
Unearthing inter-job dependencies for better cluster scheduling

Andrew Chung∗ Subru Krishnan† Konstantinos Karanasos† Carlo Curino† Gregory R. Ganger∗
∗Carnegie Mellon University †Microsoft

Abstract

Inter-job dependencies pervade shared data analytics infras-
tructures (so-called “data lakes”), as jobs read output files
written by previous jobs, yet are often invisible to current
cluster schedulers. Jobs are submitted one-by-one, without
indicating dependencies, and the scheduler considers them
independently based on priority, fairness, etc. This paper ana-
lyzes hidden inter-job dependencies in a 50k+ node analytics
cluster at Microsoft, based on job and data provenance logs,
finding that nearly 80% of all jobs depend on at least one
other job. Yet, even in a business-critical setting, we see jobs
that fail because they depend on not-yet-completed jobs, jobs
that depend on jobs of lower priority, and other difficulties
with hidden inter-job dependencies.

The Wing dependency profiler analyzes job and data prove-
nance logs to find hidden inter-job dependencies, charac-
terizes them, and provides improved guidance to a cluster
scheduler. Specifically, for the 68% of jobs (in the analyzed
data lake) that exhibit their dependencies in a recurring fash-
ion, Wing predicts the impact of a pending job on subsequent
jobs and user downloads, and uses that information to refine
valuation of that job by the scheduler. In simulations driven by
real job logs, we find that a traditional YARN scheduler that
uses Wing-provided valuations in place of user-specified pri-
orities extracts more value (in terms of successful dependent
jobs and user downloads) from a heavily-loaded cluster. By
relying completely on Wing for guidance, YARN can achieve
nearly 100% of value at constrained cluster capacities, almost
2× that achieved by using the user-provided job priorities.

1 Introduction
Data lakes have become core elements of modern data-driven
enterprises, providing required data storage and analysis in-
frastructure (see Fig. 1). Data lakes enhance data processing
via a combination of two critical properties: (i) a highly con-
solidated, multi-tenant infrastructure that enables multiple
teams of data scientists and engineers to share resources rather
than each having their own, and (ii) low data access barriers
that allow easy data sharing between users and various types
of data analytics applications. Combined, these properties
increase data re-use [4, 27] and reduce overall computational
resource-hours consumed [31, 33].

This same data and resource sharing creates a new chal-
lenge: hidden inter-job dependencies. We say that Job 2 de-
pends on Job 1 if Job 2 takes as input any output file generated

Shared data
Org 1

Org 2

Org 3

2

1

3

W1

Running jobs

Compute

R2 W2

R3 W3

Shared data lake

Scheduler

1

2

3

Figure 1: Data lake overview. Different jobs submitted by different
organizations share the same compute infrastructure and read (R)
and write (W) to the same storage system, thereby creating inter-job
dependencies as jobs consume the output of other jobs. e.g., Job 2
(from Org 2) reads a file written by Job 1, so Job 2 depends on Job 1.

and stored into the shared distributed file system by Job 1.1

For example, in Fig. 1, Job 3 (from Org 3) depends on Job 2,
which in turn depends on Job 1. We refer to these as hidden de-
pendencies, to contrast them with explicit computation DAGs
managed by schedulers within workflow managers [30,40,41],
because there is no indication of such dependencies indicated
in the job submissions—the dependencies are not expressed
to the cluster scheduler.

The advent of GDPR [56] forced large companies such as
Microsoft to invest in infrastructures to track data provenance
and data movement both within the data lake and to external
components. This created an unprecedented opportunity to
uncover and exploit these inter-job dependencies for schedul-
ing: We analyze data extracted from petabytes of job and data
provenance logs for 90 days of a 50k+ server cluster (part of
Microsoft’s Cosmos data lake [6, 12]) shared by over 1300
users from more than 150 internal organizations. In total, our
analysis covers over 4 million submitted jobs and 16 million
inter-job dependencies. We find that almost 80% of submit-
ted jobs depend on output generated by at least one other
job. Indicating the breadth of sharing, many dependencies
are cross-organization, with 20% of jobs depending on jobs
submitted by another organization.

Despite so much inter-job dependence, systems provide
little support for addressing associated challenges. For exam-
ple, in Cosmos, different users and organizations make their
own decisions regarding when to submit jobs and how to
set job priorities. Ideally, all co-dependent organizations and
users would set up clear Service Level Agreements among
themselves to ensure timely arrival of input data for business-
critical analyses. Yet, we see signs of insufficient coordination

1Our nomenclature and analyses focus on fundamental dataflow dependen-
cies among batch analytics jobs, not distributed stream processing or artifi-
cial inter-relationships caused by resource contention.

to ensure that jobs’ outputs are produced in time for consump-
tion by dependent jobs. For example, 13% of submitted jobs
depend on output files from jobs that execute at a lower prior-
ity, which can result in priority inversion since job schedulers
are not dependency-aware. More broadly, 34% of recurring
jobs are submitted without checking if inputs they depend on
are available, failing immediately if they are not.

The Wing dependency profiler efficiently processes prior
job and provenance data to predict the impact of each new job
on future jobs and user downloads. Although it is inherently
difficult to know what future jobs will depend on the output
generated by a current job, Wing finds success by focusing
on recurrence. Previous workload studies have shown that >
60% of jobs in data analytics environments are recurrent and
suggest that dependencies of these jobs can similarly follow
certain patterns [34, 51]. Our analyses in Cosmos confirm
that inter-job dependencies are recurrent (79% of all inter-job
dependencies are recurrent), with jobs of the same template
exhibiting recurring input consumption patterns. As such,
Wing uses historically recurring dependencies to (i) analyze
and predict relationships between common, dependent recur-
ring jobs, and (ii) guide a cluster scheduler to value jobs in a
way that accounts for hidden dependencies.

To explore Wing’s efficacy, we pair Wing with stock YARN
scheduling (Wing-Agg), replacing user-provided priorities
with Wing-guided priorities. Specifically, we use number of
downloads attained associated with a job’s outputs as an ap-
proximation for job value,2 and assign priorities to jobs based
on value efficiency [8, 28, 44] (job-value divided by resource-
time-used). We use trace-driven simulation to evaluate Wing-
Agg, compared to using the user-provided priorities (as used
in Cosmos), when the goal is to maximize the overall value
attained. We find that Wing-guided scheduling achieves up
to 66% more value than the Cosmos default, under cluster ca-
pacity crunch. Further, when organizational cluster resource
boundaries are removed, a Wing-guided scheduler can achieve
nearly 100% of value at constrained cluster capacities, almost
2× the value achieved by scheduling based on user-provided
job priorities.

Contributions. This paper makes three primary contribu-
tions: (i) It presents the first detailed public study of hidden
inter-job dependencies in a large-scale data analytics clus-
ter, revealing important problems and opportunities; (ii) it
describes a novel system for extracting historical inter-job
dependencies from provenance data, at scale, and predicting
the impact of a newly-submitted job on future jobs and users;
(iii) it shows that use of such predictions can allow a modern
scheduler, with minimal changes, to better serve the overall
workload by prioritizing the highest-impact jobs.

2While job output download-counts are imperfect as ground-truth for job
value, a limited check (§4.3) against known important levels for six business-
critical jobs indicates that it at least sometimes behaves reasonably.

2 Hidden inter-job dependencies in Cosmos
This section describes and analyzes hidden inter-job depen-
dencies in a large production data lake (Cosmos), highlighting
observations that affect resource scheduling decisions and op-
portunities. It provides an overview of Cosmos and inter-job
dependencies, introduces terminology used through the rest
of the paper, and quantifies the prevalence and characteristics
of hidden inter-job dependencies.

2.1 Cosmos
Overview. Cosmos is one of the largest big data analytics
infrastructures in the world. Deployed internally within Mi-
crosoft, it is made up of multiple clusters, each with 50k+
nodes [12]. Within Cosmos, more than 80% of infrastructure
capacity is dedicated to SCOPE jobs [6, 12], which are batch
data analytics jobs similar in nature to Apache Spark [57]
and MapReduce [14]. Our work primarily focuses on SCOPE
jobs and inter-job dependencies between them.
CosmosFS and operations. SCOPE jobs submitted to a Cos-
mos cluster read input from and write output to a distributed
file system known as the CosmosFS. A user can also access
CosmosFS through a front-end service to upload or download
files directly. We call actions performed on files in CosmosFS,
either by SCOPE jobs or through the front-end, operations.
Continuous logging. Cosmos continuously tracks and logs
data provenance and job telemetry (e.g., compute-hours, sub-
mission/completion time, and job structure metadata) into
external services: ProvRepo stores data provenance and and
JobRepo stores job telemetry. Our analyses and Wing use
these logs to figure out inter-job dependencies.
Job template vs job. A job template [32, 34] is a program to
be executed (one or multiple times) in Cosmos, while a job is
an actual execution of a job template. Each submission of a
job template results in a job.
SCOPE job submission patterns. Common patterns used to
submit SCOPE jobs within Microsoft include:
(i) Manual submissions: Where a job is manually submitted.
(ii) Workflow managers: Workflow managers allow users to
automate SCOPE job submissions using workflows. Work-
flows consist of inter-dependent jobs that often map to a busi-
ness task, and can be triggered periodically or conditionally.
Within Microsoft, there are at least five major production
workflow managers, each with thousands of users.
(iii) Custom shell scripts: Scripts can be set up to perform
automated job submissions for users. This method is more
flexible, but requires specialized management.

2.2 Inter-job dependencies
How are inter-job dependencies formed? We say that a job
A depends on a job B if A consumes any of B’s output as in-
put. As a concrete example of a recurring cross-organization
inter-job dependency, periodic jobs deployed by the data com-
pliance team process CosmosFS access logs, which are gener-
ated hourly by the CosmosFS team, to detect data compliance

Characteristic Description Heuristic
Recurring Recurring jobs are jobs whose template is submit-

ted many times over time, often to analyze fresh
data. Recurring dependencies are dependencies oc-
curring between jobs of two recurringly-submitted
job templates.

Borrowing from Morpheus [34], jobs are identified as recurring if (a) jobs of a
template are submitted at least three times over a period of three months, with at
least one submission each month, (b) templatized job names are an exact match,
and (c) source-code signatures are an approximate match. Dependencies are
identified as recurring if both the upstream and the downstream jobs are recurring.

Ad-hoc Ad-hoc jobs/dependencies are those not recurring. Ad-hoc jobs/dependencies are those not identified as recurring.
Periodic jobs Periodic jobs are recurring jobs that are submitted

“on-the-clock” at a fixed cadence (e.g., submitted
every hour at the start of the hour).

Jobs of a template are identified as periodic if they are recurring and if job
submissions have near-constant inter-arrival time. To determine if inter-arrival
times are near-constant, we use the coefficient of variation (CV). Jobs with small
CV in their inter-arrival times are identified as periodic, while others are aperiodic.

Polling Jobs are polling if they scan and wait for their inputs
to become available before their submission. Input
dependencies of polling jobs are similarly polling.

Jobs are identified as polling if they (a) are not identified as periodic, indicating
that they are not submitted on a clock, (b) never fail due to missing files from
their recurring upstream jobs, and if (c) they are submitted within 15 minutes of
the completion of their latest-completing dependent job. Input dependencies of a
polling job are polling.

Hard
dependencies

Dependencies are hard if the downstream job re-
quires the output(s) of the upstream job to be able to
run successfully. If the input(s) of the downstream
job is not ready by the time of its submission, the
downstream job fails with a missing file exception.

