
alsched: Algebraic Scheduling of Mixed Workloads in
Heterogeneous Clouds

Alexey Tumanov
Carnegie Mellon University
atumanov@cmu.edu

James Cipar
Carnegie Mellon University

jcipar@cmu.edu

Michael A. Kozuch
Intel Labs

michael.a.kozuch@intel.com

Gregory R. Ganger
Carnegie Mellon University
ganger@ece.cmu.edu

ABSTRACT
As cloud resources and applications grow more heterogeneous, allo-
cating the right resources to different tenants’ activities increasingly
depends upon understanding tradeoffs regarding their individual
behaviors. One may require a specific amount of RAM, another
may benefit from a GPU, and a third may benefit from executing on
the same rack as a fourth. This paper promotes the need for and an
approach for accommodating diverse tenant needs, based on having
resource requests indicate any soft (i.e., when certain resource types
would be better, but are not mandatory) and hard constraints in the
form of composable utility functions. A scheduler that accepts such
requests can then maximize overall utility, perhaps weighted by pri-
orities, taking into account application specifics. Experiments with
a prototype scheduler, called alsched, demonstrate that support for
soft constraints is important for efficiency in multi-purpose clouds
and that composable utility functions can provide it.

Categories and Subject Descriptors
D.4.7 [Operating systems]: Organization and design—Distributed
systems

General Terms
Design

Keywords
cluster scheduling, cloud computing

1. INTRODUCTION
Some applications benefit from specific characteristics in the

machine resources on which they execute [12, 13]. For example,
a sort program may need a certain amount of RAM and a certain
CPU speed to achieve acceptable performance. A backup replica of
a service may need to be run on a different rack than the primary in
order to maximize availability. A specialized image processing code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’12, October 14-17, 2012, San Jose, CA USA
Copyright 2012 ACM 978-1-4503-1761-0/12/10 ...$15.00.

may only be able to run on a machine with a GPU. A data analysis
task may achieve higher performance if executed on the server that
stores the data in question on a local disk. Many other examples
exist.

When clusters are dedicated to particular application types, sched-
ulers can accommodate such benefits by either having hard-coded
understanding (e.g., locality awareness in Hadoop [1]) or ignoring
such benefits (if all machines satisfy them equally) when assigning
tasks. With cloud computing, however, such approaches will not
work. Diverse mixes of applications will share cloud infrastructures,
and their varied specific needs must be accommodated if promised
efficiency gains are to be realized. Worse, those needs will not be
known a priori—they must be communicated with resource requests
made to the cluster scheduler, which must then be able to make good
decisions accordingly.

One approach is for resource consumers to specify zero or more
hard constraints with each request, based on some predetermined
attribute schema understood by the cluster scheduler [12, 13]. Such
constraints could serve as a filter on the set of machines, enabling
identification of the subset that are suitable for the corresponding
request. But, this approach ignores an important issue: in many
cases, the desired machine characteristics provide benefit but are not
mandatory. For example, running a new task on the same machine as
another with which it communicates frequently can improve perfor-
mance, but failing to do so does not prevent the task’s execution—it
just makes it somewhat less efficient. We refer to such cases as
soft constraints. Treating them as hard constraints can lead to un-
necessary resource under-utilization, and ignoring them can lead to
lower efficiency, making them an important consideration for cloud
schedulers.

This paper proposes a specific approach for accommodating soft
constraints, as well as hard constraints and general machine het-
erogeneity. In our model, each job submitted for processing is
accompanied by a resource request, which is expressed as utility
functions in the form of algebraic expressions indicating what ben-
efit would be realized if particular resources were assigned to it.
The expressions can indicate specific machines, but can also use "n
Choose k" primitives over resource sets. The resource sets can be
indicated via attributes (as described above for hard constraints) or
explicit listings of specific machines. We believe that such utility
functions are flexible and expressive enough to capture hard and
soft constraints of interest, while also being sufficiently simple to
construct that low-level software (e.g., libraries) can translate an
application’s needs into them effectively. Given a set of resource
constraints specified as such expressions, a scheduler can search for
an optimal placement to maximize utility.

