
updated scores a new predictor is selected and the pro-
cess is repeated.

7.2 Evaluation results
JVuPredict had originally been evaluated using only the
Google trace. Although predictions are not expected to
be perfect, performance under the Google trace was rea-
sonably good, with 86% of predictions falling within a
factor of two of the actual runtime. This level of ac-
curacy is sufficient for the JamaisVu scheduler, which
further applies techniques to mitigate the effects of such
mispredictions. In the end, the performance of JamaisVu
with the Google trace is sufficient to closely match that of
a hypothetical scheduler with perfect job runtime infor-
mation and to outperform runtime-unaware scheduling
[51]. This section repeats the evaluation of JVuPredict
using our new TwoSigma and LANL traces. Our crite-
rion for success is meeting or surpassing the prediction
accuracy achieved with the Google trace.

A feature expected to effectively predict job repeats
is the job’s name. This field is typically anonymized by
hashing the program’s name and arguments, or simply by
hashing the user-defined human-readable job name pro-
vided to the scheduler. For the Google trace, predictors
using the logical job name field are selected most fre-
quently by JVuPredict due to their high accuracy.

Figure 10 shows our evaluation results. On the x-axis
we plot the prediction error for JVuPredict’s runtime es-
timates, as a percentage of the actual runtime of the job.
Each data point in the plot is a bucket representing val-
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Figure 11: Is a month representative of the overall work-
load? The boxplots show distributions of the average
job inter-arrival period (left) and duration (right) per
month, normalized by the trace’s overall average. Box-
plot whiskers are defined at 1.5 times the distribution’s
Inter-Quartile Range (standard Tukey boxplots).

ues within 5% of the nearest decile. The y-axis shows
the percentage of jobs whose predictions fall within each
bucket. Overestimations of a job’s runtime are easier to
tolerate than underestimations, because they cause the
scheduler to be more conservative when scheduling the
job. Thus, the uptick at the right end of the graph is
not alarming. For the Google trace, the total percent-
age of jobs whose runtimes are under-estimated is 32%,
with 11.7% of underestimations being lower than half the
actual runtime. We mark these numbers as acceptable,
since performance of JVuPredict in the Google trace has
been proven exceptional in simulation.

Although the logical job name is a feature that per-
forms well for the Google trace, we find it is either un-
available, or unusable in our other traces. This is because
of the difficulty inherent in producing an anonymized
version of it, while maintaining enough information to
distinguish job repeats. Instead, this field is either as-
signed a unique value for every job, or entirely omit-
ted from the trace. All traces we introduce in this pa-
per suffer from this limitation. The absence of the field,
however, seems to not affect the performance of JVuPre-
dict significantly. The fields selected by JVuPredict as
the most effective predictors of job runtime for the Mus-
tang and TwoSigma traces are: the ID of the user who
submitted the job, the number of CPU cores requested
by the job, or a combination of the two. We find that
the TwoSigma workload achieves identical performance
to Google: 31% of job runtimes are underestimated and
15% are predicted to be less than 50% of the actual run-
time. The Mustang workload is much more predictable,
though, with 38% of predictions falling within 5% of the
actual runtime. Still, 16% of job runtimes were under-
estimated by more than half of the actual runtime. The
similarity between the TwoSigma and Mustang results

suggests that JamaisVu would also perform well under
these workloads. Note that these results extend to the
Google trace when the job name is omitted.

OpenTrinity performs worse than every other trace.
Even though the preferred predictors are, again, the user
ID and the number of CPU cores in the job, 55% of pre-
dictions have been underestimations. Even worse, 24%
of predictions are underestimated by more than 95% of
the actual runtime. A likely cause for this result is the
variability present in the trace. We are unsure whether
this variability is due to the short duration of the trace, or
due to the workload being more inconsistent during the
OpenScience configuration period.

In conclusion, two insights were obtained by evaluat-
ing JVuPredict with multiple traces. First, we find that
although logical job names work well for the Google
trace, they are hard to produce in anonymized form for
other traces, so they may often be unavailable. Second,
we find that in the absence of job names, there are other
fields that can substitute for them and provide compara-
ble accuracy all but the OpenTrinity trace. Specifically,
the user ID and CPU core count for every job seem to
perform best for both TwoSigma and the Mustang trace.

8 On the importance of trace length

Working with traces often forces researchers to make
key assumptions as they interpret the data, in order to
cope with missing information. A common (unwritten)
assumption when using or analyzing a trace, is that it
sufficiently represents the workload of the environment
wherein it was collected. At the same time the Google
trace spans only 29 days, while other traces we study in
this paper are 3-60 times longer, even covering the en-
tire lifetime of the cluster in the case of Mustang. Being
unsure whether 29 days are sufficient to accurately de-
scribe a cluster’s workload, we decided to examine how
representative individual 29-day periods are of the over-
all workload in our TwoSigma and Mustang traces.

Our experiment consisted of dividing our traces in 29-
day periods. For each such month we then compared
the distributions of individual metrics against the overall
distribution for the full trace. The metrics we considered
were: job sizes, durations, and interarrival periods. Over-
all we found consecutive months’ distributions to vary
wildly for all these metrics. One distinguishable trend,
however, is that during the third year the Mustang cluster
is dominated by short jobs arriving in bursts.

