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Elastic storage systems can be expanded or contracted to meet current demand, allowing servers to be
turned off or used for other tasks. However, the usefulness of an elastic distributed storage system is limited
by its agility: how quickly it can increase or decrease its number of servers. Due to the large amount of data
they must migrate during elastic resizing, state of the art designs usually have to make painful trade-offs
among performance, elasticity, and agility.

This article describes the state of the art in elastic storage and a new system, called SpringFS, that can
quickly change its number of active servers, while retaining elasticity and performance goals. SpringFS
uses a novel technique, termed bounded write offloading, that restricts the set of servers where writes to
overloaded servers are redirected. This technique, combined with the read offloading and passive migration
policies used in SpringFS, minimizes the work needed before deactivation or activation of servers. Analysis
of real-world traces from Hadoop deployments at Facebook and various Cloudera customers and experiments
with the SpringFS prototype confirm SpringFS’s agility, show that it reduces the amount of data migrated
for elastic resizing by up to two orders of magnitude, and show that it cuts the percentage of active servers
required by 67–82%, outdoing state-of-the-art designs by 6–120%.
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1. INTRODUCTION

Distributed storage can and should be elastic, just like other aspects of cloud com-
puting. When storage is provided via single-purpose storage devices or servers, sepa-
rated from compute activities, elasticity is useful for reducing energy usage, allowing
temporarily unneeded storage components to be powered down. However, for storage
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provided via multi-purpose servers (e.g., when a server operates as both a storage
node in a distributed filesystem and a compute node), such elasticity is even more
valuable—providing cloud infrastructures with the freedom to use such servers for
other purposes, as tenant demands and priorities dictate. This freedom may be partic-
ularly important for increasingly prevalent data-intensive computing activities (e.g.,
data analytics).

Data-intensive computing over big datasets is quickly becoming important in
most domains and will be a major consumer of future cloud computing resources
[AMPLab 2013; Bryant 2007; Hardesty 2012; ISTC-CC 2013]. Many of the frame-
works for such computing (e.g., Hadoop [2012] and Google’s MapReduce [Dean and
Ghemawat 2008]) achieve efficiency by distributing and storing the data on the same
servers used for processing it. Usually, the data is replicated and spread evenly (via
randomness) across the servers, and the entire set of servers is assumed to always
be part of the data analytics cluster. Little-to-no support is provided for elastic siz-
ing1 of the portion of the cluster that hosts storage—only nodes that host no storage
can be removed without significant effort, meaning that the storage service size can
only grow.

Some recent distributed storage designs (e.g., Sierra [Thereska et al. 2011],
Rabbit [Amur et al. 2010]) provide for elastic sizing, originally targeted for energy sav-
ings, by distributing replicas among servers such that subsets of them can be powered
down when the workload is low without affecting data availability; any server with
the primary replica of data will remain active. These systems are designed mainly
for performance or elasticity (how small the system size can shrink to) goals, while
overlooking the importance of agility (how quickly the system can resize its foot-
print in response to workload variations), which we find has a significant impact
on the machine-hour savings (and so the operating cost savings) one can potentially
achieve. As a result, state-of-the-art elastic storage systems must make painful trade-
offs among these goals, unable to fulfill them at the same time. For example, Sierra
balances load across all active servers and thus provides good performance. However,
this even data layout limits elasticity—at least one third of the servers must always
be active (assuming 3-way replication), wasting machine hours that could be used for
other purposes when the workload is very low. Further, rebalancing the data layout
when turning servers back on induces significant migration overhead, impairing sys-
tem agility.

In contrast, Rabbit can shrink its active footprint to a much smaller size (≈10% of
the cluster size), but its reliance on Everest-style write offloading [Narayanan et al.
2008b] induces significant cleanup overhead when shrinking the active server set, re-
sulting in poor agility.

This article describes a new elastic distributed storage system, called SpringFS, that
provides the elasticity of Rabbit and the peak write bandwidth characteristic of Sierra,
while maximizing agility at each point along a continuum between their respective
best cases. The key idea is to employ a small set of servers to store all primary replicas
nominally, but (when needed) offload writes that would go to overloaded servers to only
the minimum set of servers that can satisfy the write throughput requirement (instead
of all active servers). This technique, termed bounded write offloading, effectively re-
stricts the distribution of primary replicas during offloading and enables SpringFS to
adapt dynamically to workload variations while meeting performance targets with a

1We use “elastic sizing” to refer to dynamic online resizing, down from the full set of servers and back up,
such as to adapt to workload variations. The ability to add new servers, as an infrequent administrative
action, is common but does not itself make a storage service “elastic” in this context; likewise with the
ability to survive failures of individual storage servers.
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minimum loss of agility—most of the servers can be extracted without needing any
pre-removal cleanup. SpringFS further improves agility by minimizing the cleanup
work involved in resizing with two more techniques: read offloading offloads reads
from write-heavy servers to reduce the amount of write offloading needed to achieve
the system’s performance targets; passive migration delays migration work by a cer-
tain time threshold during server re-integration to reduce the overall amount of data
migrated. With these techniques, SpringFS achieves agile elasticity while providing
performance comparable to a non-elastic storage system.

Our experiments demonstrate that the SpringFS design enables significant reduc-
tions in both the fraction of servers that need to be active and the amount of migra-
tion work required. Indeed, its design for where and when to offload writes enables
SpringFS to resize elastically without performing any data migration at all in most
cases. Analysis of traces from six real Hadoop deployments at Facebook and vari-
ous Cloudera customers show the oft-noted workload variation and the potential of
SpringFS to exploit it—SpringFS reduces the amount of data migrated for elastic re-
sizing by up to two orders of magnitude and cuts the percentage of active servers re-
quired by 67–82%, outdoing state-of-the-art designs like Sierra and Rabbit by 6–120%.

This article makes three main contributions: First, it shows the importance of agility
in elastic distributed storage, highlighting the need to resize quickly (at times) rather
than just hourly as in previous designs. Second, SpringFS introduces a novel write
offloading policy that bounds the set of servers to which writes to over-loaded primary
servers are redirected. Bounded write offloading, together with read offloading and
passive migration, significantly improves the system’s agility by reducing the cleanup
work during elastic resizing. These techniques apply generally to elastic storage with
an uneven data layout. Third, we demonstrate the significant machine-hour savings
that can be achieved with elastic resizing, using six real-world HDFS traces, and the
effectiveness of SpringFS’s policies at achieving a “close-to-ideal” machine-hour usage.

The remainder of this article is organized as follows. Section 2 describes elastic dis-
tributed storage generally, the Rabbit design specifically, the importance of agility in
elastic storage, and the limitations of the state-of-the-art data layout designs in ful-
filling elasticity, agility, and performance goals at the same time. Section 3 describes
SpringFS, including its key techniques for increasing agility of elasticity, support for
per-dataset bandwidth control, and fault tolerance. Section 4 overviews the SpringFS
implementation. Section 5 evaluates the SpringFS design.