We have implemented such a scheduler, called alsched, and a

simulator for evaluating its effectiveness. We describe a number
of hypothetical applications with soft constraints corresponding to
real application characteristics, and use simulated mixes of them to
evaluate both the need for and alsched’s support of soft constraints.
The results show that soft constraints should be explicitly supported;
treating them as either hard constraints or no constraints, instead
of soft constraints, often leads to wasted resources and higher task
completion delays. The results also show that alsched is effective at
providing that support, quickly finding good schedules that exploit
the soft constraints to improve utility.

The remainder of this paper further evangelizes the importance of
soft constraints in cloud scheduling and our approach to providing
for them. Section 2 discusses related work and describes a range of
soft constraints that are evident in existing environments. Section 3
details the interface that consumers use to specify resource requests,
including soft and hard constraints, and gives examples of its use.
Section 4 describes our prototype alsched implementation. Section 5
evaluates the need for soft constraints and alsched’s effectiveness in
handling them.

2. BACKGROUND AND MOTIVATION
Cluster scheduling has been studied and practiced so extensively

that we will not attempt to summarize it all. The vast majority
of it, however, targets much less diverse environments than multi-
purpose clouds. Analysis of recently released Google trace data [12]
indicates that early clouds already exhibit heterogeneity of hardware
resources and especially of job characteristics, including resource
requirements and constraints. Researchers are promoting even more
use of specialized platform mixes [12]. New scheduling approaches
will be needed to handle such heterogeneity, and here we focus
on the central issue of supporting job-specific trade-offs (i.e. soft
constraints) regarding which resources are assigned to executing a
given job. This section discusses prior work related to our approach
as well as the extensive evidence that soft constraints will play an
important role in cloud schedulers.

2.1 Related work
Researchers have proposed use of utility functions in cluster

scheduling in various ways and explored potential benefits. Wilkes [15]
provides a useful tutorial and partial coverage of utility theory in
scheduling, particularly for managing tradeoffs between services
with distinct service level objectives (SLOs). Utility-based ap-
proaches, rooted in sound economic theory, are an attractive way to
manage complex tradeoffs in resource allocation among consumers.

Generally speaking, utility functions would be associated with
each consumer’s resource request, and the scheduler would allocate
resources to requests so as to maximize overall utility. For example,
Kelly [5] describes utility-directed allocation using combinatorial
auctions and solving the scheduling problem as a multi-dimensional
multi-choice knapsack problem. At a high level, our approach
is similar, but focuses on using utility functions to quantify the
individual values of the wide range of soft constraints.

Most proposed uses of utility functions for scheduling have fo-
cused on quantifying the value of resource quantities to each con-
sumer, informing scheduling decisions when tradeoffs must be made
between them—in particular, deciding which consumer doesn’t get
what it requested, when there are not enough resources to satisfy
them all. There are many such examples, ranging over the last two
decades [9, 5, 14, 10, 6]. As a recent example, Jockey [3] uses utility
functions to map the duration of job execution to a utility value that
decreases and potentially drops below zero as the duration exceeds
predetermined deadlines.

Though promising, the use of utility functions has never quite

taken hold [8]. We believe that cluster schedulers have succeeded
without them, primarily by being able to avoid too much diversity
in tradeoffs (allowing hard-coding of sufficient support for them)
and too much resource contention (often allowing all high-priority
consumers to obtain desired resources). For example, Hadoop’s
JobTracker tries to schedule map tasks on machines with a copy
of the corresponding input data, but does so without knowing the
particular performance benefit of doing so; it can do this, because
it doesn’t not need to quantify the tradeoff between obtaining disk
locality against other concerns. Such ad hoc solutions will not
be sufficient in multi-purpose clouds, which will exhibit higher
utilization and much more diversity in consumer concerns, leading
us to our proposed explicit support for soft constraints. We believe
that the complexity associated with this diversity will require sound
foundations, and we believe that utility functions can provide a
sound foundation with sufficient flexibility.

2.2 The importance of soft constraints
We use the term “soft constraint" in relation to resource requests

to refer to an indication that certain resources would more effectively
serve than others, but are not strictly necessary. They differ from
“hard constraints", which must be satisfied, rather than just being
more desirable.