Dependencies are identified as hard if they are (a) ad-hoc, (b) recurring and > 95%
of jobs of the same template consume the output of only one job of the same
upstream job template, or (c) if the downstream job consumes the output of the
same number of upstream jobs of the same job template all the time, indicating
that they expect the same number of inputs from the same number of jobs from
the upstream template.

Table 1: Summary of and heuristics to identify and characterize job and dependency types.

issues. There are many ways inter-job dependencies can form,
and while some inter-job dependencies form through care-
ful negotiation between users/organizations, most are formed
organically, such as via:

(i) Data discovery through data catalogs: A user finds
an interesting dataset while browsing through Microsoft’s
internal data catalog, and sets up a job to analyze the dataset.
(ii) Script inheritance: A user wanting to submit a SCOPE
job to analyze a popular dataset often starts with a script
written and shared by others, that contains logic to extract the
dataset. The new script, while containing custom logic, often
retains parts of the original script (e.g., priority settings).
(iii) Logically related intra-workflow jobs: Workflows,
which can consist of multiple inter-connected jobs, are of-
ten constructed to improve job modularity and manageability.
Each run of a workflow potentially creates many inter-job
dependencies, as jobs within a workflow are inter-dependent.
Note that, although a workflow manager may know about
these inter-job dependencies, there is no interface for a work-
flow manager to express them to Cosmos.

Characteristics of jobs and dependencies. Our analyses un-
covered a few major types of dependency and job character-
istics based on job submission patterns (Table 1). The three
most important job and inter-job dependency characteristics
for our purposes are recurring, ad-hoc, and hard.
Challenges. Among the many ways in which inter-job de-
pendencies can form and evolve, most promote loosely main-
tained (or non-existent) contracts between inter-dependent
jobs in favor of developer convenience. This leads to an envi-
ronment in which most users know little about upstream jobs
that produce their input datasets, and even less about down-
stream jobs that depend on the data their jobs produce. These
sub-optimal inter-job dependency configurations are often
only exposed as a result of capacity impairment, unexpected

job failures, or data/job audits. Indeed, inter-job dependencies
are hidden through the availability of the many disaggregated
solutions to manage and submit jobs and workflows, prompt-
ing us to develop Wing to uncover these dependencies.

2.3 Observations on inter-job dependencies
This section motivates our work on exploiting inter-job de-
pendencies by describing consequential empirical observa-
tions about our inter-job dependency data, observed over three
months in a single Cosmos cluster.
Observation 1 (Recurring jobs & dependencies): Most
jobs and dependencies are recurring. Recurring jobs make up
68% of all submitted jobs (the other 32% of jobs are ad-hoc),
while recurring dependencies make up 79% of all dependen-
cies (the other 21% of dependencies are ad-hoc). Recurring-
ness of jobs and dependencies suggest predictability, which
we show to be achievable in §3.
Observation 2 (Priority mis-configurations): In Cosmos,
jobs are assigned resources in declining priority order, where
the priority of a job is assigned by the job’s submitter. Here,
we find that potential priority mis-configurations are frequent
within Cosmos: jobs of 21% of job templates have the chance
to be systematically priority-inverted—i.e., recurring jobs
consuming their output have a higher priority. In addition, up
to 33% of ad-hoc jobs are assigned higher priority than the
average recurring job submitted within the same hierarchical
queue,3 where recurring jobs are often production jobs [34].
Observation 3 (Uncoordinated jobs): Many jobs are sub-
mitted without explicit coordination with respect to the com-
pletion of their upstream jobs—i.e., these jobs do not wait
for their input to become available nor are tolerant to missing
input, yet they are submitted blind with respect to the avail-

3Hierarchical queues designate resource shares of an organization in clusters
at Microsoft. Priorities are only comparable between jobs in the same queue.

ability of their inputs. Such jobs make up 34% of recurring
jobs, and can be susceptible to failure due to missing input
from an upstream job not completing in time.
Observation 4 (Cross-org jobs & dependencies): Cross-
org jobs and dependencies are common at Microsoft. Up to
95% of organizations have cross-org dependencies. Of all
dependencies, 33% are cross-org, and 17% of template de-
pendencies are cross-org, where a template dependency is
a dependency between recurring jobs of two job templates.
Furthermore, 28% of jobs and 23% of recurring jobs are in-
volved in cross-org dependencies. Cross-org dependencies
can be harder to manage because they require coordination
between jobs across hierarchical queues and between job
owners across different organizations.
Observation 5 (Jobs are highly inter-connected): Model-
ing jobs and their dependencies as a directed acyclic graph
(DAG), where inter-job dependencies represent edges, we find
that more than 50% of jobs are inter-connected in a single
weakly connected component (CC), and CCs of sizes ≥ 10
cover more than 80% of all jobs. We also find that the larger
a CC, the more bottom-heavy it is—the failure of certain jobs
in such large CCs can cause significant amounts of cascading
failure downstream.
Observation 6 (Many jobs can be load-shifted in time):
Analyzing when the outputs of jobs are consumed by both
downstream jobs and users, we find significant opportunity to
delay, or load-shift jobs in time, which allows cluster operators
to mitigate capacity crunches or reduce power cost [2, 3, 36].
A job has the potential to be able to be load-shifted by up
to T hours if it is (1) recurring, (2) has a gap of > T hours
before its output(s) are consumed, and (3) has run times of <
T hours. (1) allows the job to be identifiable in the future, and
(2) and (3) ensure that the job has enough slack to be safely
delayed by up to T hours. We find that 31, 27, 22, and 14%
of all jobs can be potentially load-shifted by up to T = 1, 3, 6,
and 12 hours, respectively. 4

Discussion. We have seen failure due to lacking input and
priority inversions happen during manual inspection of job
logs and dependency graphs, but we can not provide counts.
We have also seen that: (1) users can and do fix their jobs,
sometimes at the cost of sub-optimal performance and results,
to work around issues, such as by by consuming stale data;
and (2) some of these problematic inter-job dependencies
can be masked with sufficiently available resources. A better
understanding of inter-job dependencies can help us uncover
problematic mis-configurations before they show up.

3 Inter-job dependency predictability
Inter-job dependencies show potential in guiding scheduling;
but it is unrealistic to expect job submitters to provide all
inter-job dependencies up-front due to the fragmented na-
ture of inter-dependency knowledge (§2.2). While inter-job
4While load-shifting is an interesting topic for future research, we do not
directly address methods for load-shifting in this paper.

dependency recurrence shows promise, for Wing to effec-
tively guide schedulers with inter-job dependencies, recurring
inter-job dependencies also need to be predictable—i.e., it
is important that past dependencies tell us something about
the future. In this section, we use a simple model to predict
future occurrences of recurring inter-job dependencies, and
show that inter-job dependencies can be predictable.

3.1 Prediction model
Given a specific point in time where a job ju of template Ju
(ju ∈ Ju, where the symbol “∈” is used as shorthand for “of
instance”) has arrived, for each recurring job template Jd that
depends on the output of template Ju in a recurring fashion,
our prediction model has two targets: (T1) whether or not a
recurring job ∈ Jd will arrive and depend on ju in the future
and (T2) when the first instance of such a job will arrive.
Model for (T1): Will a downstream recurring job arrive?
For (T1), our model uses a configurable prediction threshold
tr% ranging from 0 to 100 to predict whether or not a job
∈ Jd will arrive: If ≥ tr% of prior jobs ∈ Ju have their outputs
consumed by a job ∈ Jd , then the predictor predicts true;
otherwise it predicts false.
Model for (T2): When will a downstream job arrive? For
(T2), our model aggregates previously observed recurring de-
pendencies where the upstream job ∈ Ju and the downstream
job ∈ Jd , and computes the median elapsed time from the
submission of the upstream job to the submission of the first
dependent downstream job.

3.2 Predictability evaluation
Dependencies change slowly over time. Dependency pat-
terns of recurring jobs change slowly over time, and making
predictions based on inter-job dependencies over longer peri-
ods of time presents challenges. For example, in (T1), using a
month of inter-job dependency data to train our model to pre-
dict the arrival of dependent jobs occurring in the next month
only allows us to capture at most 77% of upcoming jobs. Reg-
ularly training our model on a week of data to predict for the
next week works comparatively well, because (1) it allows
us to capture up to 95% of upcoming jobs and (2) it allows
us to characterize the dependencies of 89% of job templates
(covering 97% of all jobs), since jobs of most templates are
submitted with an inter-arrival time of less than a week (with
daily submissions being the most common).
(T1) metrics and model performance. We evaluate the pre-
diction quality of our model on (T1) based on precision5 and
recall.6 Fig. 2 examines the tradeoff between precision and

5Precision is defined as the number of true positives (TPs) divided by the
sum of TPs and false positives. Precision can be thought of as the percentage
of positive predictions our model makes (i.e., a downstream job will arrive)
that are truly relevant (i.e., such a downstream job actually arrives).

6Recall is defined as TPs divided by the sum of TPs and false negatives.
Recall can be thought of as the percentage of relevant results that our model
is able to correctly predict.

0.4 0.5 0.6 0.7 0.8 0.9

Recall

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

0

10

20

30
40

50
60

70
809099

Predictor

Figure 2: (T1) precision-recall tradeoff. Predictor shows the
precision-recall tradeoff our dependency-based job arrival predic-
tor makes. Each point on the curve specifies a different setting for
the prediction threshold (tr). As tr → 100% (more selective), a larger
fraction of predictions are relevant (more precision), but less relevant
jobs are captured in total (less recall).

recall for our model using various settings for the prediction
threshold tr. As the model becomes more selective with re-
spect to which downstream jobs will arrive (tr → 100%), it
retains less relevant dependencies in total, but the dependent
recurring jobs it predicts to arrive mostly do show up. The
reverse is true as the model becomes less selective (tr → 0%).

We discuss the evaluation of our model based on a thresh-
old that balances precision and recall. A common way to
identify such a threhold is to select the threshold that max-
imizes precision ∗ recall. We find that tr = 20% yields the
greatest precision∗ recall, and therefore evaluate our model
by setting tr = 20%. The threshold used in an online predic-
tion service can similarly be tuned from week-to-week based
on observed precision and recall, though the specific target
to optimize depends on the penalties associated with making
mistakes in recall or precision.
(T2) metrics and model performance. To evaluate the per-
formance of our model on predicting when a downstream job
jd ∈ Jd will arrive at the arrival time of an upstream job ju,
jd must satisfy two conditions: our model must predict jd to
arrive based on jobs that have already arrived during a point
in time in the execution trace and it must actually arrive. Our
evaluation focuses on jobs that satisfy both above conditions.

To evaluate the performance of our model for (T2), we
use the Root Mean Squared Error (RMSE) and the Median
Absolute Error (MAE) metrics to measure prediction error
in absolute time units. RMSE measures error by comput-
ing the root of the average of squares of errors, while MAE
measures error by computing the median of absolute error =
∣ f orecast − actual∣, over all predictions. To measure rela-
tive error, we use the percentage error metric: it computes
(f orecast−actual)/actual for each prediction.