2. BACKGROUND AND MOTIVATION

This section motivates our work. First, it describes the related work on elastic dis-
tributed storage, which provides different mechanisms and data layouts to allow
servers to be extracted while maintaining data availability. Second, it gives additional
details on the data layout of one specific instance (Rabbit). Third, it demonstrates the
significant impact of agility on aggregate machine-hour usage of elastic storage. At
last, it describes the limitations of state-of-the-art elastic storage systems and how
SpringFS fills the significant gap between agility and performance.

2.1. Related Work

Most distributed storage is not elastic. For example, the cluster-based storage sys-
tems commonly used in support of cloud and data-intensive computing environ-
ments, such as the Google File System(GFS) [Ghemawat et al. 2003] or the Hadoop
Distributed Filesystem [Hadoop 2012], use data layouts that are not amenable to elas-
ticity. The Hadoop Distributed File System (HDFS), for example, uses a replication
and data-layout policy wherein the first replica is placed on a node in the same rack
as the writing node (preferably the writing node, if it contributes to DFS storage), the
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second and third on random nodes in a randomly chosen different rack than the writ-
ing node. In addition to load balancing, this data layout provides excellent availability
properties—if the node with the primary replica fails, the other replicas maintain data
availability; if an entire rack fails (e.g., through the failure of a communication link),
data availability is maintained via the replica(s) in another rack. But, such a data
layout prevents elasticity by requiring that almost all nodes be active—no more than
one node per rack can be turned off without a high likelihood of making some data
unavailable.

Recent research [Amur et al. 2010; Leverich and Kozyrakis 2009; Saito et al. 2004;
Thereska et al. 2011; Vasić et al. 2009] has provided new data layouts and mecha-
nisms for enabling elasticity in distributed storage. Most notable are Rabbit [Amur
et al. 2010] and Sierra [Thereska et al. 2011]. Both organize replicas such that one
copy of data is always on a specific subset of servers, termed primaries, so as to allow
the remainder of the nodes to be powered down without affecting availability, when
the workload is low. With workload increase, they can be turned back on. The same
designs and data distribution schemes would allow for servers to be used for other
functions, rather than turned off, such as for higher-priority (or higher paying) ten-
ants’ activities. Writes intended for servers that are inactive2 are instead written to
other active servers—an action called write availability offloading—and then later re-
organized (when servers become active) to conform to the desired data layout.

Rabbit and Sierra build on a number of techniques from previous systems, such as
write availability offloading and power gears. Narayanan et al. [2008a] described the
use of write availability offloading for power management in enterprise storage work-
loads. The approach was used to redirect traffic from otherwise idle disks to increase
periods of idleness, allowing the disks to be spun down to save power. PARAID [Weddle
et al. 2007] introduced a geared scheme to allow individual disks in a RAID array to be
turned off, allowing the power used by the array to be proportional to its throughput.

Everest [Narayanan et al. 2008b] is a distributed storage design that used write per-
formance offloading3 in the context of enterprise storage. In Everest, disks are grouped
into distinct volumes, and each write is directed to a particular volume. When a volume
becomes overloaded, writes can be temporarily redirected to other volumes that have
spare bandwidth, leaving the overloaded volume to only handle reads. Rabbit applies
this same approach, when necessary, to address overload of the primaries.

SpringFS borrows the ideas of write availability and performance offloading from
prior elastic storage systems. Specifically, it builds on the Rabbit design but develops
new offloading and migration schemes that effectively eliminate the painful trade-off
between agility and write performance. These techniques apply generally to elastic
storage designs with an uneven data layout.

2.2. Rabbit Data Layout

Rabbit [Amur et al. 2010] is a distributed file system designed to provide power pro-
portionality to workloads that vary over time. It is based on HDFS [Borthakur 2007]
but uses alternate data layouts that allow it to extract (e.g., power off) large subsets of
servers without reducing data availability. To do so, Rabbit exploits the data replicas

2We generally refer to a server as inactive when it is either powered down or reused for other purposes. Con-
versely, we call a server active when it is powered on and servicing requests as part of a elastic distributed
storage system.
3Write performance offloading differs from write availability offloading in that it offloads writes from over-
loaded active servers to other (relatively idle) active servers for better load balancing. The Everest-style and
bounded write offloading schemes are both types of write performance offloading.
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Agility and Performance in Elastic Distributed Storage 16:5

(originally for fault tolerance) to ensure that all blocks are available at any power set-
ting. In addition to maintaining availability, Rabbit tries to be power proportional with
any number of active servers, that is, performance scales linearly with the number of
active servers. This section describes in detail the equal-work data layout that Rabbit
relies on to achieve power proportionality.

Consider a cluster with N nodes, where tputn is the I/O throughput obtained and
pown the power consumed when n nodes are active (powered on). The requirements of
a power-proportional distributed storage system is formally stated here.

(1) A low minimum throughput, tputp, consuming power powp, where p nodes are kept
active and p � N.

(2) A high maximum throughput, tputN , consuming power powN , when N nodes are
kept active.

(3) Ideal power-proportionality, which means that tputi/powi = tputN/powN for any
i ∈ {p, ..., N}.

(4) Fast, fine-grained scaling with no data movement required.

The equal-work policy is the result of an optimization problem that minimizes p with
the constraints, tputi = (i/p)tputp for all i = p + 1, ..., N for a given replication factor
r. The following sections offer an intuitive explanation of the equal-work policy. An
example is shown in Figure 1 for the case of N = 100, B = 104, p = 5, and r = 4.

2.2.1. Definitions. A dataset is an arbitrary user-defined set of files stored in the dis-
tributed file system (DFS). For each dataset, we define an ordered list of nodes, called
the expansion-chain, which denotes the order in which nodes must be turned on or
off to scale performance up or down, respectively. The nodes of the expansion-chain
that are powered on are called the active nodes, A(d), for dataset d. For the rest of
Section 2.2, we do not consider multiple datasets, which will be discussed further in
Section 3.3.

2.2.2. Low Minimum Power. In the equal-work data-layout policy, the first p nodes of the
expansion-chain are called the primary nodes. One replica of the dataset, called the
primary replica, is distributed evenly over the primary nodes as shown in Figure 1.
Keeping only these p nodes, on is sufficient for guaranteeing the availability of all
data. Because p � N, this gives Rabbit a low minimum power setting.

2.2.3. Ideal Power-Proportionality. To ensure ideal power-proportionality, bi = B/i blocks
are stored on the ith node of the expansion-chain, where i > p. This satisfies a neces-
sary condition for ideal power-proportionality that is violated by the naı̈ve policy, which
is that bi, the number of blocks stored by ith node in the expansion-chain, must not
be less than B/n for all i ≤ n, when n nodes are active. Obeying this constraint makes
it possible for the load to be shared equally among the nodes that are active. To illus-
trate, consider the situation when an entire dataset of B blocks has to be read from
the DFS with n ≥ p nodes active. For ideal power-proportionality, each of the nodes
should service B/n blocks. This is made possible by the equal-work layout, because the
nth node stores B/n blocks, and each of the nodes i with i ∈[ p, n) stores B/i > B/n
blocks. To scale performance up, the number of active nodes is increased by turning on
nodes according to the order specified by the expansion-chain for the dataset. Scaling
requires no data movement and can be done at the granularity of a single node.