When such non-mandatory preferences exist, soft constraints can
can inform scheduler decisions so that

1. the job receives preferred resources, if they are available;

2. the job is assigned less preferred, but nevertheless usable, re-
sources whenever possible, which can reduce job completion
delay (by reducing scheduling delay) and increase resource
utilization (by not leaving usable resources idle).

There are many situations where soft constraints fit. One of
the primary examples is locality, such as the disk locality that is
hard-coded into systems like Hadoop. But, input data locality is not
mandatory to successful execution, as evidenced by its absence from
some environments using map-reduce [2], making it an appropriate
soft constraint rather than hard.

A similar example is compute-compute coupling, especially in
tightly coupled, inter-process latency sensitive HPC applications,
where increased variability in roundtrip time between tightly cou-
pled tasks causes synchronization delays. For example, an n-body
simulation may benefit from running all of its processes on a large
multi-core machine rather than across a collection of distinct servers
communicating over a cluster network. If such n-body simulations
are to co-exist with other workloads on the same shared infrastruc-
ture, specifying their preference for proximal co-location as soft
constraints would be valuable.

Specialized hardware accelerators (e.g., GPUs) can also be highly
desirable for a given application, but not necessarily required if em-
ulation libraries exist. Evidence supports increased heterogeneity of
cluster resources, both incidental by virtue of incremental upgrades,
and deliberate heterogeneity to introduce specialized hardware best
suited for certain types of workloads. For best return on investment,
each platform type should be multiplexed among all workloads run-
ning on the cluster that can take advantage of it. Common examples
include chipset features like SSE4 vectorized instruction sets, GPUs,
and specific kernel versions. Many of these are already known to
be requested as hard constraints in modern clusters [13]. Often,
however, we believe that their specification as a soft constraint is
sufficient and more appropriate.

3. SOFT CONSTRAINT SPECIFICATION
Specifying soft constraints is not trivial. It could be represented

as a hard constraint, explicitly requiring placement on preferred
machines, but that loses the advantages of the tradeoff options men-
tioned in section 2. We propose and introduce a method of specify-
ing soft constraints that has the following qualitative properties:

1. expressivity – ability to express a vast array of common re-
source preferences with corresponding fallback options

2. composability – the individual components express simple
ideas, and they can be naturally combined to form complex
requests.

3. simplicity – the structure of the resulting representation is rel-
atively simple, both for humans and for automatic generation
tools.

4. backward compatibility – the same mechanism can be used
to represent hard constraints or specify complete absence of
constraints.

An interface that fully describes soft constraints must be able to
express at least three things:

• the value associated with a specific subset of resources

• bounds on value in consideration of budget constraints

• tradeoffs between different resource subsets

We believe that all of these can be expressed via utility functions
that associate a utility (i.e., value) with specific cluster resource
allocations. Whereas utility functions in previous cluster schedulers
were either as a function of the quantity of resources allocated or as
a function of time [3, 10], alsched uses utility functions that are a
function of specific cluster resource subsets (as opposed to others).
Note that such utility functions also retain the ability to express a
mapping of resource quantity to utility.

3.1 Equivalence classes
With the heterogeneity and dynamicity of shared resources on the

rise [13, 12], scheduler designs can no longer assume that resources
in the pool are interchangeable. Creation of work queues statically
tied to certain logical cluster partitions breaks down as tens of
machine attributes observed in large scale clusters today change
over time. At best, the maintenance of these work queues becomes
a burden.

From another angle, the heterogeneity of workloads and their
placement requirements makes it clear that not all workloads care
about location and machine characteristics equally. Evidence from
available trace analyses [11, 12] suggests that placement constraints
can range from non existent to unachievable, even in the empty
cluster. In short, the logical partitioning of the cluster must be done
from the perspective of the workload itself.

To address this, alsched applies the notion of equivalence classes.
Each resource consumer can group resources into equivalence classes,
based on its particular concerns, such that the units within each
equivalence class are fungible. This simplifies the expression of soft
constraints specified as utility functions. Such resource grouping
can range from per-machine classes on one extreme to having the
entire cluster as a single class on the other. Given this mapping, all
subsequent primitives are defined over a (potentially much reduced)
set of equivalence classes.

number of resources

u
ti

lit
y

Figure 1: n Choose k primitive: utility function associating util-
ity u with ≥ k resources allocated from the specified equivalence
class.

number of resources

u
ti

lit
y

Figure 2: Linear “n Choose k” primitive: piece-wise linear util-
ity function associating utility u with ≥ k resources allocated
from the specified equivalence class, with a linear aggregation
with < k.