While we discuss the evaluation of our model on (T2) set-
ting tr = 20%, we find that confidence in job arrival prediction
only slightly affects time-to-dependency prediction quality.
This does not mean that the setting of tr is inconsequential,
as tr affects the predictions of whether or not a job will arrive.
Here, we evaluate the time-to-dependency predictions only
for jobs that are both predicted to arrive and actually arrive.

tail -50 0 50 100 150 tail

Time-to-dependency % error = (f − a)/a

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
jo

bs
w

/
%

-e
rr

or
<

X

tr = 10

tr = 20

tr = 50

tr = 90

Figure 3: (T2) Time-to-dependency (TTD) prediction. This figure
shows our predictor’s performance on predicting TTD from the sub-
mission time of the upstream job, at different settings of tr in a CDF.
f is the forecasted TTD, and a is the actual TTD. While being more
precise (tr → 100) does not yield better TTD predictions, it does
affect predictions on whether or not a job will arrive.

We observe the RMSE and MAE of our model to be
2.5 hours and 22 minutes, respectively: MAE is smaller, as
RMSE can be skewed by large mis-predictions at the tail.
While our absolute errors can be improved using more so-
phisticated techniques, we find that our model predictions are
reasonable for most jobs in our workload in terms of relative
error, as shown in Fig. 3 in the form of a cumulative distri-
bution function (CDF), for different settings of tr: the arrival
of 50% of arrived jobs ∈ Jd are predicted within ±20% of
its actual arrival. But, there is also a non-trivial number of
significant over-estimates: the arrival of 7% of arrived jobs
∈ Jd are over-estimated by 2× or more—i.e., the actual jobs
arrive more than 2× earlier than predicted. While this may
not explain all mis-estimations, we have found that aperiodic
recurring jobs (such as those that are manually triggered) and
jobs that depend on the outputs of multiple jobs are prone to
greater mis-estimates (our simple model presented here only
tries to predict the arrival of a future job based on one of its
directly upstream recurring jobs).

4 The Wing dependency profiler
This section describes Wing, an end-to-end dependency pro-
filer meant to be run intermittently (e.g., weekly) that un-
covers historical, hidden inter-job dependencies from data
provenance logs. It performs a series of analyses using these
inter-job dependencies in-tandem with historical job teleme-
try, yielding characterizations of jobs and inter-job depen-
dencies such as signs of misconfigured priorities between
recurringly-dependent jobs (§2.3), predictability of upcoming
jobs (§3), and estimates of recurring jobs’ aggregate value
considering their impact on downstream jobs that rely on their
outputs, directly or indirectly (§4.3). These characterizations
are ultimately used to inform better scheduling decisions,
where its benefits are explored in more detail in §7.

4.1 Architecture
First, we introduce related systems and data sources upon
which Wing depends, and provide an overview of Wing’s
architecture, shown in Fig. 4.

Input data sources. Wing relies on the following data
sources, from which we derive job dependencies and insights
thereof: (i) JobRepo preserves job telemetry (e.g., compute-
hours, submission/completion time, and job structure meta-
data) for submitted jobs. Wing uses JobRepo to derive recur-
ring jobs and their historic statistics. (ii) ProvRepo tracks data
provenance across Microsoft to support auditing and compli-
ance applications [56]. Specifically, it stores data provenance
across systems deployed within Microsoft, including but not
limited to Cosmos. ProvRepo is used by Wing to uncover his-
toric inter-job dependencies, and from there, infer recurring
dependencies between recurring jobs.

Analysis pipeline. Wing’s data analysis pipeline, primarily
composed of a workflow of inter-dependent SCOPE jobs,
is managed by a workflow manager and is periodically exe-
cuted in Cosmos. The pipeline reads data from JobRepo and
ProvRepo and writes its output to be consumed by WingStore.

WingStore. The WingStore is a service that hosts the resulting
analyses of Wing’s analysis pipeline, periodically renewed
each time a new instance of the pipeline completes. Given a
historical job or the identifier of a recurring job, one can look
up relevant historical job and inter-job dependency data: Such
historical job data include, but are not limited to, distributions
of job runtime and compute-time used. Historical inter-job
data include distributions of job fan-in/fan-out, recurring inter-
job dependencies, and distributions of number of downstream
jobs. The WingStore is the interface between Wing’s analysis
and a Wing-guided resource manager.

4.2 The Wing pipeline: Single-hop analysis

Wing considers both single-hop and multi-hop dependencies
in its analyses. The former occur when jobs directly consume
the output(s) of another job. The latter are indirect dependen-
cies between jobs that are connected by means of intermediate
jobs. Here, we focus on the derivation of single-hop depen-
dencies, which multi-hop dependencies are built upon, from
historical provenance data stored in ProvRepo.

Single-hop dependency derivation. To derive single-hop
dependencies from provenance data in ProvRepo (stored
roughly in the form of <input, operation, output>, but
with much more detailed context), we perform a self-join
on the ProvRepo dataset with the condition of p1.input =
p2.output. A näive self-join across multiple months of data
is extremely compute intensive and can yield incorrect results,
as a single file can be written multiple times by different jobs.
To reduce join complexity and ensure correctness, we apply
the following additional rules on the join:

(1) R/W correctness: The read must occur after the write. i.e.,
p1.operation must occur after p2.operation.
(2) Last-writer wins: If multiple writes occur on a single file,
the read only depends on the latest write prior to the read.
(3) Time windowing: The time between the read and the write

Cosmos compute
Scheduler

Wing pipeline WingStore
Wing

ProvRepo JobRepo

Read

Workflow
manager Periodically

deploy
Analysis
result

Jobs + resources

Guides

Figure 4: Wing architecture. A workflow manager periodically sub-
mits Wing’s pipeline to Cosmos. Upon pipeline completion, results of
its analyses are loaded in to WingStore, which informs Wing-guided
schedulers (§6.2) with job and dependency characteristics.

operations are at most T days, where we set T = 30.7

Time windowing can reduce join complexity and allow our
analyses to account for inter-job dependencies more fairly—
if time windows are not applied over an observation period,
operations issued earlier necessarily have a higher chance to
be depended-upon. In other words, for each operation between
days 31–608 in our dataset, time windows give them equal
opportunity (in wall-clock time) to be depended-upon by
directly-dependent operations.
Heuristics to identify recurring jobs & dependencies. A
key to the analyses that we perform is the identification of
recurring jobs, for which we employ the time-tested heuristic
proposed in Morpheus [34] and applied in multiple production
environments [34, 51]. Through the identification of recur-
ring jobs and uncovered single-hop dependencies, the Wing
pipeline further derives recurring dependencies and uncovers
dependency characteristics of jobs using similar heuristics,
described in Table 1. While ideally, we would like the full se-
mantics of how inter-job dependencies are formed, due to the
availability of the many different ways to submit a job (§2.1),
our usage of heuristics is necessary. Sampling 25 jobs for
manual verification, we confirm that our heuristics categorize
jobs and dependencies correctly for 24 of the jobs.

4.3 Motivating multi-hop analysis: Job
valuation using aggregate downloads

Companies can benefit more from their infrastructure invest-
ment through effective scheduling that prioritizes the com-
pletion of the most valuable jobs. But, often times, inter-job
dependencies have not been considered when evaluating the
importance of jobs—e.g., a job with high value can poten-
tially depend on jobs with low value. In these cases, inter-job
dependency awareness is key to ensure that upstream jobs do
not disrupt high-value downstream jobs. Here, we look at why
inter-job dependency analyses beyond direct dependencies
(i.e., multi-hop analyses) can inform better, dependency-aware
7In retrospect, we should have set T = 31 to capture all monthly cycles, but
our results based on T = 30 remain valid because (1) 98% of dependencies
occur within a week, and (2) jobs of 89% of templates (97% of all jobs)
have mean inter-arrival times of less than a week.

8Operations between days 31–60 are analyzed because we observe fully over
time windows of 30 days both operations they depend on (days 1–30) and
those that depend on them (days 61-90).

valuation of jobs to improve scheduling, and explore using
the number of downloads attained associated with the outputs
of a completed job as a proxy-metric for job value.
Priority assignments. To prioritize jobs today, schedulers
in most production data analytics environments, including in
Cosmos, use priority assignments to determine a job’s order in
its claim to resources. In this context, the notion of job value
is often translated into a priority assignment on the job—the
greater a job’s value, the higher its priority. However, prior-
ities in clusters are difficult to set correctly (Observation 2),
and even at Microsoft, whose multi-billion dollar clusters are
carefully provisioned and whose user-base is highly skilled,
incidents triggered by late completion of hand-picked, closely
monitored, and highly valued production jobs still occur due
to mis-configured priorities.
Multi-hop value impact. The completion of a job can often
be associated with some measurement of monetary value to a
company. For example, jobs computing Bing’s search indices
directly impact the revenue of Microsoft. We term the direct
value associated with the completion of a job its job-local
value. However, the delay or failure of a job may not only
affect its users and consumers of its output: through analyses
of Cosmos’s job DAG (Observations 3 and 5), we find that
the delay or failure of certain jobs impact a lot more jobs and
users than others. Hitches in the execution of these jobs are
likely to cause much more financial and operational damage
to users and organizations within the company due to the rip-
ple effects they can create downstream, yet their impact might
not always be obvious. While prior work [18, 34] suggest
that finishing jobs prior to the arrival of their first directly-
dependent job is important, quantifying the aggregate value
of a job necessitates inter-job dependency analyses extending
beyond a single hop (i.e., multi-hop analyses). Fig. 5 show-
cases a toy example that computes such an aggregate value
for the root job of a dependency tree.
Approximating value impact with agg. downloads. Al-
though determining the true dollar-value of jobs is difficult,
we find it promising to evaluate the importance of jobs based
on their historical aggregate user downloads, which measures
hypothetically if a job fails, how many download operations it
will affect (directly or indirectly) in total. In developing Wing,
we have also experimented with several alternative metrics
e.g., sum of cpu-hours and number of downstream jobs. Num-
ber of downloads was preferred by our resource management
team because file downloads (1) are the most direct way users
interact with a job’s output; (2) can be easily interpreted and
understood; and (3) because file downloads can be used to
quantify how soon the output(s) of a job are used upon its
completion. The properties of file downloads allow aggregate
downloads counts to provide a proxy-measure to how the
delayed or failed outputs of jobs can impact users in and out
of Microsoft. Aggregate download counts also implicitly cap-
ture the number of downstream jobs that can be impacted by
the failure of a job through their associated output downloads.

A B
D

E
C

Agg. Value(A)

Time from submission of A

Value

Figure 5: Value aggregation and value decay. In this toy example,
jobs A–E are submitted at strict, absolute times, where the x-axis
denotes time relative to the submission of job A. B and C have hard
dependencies on A, and D and E have hard dependencies on C.
The aggregate value of A is the sum of the aggregate values of B
and C and A’s own job-local value. With Wing, we can model how
the aggregate value of A decays as it fails to complete by the time
its downstream jobs arrive, losing the value of B at the time of B’s
submission, and collectively losing the values of C, D, and E at the
time of C’s submission (D and E depend indirectly on A through
C, so if C fails, D and E will also fail). In this example, A retains its
job-local value until the end.

While further work is required to confirm that aggregate down-
load counts represents job value and to explore how it should
be combined with other signals (e.g., user-provided priorities),
we use it in this paper as our approximation of value.
Sanity-checking aggregate downloads as job value. We
conducted a sanity check, using aggregate download counts
for job valuation to see how it matches up with pre-existing
notions of job importance. To that end, we obtained a list
of six recurring job templates hand-curated by the Cosmos
resource management team at Microsoft, each vetted to be
significantly important to Microsoft’s operation. We then look
at Wing’s ranks of those jobs.

