
This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-931971-44-7

Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Putting the “Micro” Back in Microservice
Sol Boucher, Anuj Kalia, and David G. Andersen, Carnegie Mellon University;

Michael Kaminsky, Intel Labs

https://www.usenix.org/conference/atc18/presentation/boucher

Putting the “Micro” Back in Microservice
Sol Boucher*, Anuj Kalia*, David G. Andersen*, and Michael Kaminsky†

* Carnegie Mellon University † Intel Labs

Abstract
Modern cloud computing environments strive to provide
users with fine-grained scheduling and accounting, as well
as seamless scalability. The most recent face to this trend
is the “serverless” model, in which individual functions,
or microservices, are executed on demand. Popular imple-
mentations of this model, however, operate at a relatively
coarse granularity, occupying resources for minutes at a
time and requiring hundreds of milliseconds for a cold
launch. In this paper, we describe a novel design for
providing “functions as a service” (FaaS) that attempts
to be truly micro: cold launch times in microseconds
that enable even finer-grained resource accounting and
support latency-critical applications. Our proposal is
to eschew much of the traditional serverless infrastruc-
ture in favor of language-based isolation. The result is
microsecond-granularity launch latency, andmicrosecond-
scale preemptive scheduling using high-precision timers.

1 Introduction
As the scope and scale of Internet services continues to
grow, system designers have sought platforms that simplify
scaling and deployment. Services that outgrew self-hosted
servers moved to datacenter racks, then eventually to
virtualized cloud hosting environments. However, this
model only partially delivered two related benefits:
1. Pay for only what you use at very fine granularity
2. Scale up rapidly on demand

The VM approach suffered from relatively coarse granu-
larity: Its atomic compute unit of machines were billed at
a minimum of minutes to months. Relatively long startup
times often required system designers to keep some spare
capacity online to handle load spikes.
These shortcomings led cloud providers to introduce

a new model, known as serverless computing, in which
the customer provides only their code, without having to
configure its environment. Such “function as a service”
(FaaS) platforms are now available as AWS Lambda [4],
Google Cloud Functions [10], Azure Functions [18], and
Apache OpenWhisk [5]. These platforms provide a model
in which: (1) user code is invoked whenever some event
occurs (e.g., an HTTP API request), runs to completion,
and nominally stops running (and being billed) after it
completes; and (2) there is no state preserved between
separate invocations of the user code. Property (2) enables
easy auto-scaling of the function as load changes.

Because these services executewithin a cloud provider’s
infrastructure, they benefit from low-latency access to
other cloud services. In fact, acting as an access-control
proxy is a recurring microservice pattern: receive an API
request from a user, validate it, then access a backend
storage service (e.g., S3) using the service’s credentials.

In this paper, we explore a design intended to reduce the
tension between two of the desiderata for cloud functions:
low latency invocation and low cost. Contemporary
invocation techniques exhibit high latency with a large tail;
this is unsuitable for many modern distributed systems
which involve high-fanout communication, sometimes
performing thousands of lookups to handle each user
request. Because user-visible response time often depends
on the tail latency of the slowest chain of dependent
responses [7], shrinking the tail is crucial [11, 24, 16, 12].
Thus we seek to reduce the invocation latency and im-

prove predictability, a goal supported by the impressively
low network latencies available in modern datacenters.
For example, it now takes < 20µs to perform an RPC
between two machines in Microsoft Azure’s virtual ma-
chines [9]. We believe, however, that fully leveraging
this improving network performance will require reducing
microservices’ invocation latencies to the point where the
network is once again the bottleneck.
We further hypothesize—admittedly without much

proof for this chicken-and-egg scenario—that substan-
tially reducing both the latency and cost of running
intermittently-used services will enable new classes and
scales of applications for cloud functions, and in the re-
mainder of this paper, present a design that achieves this.
As Lampson noted, there is power in making systems
“fast rather than general or powerful” [14], because fast
building blocks can be used more widely.