3.2 Primitives
Resource consumers want have the ability to specify utility over

both the quantity and the type of resources allocated. The equiva-
lence classes provide ability to dynamically and logically paritition
the cluster into “types”, and we define primitives to map the quantity
of resources chosen from a given equivalence class to utility. Then,
a composition of primitives, defined with the operators introduced
in subsection 3.3, aggregates the utility across potentially many
equivalence classes.

Primitives form the leaves of the utility function expression. They
provide the ability to express utility associated with the quantity of
resources chosen from a specified equivalence class. For our pre-
liminary evaluation, we have implemented two such primitives: the
"n Choose k" (nCk) primitive and its linear counter-part. The nCk
primitive maps an equivalence class and a number (k) of resources
from that class to a utility value. Thus, given an assignment of
resources across all equivalence classes, this primitive returns either
0, indicating that its request was unsatisfied, or the utility value,
indicating that the provided assignment has issued ≥ k resources
from the specified class. Pictorially, the utility function encoded by
the nCk primitive is shown in Figure 1, while the linear “n Choose
k” in Figure 2 allows for linear aggregation of resources from the
specified equivalence class up to k, at which point it levels of at
specified utility u.

We find that keeping the set of primitives as small as possible
is advantageous for the orthogonality of the design. That said,
we envision that other primitives may become more convenient
expressions of certain soft constraints in the future.

nCk(all, k, u)
nCk(all, k, u)

nCk(all, k, u)
nCk(all, k, u)

nCk(all, k, u)
nCk(R1, k, 2u)

max

max

nCk(all, k, u)

Figure 3: An example utility function that encodes a prefer-
ence for colocating k tasks on the same rack with the fallback
of scheduling these k tasks anywhere on the cluster.

3.3 Operators
While the primitives allow association of numerical utility with

the quantity of resources chosen from a given equivalence class,
the full expressiveness of alsched’s utility function specification
mechanism comes from the way they are composed. To compose
these primitives, we introduce operators with intuitive meanings:
Min, Max, Sum, Scale, and Barrier. Each of these operators take
numerical utility values as input, and output a single utility value.
The first three can have an arbitrary number of operands. On input,
they take a set of children that evaluate to a scalar utility value and
perform the corresponding min, max, or sum operation over them.
Scale and Barrier are unary operators. Scale multiplies the utility
of the child by a specified scalar factor. Barrier() evaluates to zero
until the utility of the child reaches a certain barrier, at which point
it returns the specified utility on output.

3.4 Example algebraic expressions
To illustrate the expressive power of alsched’s primitives and

operators, we present several examples we expect to be common in
modern clusters. We start with a simple locality constraint specified
over a set of racks, falling back to running the same number of tasks
anywhere on the cluster (Figure 3). The leaves in the left branch
represent utility 2u assigned to the choice of k machines per rack on
some rack from the enumerated list. The result of this is aggregated
with a max operator and compared against the utility possible from
the assignment of k tasks anywhere in the cluster. Note that if there
does not exist a single rack such that k tasks can be all allocated
on that rack, the left branch will evaluate to zero. If these k tasks
can be accomodated somewhere on the cluster, the right branch will
evaluate to u, causing the result of the whole expression to be either
2u if a rack is found or u if not. Note that the max operator will not
distinguish betwen the assignment of a single rack, or all machines
on all racks. From the perspective of a resource consumer looking
for a single rack, these are equivalent: the consumer can simply
choose not to use the extra assigned resources. It is the job of the
cluster scheduler to avoid assigning resources that do not improve
the utility value.