Our results show that our valuation scheme mostly holds
up for the most important jobs: We find that jobs of five of
the six templates are consistently ranked by our scheme to
be among the top 4% of all jobs submitted, with jobs of one
template still ranking in the top 11%. We also measure rela-
tive rankings by user-specified priority and by our heuristic
among jobs submitted to the same organizational queue, since
priorities are only relevant when compared to other jobs shar-
ing the same queue. For four out of the six hand-curated job
templates, Our heuristic produces organizationally-relative
rankings within 5% of priority assignment rankings. For one
of the six job templates, our valuation scheme produces a
ranking lower than that produced by priority assignments by
up to 11%. For the last of the six job templates, however,
we produce a ranking higher than that produced by priority
assignments by 50%. This is surprising because we expected
priority assignments for these six job templates, which are all
verified to be highly important, to be extremely well-tuned,
with highly-ranked priorities assigned to jobs of all six tem-
plates. Yet, jobs of the last template are only ranked at the 49th

percentile of all submitted jobs within its queue by priority
assignment—this mis-configuration may lead to significant
issues once the queue becomes more heavily-loaded.
Future work: Further validating agg. downloads as value.
We acknowledge that accurate job valuation is a difficult prob-
lem that requires further study, and that different companies
can have different notions of job value. While further efforts
are ongoing at Microsoft to validate the efficacy of our job
valuation scheme (e.g., conducting surveys of Cosmos users),
Cosmos’s resource management team has noted that our val-
uation scheme is better than any of their existing heuristics
used for job valuation, and are considering adopting it to aid in
rolling out job upgrades and using it as a weighting function to
report certain cluster performance indicators (e.g., reliability).

4.4 The Wing pipeline: Multi-hop analyses
Wing provides a flexible iterative solution implemented on top
of SCOPE for performing downstream multi-hop analyses,
in which for a given job, we analyze properties of its directly
and indirectly-dependent jobs. Provided a set of single-hop
inter-job dependencies, our framework allows the computa-
tion of both the transitive closure and aggregate statistics of
all sub-DAGs rooted at each job in an inter-job dependency
DAG (defined in Observation 5). Such multi-hop analyses
are important to effectively guide scheduling decisions, as it
can compactly characterize each job’s downstream impact:
i.e., if a job fails or is delayed, how will its downstream jobs
and users be affected (§4.3)? Our framework generalizes the
algorithm proposed in Owl [9], which allows multi-hop de-
pendency analysis to be applied to other applications, e.g.,
fixing priority inversions9 for Cosmos jobs.
Algorithm input. Our algorithm input is a single-hop job
dependency DAG specified as a relational table, where the
first column (job) holds the dependent job and the second
column (depOn) holds the depended-upon job.
Algorithm output. Our algorithm outputs a relational table
describing multi-hop dependencies. The first column (job)
holds the downstream job, the second column (depOn) holds
the (potentially multi-hop) upstream job, and the third column
(agg) holds Wing-computed weights aggregated along all
paths between the pair of up/downstream jobs.
Aggregation Functions (AFs). Each downstream multi-hop
analysis specifies the following Aggregation Functions (AFs):
• Weight function (wt_fn): wt_fn takes in a job and its in- (or
out-) edges as input, and outputs a weight wt for each graph
edge. This operation is done once to convert the input DAG
into an edge-weighted DAG.
• Edge operation (e_op): For two vertices t and v connected
by an intermediate vertex u, e_op performs an aggregation of

9Wing can fix priority inversions by raising the upstream job’s priority before
its dependent high-priority job arrives. Traditional OS methods require both
jobs to have arrived at the scheduler, and dependency between the two jobs
is communicated through concurrency data structures (e.g., locks). There is
no lock-equivalent in Cosmos’s scheduler.

weights between a pair of (potentially auxiliary) in- (t,u) and
out-edges (u,v) of u, constructing a new auxiliary weighted
edge connecting t and v. Specifically, it computes the weight
for an auxiliary edge based on new edges explored in each it-
eration between two indirectly connected jobs. This operation
should be distributive over the p_op (defined following).
• Path operation (p_op): p_op aggregates weights on all ex-
plored paths between two jobs. While a unique path cannot
be explored multiple times, the algorithm can make multiple
traversals and aggregations between the same pair of up- and
downstream jobs if multiple paths between two jobs exist.
This operation should therefore be associative.
• Downstream operation (ds_op, optional): The downstream
operation is the last step performed, after our iterative algo-
rithm converges. For a job, it performs an aggregation on all
of its downstream jobs and aggregated path weights.
Algorithm outline. We first preprocess the job dependency
DAG with the AF wt_fn to generate the DAG edge weights
wt. Then, for each job in parallel, our algorithm traverses the
DAG and computes transitive closures along all paths, main-
taining an “aggregated version” of wt using e_op and p_op
along the way. Our algorithm completes in O(log(diameter))
iterations, where diameter is the longest path in the DAG. In
each iteration, the algorithm maintains a frontier and a base
table, both with the schema (job, depOn, wt). The frontier
table records the set of discovered furthest reachable upstream
jobs by job in depOn, while the base table records the set of
all discovered reachable upstream jobs by job in depOn. The
wt column of both tables records the aggregated weights along
discovered paths from job to depOn. Each iteration joins and
updates the frontier and base tables, extending the “reach” of
each job by a maximum of 2×. Our algorithm pseudocode is
shown in Algorithm 1.

4.5 Job value aggregation with Wing

4.5.1 Job value aggregation properties

Fair multi-hop time windowing. Aggregating value directly
on even a single-hop time-windowed job dependency graph
has a critical shortcoming: when considering multiple hops,
jobs at the start of the observed trace still hold an advan-
tage over jobs toward the end of the observation window in
terms of opportunities to have their multi-hop downstream
dependencies also land in the observation window. To better
illustrate this, suppose we are given a recurring job template
X with multiple jobs in our observation window. While ide-
ally all jobs of X should have similar amounts of downstream
dependencies, jobs of X that occur earlier in the trace are more
likely to have their downstream dependencies also observed
in the trace, while later jobs of X in the trace are more likely to
have their downstream dependencies cut off due to the limits
of using a static-length trace. In the limit of using an infinitely
long trace, no time windowing is necessary.

A multi-hop time window is therefore needed to further

// Helper functions
1 Function preprocess(s_hop) is
2 gp_by_job = job G wts=wt_fn(depOn)(s_hop);
3 return π job, depOn=wts.depOn, wt=wts.weights(gp_by_job);
4 end
5 Function extend_reach(t1, t2) is
6 e_agg = πt1.job, t2.depOn, wt=e_op(t1.wt,t2.wt)(

7 t1 ⋈t1.depOn=t2.job t2);
8 return job, depOn G p_op(wt)(e_agg);
9 end
// Computation start
Input :s_hop // Single-hop dependencies

10 i = 0; // Iteration
11 ftri = preprocess(s_hop); // Frontier
12 base = COPY(ftri) ; // Base

// base at the end of iter i covers deps up to 2i hops
13 do
14 i++;
15 base_tmp = base − ftri-1;
16 ftri = extend_reach(ftri-1, ftri-1);
17 base_tmp = extend_reach(ftri-1, base_tmp) ∪ base;
18 base = job, depOn G wt=p_op(wt)base_tmp;
19 base = base ∪ ftri;
20 while COUNT(ftri) > 0;
21 return job, depOn G agg=p_op(wt)base; // Converged

Algorithm 1: Multi-hop downstream analysis framework.
preprocess first assigns weights to DAG edges with wt_fn. In
each iteration, it calls extend_reach to further explore the graph
from each job in parallel. In extend_reach, auxiliary edges with
edge weights specified by e_op are created to denote newly dis-
covered indirect dependencies (through the JOIN, or ⋈ operator).
The auxiliary edges are deduplicated with a GROUP BY (G) operator
at the end of each iteration, yielding edge weights of p_op(wt).

restrict the set of jobs eligible for value aggregation. Our
multi-hop time windowing method works as follows: we first
define a time window size ω smaller than the observation
period. For each valid job j in the trace, we consider its entire
set of directly and indirectly dependent jobs that are submitted
by up to ω after its completion time. Here, we define valid
jobs as jobs that complete at least ω prior to the end of the
observation period. We set ω to one week for multi-hop depen-
dency analysis, as the scale of the inter-job dependency graph
bottlenecks transitive closure computation as ω increases: in-
creasing ω exponentially increases the number of multi-hop
inter-job dependencies to consider, as dependencies fan-out
further into the future. ω is set to a week here to capture
the majority of recurring dependencies that occur on a sub-
weekly cadence (most recurring templates are submitted with
inter-job arrival times of a day or less), while allowing our
entire analyses pipeline to finish in approximately a day.
Value conservation. To conserve the total amount of value
in the system, we employ an equal contribution scheme pro-
posed in Owl [9], where each job contributes value to its
directly-dependent upstream jobs equally, and the aggregate
value of a job in this scheme is computed as the sum of value
contributed upstream by all of its downstream jobs plus the
value of the job itself. In this scheme, if a job j depends
directly on the output of N jobs, it contributes 1/N of its

value to each of its jobs directly upstream. Each of the N
upstream jobs in turn further propagates j’s (and their own)
value upstream in the same fashion; e.g., if each of the N jobs
directly depend on the output of M other jobs, j contributes
1/(N ∗M) of its value to each of the N ∗M jobs two hops
upstream. This yields the following equation, as proposed in
Owl [9], for computing the aggregate value of a job:

agg_val(j) = ∑
d∈D j

(∑
p∈P(j,d)

∏
e∈p

we∗ kd)+ k j,

where D j represents all downstream jobs of j, P(j,d) rep-
resents all paths from j to d, we represents the weight of a
directed edge e on the path p, and kd and k j represent the
job-local values of d and j, respectively.

4.5.2 Wing value Aggregation Functions

We implement Owl’s dependency-driven job valuation
scheme with Wing’s downstream multi-hop analysis frame-
work, specifying Aggregate Functions as follows: the weight
function wt_fn takes in a job j and its N upstream depen-
dencies as input, and returns 1/N as the weight of each in-
edge; the edge operation e_op multiplies the weights of its
two operands; the path operation p_op sums the weights
of its operands; and finally, for each job j, the downstream
operation ds_op sums the job-local downloads of each job
downstream of j multiplied by the aggregated path weights be-
tween the downstream job and j. j’s job-local downloads are
finally added to the downloads computed by ds_op, yielding
j’s aggregate downstream downloads.
Extensibility. While we elect to use downloads as a proxy for
job value, Wing’s framework is flexible enough to consider
other metrics: e.g., if one day the dollar value associated with
a job can be known, computing the aggregate downstream
dollar value of a job is as easy as replacing a field in ds_op.

4.5.3 Aggregate value exploration and convergence

Using downloads as a proxy-metric for value, Fig. 6 shows
the fraction of aggregate value explored in each iteration for
each job on average. Considering the aggregate value of jobs
with Wing allows us to uncover 83% of value that would oth-
erwise be hidden if only job-local values (iteration = 0) were
considered. In the context of value-based job scheduling (§5),
this means that nearly 6× of value can be hidden from the
scheduler if jobs are independently considered. The figure
also shows that 99% of average job aggregate value can be
explored within four iterations of our algorithm.