Of course, a microservice is only as fast as the slowest
service it relies on; however, recall that many such services
are offered in the same clouds and datacenters as serverless
platforms. Decreasing network latencies will push these
services to respond faster as well, and new stable storage
technologies such as 3D XPoint (projected to offer sub-
microsecond reads and writes) will further accelerate this
trend by offering lower-latency storage.

In this paper, we propose a restructuring of the serverless
model centered around low-latency: lightweight microser-
vices run in shared processes and are isolated primarily
with language-based compile-time guarantees and fine-
grained preemption.

USENIX Association 2018 USENIX Annual Technical Conference 645

Dispatcher process

Worker process

μservice μservice

Worker process

μservice μservice

Figure 1: Language-based isolation design. The dis-
patcher process uses shared in-memory queues to feed
requests to the worker processes, each of which runs
one user-supplied microservice at a time.

2 Motivation
Our decision to use language-based isolation is based on
two experimental findings: (1) Process-level isolation is
too slow for microsecond-scale user functions. (2) Com-
modity CPUs support task preemption at microsecond
scale. We conducted our experiments on an Intel® Xeon®
E5-2683 v4 server (16 cores, 2.1 GHz) and Linux 4.13.0.1

2.1 Process-level isolation is too slow
We use a single-machine experiment to evaluate the invo-
cation overhead of different isolation mechanisms: Mi-
croservices run on 14 worker CPU cores. Another core
runs a dispatcher process that launches microservices
on the workers. All requests originate at the dispatcher
(which in a full serverless platform would forward from
a cluster scheduler); it schedules ≤14 microservices at a
time, one per worker core, choosing from a pool of 5,000.

To provide a comparison against contemporary system
designs, we use two different isolation mechanisms:
1. Process-based isolation: Each microservice is a

separate process. We expect this approach to exhibit
latency at least as low as the container isolation
common in contemporary serverless deployments.

2. Language-based isolation: Each worker core hosts
a single-threaded worker process that directly exe-
cutes different microservices, one at a time. In this
approach, shown in Figure 1, a worker process runs
a microservice by calling its registered function; we
assume that the microservice function can be isolated
from the worker process with language-based isola-
tion techniques that we discuss in Section 3. The
dispatcher schedules microservices on worker pro-
cesses by sending them requests on a shared memory
queue, which idle worker processes poll.

We use 5,000 copies of a Rust microservice that simply
records a timestamp: latency is measured between when
the dispatcher invokes a microservice and the time that
microservice records. There are two experiment modes:

1Source code for the benchmarks in this paper is available from
https://github.com/efficient/microservices_microbenchmarks.

Microservices Latency (µs) Throughput
Resident? Isolation Median 99% (M invoc/s)

Warm-start Process 8.7 27.3 0.29
Language 1.2 2.0 5.4

Cold-start Process 2845.8 15976.0 –
Language 38.7 42.2 –

Table 1: Microservice invocation performance

Warm-start requests. We first model a situation where
all of themicroservices are already resident on the compute
node. In the case of process-based isolation, the dispatcher
launches all 5,000 microservices at the beginning of
the experiment, but they all block on an IPC call; the
dispatcher then invokes each microservice by waking up
its process using a UDP datagram. In the case of language-
based isolation, the microservices are dynamic libraries
preloaded into the worker processes.
Table 1 shows the latency and throughput of the two

methods. We find that the process-based isolation ap-
proach takes 9 µs and achieves only 300,000 warm mi-
croservice invocations per second. In contrast, language-
based isolation achieves 1.2 µs latency (with a tail of just
2.0 µs) and over 5 million invocations per second.

Considering that the FaRM distributed computing plat-
form achieved mean TATP transaction commit latencies
as low as 19 µs in 2015 [8], a 9 µs microservice invocation
delay represents almost 50% overhead for a microservice
providing a thin API gateway to such a backend. We there-
fore conclude that even in the average case, process-based
isolation is too slow for microsecond-scale scheduling.
Furthermore, IPC overhead limits invocation throughput.