The second example is an anti-affinity constraint with a soft
fallback. In Figure 4, the user agent is asking to be spread across
racks r1 and r2, with k resources allocated on each, OR spread
across racks r3 and r4, with k resources allocated on each, AND

min

nCk(r1, k, u) nCk(r2, k, u)

min

nCk(r3, k, u) nCk(r4, k, u)

+

Figure 4: Utility function encoding an anti-affinity with a soft
fallback to another set of racks.

max

x 1 x 0.5

barrier(64) barrier(64)

summax

nCk(i, 64, 64)
nCk(i, 64, 64)

nCk(i, 64, 64)
nCk(i, 64, 64)

LnCk(j, capacity(j),
capacity(j))LnCk(j, capacity(j),

capacity(j))LnCk(j, capacity(j),
capacity(j))LnCk(j, capacity(j),

capacity(j))

Figure 5: Utility function encoding a soft locality constraint.

ideally spread across all four. Failure to allocate at least k machines
in either branch does not result in a failure. We note that we’re not
aware of any other constraint specification mechanism that has the
expressivity to describe such a resource request.

In a third example, Figure 5 is specifying a soft locality constraint.
This example is used in the simulation in Section 5. It can also be
succinctly encoded for recursive automatic processing as a prefix
expression as follows: (max (*1 (bar 64 (max (nck(i,64,64))))(*0.5
(bar 64 (LnCk(j,cap(j), cap(j))))))

In this example, we have 64 tasks for n-body simulation, which
we’d like to colocate on the same 64 core machine (left branch).
Failing that we are OK with running these tasks on the rest of
the cluster (right branch). Note that the barrier ensures that we
have at least 64 tasks allocated, the scale ensures that preference
be given to the left branch, if it is satisfied, and the max at the
top ultimately picks the winning branch. If the 64-core machine is
available, choosing it will maximize utility for this utility function.

4. ALSCHED DESIGN
To evaluate our proposed method of composable utility functions,

we implemented alsched – a system for algebraic scheduling that
allocates resources in accordance with the composable utility func-
tions submitted as resource requests. Figure 6 illustrates the overall
system model and the model of interaction between resource con-
sumers and the alsched scheduler. The alsched scheduler manages a
set of resources and exposes their characteristics to allow resource
consumers to determine equivalence classes appropriate to their
interests. Resource consumers specify their resource requests in the
form of algebraic utility expressions. Submission of these utility
functions is envisioned to occur at the following points in time:

u
se

r
ag

en
ts

utility
functions

resource
allocation

equiv. class 1 equiv. class Nequiv. class 2 . . .

sum(min(nCk(), NCk()),

max(nCk(), nCk()), ...)

Figure 6: alsched System Model

1. when the job enters the pending state, requesting resources

2. when the job enters a different stage of execution, and a set
of preferred resources changes

3. when the resource consumer to relinquish resources to save
on the cost of their allocation

4. when additional resources are needed

The scheduler itself could fire the allocation algorithm either at
regular intervals or in the event-driven fashion. In either case, it
will only execute when there is at least a single pending job or a
new utility function to be scheduled. Having thus accumulated a
non-empty set of utility functions, the scheduler can either opti-
mally or greedily perform the assignment of resources in a way
that maximizes the overall utility of the cluster. The return result
of such an assignment is the resource allocation matrix, such that
its D [i, j] component represents the number of schedulable units
allocated from equivalence class j to resource consumer i. Each
individual agent, upon receipt of its corresponding allocation vector
D[i] has the ability to evaluate the utility value of this assignment,
based on the provided utility function. If the value is zero, it simply
remains in the pending queue to be scheduled again, potentially with
a new/updated utility function.

We setup the problem of resource allocation as an optimization
problem, taking advantage of the fact that the primitives and the
operators were chosen such that the composed result has the mono-
tonicity property. This allows us to use branch and bound as one
of the algorithms to solve the assignment. In the simulation de-
scribed in Section 5, we use greedy assignment to speed up the
performance of the scheduler proper, while still achieving simulated
cluster throughput improvements in the case when soft constraints
are specified.

5. PRELIMINARY EVALUATION
We have conducted a series of experiments with the primary

focus of motivating the usefulness of soft constraints and their effect
on resource scheduling effectiveness. The results also serve as
evidence that alsched’s utility function design can work as described.
We observe that utility functions do indeed guide the scheduler
to allocate appropriate resources to the requester, in an effort to
maximize the overall utility of the cluster.