2.2.4. High Maximum Performance Setting. Each node stores no more than the minimum
required number of blocks, which allows the blocks to be distributed across a larger
number of nodes while holding the number of replicas fixed so energy is not wasted

ACM Transactions on Storage, Vol. 10, Nos 4, Article 16, Publication date: October 2014.
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Fig. 1. Equal-work data layout.

writing an unnecessarily high number of data copies. We define a dataset’s spread to
be the number of nodes over which the blocks of that dataset are stored. A dataset’s
spread is equal to the length of its expansion-chain. For the equal-work policy, the
spread depends on the number of replicas used.

We can derive a lower bound on the spread based on the observation that the number
of blocks stored on the servers in the range [ p+1, s] must correspond to (r−1) replicas
of the dataset. Hence,

s∑
i=p+1

B/i = B(r − 1). (1)

Because 1/i is a monotonically-decreasing function, we also have convenient lower and

upper bounds on
s∑

i=p+1

1/i as

∫ s+1

p+1
(1/x) dx ≤

s∑
i=p+1

1/i ≤
∫ s

p
(1/x) dx. (2)

From Equations (1) and (2), we get

s ≥ per−1. (3)

Note that the spread increases exponentially with the number of replicas while
maintaining ideal power-proportionality. Since the maximum throughput obtainable
depends on the spread, this allows the equal-work policy to obtain a high value for the
same. We note that, since the spread also depends on p, a spread spanning the entire
cluster can be obtained with any number of replicas r by adjusting the value of p.

2.3. Agility Is Important

By “agility,” we mean how quickly one can change the number of servers effectively
contributing to a service. For most non-storage services, such changes can often be

ACM Transactions on Storage, Vol. 10, Nos 4, Article 16, Publication date: October 2014.
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Fig. 2. Workload variation in the Facebook trace. The shaded region represents the potential reduction in
machine-hour usage with a 1-minute resizing interval.

completed quickly, as the amount of state involved is small. For distributed storage,
however, the state involved may be substantial. A storage server can service reads
only for data that it stores, which affects the speed of both removing and reintegrating
a server. Removing a server requires first ensuring that all data is available on other
servers, and reintegrating a server involves replacing data overwritten (or discarded)
while it was inactive.

The time required for such migrations has a direct impact on the machine hours
consumed by elastic storage systems. Systems with better agility are able to more ef-
fectively exploit the potential of workload variation by more closely tracking workload
changes. Previous elastic storage systems rely on very infrequent changes (e.g., hourly
resizing in Sierra [Thereska et al. 2011]), but we find that over half of the potential
savings is lost with such an approach due to the burstiness of real workloads.

As one concrete example, Figure 2 shows the number of active servers needed, as a
function of time in the trace, to provide the required throughput in a randomly chosen
4-hour period from the Facebook trace described in Section 5. The dashed and solid
curves bounding the shaded region represent the minimum number of active servers
needed if using 1-hour and 1-minute resizing intervals, respectively. For each such
period, the number of active servers corresponds to the number needed to provide
the peak throughput in that period, as is done in Sierra to avoid significant latency
increases. The area under each curve represents the machine time used for that resiz-
ing interval, and the shaded region represents the increased server usage (more than
double) for the 1-hour interval. We observe similar burstiness and consequences of it
across all of the traces.

2.4. Bridging Agility and Performance

Previous elastic storage systems overlook the importance of agility, focusing on per-
formance and elasticity. This section describes the limitation of the data layouts of
state-of-the-art elastic storage systems, specifically Sierra and Rabbit, and how their
layouts represent two specific points in the trade-off space among elasticity, agility,
and performance. Doing so highlights the need for a more flexible elastic storage de-
sign that fills the void between them, providing greater agility and matching the best
of each.

We focus on elastic storage systems that ensure data availability at all times. When
servers are extracted from the system, at least one copy of all data must remain active
to serve read requests. Like Rabbit, Sierra also exploits data replicas to ensure that all

ACM Transactions on Storage, Vol. 10, Nos 4, Article 16, Publication date: October 2014.



�

�

�

�

�

�

�

�

16:8 L. Xu et al.

Fig. 3. Primary data distribution for Rabbit without offloading (grey) and Rabbit with offloading (light
grey). With offloading, primary replicas are spread across all active servers during writes, incurring signifi-
cant cleanup overhead when the system shrinks its size.

blocks are available at any power setting. With 3-way replication4, Sierra stores the
first replica of every block (termed primary replica) in one third of servers, and writes
the other two replicas to the other two thirds of servers. This data layout allows Sierra
to achieve full peak performance due to balanced load across all active servers, but
it limits the elasticity of the system by not allowing the system footprint to go below
one third of the cluster size. We show in Section 5.2 that such limitation can have a
significant impact on the machine-hour savings that Sierra can potentially achieve,
especially during periods of low demand.

Rabbit, on the other hand, is able to reduce its system footprint to a much smaller
size (down to p) without any cleanup work in virtue of the equal-work data layout.
However, it can create bottlenecks for writes. Since the primary servers must store
the primary replicas for all blocks, the maximum write throughput of Rabbit is limited
by the maximum aggregate write throughout of the p primary servers, even when
all servers are active. In contrast, Sierra is able to achieve the same maximum write
throughput as that of HDFS, that is, the aggregate write throughput of N/3 servers
(recall: N servers write three replicas for every data block).

Rabbit borrows write offloading from the Everest system [Narayanan et al. 2008b]
to solve this problem. When primary servers become the write performance bottleneck,
Rabbit simply offloads writes that would go to heavily loaded servers across all active
servers. While such write offloading allows Rabbit to achieve good peak write perfor-
mance comparable to unmodified HDFS due to balanced load, it significantly impairs
system agility by spreading primary replicas across all active servers, as depicted in
Figure 3. Consequently, before Rabbit shrinks the system size, cleanup work is re-
quired to migrate some primary replicas to the remaining active servers so that at
least one complete copy of data is still available after the resizing action. As a result,
the improved performance from Everest-style write offloading comes at a high cost in
system agility.

Figure 4 illustrates the very different design points represented by Sierra and
Rabbit, in terms of the trade-offs among agility, elasticity, and peak write performance.
Read performance is the same for all of these systems, given the same number of
active servers. The minimum number of active servers that store primary replicas

4For simplicity, we assume 3-way replication for all data blocks in the rest of this article, which remains
the default policy for HDFS. The data layout designs apply to other replication levels as well. Different
approaches than Sierra, Rabbit, and SpringFS are needed when erasure codes are used for fault tolerance
instead of replication.