Process-based isolation also has a higher memory foot-
print: loading the 5,000 trivial microservices consumes
2 GiB of memory with the process-based approach, but
only 1.3 GiB with the language-based one. However, this
benefit may reduce as microservices’ code sizes increase.

Cold-start requests. Achieving ideal wakeup times is
possible only when the microservices are already resident,
but the tail latency of the serverless platform depends on
those requests whose microservices must be loaded before
they can be invoked. To assess the difference between
process-based and language-based isolation in this context,
we run the experimentwith the following change: In the for-
mer case, the dispatcher now launches a transient microser-
vice process for each request by fork()/exec()’ing. In
the latter, the dispatcher asks a worker to load a microser-
vice’s dynamic library (and unload it afterward). The
results in Table 1 reveal an order-of-magnitude slip in
the language-based approach’s latency; however, this is
overshadowed by the three orders of magnitude increase
for process-based isolation.

646 2018 USENIX Annual Technical Conference USENIX Association

https://github.com/efficient/microservices_microbenchmarks

2.2 Intra-process preemption is fast
In a complete serverless platform, some cluser-level sched-
uler would route incoming requests to individual worker
nodes. Since we run user-provided microservices directly
in worker processes, a rogue long-running microservice
could thwart such scheduling by unexpectedly consuming
the resources of a worker that already had numerous other
requests queued. We hypothesize that, in such situations,
it is better for tail latency to preempt the long microservice
than retarget the waiting jobs to other nodes in real time.
(Only the compute node already assigned a request is
well positioned to know whether that request is being
excessively delayed: whereas other nodes can only tell that
the request hasn’t yet completed, this node alone knows
whether it has been scheduled.) At our scale, this means a
preemption interval up to two orders of magnitude faster
than Linux’s default 4 ms process scheduling quantum.
Fortunately, we find that high-precision event timers

(HPETs) on modern CPUs are sufficient for this task. We
measure the granularity and reliability of these timers
as follows: We install a signal handler and configure
a POSIX timer to trigger it every T µs. Ideally, this
handler would always be called exactly T µs after its last
invocation; we measure the deviation from T over 65,535
iterations. We find that the variance is smaller than 0.5 µs
for T ≥ 3 µs. This shows that intra-process preemption is
fast and reliable enough for our needs.

3 Providing Isolation
Consolidating multiple users’ jobs into a single process
requires addressing security and isolation. We aim to do it
without compromising our ambitious performance goals.

Our guiding philosophy for achieving this is “language-
based isolation with defense in depth.” We draw inspi-
ration from two recently-published systems whose own
demanding performance requirements drove them to per-
form similar coalescing of traditionally independent com-
ponents: NetBricks [19] is a network functions runtime for
providing programmable network capabilities; it is unique
among this class of systems for running third-party net-
work functions in-process rather than in VMs. Tock [15]
is an embedded microkernel whose servers (“capsules”)
form a common compilation unit and communicate using
type-safe function calls. As their primary defense against
untrusted code, both systems leverage Rust [3], a new
type-safe systems programming language.
Rust is a strongly-typed, compiled language that uses

a lightweight runtime similar to C. Unlike many other
modern systems languages, Rust is an attractive choice for
predictable performance because it does not use a garbage
collector. It provides strong memory safety guarantees by
focusing on “zero-cost abstractions” (i.e., those that can
be compiled down to code whose safety is assured without
runtime checks). In particular, safeRust code is guaranteed

to be free of null or dangling pointer dereferences, invalid
variable values (e.g., casts are checked and unions are
tagged), reads from uninitialized memory, mutations of
non-mut data (roughly the equivalent of C’s const), and
data races, among other misbehaviors [22].
We require each microservice to be written in Rust

(although, in the future, it might be possible to support
subsets of other languages by compiling them to safe
Rust), giving us many aspects of the isolation we need. It
is difficult for microservices to crash the worker process,
since most segmentation faults are prevented, and runtime
errors such as integer overflow generate Rust panics that
we can catch. Microservices cannot get references to data
that does not belong to them thanks to the variable and
pointer initialization rules.