5 Wing-Agg: Inter-job value scheduling
Value scheduling. The objective in value scheduling is to
maximize the value achieved from executing jobs in a work-
load, where the completion of each job is directly associated
with an amount of job-local value attained. Job-local value
can decay over time, and this behavior is often modeled as a
value function (VF) in scheduling literature, which expresses
value attained as a function of job completion time. In value

0 2 4 6 8
Algorithm iterations

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

ag
g.

 v
al

ue

Figure 6: Aggregate value convergence. This figure shows the
fraction of average aggregate job value uncovered downstream in
each iteration of our value aggregation algorithm. 99% of aggregate
value is discovered within four iterations.

scheduling, it is therefore important to complete jobs in a
timely manner to achieve the most value.
Value and priority. We make a clear distinction between the
terms value and priority. In this paper, we use the term value
to describe a measure of “goodness” achieved associated with
the completion of a job. Priority, on the other hand, defines
the order in which pending jobs are assigned cluster resources:
the higher the priority, the earlier a job receives its requested
resources. Most commonly, including currently within Cos-
mos, the priority of a job is assigned by its submitter.
Wing-Agg. When inter-job dependencies are present, we find
that it is important to consider the potential value downstream
that can be lost if a job fails or is delayed. To consider the
effects of inter-job dependencies, we propose a scheduling
policy, Wing-Agg, that incorporates Wing’s notion of inter-job
dependencies into job priorities: the goal of Wing-Agg is to
achieve the most value for a given workload.

As suggested in the introduction, completing the most
value-impactful job may not lead to a scheduler attaining
the most value, as some value-impactful jobs can also require
large amounts cluster resource-time to complete. Indeed, prior
work [8, 28, 44] has shown that schedulers can often benefit
by considering together how much value a job provides and
how much resource-time a job uses.10

Wing-Agg therefore considers the aggregate value effi-
ciency of jobs, which measures how much aggregate value
per aggregate resource-time a job impacts downstream. Essen-
tially, Wing-Agg replaces user-assigned priorities with what
Wing believes is a job’s aggregate value efficiency. When
a job arrives, Wing-Agg performs a look-up in the Wing-
Store (§4.1). If the job is recurring, Wing-Agg computes the
job’s aggregate value efficiency by dividing the job’s me-
dian historic aggregate value by its median historic aggregate
compute-time, and assigns the quotient as the job’s priority.
If the job is ad-hoc, Wing-Agg estimates the job’s aggre-
gate value efficiency based on previous ad-hoc jobs that the
same user has submitted. Wing-Agg assigns aggregate value
efficiency rather than aggregate value as jobs’ priorities to
optimize for high value throughput.

10Although Wing-Agg and shortest-job-first both use job resource-time in
their decisions, Wing-Agg frequently runs longer, more value-providing
jobs ahead of shorter jobs.

6 Experimental setup
This section provides an overview of the Cosmos resource
management infrastructure, describes our evaluated schedul-
ing policies, and describes our experimental methodology.
Downloads attained as value. In our experiments, we use
the number of downloads associated with the outputs of each
job as a proxy for the value attained by a job. We model
download attainment using real-world output download traces:
if a job j completes at 1PM in the real-world (from the trace)
but only completes at 2PM in our experiment, j attains only
the output downloads associated with its outputs that occur
after 2PM, and loses the downloads that occur between 1 and
2PM. A limitation of our model of value is that it does not
reward completing a job early. Further research is required to
determine how much additional value the early-completion
of a job yields in data lakes.
Cosmos backend: YARN and hierarchical queues. Cos-
mos uses a YARN-based resource manager [12, 54] in the
backend and utilizes hierarchical queues (queues, for brevity)
to delineate resource boundaries between organizations—
users/workflow managers can only submit SCOPE jobs to
queues belonging to organizations of which they are a part.
Cosmos uses a scheduling policy similar to the default policy
that the CapacityScheduler in stock YARN uses, which or-
ders jobs in each queue based on their (often user-) assigned
priorities. A key difference is that jobs are scheduled with
gang semantics in Cosmos—a job is admitted only when the
scheduler can ensure that a user-provided minimum number
of parallel, job-requested resources can be granted to it.

6.1 Simulation setup
We evaluate the application of Wing’s analyses to scheduling
using simulation-based experiments due to the scale of Cos-
mos: the Cosmos traces we use contain ∼40k jobs per day,
and ∼160k inter-job dependencies. Experiments at this scale
cannot realistically be attempted on research clusters without
down-sampling jobs, at which point much inter-job depen-
dency fidelity within the original workload will have been lost.
We therefore use simulations to preserve the characteristics
of inter-job dependencies in our experiments.
Simulation platform: design and implementation. Our
simulation platform takes a discrete-event based approach.
To ensure that our experiments retain most properties of
YARN/Cosmos, our simulation platform makes minimal
changes to the YARN architecture—our implementation only
mocks out the real-time clock and the communication layers
of the YARN servers. We also use real queue sizes for each
hierarchical queue in our Cosmos cluster. The authors plan to
contribute this simulator back to the open source community.
Simulation accuracy. To make simulation feasible given the
scale of our job logs, the simulator does not model: (1) “in-
ternal” dependencies among stages of a job, but rather treat a
job as a rigid collection of tasks; (2) resource-sharing through
opportunistic execution [35] of job tasks, which allows jobs

1 2 3 4 5 6 7
Day

0

20

40

60

80

100

Ut
iliz

at
io

n
(%

)

Job-requested (average): 32%
Total utilization (average): 50%

Figure 7: Cluster utilization. This figure shows the job-requested
and total resource utilizations of our real cluster.

to use more resources than requested when those resources
are otherwise idle; and (3) job sizes based on resources used
rather than job-requested resources, meaning that our simula-
tions only consider the deep blue area in Fig. 7.

To evaluate the fidelity of our simulator, we measure the
absolute differences in job completion times between jobs in
our simulations (using the baseline system policies) and the
same jobs run in the real cluster. We normalize the deltas by
the job’s real-world latency, and observe that even at the 99th

percentile, jobs are shifted by only 1.3% of their latencies. Our
experiments run at 100% cluster capacity also achieve average
resource utilization for job-requested resources within 1.5%
of what is observed in the real cluster.

6.2 Evaluated scheduling policies
In addition to Wing-Agg (§5), we evaluate value-attainment
on our workload traces on the following scheduling policies.
All implement Cosmos’s gang-scheduling semantics.
PRIO represents Cosmos’s current approach, and is the de-
fault scheduling policy used by stock YARN in its Capac-
ityScheduler. It orders jobs within each hierarchical queue
based on user-specified priorities.
Wing-MIL. Millennium [8] is a VF-aware scheduler that
orders jobs based on expected value attained per resource
time: For each queued job it computes how much value can be
gained at an estimated job completion time, divides the value
by total job resource-time, and orders jobs by the resulting
quotient. MIL is our implementation of Millennium on YARN,
following descriptions in its design as closely as possible.

Wing-MIL is MIL using Wing-informed value functions
(VFs): In addition to capturing how the job-local value of a
single job decays, a Wing-informed VF captures potential
value associated with the job lost over time by modeling a
job’s full decay of downloads. A job j attains all of j’s ag-
gregate downloads in the most optimistic case if it completes
before or at its real-world completion time; otherwise, it loses
value according to when users perform download operations
and when downstream jobs fail due to it not completing on
time (illustrated earlier in Fig. 5). For example, in a Wing-
guided VF, if j completes at 1PM in the real-world but only
completes at 2PM in our experiment, j loses all the direct
downloads that occur between 1 and 2PM, and all the indirect
downloads rooted in jobs that directly depend on j submitted
between 1 and 2PM.

100 101 102 103 104 105

Job ranking by value

10−10

10−8

10−6

10−4

10−2

F
ra

ct
io

n
of

va
lu

e

Job-local value

Fitted Zipfian (to job-local)

Aggregate value

Figure 8: Distribution of job value. This figure shows the distribu-
tions of job-local value and aggregate job value, along with a Zipfian
distribution fitted to job-local value. The distribution of job value devi-
ates from Zipfian at lower job rankings.

Plan-ahead based VF-aware policies. We attempted to eval-
uate more sophisticated plan-ahead based VF-aware policies,
e.g., FirstOpportunityRate [44]. But, we found that one im-
plementation of such a policy couldn’t accommodate work-
loads at Cosmos scale, and efforts to mitigate bottlenecks by
caching and limiting plan-ahead led to less value attainment
than simpler policies (e.g., MIL). We therefore do not include
our attempts with such a policy, as further work is warranted
before conclusions are drawn.

6.3 Workload and predictor descriptions
Dataset. We use data from the final four weeks of our analysis
dataset to evaluate our scheduling policies: Within the four
weeks of data, Wing uses data in the first and second weeks
to establish job and dependency profiles. Experiments are
conducted over the third week, and downloads (value) are
counted for each job up to one week (into the fourth week)
from the completion of the job. Each day of traces contains
∼40k jobs and ∼160k inter-job dependencies.
Considering inter-job dependencies. Different from prior
work, our experiments take characteristics of inter-job depen-
dencies into account to realize more realistic workloads. For
example, if a job holds a hard dependency on the output of an
upstream job but the output is not available in time, the job
fails due to missing input. Other dependency patterns, such
as polling behavior (when a job waits for its inputs to become
available), are also modeled faithfully. Jobs and dependencies
considered in our experiments are described in Table 1.
Job value distribution. Job value, as measured by the num-
ber of downloads associated with the timely completion of
a job in our experiments, are distributed roughly in a Zip-
fian fashion (s = 1) with deviation at the low end, as shown
in Fig. 8. This means that the most valuable jobs are down-
loaded significantly more times than less valuable jobs. When
scheduling for value on a workload that is inter-job depen-
dency aware, schedulers should work to unblock the most
valuable jobs before they arrive in order to attain their value.
Value efficiency predictor. Wing-Agg and Wing-MIL use
a predictor to estimate the aggregate value efficiency asso-
ciated with upcoming recurring jobs to optimize for value
throughput. While §3 shows that direct inter-job dependen-
cies can be predictable, it neither considers predictions on a

tail -50 0 50 100 150 tail

Estimate % error = (f − a)/a

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
jo

bs
w

/
%

-e
rr

or
<

X

Agg. value eff.

Job-local value eff.

Figure 9: Value efficiency prediction. This figure shows the CDF
of our predictor’s performance on predicting the value efficiency and
aggregate value efficiency of recurring jobs.

job’s subgraph of downstream dependencies, nor a job’s value
impact. Evaluating predictions on aggregate value efficiency
therefore allows us to better understand the performance of
Wing-guided schedulers. For recurring jobs in our experi-
ments, we use a median-based predictor to predict the value
efficiency associated with a job. That is, given a recurring job
j of template τ, we predict j’s value efficiency based on the
historical median value efficiency for jobs of template τ.

Fig. 9 shows the performance of our value efficiency pre-
dictor in a CDF. For predicting the aggregate value efficiency
of a job, 39% of our predictions fall within ±20% of the ac-
tual value efficiency of a job, while for predicting the value
efficiency of a single job, 44% of our predictions fall within
±20% of the actual value efficiency of a job. While we are
working on further studies to improve predictor accuracy with
more sophisticated methods, we find that the performance of
our simple predictor enables Wing-Agg to outperform other
evaluated scheduling policies in value attainment (§7).