5.1 Simulator
We developed a simulator capable of playing through a set of jobs

of the following 3 types: NBODY, HADOOP-PI, and LOCAL. The

NBODY type was chosen to represent a tightly coupled compute-
bound workload that can run across many servers in a distributed
fashion, but gains an advantage in performance when all of its re-
sources are colocated on a single server. Thus, the NBODY type is
a workload that can benefit from soft constraints. The HADOOP-PI
type was based on Hadoop’s Monte Carlo π computation. It is em-
barrassingly parallel, has no locality constraints, and has throughput
linear in the number of resources assigned to it. The LOCAL type
represents an application that must run in a single address space and,
thus, requires all resources to be allocated on a single server.

The simulator admits a set of synthetically generated jobs. Newly
arrived jobs become schedulable as soon as the simulation time
catches up with their start time (jobs may be scheduled into the
future). As soon as the scheduler allocates resources to a schedulable
job, that job is transitioned to the running state and eventually retires
upon reaching its finish time. The simulator continues running for
as long as there are schedulable tasks in the queue and stops when
the queue is empty.

5.2 Experimental Setup
The simulator is driven by a set of configuration parameters span-

ning 3 major categories: job, cluster, and scheduler configuration
options. Jobs can vary in number, size, duration, and mean inter-
arrival time. Though we have experimented with a range of options,
the results presented in this section used a fixed value of 100 time
units for the task duration, with all tasks arriving at time t = 0.
Cluster parameters include the total number of machines and their
breakdown into the set of large 32-core machines, which were scarce
and contended, and regular 8-core machines, which were available
in greater quantities. The ratio between these two classes of ma-
chines was varied to illustrate how it affects scheduler behavior.
The scheduler proper can be configured to use different algorithms
(for placement computation purposes), including branch and bound
and greedy search, and any of three constraint handling policies.
The “Soft” constraint option allocates resources in accordance with
the proposed alsched design, respecting soft constraints and giving
priority to utility function branches that result in higher utility. The
“Hard” policy converts soft constraints into hard constraints, treating
them as an absolute requirement, and the “None” policy simply
ignores any specified soft constraints.

For the purposes of demonstrating the utility of soft constraints,
the default configuration was a cluster of 88 nodes, with 8 32-core
machines and 80 8-core machines. With this configuration, the total
capacity of the 32-core machines is 256 cores, and the total capacity
for 8-core machines is 640, providing a capacity ratio of 4:10. For
each simulation run, we generated a total of 500 jobs all arriving at
time 0. The number of tasks for each job was binomially distributed
with p = 1

8 and n = 64. The runtime duration of each job depended
on whether it received a locality speedup from being scheduled on
one of the desired machines, i.e., one of the machines with enough
cores to accommodate all tasks, in the cases of NBODY and LOCAL.
The speedup factor is also configurable, and we varied it from 1.2 to
a factor of 10, correspondingly reducing the job duration enjoying
this speedup.

5.3 Preliminary Results and Discussion
Figure 7 plots the amount of time (which we call total runtime)

it takes the cluster to work through a given queue of NBODY type
jobs, for the three different constraint policies at different speedup
factor (f) values. We note that the soft constraint policy outperforms
ignoring constraints(“None”) for all speedup factors and is better
than treating them as hard constraints until the speedup factor is
dialed up to about 10.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

R
u
n
ti
m

e
 (

s
)

Locality speedup

Hard
None

Soft

Figure 7: Total runtime with “Soft”, “Hard”, and “None”
scheduling policies over the range of speedup factors gained
through locality. Large:small machine capacity ratio : 4:10
(non-scarce)

“Hard” and “None” can be viewed as two endpoints of a contin-
uum. At one extreme, the scheduler never waits for more suitable
resources and schedules as soon as it finds spare capacity. At the
other extreme, the hard constraint policy always causes the job to
wait for resources that it has specified a preference for. Often the best
solution fits between these two end points. The “Soft” policy pushes
the solver in the direction of preferred resources, which is reflected
in a higher throughput gained. Yet, there does exist an inflection
point at which it becomes better to wait for desired resources than to
take advantage of immediate availability of the fallback machines.
The intuition is that this inflection point represents the point where
the difference in scheduling latency won by exploiting the fallback
is insufficient to cover the temporal cost paid for running on “slower”
machines.