Given our performance goals, there is a crucial isolation
aspect that Rust does not provide: there is nothing to stop
users from monopolizing the CPU. Our system, however,
must be preemptive. We are unaware of existing preemp-
tion techniques that work at microsecond scales. Note that
coroutine-like cooperative multitasking approaches (such
as lightweight threads in Go [2] and Erlang [1]) are not
preemptive, so they do not work for us. We briefly discuss
our solution to this in the following section; it depends
on installing a SIGALRM handler and ensuring that trusted
code within the process handles the signal.
Our defense-in-depth comes from using lightweight

operating-system protections to block access to certain
system calls, as well as the proposed mechanisms in
Section 6. Some system calls must be blocked to have any
defense at all; otherwise, the microservice could create
kernel threads (e.g., fork()), create competition between
threads (e.g., nice()), or even terminate the entire worker
(e.g., exit()). Finally, user functions should not have
unmonitored file system access.
We propose to block system calls using Linux’s

seccomp() system call [20]; each worker process should
call this during initialization to limit itself to a whitelisted
set of system calls. Prior to lockdown, the worker process
should install a SIGSYS handler for regaining control from
any microservice that attempts to violate the policy.

4 Providing Preemption
The system must be able to detect and recover from
microservices that, whether maliciously or negligently,
attempt to run for longer than permitted. The two parts of
this problem are (1) regaining control of the CPU and (2)
aborting and cleaning up after the user code.
As proposed in Section 2, regaining control of the

CPU happens when a signal (SIGALRM) from the kernel
transfers control to the worker process’s handler.2 The
handler then checks how long the current microservice

2For defense in depth, the worker process should be prevented from
subsequently modifying this signal-handling configuration.

USENIX Association 2018 USENIX Annual Technical Conference 647

0 10 20 30 40 50 60 70
Requested time quantum (us)

0

500000

1000000

1500000

2000000

2500000

SH
A-

51
2

ha
sh

in
g

th
ro

ug
hp

ut
 (6

4-
B

ha
sh

es
/s

)
Microservice hashing throughput vs. worker process timer interval

Handling SIGALRM at that rate
Baseline (no SIGALRM configured)
90% of baseline

Figure 2: Effect of SIGALRM quantum on hashing tput.

has been running and decides whether it should be killed.
(We register the handler using the SA_RESTART flag to
sigaction() so that any interrupted blocking syscalls
are restarted transparently.) However, there remain three
important questions:
For how long should each microservice be allowed to
run? Assume that each core executes one user task at a
time and that all microservice functions are pre-compiled
and resident (warm invocation). We define L to be the
desired warm invocation latency, B to be the runtime
budget allotted to each microservice, and rc to be the
remaining runtime of the microservice on CPU c. Thus,
in the worst case (where all tasks are executing for their
entire allotted time) the probability that the incoming
microservice will have somewhere to run in time to meet
the invocation latency SLO is given by:

p(rmin ≤ L) =
∑
c∈C

p(rc ≤ L) =
��C�� L

B
(1)