7 Experimental results
We evaluate the efficacy of each scheduling policy for the
actual full Cosmos resource capacity (100%) and for smaller
capacities (at 80–20%). Value-attainment results are reported
as a percentage of value achievable—i.e., if all jobs in work-
loads complete before any of their values are lost.
Cluster capacities & consequential policy decisions.
Scheduling is most interesting when cluster capacity is con-
strained and schedulers need to make difficult decisions re-
garding which jobs to provide resources. Indeed, at 100%
capacity, the baseline and more advanced schedulers perform
similarly, completing > 99% of all jobs in the trace. We find
that the lower cluster capacities (i.e., ≤ 40%) best exemplify
the consequences of decisions a scheduler makes. We there-
fore focus the discussion of our results at these capacities to
maximize observable differences.
Takeaways. Our experiments yield the following key take-
aways. First, policies guided by Wing are better at achiev-
ing value when clusters are heavily-constrained. In partic-
ular, Wing-Agg outperforms all other compared policies at
all capacities and improves value attained by up to 21% as
capacity declines. Second, understanding the downstream
impact of a job is crucial in constrained clusters, and that

100 80 60 40 20
Capacity (%)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ed
 u

til
ity

PRIO Wing-MIL Wing-Agg

Figure 10: Benefits of Wing guidance. This figure shows the value
attained for each scheduling policy, normalized to total value achiev-
able. Wing-guidance (exemplified in Wing-Agg and Wing-MIL) is
significantly beneficial at constrained capacities.

Wing-guided inter-job dependency predictions are accurate
enough to be practical: Wing-Agg can effectively complete
the prerequisites of the most consequential jobs. Finally, we
demonstrate significant opportunity in applying inter-job de-
pendency awareness in Wing to a cluster-wide queue and
establishing a cluster-wide value metric: Wing-Agg achieves
up to 93% of all value in our workload when using a single
cluster-wide queue, using only 20% of cluster capacity.

7.1 Benefits of Wing guidance
Fig. 10 shows that policies guided by Wing beat PRIO at
all capacities, with value attainment gaps widening as the
cluster is increasingly stressed. At 60% capacity, Wing-Agg
achieves 87% of value (vs PRIO’s 80%). At 40% capacity,
Wing-Agg achieves 77% of value (vs PRIO’s 62%). Even at
20% capacity, Wing-Agg is able to capture more than half of
all value (55%), while PRIO only captures 35% of value.

Considering aggregate value gives Wing-guided schedulers
a two-fold benefit over PRIO. First, it naturally “fixes” priority
mis-configurations, such as priority inversions, by propagating
job value upstream, such that downstream jobs with high
value are not blocked. Second, it guides schedulers toward
sub-DAGs of high value efficiency jobs effectively, allowing
schedulers to achieve more value with less resources.
Are ad-hoc jobs disadvantaged? Since Wing-Agg focuses
on recurring jobs, we examine our logs to see if ad-hoc jobs
are at a disadvantage when scheduled by Wing-Agg vs recur-
ring jobs, where the priority of ad-hoc jobs are determined by
the median aggregate value efficiency of previous jobs sub-
mitted by the same user. We find, from results at 20% cluster
capacity, that 25% of recurring jobs fail, compared to 42%
of ad-hoc jobs. However, recurring jobs also carry 9× more
value than ad-hoc jobs. To optimize for value, Wing-Agg nec-
essarily needs to complete larger fractions of recurring jobs.
Indeed, recurring jobs are more often production jobs [34].
Dynamic priorities (Wing-MIL). Intuitively, policies using
dynamic priorities (e.g., value functions, or VFs) such as
Wing-MIL should perform better than static policies such
as Wing-Agg, as VFs can express both importance and ur-
gency while priorities only allow the expression of one of the
two dimensions; but, we observe that Wing-Agg outperforms

Wing-MIL at all capacities, albeit only slightly.
Unlike Wing, which only depends on aggregate value-

efficiency predictions, Wing-MIL also depends on the time-
to-dependency predictions of directly-dependent jobs (§3)
to determine when aggregate job value decays. But, while a
part of this underperformance is indeed caused by imperfect
predictions of time-to-dependencies, we find that providing
Wing-MIL with perfect job value and time-to-dependency
information does not help much. Further analyzing our re-
sults, we find that this underperformance is mainly due to
Wing-MIL’s failure to consider the properties of inter-job de-
pendencies. For example, a downstream job that polls for the
arrival of its inputs will not fail if its upstream jobs complete
late. But, VFs constructed from historical data will still reflect
a drop in value at the time the polling downstream job is
expected to arrive, leading Wing-MIL to believe that it should
give up prematurely on scheduling the job. This shortcoming
can be addressed by considering dependency properties ex-
plicitly, but our attempted implementation of such a policy
does not significantly improve over Wing-Agg: both Wing-
Agg and our attempted implementation can complete the most
impactful, value-efficient jobs in a timely manner.
Practicality of Wing-Agg. The simplicity of Wing-Agg is de-
sirable from an engineering standpoint, as Wing-Agg is both
highly practical and highly scalable: Integrating Wing-Agg
into a production cluster requires minimal changes to the exist-
ing resource management framework, and all the information
needed for Wing-Agg to determine a job’s priority can be pre-
computed offline in Wing’s analysis pipeline (§4). Adoption
of Wing-Agg into production can therefore be straightforward,
upon confirming job valuation schemes.

7.2 Sensitivity and ablation studies
Aggregate vs. job-local value. This section discusses bene-
fits of understanding job value at an aggregate vs job-local
level by comparing Wing-Agg against Wing-Direct, where
Wing-Direct considers the job-local value efficiency of a job:
i.e., Wing-Direct only considers direct-downloads associated
with the outputs of and the compute-time of a single job only.

The patterned bars in Fig. 11 show the normalized value
attained by Wing-Agg and Wing-Direct. While Wing-Direct
outperforms PRIO, Wing-Agg maintains significant benefit
over Wing-Direct at the tightest capacities: Wing-Agg attains
13% more overall value than Wing-Direct at 20% capacity.
Our analysis finds that Wing-Direct’s knowledge of job re-
source consumption allows it to effectively complete jobs at
the head of queue, enabling it to complete a similar amount of
jobs as Wing-Agg. But, with knowledge of historical aggre-
gate value efficiency, we find that Wing-Agg completes jobs in
the more value-heavy sub-DAGs of the inter-job dependency
DAG, yielding significant improvements over Wing-Direct.
Wing predictions vs. Oracle knowledge. We examine how
much potential benefit better predictions can provide to each
Wing-aided policy. Oracle Wing-Agg represents Wing-Agg

100 80 60 40 20
Capacity (%)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ed
 u

til
ity

Job-local Aggregate

Figure 11: Benefits of aggregate job value. Aggregate (corre-
sponding to aggregate download-aware) vs Job-local (corresponding
to direct download aware only) bars show the benefits of aggregate
value, compared to only scheduling based on job-local value. The
solid portion of the bars show the benefits of Oracle knowledge.

endowed with perfect knowledge of aggregate value effi-
ciency, and Oracle Wing-Direct represents Wing-Direct pro-
vided with perfect knowledge of job-local value efficiency.

While we find that having better predictions are benefi-
cial, the differences between the solid (representing policies
with Oracle knowledge) and the patterned bars (represent-
ing policies with Wing-provided predictions) in Fig. 10 and
Fig. 11 show that at most capacities, Wing-guided schedulers
achieve close to the value attained by their Oracle variants.
However, having more accurate information presents oppor-
tunity for significant gain in value attained for Wing-Agg
at 20% capacity: e.g., Oracle Wing-Agg improves value re-
alized over Wing-Agg by 8% of overall value. Conversely,
although Oracle Wing-Direct is granted exact knowledge of
how value-efficient each job is, its view of the overall inter-job
dependency graph leads to only incremental benefits.

Oracle benefits to aggregate value aware policies come
from a more accurate knowledge of a summarized view of
the inter-job dependency graph: compared to single job value-
aware policies with Oracle knowledge, a policy such as Oracle
Wing-Agg can efficiently complete the most consequential
jobs in the job dependency graph, increasing value attained
(by up to 18% of overall value vs Oracle Wing-Direct) and
reducing the number of jobs failed due to missing input (by
3% of all jobs vs Oracle Wing-Direct).
Sensitivity to mis-predictions. We examine the sensitivity
of Wing-Agg to aggregate value efficiency mis-predictions
on our workload by running experiments that introduce ar-
tificial shifts in aggregate value efficiency provided by Or-
acle Wing, using 20% cluster capacity. Each experimental
run is associated with a maximum artificial shift s, where
s ∈ {1.1,1.25,1.5,2,5,10}. For each job j within each run,
we scale the aggregate value efficiency eval of j provided by
Oracle Wing by multiplying eval by a randomly sampled mul-
tiplier m between 1/s and s. Our results show that Wing-Agg
is not sensitive to mis-predictions in value on our workload:
For s ≤ 5, value attained is only reduced by at most 4% vs Or-
acle Wing-Agg. For s = 10, value attained is only reduced by
11%. This insensitivity is because job values in our workload
are distributed in a Zipfian fashion (§6.3), where the most

60 40 20
Capacity (%)

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
ed

 u
til

ity

PRIO Wing-Direct Wing-Agg

Figure 12: Benefits of Wing-guidance with a cluster-wide queue.
This figure shows the value attained for policies from 60–20% cluster
capacities in a cluster with a merged cluster-wide queue. All policies
complete all jobs at 60% capacity. Wing-guidance (exemplified by
Wing-Agg) is increasingly beneficial at lower capacities. The solid
portion of the bars show the benefits of Oracle knowledge.

valuable jobs are much more valuable than other jobs.
Reducing transitive closure computation. At 20% capac-
ity, Wing-Direct (0 iterations of Wing’s multi-hop analysis)
attains 42% of all value, while Wing-Agg (9 iterations exe-
cuted) attains 55% of all value. In Fig. 6 in §4.5.3, we find
that 99% of aggregate value of most jobs can be explored in
four iterations of Wing’s multi-hop analysis. We therefore
believe that four iterations of exploration would be sufficient
to similarly attain 55% of all value, and that two iterations of
exploration would allow us to attain close to 50% of all value.

7.3 Cluster-wide queue and value metrics
Our earlier results correspond to a simplified view of Cos-
mos using strictly enforced queue boundaries. Hard queue
boundaries restrict placement more than in the real sys-
tem, where resource-sharing (§6.1) softens queue boundaries,
which might exaggerate Wing-Agg’s benefits. To confirm
that Wing-Agg’s improvements are not due to hard queue
boundaries, we evaluate a boundary-free alternative with ex-
periments run using a single global, cluster-wide queue.
Evaluation. Fig. 12 shows the value attainment of our eval-
uated scheduling policies using a single cluster-wide-queue.
We note that all jobs are able to complete for all scheduling
policies at 60% cluster capacity. Indeed, the dark blue area
in Fig. 7 show that these requests peak at around 60%. At
40% capacity, the cluster still has more capacity than needed
most of the time: Wing-Agg achieves 99% of value, and Wing-
Direct and PRIO achieve 97 and 93% of value, respectively.

Under extreme capacity crunch (e.g., 20% capacity), re-
moving restrictions of hard queue boundaries improves value
attained of all policies. But, a Wing-guided scheduler sees
significantly more benefit in terms of absolute value achieved.
With a cluster-wide queue at 20% capacity, Wing-Agg attains
93% of value, whereas Wing-Direct attains 84%, and PRIO
only attains 47%. Furthermore, Wing-Agg fails fewer jobs
compared to both Wing-Direct and PRIO (11% vs 13% and
25% of jobs, respectively).