ACM Transactions on Storage, Vol. 10, Nos 4, Article 16, Publication date: October 2014.
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Fig. 4. Elastic storage system comparison in terms of agility and performance. N is the total size of the
cluster. p is the number of primary servers in the equal-work data layout. Servers with at least some primary
replicas cannot be deactivated without first moving those primary replicas. SpringFS provides a continuum
between Sierra’s and Rabbit’s (when no offload) single points in this trade-off space. When Rabbit requires
offload, SpringFS is superior at all points. Note that the y-axis is discontinuous.

indicates the minimal system footprint one can shrink to without any cleanup work.
The maximum write performance shown on the x-axis is normalized to the through-
put of a single server. As described in the preceding text, state-of-the art elastic storage
systems such as Sierra and Rabbit suffer from the painful trade-off between agility and
performance due to the use of a rigid data layout. SpringFS provides a more flexible
design that provides the best-case elasticity of Rabbit, the best-case write performance
of Sierra, and much better agility than either. To achieve the range of options shown,
SpringFS uses an explicit bound on the offload set, where writes of primary replicas
to overloaded servers are offloaded to only the minimum set of servers (instead of all
active servers) that can satisfy the current write throughput requirement. This addi-
tional degree of freedom allows SpringFS to adapt dynamically to workload changes,
providing the desired performance while maintaining system agility.

3. SPRINGFS DESIGN AND POLICIES

This section describes SpringFS’s data layout as well as the bounded write offloading
and read offloading policies that minimize the cleanup work needed before deactiva-
tion of servers. It then describes the passive migration policy used during a server’s
reintegration to address data that was written during the server’s absence. Lastly, it
presents the I/O scheduling and fault tolerance mechanisms used in both Rabbit and
SpringFS.5

5In principle, the I/O scheduling and fault-tolerance mechanisms in Rabbit and SpringFS are the same,
because both systems are based on the equal-work data layout. For simplicity in illustration, we use Rabbit
(without write offloading) as an example.
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Fig. 5. SpringFS data layout and its relationship with previous designs. The offload set allows SpringFS to
achieve a dynamic trade-off between the maximum write performance and the cleanup work needed before
extracting servers. In SpringFS, all primary replicas are stored in the m servers of the offload set. The
shaded regions indicate writes of non-primary replicas that would have gone to the offload set (in SpringFS)
are instead redirected and load balanced outside the set.

3.1. Data Layout and Offloading Policies

Data Layout. Regardless of write performance, the equal-work data layout proposed
in Rabbit enables the smallest number of primary servers and thus provides the best
elasticity in state-of-the-art designs.6 SpringFS retains such elasticity using a variant
of the equal-work data layout, but addresses the agility issue incurred by Everest-style
offloading when write performance bottlenecks arise. The key idea is to bound the dis-
tribution of primary replicas to a minimal set of servers (instead of offloading them
to all active servers), given a target maximum write performance, so that the cleanup
work during server extraction can be minimized. This bounded write offloading tech-
nique introduces a parameter called the offload set: the set of servers to which primary
replicas are offloaded (and as a consequence receive the most write requests). The of-
fload set provides an adjustable trade-off between maximum write performance and
cleanup work. With a small offload set, few writes will be offloaded, and little cleanup
work will be subsequently required, but the maximum write performance will be lim-
ited. Conversely, a larger offload set will offload more writes, enabling higher maxi-
mum write performance at the cost of more cleanup work to be done later. Figure 5
shows the SpringFS data layout and its relationship with the state-of-the-art elastic
data layout designs. We denote the size of the offload set as m, the number of primary
servers in the equal-work layout as p, and the total size of the cluster as N. When
m equals p, SpringFS behaves like Rabbit and writes all data according to the equal-
work layout (no offload); when m equals N/3, SpringFS behaves like Sierra and load
balances all writes (maximum performance). As illustrated in Figure 4, the use of the
tunable offload set allows SpringFS to achieve both end points and points in between.

Choosing the Offload Set. The offload set is not a rigid setting but determined on
the fly to adapt to workload changes. Essentially, it is chosen according to the target
maximum write performance identified for each resizing interval. Because servers in
the offload set write one complete copy of the primary replicas, the size of the offload
set is simply the maximum write throughput in the workload divided by the write

6Theoretically, no other data layout can achieve a smaller number of primary servers while maintaining
power-proportionality for read performance.
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throughput a single server can provide. Section 5.2 gives a more detailed description
of how SpringFS chooses the offload set (and the number of active servers) given the
target workload performance.

Read Offloading. One way to reduce the amount of cleanup work is to simply reduce
the amount of write offloading that needs to be done to achieve the system’s perfor-
mance targets. When applications simultaneously read and write data, SpringFS can
coordinate the read and write requests so that reads are preferentially sent to higher
numbered servers that naturally handle fewer write requests. We call this technique
read offloading.

Despite its simplicity, read offloading allows SpringFS to increase write throughput
without changing the offload set by taking read work away from the low numbered
servers (which are the bottleneck for writes). When a read occurs, instead of randomly
picking one among the servers storing the replicas, SpringFS chooses the server that
has received the least number of total requests recently. (The one exception is when
the client requesting the read has a local copy of the data. In this case, SpringFS
reads the replica directly from that server to exploit machine locality.) As a result,
lower-numbered servers receive more writes, while higher-numbered servers handle
more reads. Such read/write distribution balances the overall load across all the active
servers while reducing the need for write offloading.

Replica Placement. When a block write occurs, SpringFS chooses target servers for
the three replicas in the following steps: The primary replica is load balanced across
(and thus bounded in) the m servers in the current offload set. (The one exception is
when the client requesting the write is in the offload set. In this case, SpringFS writes
the primary copy to that server, instead of the server with the least load in the offload
set, to exploit machine locality.) For non-primary replicas, SpringFS first determines
their target servers according to the equal-work layout. For example, the target server
for the secondary replica would be a server numbered between p+1 and ep, and that for
the tertiary replica would be a server numbered between ep+1 and e2p, both following
the probability distribution as indicated by the equal-work layout (lower numbered
servers have higher probability to write the non-primary replicas). If the target server
number is higher than m, the replica is written to that server. However, if the target
server number is between p+1 and m (a subset of the offload set), the replica is instead
redirected and load balanced across servers outside the offload set, as shown in the
shaded regions in Figure 5. Such redirection of non-primary replicas reduces the write
requests going to the servers in the offload set and ensures that these servers store
only the primary replicas.

3.2. Passive Migration for Reintegration

When SpringFS tries to write a replica according to its target data layout but the cho-
sen server happens to be inactive, it must still maintain the specified replication factor
for the block. To do this, another host must be selected to receive the write. Availability
offloading is used to redirect writes that would have gone to inactive servers (which
are unavailable to receive requests) to the active servers. As illustrated in Figure 6,
SpringFS load balances availability offloaded writes together with the other writes to
the system. This results in the availability offloaded writes going to the less-loaded
active servers rather than adding to existing write bottlenecks on other servers.