Given the 14 cores in our setup and imagining we want
to keep the 99% tail, p(rmin ≤ L) = 0.99, to an L of 8 µs,
we need to kill tasks running for more than B = 113 µs.
How often should the handler execute (the quantum)?
We showed in Section 2 that microsecond-scale preemp-
tion is achievable, but can it be done efficiently? To find
out, we wrote a microservice that measures the throughput
of computing SHA-512 hashes over 64 B of data at a
time. We then subjected its worker process to SIGALRMs,
varying the quantum and observing the resulting hashing
throughput. Figure 2 illustrates that by a quantum of about
20 µs, throughput had reached around 90% of baseline.
Considering this performance degradation, acceptable we
adopt this quantum and prescribe a runtime budget of 113
- 20 = 93 µs so that we can kill over-budget microservices
in time to avoid violating our tail latency SLO.
How do we clean up a terminated microservice? We
now discuss our mechanism for aborting and cleaning up
after a microservice exceeds its runtime budget. POSIX
signal handlers receive as an argument a pointer to their
context, a snapshot of the process’s PCB (process control

block) at the moment before it received the signal. When
the handler returns, the system will transfer control back
to the point described by the context, so a naïve way for
our worker processes to regain control would be to reset its
GPRs (general-purpose registers) to values recorded just
before the worker’s tight scheduling loop. This approach,
however, would not release the microservice’s state or
memory allocations back to the worker.
One of the few heavyweight components of the Rust

runtime is panic handling, reminiscent of C++’s exception
handling. The compiler inserts landing pads into each
function that call the destructors for the variables in its
stack frame: if the program ever panics, the standard
library uses these to unwind the stack. We co-opt this
functionality by having the SIGALRM handler set its context
to raise an explicit panic in a fake stack frame just above
the real top of the stack.

Section 6 discusses the limitations and security ramifi-
cations of this approach.

5 Deployment
We now describe our microservices in the broader context
of our full proposed serverless system. We clarify their
lifecycle, interactions with the compute nodes, and the
trust model for the cloud provider.
Users submit their microservices in the form of Rust

source code, allowing the serverless operator to pass the
-Funsafe-code compilation flag to reject any unsafe
code. This process need not occur on the compute nodes,
provided the deployment server tasked with compilation
runs the same version of the Rust compiler.3 The operator
needs to trust the compiler, standard library, and any li-
braries against which it will permit themicroservice to link
(since they might contain unsafe code), but importantly
need not worry about the microservice itself.
We believe that restricting microservices to a specific

list of permitted dependencies is reasonable. Any library
that contains only safe Rust code could be whitelisted
without review. To approximate the size of such a list
given the current Rust ecosystem, we turn to a 2017
study [6] by the Tock authors that found just under half of
the Rust package manager’s top 1000 most-downloaded
libraries to be free of unsafe code. They caution that
many of those packages have unsafe dependencies, but
reviewing a relatively small number of popular libraries
would open up the majority of the most popular packages.

If the application compiles (is proven memory-safe) and
links (depends only on trusted libraries) successfully, the
deployment server produces a shared object file, which the
provider then distributes to each compute node on which
it might run. Then, in order to ensure that invokers will
experience the warm-start latencies discussed in Section 2,

3This restriction exists because, as of the latest release (1.23.0) of
the compiler, Rust does not have a stable ABI.

648 2018 USENIX Annual Technical Conference USENIX Association

those nodes’ dispatcher processes should instruct one or
more of their workers to preload the dynamic library. If
the provider experiences too many active microservices
for its available resources, it can unload some libraries;
on their next invocation, they will experience higher (cold
start) invocation latencies as they synchronously load the
dynamic library.