We find that understanding inter-job dependencies is crit-
ical, as Wing-Direct with Oracle knowledge did not signifi-

cantly outperform Wing-Direct with predicted values, both in
terms of value attained and in terms of number of jobs failed;
yet, we find that Wing-Agg with Oracle knowledge, in this
setting, can achieve up to 98% of all value (comparable to
performances at 100% capacity), while failing only 7% of
all jobs (compared to 26% in a multi-queued setting at 20%
capacity). One of the reasons why Wing-Agg is able to attain
93% of all value using only 20% of cluster capacity is due to
its ability “unblock” the most valuable downstream jobs.

Recall that the simulated job sizes in our experiments are
based on job-requested resources, rather than job-used re-
sources, which may be higher because of opportunistic exe-
cution. As a result, cluster utilization is lower in our experi-
ments. But, we believe that the rankings of the different sched-
ulers are not affected, because the number of opportunistic
resources highly correlate with that of allocated job-requested
resources, both across the top 10% of most valuable jobs
(Spearman correlation of 0.85) and across all jobs (Spearman
correlation of 0.84). Indeed, the amount of opportunistic re-
sources available to a job is capped with a max proportional
to the number of allocated job-requested resources [49]. So,
the relative differences shown for 20% cluster capacity may
instead be for 30% cluster capacity in the heavier workload.
Toward establishing a cluster-wide value metric. Our re-
sults confirm that removing queue boundaries would be bene-
ficial. Partitioning resources into queues naturally introduces
resource fragmentation, but usage of queues is often viewed as
a “necessary evil,” as certain organizations are willing to pay
more to have guaranteed access to their share of compute.
Yet, näively removing queue boundaries without a quota-
system [55] in place may introduce resource competition,
where users across different organizations assign increas-
ingly high priorities to their jobs to acquire guaranteed re-
sources. A cluster-wide, automated arbitrator that understands
both system-internal (e.g., aware of downstream number of
affected jobs and user-downloads) and organizational/user-
defined notions of importance is therefore required. We see
this as an exciting direction for further research.
Current state of deployment. Instead of immediately de-
ploying Wing-Agg as described, the Microsoft Cosmos re-
source management team has asked us first to deploy an inter-
job dependency advisory tool using analyses from Wing, to
aid users on better configuring their jobs. The tool will allow
us to gather user feedback on our recommendations.

8 Related work
Workflow managers. Workflow management for batch ana-
lytics jobs is a widely studied area in the fields of databases
and data management [30, 40, 41]. Our work differs in two
primary ways: (1) workflow managers often assume the avail-
ability of a dependency graph up-front, while Wing infers
properties of inter-job dependencies from job history; and (2)
workflow managers optimize only a single pipeline of jobs
submitted by one user at a time, while Wing considers inter-

dependent jobs across workflow and organization boundaries.
Cluster workload analysis. Although much work has been
done on cluster workload analysis from many different per-
spectives (e.g., resource/workload heterogeneity [1,11,26,37,
45], failure analysis [7, 17, 46], job predictability [43, 50, 52],
and intra-job task dependency [23, 24, 51]), most prior work
assumes (implicitly or explicitly) that each job is independent
of other jobs. This paper fills the knowledge gap with analyses
of inter-job dependencies and application of this knowledge
in cluster scheduling.
Cluster scheduling. Although a variety of work has been pub-
lished in the area of cluster scheduling, each trying to address
scheduling woes of different kinds of workloads (e.g., support
for general batch analytics [5, 10, 18, 21, 22, 29, 34, 43, 53, 54],
low latency scheduling [15,16,35,42], and strategies to handle
mixes of workloads [12, 19, 20, 48, 55]), most work in cluster
scheduling similarly assume the independence of jobs. Our
work shows that incorporating knowledge of inter-job depen-
dencies can improve cluster scheduling in an environment
with a lot of data and work product sharing, and we believe
that considering inter-job dependencies can help future sched-
ulers better tackle challenges, such as enabling better job task
placement and learning better scheduling policies [38, 47].
Task-DAG schedulers assign resources to inter-dependent
tasks within a job based on knowledge of the overall task-
DAG [18, 23, 24, 38]. Such techniques and our proposed poli-
cies can be complementary, as task-DAG schedulers drill into
job-level details while our schedulers (e.g., Wing-Agg) work
at a higher level and treat jobs as black boxes. In particu-
lar, schedulers that predict the arrival of future jobs [34, 38]
can benefit from the availability of inter-job dependency con-
text to refine their predictions. Some task-DAG scheduling
techniques could also be applied to the problem of inter-job
dependency scheduling; but, these task-DAG schedulers gen-
erally assume upfront availability of task-DAGs, while full
inter-job dependency graphs are rarely available ahead of
time. An interesting direction for future research is in com-
bining task-DAG scheduling techniques with some form of
Wing-provided “probabilistic inter-job dependency” DAGs.
Jockey and Morpheus. Jockey [18] uses the direct depen-
dencies of jobs to illustrate the importance of maintaining low
job latency variance, but uses a step-function with value=1
until the user-provided deadline as each job’s value function
(VF). Morpheus [34] improves upon Jockey’s notion of VFs
by deriving deadlines based on a job’s first consumer (as ob-
served from historical instances of that job), but still considers
all jobs as equal in value. In addition to our characterization
of inter-job dependencies in a large analytics cluster, our work
extends Morpheus and Jockey in two ways: (1) jobs no longer
all have the same value—instead, Wing derives each job’s
value (and therefrom priority) as the sum of a chosen value
metric (e.g., downloads) for all downstream dependencies,
and (2) value is no longer a step-function with a single dead-
line based on a job’s first direct consumer, but a rich decay

proportional to the aggregate value of dependency sub-DAGs
rooted in each direct consumer. While we do not directly
compare against Morpheus, in §7.1, we find, in the context
of Wing-MIL, that a premature drop in aggregate value can
lead to the scheduler giving up early when dependency prop-
erties are not considered, leading to lower value attainment.
Considering value as a step-function with a single deadline
can therefore potentially be detrimental when inter-job depen-
dencies are present in cluster workloads. While Wing-Agg
uses only the initial “height” of the aggregate value VF of
each job to set priorities, we believe that full aggregate value
VFs can still better guide other scheduling decisions, such as
determining which jobs to load-shift.
Systems using job recurrence and data provenance. There
has also been much prior work on systems that efficiently
collect provenance data [13,39] and systems that both exploit
job recurrence and data provenance on other problems [25,33],
such as garbage-collecting shared computation results. Our
work uses similar ideas, but focuses on facilitating better value
attainment in resource scheduling.
Owl and Guider. Our previous work Owl [9] and Guider [39]
introduced the usage of job dependencies to determine the
value of jobs. Wing operationalizes and expands upon prior
work by (1) analyzing and characterizing inter-job dependen-
cies in a large cluster, (2) evaluating predictability of recurring
inter-job dependencies, (3) integrating inter-job dependencies
into cluster schedulers, (4) applying said schedulers to a real
scheduling problem, and (5) providing a general aggregate
inter-job dependency analysis framework.

9 Conclusion
Complex inter-job dependencies pervade modern data lakes,
creating complex problems as cluster schedulers make de-
cisions without knowing of them. The Wing dependency
profiler uncovers these dependencies from provenance logs
and provides improved guidance to cluster schedulers. Eval-
uations with real job traces show that significantly more
value, in terms of successful user downloads, can be attained
by using Wing-guided priority assignments over those pro-
vided by users. Wing’s effectiveness opens a new range of
resource management possibilities guided by automatically-
determined knowledge of the impact of jobs.

Acknowledgements
We thank John Wilkes (our shepherd) and our OSDI 2020
reviewers for their valuable feedback and suggestions. We
also thank Raghu Ramakrishnan, Boris Asipov, Hiren Patel,
Yiwen Zhu, Isha Tarte, and Panagiotis Garefalakis for their
help throughout the development of this project. We thank the
members and companies of the PDL Consortium (Alibaba,
Amazon, Datrium, Facebook, Google, HPE, Hitachi, IBM,
Intel, Microsoft, NetApp, Oracle, Pure, Salesforce, Samsung,
Seagate, Two Sigma, and Western Digital) and VMware for
their interest, insights, feedback, and support.

References
[1] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger,

Garth A. Gibson, Elisabeth Baseman, and Nathan De-
Bardeleben. On the diversity of cluster workloads and
its impact on research results. In Proceedings of the
2018 USENIX Annual Technical Conference, USENIX
ATC ’18. USENIX Association, 2018.

[2] Anton Beloglazov and Rajkumar Buyya. Adaptive
threshold-based approach for energy-efficient consol-
idation of virtual machines in cloud data centers. In Pro-
ceedings of the 8th International Workshop on Middle-
ware for Grids, Clouds and e-Science, MGC ’10. ACM,
2010.

[3] Anton Beloglazov and Rajkumar Buyya. Optimal on-
line deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation
of virtual machines in cloud data centers. Concurrency
and Computation : Practice and Experience, 24(13),
September 2012.

[4] Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan,
Amol Deshpande, Aaron J Elmore, Samuel Madden, and
Aditya G Parameswaran. Datahub: Collaborative data
science & dataset version management at scale. In Pro-
ceedings of the 7th Biennial Conference on Innovative
Data Systems Research, CIDR ’15, January 2015.

[5] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-
gren Zhou, Zhengping Qian, Ming Wu, and Lidong
Zhou. Apollo: Scalable and coordinated scheduling
for cloud-scale computing. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI ’14. USENIX Association, 2014.

[6] Ronnie Chaiken, Bob Jenkins, Per-Ake Larson, Bill
Ramsey, Darren Shakib, Simon Weaver, and Jingren
Zhou. SCOPE: Easy and efficient parallel processing of
massive data sets. Proceedings of the VLDB Endowment,
1(2), August 2008.

[7] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman.
Failure Analysis of Jobs in Compute Clouds: A Google
Cluster Case Study. In Proceedings of the 25th Interna-
tional Symposium on Software Reliability Engineering,
ISSRE ’14. IEEE Computer Society, Nov 2014.

[8] Brent N. Chun and David E. Culler. User-Centric Perfor-
mance Analysis of Market-Based Cluster Batch Sched-
ulers. In Proceedings of the 2nd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid,
CCGRID ’02. IEEE Computer Society, May 2002.

[9] Andrew Chung, Carlo Curino, Subru Krishnan, Kon-
stantinos Karanasos, Panagiotis Garefalakis, and Gre-
gory R. Ganger. Peering Through the Dark: An Owl’s

View of Inter-job Dependencies and Jobs’ Impact in
Shared Clusters. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD
’19. ACM, 2019.

[10] Andrew Chung, Jun Woo Park, and Gregory R. Ganger.
Stratus: Cost-aware Container Scheduling in the Public
Cloud. In Proceedings of the 9th ACM Symposium on
Cloud Computing, SoCC ’18. ACM, 2018.

[11] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large
Cloud Platforms. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17. ACM,
2017.

[12] Carlo Curino, Subru Krishnan, Konstantinos Karana-
sos, Sriram Rao, Giovanni M. Fumarola, Botong Huang,
Kishore Chaliparambil, Arun Suresh, Young Chen,
Solom Heddaya, Roni Burd, Sarvesh Sakalanaga, Chris
Douglas, Bill Ramsey, and Raghu Ramakrishnan. Hy-
dra: a federated resource manager for data-center scale
analytics. In Proceedings of the 16th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’19. USENIX Association, February 2019.