Because of availability offloading, reintegrating a previously deactivated server is
more than simply restarting its software. While the server can begin servicing its share
of the write workload immediately, it can only service reads for blocks that it stores.

ACM Transactions on Storage, Vol. 10, Nos 4, Article 16, Publication date: October 2014.



�

�

�

�

�

�

�

�

16:12 L. Xu et al.

Fig. 6. Availability offloading. When SpringFS works in the power saving mode, some servers (n + 1 to N)
are deactivated. The shaded regions show that writes that would have gone to these inactive servers are
offloaded to higher numbered active servers for load balancing.

Thus, filling it according to its place in the target equal-work layout is part of full
reintegration.

When a server is reintegrated to address a workload increase, the system needs
to make sure that the active servers will be able to satisfy the read performance re-
quirement. One option is to aggressively restore the equal work data layout before
reintegrated servers begin servicing reads. We call this approach aggressive migra-
tion. Before anticipated workload increases, the migration agent would activate the
right number of servers and migrate some data to the newly activated servers so that
they store enough data to contribute their full share of read performance. The migra-
tion time is determined by the number of blocks that need to be migrated, the number
of servers that are newly activated, and the I/O throughput of a single server. With ag-
gressive migration, cleanup work is never delayed. Whenever a resizing action takes
place, the property of the equal-work layout is obeyed—server x stores no less than B

x
blocks.

SpringFS takes an alternate approach called passive migration, based on the obser-
vation that cleanup work when reintegrating a server is not as important as when de-
activating a server (for which it preserves data availability), and that the total amount
of cleanup work can be reduced by delaying some fraction of migration work while
performance goals are still maintained (which makes this approach better than ag-
gressive migration). Instead of aggressively fixing the data layout (by activating the
target number of servers in advance for a longer period of time), SpringFS temporarily
activates more servers than would minimally be needed to satisfy the read through-
put requirement and utilizes the extra bandwidth for migration work and to address
the reduced number of blocks initially on each reactivated server. The number of extra
servers that need to be activated is determined in two steps. First, an initial number
is chosen to ensure that the number of valid data blocks still stored on the activated
servers is more than the fraction of read workload they need to satisfy so that the
performance requirement is satisfied. Second, the number may be increased so that
the extra servers provide enough I/O bandwidth to finish a fraction (1/T, where T is
the migration threshold as described below) of migration work. To avoid migration
work building up indefinitely, the migration agent sets a time threshold so that when-
ever a migration action takes place, it is guaranteed to finish within T minutes. With
T > 1 (the default resizing interval), SpringFS delays part of the migration work while
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satisfying throughput requirement. Because higher numbered servers receive more
writes than their equal-work share, due to write offloading, some delayed migration
work can be replaced by future writes, which reduces the overall amount of data mi-
gration. If T is too large, however, the cleanup work can build up so quickly that even
activating all the servers cannot satisfy the throughput requirement. In practice, we
find a migration threshold T = 10 to be a good choice and use this setting for the trace
analysis in Section 5. Exploring automatic setting of T is an interesting future work.

3.3. I/O Scheduling with Multi-Dataset Support

The ability to allocate I/O bandwidth available through the DFS to specific applica-
tions that run on it would have significant benefits. Previous results [Isard et al. 2009]
show that almost 5% of the jobs observed in a large-scale data center run for more than
five hours and some jobs run for more than a day. In the presence of such long-running
jobs, it is imperative to be able to guarantee some notion of fair sharing of the resources
of the cluster. There should be capabilities, for example, to temporarily decrease the
performance of long jobs during times of high load or when there are higher-priority,
shorter-running jobs to be processed. Although Hadoop or an equivalent implementa-
tion of the map-reduce paradigm has its own scheduler, the underlying DFS will most
likely support multiple kinds of applications in the data center. For example, Google’s
BigTable [Chang et al. 2008] and Hadoop’s HBase are designed to work directly on top
of the DFS. It is not possible, with current solutions, to guarantee I/O performance for
each of these jobs. In other words, there is no check on a single job monopolizing the
I/O resources of the cluster. This problem is often exacerbated by the fact that jobs are
increasingly data-intensive, such that their overall performance depends significantly
on the amount of I/O bandwidth that they receive.

The DFS is an ideal location for the implementation of mechanisms to control the
amount of bandwidth provisioned to applications. Rabbit and SpringFS can manage
I/O resources between datasets stored in the cluster. It is possible to allocate I/O band-
width to a particular dataset that would then be shared by the applications using that
dataset. This section describes how we use the mechanisms used to provide power-
proportionality to perform I/O scheduling for datasets in Rabbit or SpringFS. Recall
that a dataset is defined to be an arbitrary set of files stored in Rabbit. We assume
that all data entering the system is tagged with metadata specifying the dataset that
the data belongs to. One way to do this is to define datasets based on file system
hierarchy, with subtrees explicitly associated with datasets, as with volumes in AFS
[Zayas 1991].

Our focus is on data-intensive jobs whose performance significantly depends on I/O
bandwidth, such as most jobs run on Hadoop. Hadoop has its own fair scheduler that
indirectly manages I/O resources by controlling the compute scheduling, but this ap-
proach only guarantees fairness for map-reduce jobs using the particular instance of
the Hadoop library. In a data center environment, there can exist multiple different
applications, such as BigTable [Chang et al. 2008], that use the services offered by
the DFS. In such scenarios, indirectly managing the I/O resources through compute
scheduling becomes impossible. Our solution enables scheduling of I/O resources at
the level of the DFS and allows the I/O bandwidth of the cluster to be shared among
the datasets in an explicit manner.

Section 2.2 explains the equal-work data layout policy. To handle multiple datasets,
we use the same policy but overlay the datasets over one another using a greedy strat-
egy to choose the nodes. We define a score, si for a node i that depends on where that
node figures in the expansion-chains of the different datasets. Let Di be the set of
datasets that have blocks stored on node i, let si(d) be the contribution of dataset
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Fig. 7. Example multi-dataset layout involving three datasets.

d ∈ Di to the score si, and let li(d) be the index of node i in the expansion-chain of
dataset d where node i appears. Then,

si =
∑
d∈Di

si(d), (4)

si(d) =
{

1 if li(d) ≤ p ,
1

li(d)
otherwise .

(5)

When a new dataset is to be written into the DFS, nodes are chosen greedily starting
with the node with the minimum score, si. The score’s are updated once the blocks of
the new dataset are stored. Figure 7 shows the layout policy for three datasets. Each
of the datasets has a spread that is equal to the size of the entire cluster, but the order
of nodes in the expansion-chains of the datasets is unique for each dataset.