To illustrate that tradeoff further, Figures 8 and 9 show the same
experiment with fewer large machines, namely with a reduced capac-
ity ratio of 1:10 (instead of the previous 4:10). In this configuration,
the cost of waiting for a 32-core machine becomes higher due to
contention for desired resources, and running on secondary or ter-
tiary choices becomes more preferable with higher locality speedups
available. Indeed, the inflection point, where soft constraints no
longer help, is pushed further out, beyond x = 10. The “Soft” con-
straint policy still outperforms “None”, albeit by a smaller margin
for most settings. This is expected, since the fast resources are
fewer. The gap between “Soft” and “None” is a function of de-
sirable resource availability or, equivalently, the probability with
which the more desired branch can be chosen by the scheduler. The
gap between “Soft” and “Hard” is exacerbated by the scheduling
delay suffered by the “Hard” policy as it waits for scarce desirable
resources.

Thus, we’ve identified several important factors that influence
the scheduler’s choice of placement policy: a speedup gained by
running on preferred resources, scarcity of and contention for pre-
ferred resources, and job duration. These three factors define a
tradeoff space the optimal scheduler should explore and, to be op-
timal, it needs to be informed of or able to predict them. alsched’s
utility function design provides such information for the scheduler,
allowing it to find good solutions.

In a second set of experiments we tested 4 workloads: a homoge-

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

R
u
n
ti
m

e
 (

s
)

Locality speedup

Hard
None

Soft

Figure 8: Total simulated runtime with large:small capacity ra-
tio 1:10 , zoomed in on “None” and “Soft” (full graph shown in
Figure 9).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10

R
u
n
ti
m

e
 (

s
)

Locality speedup

Hard
None

Soft

Figure 9: Total runtime over a range of speedup factors for
“soft”, “hard”, and “none” scheduling policies. Large:small
machine capacity ratio = 1:10

neous workload for each job type, and a heterogeneous mix of all
job types. These results are shown in Table 5.3. Note that the default
job length in this experiment was 10 time units. The HADOOP_PI
and LOCAL workloads contain no soft constraints and serve as a
control to show that all policies perform the same in these cases.
For the NBODY workload, in which every job has soft constraints,
the “Soft” policy performed better than the other two. In the mixed
workload the advantage of the “Soft” policy was diminished, but it
performed at least as well as “Hard”, while outperforming “None”
by more than a factor of 2.

6. CHALLENGES
Soft constraints are important, and we believe that alsched’s ap-

proach of composable utility functions is promising, but substantial
research remains. The list of interesting challenges includes au-
tomation of utility function construction by execution frameworks
(e.g., Hadoop), scheduler stability in presence of imperfect utility
functions, and comparison of utility functions amongst consumers.

PI NBODY LOCAL MIXED
Soft 22 12 33 22
Hard 22 18 33 22
None 22 17 33 51

Table 1: Simulated running time for different combinations of
placement policy and job type. Each simulation started with
a queue of 100 jobs arriving simultaneously. The cluster was
configured with 8 32-core servers, and 64 8-core servers. The
numbers in the chart indicate the total time to finish all jobs.

We designed alsched’s utility function scheme with the recogni-
tion that a typical user is unlikely to construct one by hand. The
goal is to make it possible for the power users, leaving the max-
imal flexibility and expressivity available to them, while letting
commonly-used frameworks automatically generate utility func-
tions based on a framework’s knowledge of current task and data
location and higher-level user input.

For the utility functions that are provided, especially given the
uncertainty in job duration, we anticipate that the tradeoffs and the
costs associated with them often will not be precisely captured. The
scheduler must be designed to be resilient in the face of underspeci-
fied or imprecise utility functions. One possibility is to use the utility
function mechanism to outline a high-level picture of placement
preferences. When the solution feasibility space is explored by the
scheduler, intermediate solutions could be offered to the user agent
or her framework for evaluation. This would be akin to resource
offers in Mesos [4].

We suspect that constraints are more likely to be specified by
longer running jobs, for which resource assignment changes may be
needed over time to maximize utility. But, change is rarely cost-free,
and too many or poorly chosen changes can result in lower utility
rather than higher. Good algorithms and interfaces for identifying
changes that appropriately consider their consumer-/context-specific
costs and benefits will be needed.