[13] Sergio Manuel Serra da Cruz, Patricia M. Barros,
Paulo Mascarello Bisch, Maria Luiza Machado Campos,
and Marta Mattoso. Provenance Services for Distributed
Workflows. In Proceedings of the 8th IEEE Interna-
tional Symposium on Cluster Computing and the Grid,
CCGRID ’08. IEEE Computer Society, 2008.

[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In Proceedings
of the 6th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’04. USENIX Asso-
ciation, 2004.

[15] Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Kairos: Preemptive Data Center Schedul-
ing Without Runtime Estimates. In Proceedings of the
9th ACM Symposium on Cloud Computing, SoCC ’18.
ACM, 2018.

[16] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec,
and Willy Zwaenepoel. Hawk: Hybrid Datacenter
Scheduling. In Proceedings of the 2015 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’15. USENIX Association, 2015.

[17] Nosayba El-Sayed, Hongyu Zhu, and Bianca Schroeder.
Learning from Failure Across Multiple Clusters: A
Trace-Driven Approach to Understanding, Predicting,
and Mitigating Job Terminations. In Proceedings of

the IEEE 37th International Conference on Distributed
Computing Systems, ICDCS ’17. IEEE Computer Soci-
ety, June 2017.

[18] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula,
Eric Boutin, and Rodrigo Fonseca. Jockey: Guaranteed
Job Latency in Data Parallel Clusters. In Proceedings
of the 7th ACM European Conference on Computer
Systems, EuroSys ’12. ACM, 2012.

[19] Panagiotis Garefalakis, Konstantinos Karanasos, and Pe-
ter Pietzuch. Neptune: Scheduling Suspendable Tasks
for Unified Stream/Batch Applications. In Proceed-
ings of the 10th ACM Symposium on Cloud Computing,
SoCC ’19. ACM, 2019.

[20] Panagiotis Garefalakis, Konstantinos Karanasos, Pe-
ter Pietzuch, Arun Suresh, and Sriram Rao. Medea:
Scheduling of Long Running Applications in Shared
Production Clusters. In Proceedings of the 13th Euro-
pean Conference on Computer Systems, EuroSys ’18.
ACM, 2018.

[21] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
Resource Fairness: Fair Allocation of Multiple Resource
Types. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, NSDI
’11. USENIX Association, 2011.

[22] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert
N. M. Watson, and Steven Hand. Firmament: Fast, Cen-
tralized Cluster Scheduling at Scale. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’16. USENIX Asso-
ciation, 2016.

[23] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic Scheduling
in Multi-resource Clusters. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI ’16. USENIX Association, 2016.

[24] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. Graphene: Packing and
Dependency-aware Scheduling for Data-parallel Clus-
ters. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI
’16. USENIX Association, 2016.

[25] Pradeep Kumar Gunda, Lenin Ravindranath, Chan-
dramohan A. Thekkath, Yuan Yu, and Li Zhuang. Nec-
tar: automatic management of data and computation in
datacenters. In Proceedings of the 9th USENIX confer-
ence on Operating Systems Design and Implementation,
OSDI ’10, 2010.

[26] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui
Feng, Liang Mao, and Yungang Bao. Who Limits the
Resource Efficiency of My Datacenter: An Analysis of
Alibaba Datacenter Traces. In Proceedings of the 2019
International Symposium on Quality of Service, IWQoS
’19. ACM, 2019.

[27] Alon Halevy, Flip Korn, Natalya F. Noy, Christopher
Olston, Neoklis Polyzotis, Sudip Roy, and Steven Eui-
jong Whang. Goods: Organizing Google’s Datasets. In
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16. ACM, 2016.

[28] David E. Irwin, Laura E. Grit, and Jeffrey S. Chase. Bal-
ancing risk and reward in a market-based task service. In
Proceedings of the 13th IEEE International Symposium
on High Performance Distributed Computing, HPDC
’04. IEEE Computer Society, June 2004.

[29] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
Fair Scheduling for Distributed Computing Clusters. In
Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, SOSP ’09. ACM, 2009.

[30] Eaman Jahani, Michael J. Cafarella, and Christopher
Ré. Automatic Optimization for MapReduce Programs.
Proceedings of the VLDB Endowment, 4(6):385–396,
March 2011.

[31] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and
Hiren Patel. Selecting Subexpressions to Materialize at
Datacenter Scale. Proceedings of the VLDB Endowment,
11(7):800–812, March 2018.

[32] Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao,
Zhicheng Yin, Rathijit Sen, and Subru Krishnan. Pere-
grine: Workload Optimization for Cloud Query Engines.
In Proceedings of the ACM Symposium on Cloud Com-
puting, SoCC ’19. ACM, 2019.

[33] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jiem-
ing Di, Malay Bag, Marc Friedman, Yifung Lin, Kon-
stantinos Karanasos, and Sriram Rao. Computation
Reuse in Analytics Job Service at Microsoft. In Pro-
ceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD ’18. ACM, 2018.

[34] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-
pheus: Towards Automated SLOs for Enterprise Clus-
ters. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
’16. USENIX Association, November 2016.

[35] Konstantinos Karanasos, Sriram Rao, Carlo Curino,
Chris Douglas, Kishore Chaliparambil, Giovanni Mat-
teo Fumarola, Solom Heddaya, Raghu Ramakrishnan,
and Sarvesh Sakalanaga. Mercury: Hybrid Centralized
and Distributed Scheduling in Large Shared Clusters.
In Proceedings of the 2015 USENIX Annual Technical
Conference, USENIX ATC ’15. USENIX Association,
2015.

[36] Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and
Liang Zhong. EnaCloud: An Energy-Saving Applica-
tion Live Placement Approach for Cloud Computing
Environments. In Proceedings of the 2009 IEEE Inter-
national Conference on Cloud Computing, CLOUD ’09.
IEEE Computer Society, Sep. 2009.

[37] Qixiao Liu and Zhibin Yu. The Elasticity and Plasticity
in Semi-Containerized Co-locating Cloud Workload: A
View from Alibaba Trace. In Proceedings of the 9th
ACM Symposium on Cloud Computing, SoCC ’18. ACM,
2018.

[38] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Alizadeh.
Learning Scheduling Algorithms for Data Processing
Clusters. In Proceedings of the 2019 ACM Special In-
terest Group on Data Communication, SIGCOMM ’19.
ACM, 2019.

[39] Ruslan Mavlyutov, Carlo Curino, Boris Asipov, and Phil
Cudre-Mauroux. Dependency-Driven Analytics: a Com-
pass for Uncharted Data Oceans. In Proceedings of the
8th Biennial Conference on Innovative Data Systems
Research, CIDR ’17, January 2017.

[40] Kristi Morton, Magdalena Balazinska, and Dan Gross-
man. ParaTimer: A Progress Indicator for MapReduce
DAGs. In Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD
’10. ACM, 2010.

[41] Kristi Morton, Abram Friesen, Magdalena Balazinska,
and Dan Grossman. Estimating the progress of MapRe-
duce pipelines. In Proceedings of the IEEE 26th Inter-
national Conference on Data Engineering, ICDE ’10.
IEEE Computer Society, March 2010.

[42] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: Distributed, low latency schedul-
ing. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13. ACM,
2013.

[43] Jun Woo Park, Alexey Tumanov, Angela Jiang,
Michael A. Kozuch, and Gregory R. Ganger. 3sigma:
Distribution-based cluster scheduling for runtime uncer-
tainty. In Proceedings of the 13th European Conference
on Computer Systems, EuroSys ’18. ACM, 2018.

[44] Florentina I. Popovici and John Wilkes. Profitable ser-
vices in an uncertain world. In Proceedings of the
2005 ACM/IEEE Conference on Supercomputing, SC
’05. IEEE Computer Society, 2005.

[45] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,
Randy H. Katz, and Michael A. Kozuch. Heterogeneity
and Dynamicity of Clouds at Scale: Google Trace Anal-
ysis. In Proceedings of the Third ACM Symposium on
Cloud Computing, SoCC ’12. ACM, 2012.

[46] Andrea Rosà, Lydia Y. Chen, and Walter Binder. Pre-
dicting and mitigating jobs failures in big data clusters.
In Proceedings of the 15th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, CC-
GRID ’15. IEEE Computer Society, 2015.

[47] Malte Schwarzkopf and Peter Bailis. Research for Prac-
tice: Cluster Scheduling for Datacenters. Communica-
tions of the ACM, 61(5):50–53, April 2018.

[48] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-
Malek, and John Wilkes. Omega: Flexible, Scalable
Schedulers for Large Compute Clusters. In Proceedings
of the 8th ACM European Conference on Computer
Systems, EuroSys ’13. ACM, 2013.

[49] Rathijit Sen, Alekh Jindal, Hiren Patel, and Shi Qiao.
Autotoken: Predicting peak parallelism for big data an-
alytics at microsoft. Proceedings of the VLDB Endow-
ment, 13(12):3326–3339, August 2020.

[50] Liqun Shao, Yiwen Zhu, Siqi Liu, Abhiram Eswaran,
Kristin Lieber, Janhavi Mahajan, Minsoo Thigpen, Sud-
hir Darbha, Subru Krishnan, Soundar Srinivasan, and
et al. Griffon: Reasoning about Job Anomalies with
Unlabeled Data in Cloud-Based Platforms. In Proceed-
ings of the 10th ACM Symposium on Cloud Computing,
SoCC ’19. ACM, 2019.

[51] Huangshi Tian, Yunchuan Zheng, and Wei Wang. Char-
acterizing and Synthesizing Task Dependencies of Data-
Parallel Jobs in Alibaba Cloud. In Proceedings of the
10th ACM Symposium on Cloud Computing, SoCC ’19.
ACM, 2019.

[52] Alexey Tumanov, Angela Jiang, Jun Woo Park,
Michael A Kozuch, and Gregory R Ganger. JamaisVu:
Robust scheduling with auto-estimated job runtimes.
Technical report, Technical Report CMU-PDL-16-104.
Carnegie Mellon University, 2016.

[53] Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A. Kozuch, Mor Harchol-Balter, and Gregory R.
Ganger. TetriSched: Global Rescheduling with Adaptive
Plan-ahead in Dynamic Heterogeneous Clusters. In Pro-
ceedings of the 11th European Conference on Computer
Systems, EuroSys ’16. ACM, 2016.

[54] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache Hadoop YARN: Yet Another Resource Nego-
tiator. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SoCC ’13. ACM, 2013.

[55] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale Cluster Management at Google with Borg. In
Proceedings of the 10th ACM European Conference on
Computer Systems, EuroSys ’15. ACM, 2015.

[56] Paul Voigt and Axel von dem Bussche. The EU General
Data Protection Regulation (GDPR): A Practical Guide.
Springer Publishing Company, Incorporated, 1st edition,
2017.

[57] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing. In Proceedings of the
9th USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’12, San Jose, CA, 2012.
USENIX Association.

	Introduction
	Hidden inter-job dependencies in Cosmos
	Cosmos
	Inter-job dependencies
	Observations on inter-job dependencies

	Inter-job dependency predictability
	Prediction model
	Predictability evaluation

	The Wing dependency profiler
	
	
	
	
	
	
	
	

	
	
	Simulation setup
	
	

	
	Benefits of Wing guidance
	Sensitivity and ablation studies
	Cluster-wide queue and value metrics

	Related work
	Conclusion