6 Future Work
As noted above, our exploration is preliminary; this section
outlines several open questions. These questions fall into
two categories: shortcomings in our current implementa-
tion and defense-in-depth safeguards against unexpected
failures (e.g., compiler bug or the operator allowing use
of a buggy or malicious library).
Non-reentrancy. Our use of Rust panics to unwind the
stack during preemption can corrupt the internal state of
non-reentrant functions (e.g., Rust’s dynamic allocator).
Possible fixes include blacklisting these functions and
delaying preemption until they are finished or replacing
the problematic function with a safe one (e.g., a custom
memory allocator).
Host process. Our current implementation does not pro-
vide isolation between the dispatcher andworker processes.
We plan to apply standard OS techniques to reduce the
chance of interference by a misbehaving worker. Exam-
ples include auditing interactions with the shared memory
region to ensure invalid or inconsistent data originating
from a worker cannot create an unrecoverable dispatcher
error; handling the SIGCHLD signal to detect a worker that
has somehow crashed; and keeping a recovery log in the
dispatcher process so that any user jobs lost to a failed
worker process can be reassigned to operational workers.
Further defense in depth with ERIM. ERIM outlines
a set of techniques and binary rewriting tools useful for
using Intel’s Memory Protection Keys to restrict memory
access by threads within a process [23]. While preliminary
and without source yet available, this appears to be an at-
tractive approach for defense-in-depth both within worker
processes and between the workers and the dispatcher.
Library functions. As with system calls, there may exist
library functions in Rust (and certainly in libc, which
we deny by default) that are unsafe for microservices to
access. Because the Rust standard library requires unsafe
code, defense-in-depth suggests that a whitelisting-based
approach should be employed for access to its functions.
Certainly library functions must be masked—for example,
our use of Rust’s panic handler for preemption means that
we must deny microservice code the ability to catch the
panic and return to execution. Although we mitigate this
possibility by detecting and blacklisting microservices
that fail to yield under a SIGALRM, it would be desirable
to block such behavior entirely. Possible options include
using the dynamic linker to interpose stub implementations

or linking against a custom build of the library, or using
more in-depth static analysis.
Resource leaks. Safe Rust code provides memory safety,
but it cannot prevent memory leaks [21]. For example, de-
structor invocation is not guaranteed using Rust’s default
reference counting-based reclamation; therefore, unwind-
ing the stack during preemption is not guaranteed to free
all of a microservice’s memory or other resources. Poten-
tial solutions are interposing on the dynamic allocator to
record tracking information (likely proving expensive) or
using per-microservice heaps that main worker process
can simply deallocate when terminating a microservice.
The worker can also deallocate other resources, such as
unclosed file descriptors. If these checks end up being
too expensive, the worker could execute its cleanup after
a certain number of microservices have run or when the
load is sufficiently low.
Side channels. Our current approach is vulnerable to side-
channel attacks [17, 13]. For example, microservices have
access to the memory addresses and timings of dynamic
memory allocations, as well as the numbers of opened file
descriptors. Although side-channels exist inmany systems,
the short duration of microservice functions may make
mounting such attacks more challenging; nevertheless,
standard preventative practices found in the literature
should apply.
Despite the security challenges of running microservice
as functions, worker processes are still well-isolated from
the rest of the system. Worst case, the central dispatcher
process can restart a failed worker and automatically ban
suspect microservices.

7 Conclusion
In order to permit applications to fully leverage the 10s of
µs latencies available from the latest datacenter networks,
we propose a novel design for serverless platforms that runs
user-submitted microservices within shared processes.
This structure is possible because of language-based
compile-time memory safety guarantees and microsecond-
scale preemption. Our implementation and experiments
demonstrate that these goals of high throughput, low in-
vocation latency, and rapid preemption are achievable on
today’s commodity systems, while potentially supporting
hundreds of thousands of concurrently available microser-
vices on each compute node. We believe that these two
building blocks will enable new FaaS platforms that can
deliver single-digit microsecond invocation latencies for
lightweight, short-lived tasks.

Acknowledgements
This work was supported by the U.S. National Science
Foundation under award CCF-1535821 and the Intel Sci-
ence and Technology Center for Visual Cloud Systems.