To maintain control over the I/O bandwidth allocated to a dataset, a given node is
assigned to exactly one dataset, which means that the I/O bandwidth of that node is al-
located solely to that dataset. We choose this approach for two reasons. First, in a large
cluster, the node will often be an acceptable level of granularity. Second, performance
insulation in storage clusters remains an open problem, and sharing nodes relies on it
to be solved.

We define a dataset to be live at a given time if an application is reading or writ-
ing data of that dataset. The set of active nodes, A(d), is the set of nodes that have
been allocated to dataset d and remain ’on’. The goal of I/O scheduling is, therefore,
to allocate A(d), for each of the datasets d ∈ DL where DL is the set of live datasets.
Since a node can only be allocated to one dataset, an arbitration algorithm is required
if multiple, live datasets store blocks on a particular node i. We make this choice, with
one exception, by picking the dataset d0, where si(d0) = max si(d), with d ∈ Di ∩ DL.
That is we pick the live dataset that contributes the most to the score of the node.
Compensation scores, in proportion to si(d), are added to to all datasets d ∈ Di ∩ DL
that were not chosen. The exception to this rule is when the dataset d0 has the least
compensation score among the datasets in Di ∩ DL, in which case the dataset with the
maximum compensation score is chosen. For instance, if all three datasets shown in
Figure 7(a) are live, fair-sharing would set the active nodes of the datasets, as shown
in Figure 7(b).

Rabbit and SpringFS can control the I/O bandwidth available to a dataset d by con-
trolling the size of the set A(d). Since all requests for blocks belonging to that dataset
are serviced by the nodes in the set A(d), and no others, this sets the total amount of
bandwidth available to the dataset.
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Fig. 8. Gear groups and recovery groups. All data from a single primary exists on a single recovery group,
such as the grey box. When increasing the power setting, the file system turns on gear groups in an all-or-
nothing fashion.

Note that in addition to the capability of I/O scheduling, the multi-dataset mecha-
nism also improves the capacity utilization of the systems, allowing small values of p
without limiting storage capacity utilization to 3p/N.

3.4. Fault Tolerance

This section describes modifications to the equal work layout that allow the file sys-
tem to remain power proportional when a primary server fails. We only consider crash
failures instead of arbitrary Byzantine failures. The failure recovery process is com-
posed of three parts, though they are not necessarily separate activities. Each involves
restoring some property of the file system.

— Availability. All data may be accessed immediately. In the case of a power propor-
tional DFS, this means ensuring that every block is replicated on at least one active
node.

— Durability. The file system’s fault tolerance configuration is met. For Rabbit and
SpringFS, this means that each block is replicated r times.

— Layout. The file system’s target layout is achieved. For the equal-work layout policy,
non-primary node i has approximately B/i blocks on it.

Most of this discussion focuses on availability. Restoring durability and layout after
a primary failure uses the same mechanisms as writing new data to the file system,
described in Section 3.1.

The equal-work data layout cannot remain power proportional in the event that a
primary server fails, because blocks from each primary server are scattered across
all secondary servers. When a primary server fails, all secondary servers must be ac-
tivated to restore availability. Therefore, the non-fault-tolerant version of the equal-
work layout cannot achieve its target minimum power setting of p when there is a
primary server failure. Instead, it has a minimum power setting of ep − 1.

To avoid this outcome, we impose further constraints on the secondary replicas of
each block. The secondary servers are grouped into gear groups and recovery groups,
with each server belonging to exactly one gear group and one recovery group. To vi-
sualize this, imagine arranging the secondary servers in a grid configuration depicted
in Figure 8. The rows of this rectangle are the gear groups, and the columns are the
recovery groups. The number of servers in these groups, that is, length of the rows
and columns of the grid, are respectively known as the gear group size and recovery
group size.
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Fig. 9. Simulated performance of fault-tolerant layout with 10 primary servers and a gear size of 5. The
geared layout achieves very nearly ideal performance when a full gear is turned on, but less than ideal when
a gear is only partially enabled.

Each primary server is mapped to exactly one recovery group. All data hosted by
that primary server is replicated across its corresponding recovery group. This leads
to a simple failure recovery strategy: if a primary server fails, the file system activates
the corresponding recovery group. Because all of the server’s secondary replicas reside
in that recovery group, this is sufficient to restore availability to the data stored on the
failed primary.

In this layout scheme, gear groups are the basic unit of power scaling. It is not
helpful to turn on extra replicas for some primary server’s data and not others: work
can never be shared equally if some primaries have to read all of their blocks and
others have to read only some of their blocks. Therefore, when turning on servers to
increase the power mode, the file system must turn on a set of servers that will contain
data from all primaries, that is, a gear group.

To share work equally, each gear group should contain approximately the same
amount of data from each primary. The amount of data stored on each server in a
gear group depends on where that gear group falls in the expansion chain. Servers
belonging to low-numbered gear groups must store more data than those in high num-
bered gear groups, because they may be activated at lower-power modes. If the last
server in a gear group is server number i, then every server in the gear group stores
B
i blocks. Equivalently, with a group size of g, each server in gear group j stores B

(p+gj)
blocks.

Figure 9 shows the results of a simulation of the fault-tolerant layout in a failure-free
case and with a single primary server failure. The performance is measured relative
to the performance of a single server. The steps in the solid line show the effect of
gearing: increasing the power setting causes no improvement in performance until a
gear is completely activated, at which point the performance jumps up to the next
level. The dotted line represents the power and performance curve in the case of a
single primary failure. The file system can achieve the same performance with only a
moderate increase in power.

This data layout creates a trade-off between gear size and recovery group size. A
smaller gear size implies a larger recovery group size. By setting the gear size very
small, we can achieve the goal of fine-grained power settings, but the large recovery
group size means that in the event of a failure the minimum power setting will be high.
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Table I. Example Gear and Recovery
Group Sizes

Gear size Recovery group size
1 174
5 37

10 20
20 11
50 6
100 4

Note: Even with a gear size of 5, al-
lowing very fine grained scaling, the
difference in minimum power setting
is only 37%.

On the other hand, a large gear size does not allow fine-grained power adjustments,
but can run at very low power even when recovering from a failure. This relationship is
complicated by the fact that the number of secondary servers depends on the gear size.
Recall that the amount of data on each secondary server in gear j is B

(p+gj) , meaning
that choosing a larger gear group size causes less data to be stored on each server, thus
requiring more secondary servers overall.

Table I shows the relationship between the gear size and recovery group for an exam-
ple file system with 100 primary servers. The size of the recovery group, as a function
of the number of primaries p and the gear size g, is e(p−g)−p

g . As an example from this
table, if the gear size is 10% of the number of primary servers, the recovery group
size will be about 20% of the primary size. This means that the minimum power set-
ting during failure recovery is only 20% higher than the minimum power setting with
no failures. The ideal setting of these parameters depends on the workload of the file
system and the rate of failure, but these results show that there is a wide range of
reasonable settings for these parameters.