7. CONCLUSION
Soft constraints will be important to achieving the efficiency

promise of cloud computing, given the diverse demands and charac-
teristics of applications that will share consolidated heterogeneous
infrastructures. Appropriately formulated utility functions, exploit-
ing primitives like “n Choose k" across consumer-specified sets,
provide a flexible and effective way for consumers to specify their
particular soft constraints. Given such utility functions, a cluster
scheduler can serve consumer needs more effectively than when
preferences are treated as hard constraints or not considered at all.

Much work remains in fully demonstrating the vision outlined
in this paper and evaluating the tradeoffs involved in realizing it.
We are in the process of porting alsched into a cluster scheduler [7]
used in several cloud computing testbeds, as well as porting con-
sumer frameworks to specify utility functions appropriately, so as to
evaluate its effectiveness in practice. We are also expanding the sim-
ulator to allow for experiments with more complex and large-scale
scenarios. Despite the research still needed, however, we believe
that the approach outlined herein is a very promising way to address
many of the complex scheduling challenges faced by future cloud
infrastructures.

8. ACKNOWLEDGMENTS
Some of the ideas presented here benefited from discussions

with Matei Zaharia and our other collaborators from UC-Berkeley.
We thank the member companies of the PDL Consortium (Actifio,
APC, EMC, Emulex, Facebook, Fusion-IO, Google, HP, Hitachi,
Huawei, Intel, Microsoft, NEC Labs, NetApp, Oracle, Panasas,
Riverbed, Samsung, Seagate, STEC, Symantec, VMware, Western
Digital) for their interest, insights, feedback, and support. This
research is supported in part by Intel as part of the Intel Science
and Technology Center for Cloud Computing (ISTC-CC) and by an
NSERC Postgraduate Fellowship.

9. REFERENCES
[1] Hadoop, 2012. http://hadoop.apache.org.
[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica.

Disk-locality in datacenter computing considered irrelevant. In Proc.
of the 13th USENIX Conference on Hot Topics in Operating Systems,
HotOS’13, pages 12–12. USENIX Association, 2011.

[3] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: guaranteed job latency in data parallel clusters. In Proc. of the
7th ACM european conference on Computer Systems, EuroSys ’12,
pages 99–112, 2012.

[4] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-grained
resource sharing in the data center. In Proc. of the 8th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’11), 2011.

[5] T. Kelly. Utility-directed allocation. Technical Report HPL-2003-115,
Internet Systems and Storage Laboratory, HP Labs, June 2003.

[6] T. Kelly. Combinatorial auctions and knapsack problems. In Proc. of
the Third International Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 3, AAMAS ’04, pages 1280–1281, 2004.

[7] M. Kozuch, M. Ryan, R. Gass, S. Schlosser, D. O’Hallaron, J. Cipar,
E. Krevat, J. López, M. Stroucken, and G. Ganger. Tashi:
location-aware cluster management. In Proc. of the 1st Workshop on
Automated Control for Datacenters and Clouds, 2009.

[8] K. Lai. Markets are dead, long live markets. SIGecom Exch.,
5(4):1–10, July 2005.

[9] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman.
Tycoon: An implementation of a distributed, market-based resource
allocation system. Multiagent Grid Syst., 1(3):169–182, Aug. 2005.

[10] C. B. Lee and A. E. Snavely. Precise and realistic utility functions for
user-centric performance analysis of schedulers. In Proc. of the 16th
international symposium on High performance distributed computing,
HPDC ’07, pages 107–116. ACM, 2007.

[11] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In Proc. of the 3nd ACM Symposium on Cloud Computing,
SOCC ’12, 2012.

[12] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Towards understanding heterogeneous clouds at scale: Google trace
analysis. Technical Report ISTC-CC-TR-12-101, Intel Science and
Technology Center for Cloud Computing, Apr 2012.

[13] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R. Das.
Modeling and synthesizing task placement constraints in Google
compute clusters. In Proc. of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 3:1–3:14. ACM, 2011.

[14] I. Stoica, H. Abdel-wahab, and A. Pothen. A microeconomic
scheduler for parallel computers. In Proc. of the Workshop on Job
Scheduling Strategies for Parallel Processing, pages 122–135.
Springer-Verlag, 1994.

[15] J. Wilkes. Utility functions, prices, and negotiation. Technical Report
HPL-2008-81, HP Labs, July 2008.