USENIX Association 2018 USENIX Annual Technical Conference 649

References
[1] Erlang programming language. https://www.erlang.

org, 2018.
[2] The Go programming language. https://golang.org,

2018.
[3] The Rust programming language. https://www.

rust-lang.org, 2018.
[4] Amazon. AWS Lambda. https://aws.amazon.com/

lambda.
[5] Apache Software Foundation. OpenWhisk. https://

openwhisk.apache.org.
[6] Brad Campbell. Crates.io ecosystem not ready for em-

bedded Rust. https://www.tockos.org/blog/2017/

crates-are-not-safe.
[7] J. Dean and L. A. Barroso. The tail at scale. Communica-

tions of the ACM, 56(2):74–80, Feb. 2013.
[8] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Ren-

zelmann, A. Shamis, A. Badam, and M. Castro. No
compromises: Distributed transactions with consistency,
availability, and performance. In Proc. 25th ACM Sympo-
sium on Operating Systems Principles (SOSP), Monterey,
CA, Oct. 2015.

[9] D. Firestone et al. Azure accelerated networking: Smart-
NICs in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18),
Renton, WA, Apr. 2018.

[10] Google. Cloud Functions. https://cloud.google.com/
functions.

[11] V. Jalaparti, P. Bodik, S. Kandula, I.Menache, M. Rybalkin,
and C. Yan. Speeding up distributed request-response
workflows. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, 2013.

[12] M. Jeon, Y. He, H. Kim, S. Elnikety, S. Rixner, and A. L.
Cox. TPC: Target-driven parallelism combining predic-
tion and correction to reduce tail latency in interactive
services. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

[13] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. Spectre attacks: Exploiting speculative
execution. ArXiv e-prints, Jan. 2018.

[14] B. W. Lampson. Hints for computer system design. In
Proceedings of the ninth ACM symposium on operating
systems principles, SOSP ’83, pages 33–48. ACM, 1983.

[15] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto,
P. Dutta, and P. Levis. Multiprogramming a 64 kB computer
safely and efficiently. In Proceedings of the 26th ACM
symposium on operating systems principles, SOSP ’17,
pages 234–251. ACM, 2017.

[16] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble. Tales
of the tail: Hardware, OS, and application-level sources
of tail latency. In Proceedings of the ACM Symposium on
Cloud Computing (SoCC), 2014.

[17] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg. Meltdown. ArXiv e-prints, Jan. 2018.

[18] Microsoft. Azure Functions. https://azure.microsoft.
com/services/functions.

[19] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and
S. Shenker. NetBricks: Taking the V out of NFV. In Proc.
12th USENIX OSDI, Savannah, GA, Nov. 2016.

[20] seccomp(). seccomp(2) manual page from Linux man-
pages project, Nov. 2017.

[21] The Rust Reference. Behavior not considered unsafe.
https://doc.rust-lang.org/stable/reference/

behavior-not-considered-unsafe.html, 2018.
[22] The Rust Reference. Behavior considered undefined.

https://doc.rust-lang.org/stable/reference/

behavior-considered-undefined.html, 2018.
[23] A. Vahldiek-Oberwagner, E. Elnikety, D. Garg, and P. Dr-

uschel. Erim: Secure and efficient in-process isolation with
memory protection keys. arXiv preprint arXiv:1801.06822,
2018.

[24] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail:
Avoiding long tails in the cloud. In Proceedings of the
10th USENIX Conference on Networked Systems Design
and Implementation (NSDI), 2013.

650 2018 USENIX Annual Technical Conference USENIX Association

https://www.erlang.org
https://www.erlang.org
https://golang.org
https://www.rust-lang.org
https://www.rust-lang.org
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://openwhisk.apache.org
https://openwhisk.apache.org
https://www.tockos.org/blog/2017/crates-are-not-safe
https://www.tockos.org/blog/2017/crates-are-not-safe
https://cloud.google.com/functions
https://cloud.google.com/functions
https://azure.microsoft.com/services/functions
https://azure.microsoft.com/services/functions
https://doc.rust-lang.org/stable/reference/behavior-not-considered-unsafe.html
https://doc.rust-lang.org/stable/reference/behavior-not-considered-unsafe.html
https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html

	Introduction
	Motivation
	Process-level isolation is too slow
	Intra-process preemption is fast

	Providing Isolation
	Providing Preemption
	Deployment
	Future Work
	Conclusion