4. IMPLEMENTATION

SpringFS is implemented as a modified instance of the Hadoop Distributed File
System (HDFS), version 0.19.1.7 We build on a Scriptable Hadoop interface that we
built into Hadoop to allow experimenters to implement policies in external programs
that are called by the modified Hadoop. This enables rapid prototyping of new poli-
cies for data placement, read load balancing, task scheduling, and rebalancing. It also
enables us to emulate both Rabbit and SpringFS in the same system, for better com-
parison. SpringFS mainly consists of four components: data placement agent, load
balancer, resizing agent, and migration agent—all implemented as python programs
called by the Scriptable Hadoop interface.

Data Placement Agent. The data placement agent determines where to place blocks
according to the SpringFS data layout. Ordinarily, when a HDFS client wishes to write
a block, it contacts the HDFS NameNode and asks where the block should be placed.
The NameNode returns a list of pseudorandomly chosen DataNodes to the client, and

70.19.1 was the latest Hadoop version when our work started. We have done a set of experiments to verify
that HDFS performance differs little, on our experimental setup, between version 0.19.1 and the latest
stable version (1.2.1). We believe our results and findings are not significantly affected by still using this
older version of HDFS.
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the client writes the data directly to these DataNodes. The data placement agent starts
together with the NameNode and communicates with the NameNode using a simple
text-based protocol over stdin and stdout. To obtain a placement decision for the R
replicas of a block, the NameNode writes the name of the client machine as well as
a list of candidate DataNodes to the placement agent’s stdin. The placement agent
can then filter and reorder the candidates, returning a prioritized list of targets for
the write operation. The NameNode then instructs the client to write to the first R
candidates returned.

Load Balancer. The load balancer implements the read offloading policy and pref-
erentially sends reads to higher numbered servers that handle fewer write requests
whenever possible. It keeps an estimate of the load on each server by counting the
number of requests sent to each server recently. Every time SpringFS assigns a block
to a server, it increments a counter for the server. To ensure that recent activity has
precedence, these counters are periodically decayed by 0.95 every 5 seconds. While this
does not give the exact load on each server, we find its estimates good enough (within
3% off optimal) for load balancing among relatively homogeneous servers.

Resizing Agent. The resizing agent changes SpringFS’s footprint by setting an activ-
ity state for each DataNode. On every read and write, the data placement agent and
load balancer will check these states and remove all “INACTIVE” DataNodes from the
candidate list. Only “ACTIVE” DataNodes are able to service reads or writes. By set-
ting the activity state for DataNodes, we allow the resources (e.g., CPU and network)
of INACTIVE nodes to be used for other activities with no interference from SpringFS
activities. We also modified the HDFS mechanisms for detecting and repairing under-
replication to assume that INACTIVE nodes are not failed, so as to avoid undesired
re-replication.

Migration Agent. The migration agent crawls the entire HDFS block distribution
(once) when the NameNode starts, and it keeps this information up-to-date by mod-
ifying HDFS to provide an interface to get and change the current data layout. It
exports two metadata tables from the NameNode, mapping file names to block lists
and blocks to DataNode lists, and loads them into a SQLite database. Any changes
to the metadata (e.g., creating a file, creating or migrating a block) are then reflected
in the database on the fly. When data migration is scheduled, the SpringFS migra-
tion agent executes a series of SQL queries to detect layout problems, such as blocks
with no primary replica or hosts storing too little data. It then constructs a list of
migration actions to repair these problems. After constructing the full list of actions,
the migration agent executes them in the background. To allow block-level migration,
we modified the HDFS client utility to have a “relocate” operation that copies a block
to a new server. The migration agent uses GNU Parallel to execute many relocates
simultaneously.

5. EVALUATION

This section evaluates SpringFS and its offloading policies. Measurements of the
SpringFS implementation show that it provide performance comparable to unmod-
ified HDFS, that its policies improve agility by reducing the cleanup required, and
that it can agilely adapt its number of active servers to provide required performance
levels. In addition, analysis of six traces from real Hadoop deployments shows that
SpringFS’s agility enables significantly reduced commitment of active servers for the
highly dynamic demands commonly seen in practice.
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5.1. SpringFS prototype experiments

Experimental Setup. Our experiments were run on a cluster of 31 machines. The
modified Hadoop software is run within KVM virtual machines, for software manage-
ment purposes, but each VM gets its entire machine and is configured to use all 8 CPU
cores, all 8GB RAM, and 100GB of local hard disk space. One machine was configured
as the Hadoop master, hosting both the NameNode and the JobTracker. The other 30
machines were configured as slaves, each serving as an HDFS DataNode and a Hadoop
TaskTracker. Unless otherwise noted, SpringFS was configured for 3-way replication
(R = 3) and 4 primary servers (p = 4).

To simulate periods of high I/O activity, and effectively evaluate SpringFS under
different mixes of I/O operations, we used a modified version of the standard Hadoop
TestDFSIO storage system benchmark called TestDFSIO2. Our modifications allow
for each node to generate a mix of block-size (128 MB) reads and writes, distributed
randomly across the block ID space, with a user-specified write ratio.

Except where otherwise noted, we specify a file size of 2GB per node in our experi-
ments, such that the single Hadoop map task per node reads or writes 16 blocks. The
total time taken to transfer all blocks is aggregated and used to determine a global
throughput. In some cases, we break down the throughput results into the average
aggregate throughput of just the block reads or just the block writes. This enables
comparison of SpringFS’s performance to the unmodified HDFS setup with the same
resources.

Our experiments are focused primarily on the relative performance changes as
agility-specific parameters and policies are modified. Because the original Hadoop im-
plementation is unable to deliver the full performance of the underlying hardware,
our system can only be compared reasonably with it and not the capability of the raw
storage devices.

Effect of Offloading Policies. Our evaluation focuses on how SpringFS’s offloading
policies affect performance and agility. We also measure the cleanup work created by
offloading and demonstrate that SpringFS’s number of active servers can be adapted
agilely to changes in workload intensity, allowing machines to be extracted and used
for other activities.

Figure 10 presents the peak sustained I/O bandwidth measured for HDFS, Rabbit,
and SpringFS at different offload settings. (Rabbit and SpringFS are identical when
no offloading is used.) In this experiment, the write ratio is varied to demonstrate dif-
ferent mixes of read and write requests. SpringFS, Rabbit, and HDFS achieve similar
performance for a read-only workload, because in all cases, there is a good distribution
of blocks and replicas across the cluster over which to balance the load. The read per-
formance of SpringFS slightly outperforms the original HDFS due to its explicit load
tracking for balancing.