Figure 11 summarizes our results by comparing the
averages of different metrics for each month against the
overall average across the entire trace. The boxplots
show the distributions of average job interarrivals (left)
and durations (right) per month, when normalized by the
overall average for the trace. The boxplots are standard



Tukey boxplots, where the box is framed by the 25th

and 75th percentiles, the dark line represents the median,
and the whiskers are defined at 1.5 times the distribu-
tion’s Inter-Quartile Range (IQR), or the furthest data
point if no outliers exist (shown in circles here). We see
that individual months vary significantly for the Mustang
trace, and they differ somewhat less across months in the
TwoSigma trace. More specifically, the average job in-
terarrival of a given month can be 0.7-2.0x the value of
the overall average in the TwoSigma trace, or 0.2-24x the
value of the overall average in the Mustang trace. Aver-
age job durations can fluctuate between 0.7-1.9x of the
average job duration in the TwoSigma trace, and 0.1-6.9x
of the average in the Mustang trace. Overall, our results
conclusively show that our cluster workloads display sig-
nificant differences from month to month.

9 Related Work

The Parallel Workloads Archive (PWA) [19] hosts the
largest collection of public HPC traces. At the time of
this writing, 38 HPC traces have been collected between
1993 and 2015. Our HPC traces complement this col-
lection. The Mustang trace is unique in a number of
ways: it is almost two times longer in duration than the
longest publicly available trace, contains four times as
many jobs, and covers the entire lifetime of the cluster
enabling longitudinal analyses. It is also similar in size
to the largest clusters in PWA and its distribution of job
duration distribution is shorter than all other HPC traces.
The OpenTrinity trace is also complementary to exist-
ing traces, as it is collected on a machine almost two
times bigger than the largest supercomputer with a pub-
licly available trace (Argonne National Lab’s Intrepid) as
far as CPU core count is concerned.

Prior studies have looked at private cluster traces,
specifically with the aim of characterizing MapReduce
workloads. Ren et al. [42] examine three traces from
academic Hadoop clusters in an attempt to identify pop-
ular application styles and characterize the input/output
file sizes, the duration, and the frequency of individual
MapReduce stages. These clusters handle significantly
less traffic than the Google and TwoSigma clusters we
examine. Interestingly, a sizable fraction of interarrival
periods for individual jobs are longer than 100 seconds,
which resembles our HPC workloads. At the same time,
the majority of jobs last less than 8 minutes, which ap-
proximates the behavior in the Google trace. Chen et
al. [10] look at both private clusters from Cloudera cus-
tomers and Internet services clusters from Facebook. On
the one hand, their private traces cover less than two
months, while on the other hand their Facebook traces
are much longer than the Google trace. Still, there are
similarities in traffic, as measured in job submissions per

hour. Specifically, Cloudera customers’ private clusters
deal with hundreds of job submissions per hour, a traffic
pattern similar to the Two Sigma clusters, while Face-
book handles upwards of a thousand submissions per
hour, which is more related to traffic in the Google clus-
ter. The diversity across these workloads further empha-
sizes the need for researchers to focus on evaluating new
research using a diverse set of traces.

Other studies that look at private clusters focus on
Virtual Machine workloads. Shen et al. [47] analyze
datasets of monitoring data from individual VMs in two
private clusters. They report high variability in resource
consumption across VMs, but low overall cluster utiliza-
tion. Cano et al. [5] examine telemetry data from 2000
clusters of Nutanix customers. The frequency of teleme-
try collection varies from minutes to days and includes
storage, CPU measurements, and maintenance events.
The authors report fewer hardware failures in these sys-
tems than previously reported in the literature. Cortez
et al. [11] characterize the VM workload on Azure, Mi-
crosoft’s cloud computing platform. They also report low
cluster utilization and low variability in tenant job sizes.

Conclusion
We have introduced and analyzed job scheduler traces
from two private and two HPC clusters. We publicly re-
lease all four traces, which we expect to be of interest to
researchers due to their unique characteristics, including:
the longest public trace to date spanning the entire 5-year
lifetime of a cluster, one representing the largest cluster
with a public trace to date, and the two longest private
non-academic cluster traces made public to date.

Our analysis showed that the private clusters resem-
ble the HPC workloads studied, rather than the popu-
lar Google trace workload, which is surprising. This
observation holds across many aspects of the workload:
job sizes and duration, resource allocation, user behavior
variability, and unsuccessful job characteristics. We also
listed prior work that relies too heavily on the Google
trace’s characteristics and may be affected.

Finally, we demonstrated the importance of dataset
plurality and diversity in the evaluation of new research.
For job runtime predictions, we show that using multiple
traces allowed us to reliably rank data features by predic-
tive power. We hope that by publishing our traces we will
enable researchers to better understand the sensitivity of
new research to different workload characteristics.

Dataset availability
The LANL Mustang, LANL OpenTrinity, and two Two
Sigma scheduler logs can be downloaded from the AT-
LAS repository, which is publicly accessible through:

www.pdl.cmu.edu/ATLAS

http://www.pdl.cmu.edu/ATLAS
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