When no offloading is needed, both Rabbit and SpringFS are highly elastic and able
to shrink 87% (26 non-primary servers out of 30) with no cleanup work. However, as
the write workload increases, the equal-work layout’s requirement that one replica be
written to the primary set creates a bottleneck and eventually a slowdown of around
50% relative to HDFS for a maximum-speed write-only workload. SpringFS provides
the flexibility to trade off some amount of agility for better write throughput under pe-
riods of high write load. As the write ratio increases, the effect of SpringFS’s offloading
policies becomes more visible. Using only a small number of offload servers, SpringFS
significantly reduces the amount of data written to the primary servers and, as a re-
sult, significantly improves performance over Rabbit. For example, increasing the of-
fload set from four (i.e., just the four primaries) to eight doubles maximum throughput
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Fig. 10. Performance comparison of Rabbit with no offload, original HDFS, and SpringFS with varied of-
fload set.

Fig. 11. Cleanup work (in blocks) needed to reduce active server count from 30 to X, for different offload
settings. The (offload=6), (offload=8), and (offload=10) lines correspond to SpringFS with bounded write
offloading. The (offload=30) line corresponds to Rabbit using Everest-style write offloading. Deactivating
only non-offload servers requires no block migration. The amount of cleanup work is linear in the number of
target active servers.

for the write-only workload, while remaining agile—the cluster is still able to shrink
74% with no cleanup work.

Figure 11 shows the number of blocks that need to be relocated to preserve data
availability when reducing the number of active servers. As desired, SpringFS’s data
placements are highly amenable to fast extraction of servers. Shrinking the number
of nodes to a count exceeding the cardinality of the offload set requires no clean-up
work. Decreasing the count into the write offload set is also possible, but comes at
some cost. As expected, for a specified target, the cleanup work grows with an in-
crease in the offload target set. SpringFS with no offload reduces to the based equal-
work layout, which needs no cleanup work when extracting servers but suffers from
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Fig. 12. Agile resizing in a 3-phase workload.

write performance bottlenecks. The most interesting comparison is Rabbit’s full offload
(offload=30) against SpringFS’s full offload (offload=10). Both provide the cluster’s full
aggregate write bandwidth, but SpringFS’s offloading scheme does it with much
greater agility—66% of the cluster could still be extracted with no cleanup work and
more with small amounts of cleanup. We also measured actual cleanup times, finding
(not surprisingly) that they correlate strongly with the number of blocks that must be
moved.

SpringFS’s read offloading policy is simple and reduces the cleanup work resulting
from write offloading. To ensure that its simplicity does not result in lost opportunity,
we compare it to the optimal, oracular scheduling policy with claircognizance of the
HDFS layout. We use an Integer Linear Programming (ILP) model that minimizes
the number of reads sent to primary servers from which primary replica writes are
offloaded. The SpringFS read offloading policy, despite its simple realization, compares
favorably and falls within 3% from optimal on average.

Agile Resizing in SpringFS. Figure 12 illustrates SpringFS’s ability to resize quickly
and deliver required performance levels. It uses a sequence of three benchmarks to cre-
ate phases of workload intensity and measures performance for two cases: “SpringFS
(no resizing)” where the full cluster stays active throughout the experiment and
“SpringFS (resizing)” where the system size is changed with workload intensity. As
expected, the performance is essentially the same for the two cases, with a small delay
observed when SpringFS reintegrates servers for the third phase. However, the num-
ber of machine hours used is very different, as SpringFS extracts machines during the
middle phase.

This experiment uses a smaller setup, with only 7 DataNodes, 2 primaries, 3 in
the offload set, and 2-way replication. The workload consists of 3 consecutive bench-
marks. The first benchmark is a TestDFSIO2 benchmark that writes 7 files, each 2GB
in size for a total of 14GB written. The second benchmark is one SWIM job [Chen
et al. 2011] randomly picked from a series of SWIM jobs synthesized from a Facebook
trace which reads 4.2GB and writes 8.4GB of data. The third benchmark is also a
TestDFSIO2 benchmark, but with a write ratio of 20%. The TestDFSIO2 benchmarks
are I/O intensive, whereas the SWIM job consumes only a small amount of the full
I/O throughput. For the resizing case, 4 servers are extracted after the first write-only
TestDFSIO2 benchmark finishes (shrinking the active set to 3), and those servers are
reintegrated when the second TestDFSIO2 job starts. In this experiment, the resizing
points are manually set when phase switch happens. Automatic resizing can be done
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Table II. Trace Summary

Trace Machines Date Length Bytes
processed

CC-a <100 2011 1 month 69TB
CC-b 300 2011 9 days 473TB
CC-c 700 2011 1 month 13PB
CC-d 400-500 2011 2.8 months 5PB
CC-e 100 2011 9 days 446TB
FB 3000 2010 10 days 10.5PB

CC is “Cloudera Customer” and FB is “Facebook”. HDFS
bytes processed is the sum of HDFS bytes read and HDFS
bytes written.

based on previous work on workload prediction [Bodik et al. 2008; Gmach et al. 2007;
Lin et al. 2011].

The results in Figure 12 are an average of 10 runs for both cases, shown with
a moving average of 3 seconds. The I/O throughput is calculated by summing read
throughput and write throughput multiplied by the replication factor. Decreasing the
number of active SpringFS servers from 7 to 3 does not have an impact on its perfor-
mance, since no cleanup work is needed. As expected, resizing the cluster from 3 nodes
to 7 imposes a small performance overhead due to background block migration, but
the number of blocks to be migrated is very small—about 200 blocks are written to
SpringFS with only 3 active servers, but only 4 blocks need to be migrated to restore
the equal-work layout. SpringFS’s offloading policies keep the cleanup work small, for
both directions. As a result, SpringFS extracts and reintegrates servers very quickly.

5.2. Policy Analysis with Real-World Traces

This section evaluates SpringFS in terms of machine-hour usage with real-world
traces from six industry Hadoop deployments and compares it against three other
storage systems: Rabbit, Sierra, and the default HDFS. We evaluate each system’s lay-
out policies with each trace, calculate the amount of cleanup work and the estimated
cleaning time for each resizing action, and summarize the aggregated machine-hour
usage consumed by each system for each trace. The results show that SpringFS sig-
nificantly reduces machine-hour usage even compared to the state-of-the-art elastic
storage systems, especially for write-intensive workloads.

Trace Overview. We use traces from six real Hadoop deployments representing a
broad range of business activities, one from Facebook and five from different Cloudera
customers. The six traces are described and analyzed in detail by Chen et al.
[2012]. Table II summarizes key statistics of the traces. The Facebook trace (FB)
comes from Hadoop DataNode logs, each record containing timestamp, operation type
(HDFS READ or HDFS WRITE), and the number of bytes processed. From this infor-
mation, we calculate the aggregate HDFS read/write throughput as well as the total
throughput, which is the sum of read and write throughput multiplied by the replica-
tion factor (3 for all the traces). The five Cloudera customer traces (CC-a through CC-e,
using the terminology from Chen et al. [2012]) all come from Hadoop job history logs,
which contain per-job records of job duration, HDFS input/output size, etc. Assuming
the amount of HDFS data read or written for each job is distributed evenly within the
job duration, we also obtain the aggregated HDFS throughput at any given point of
time, which is then used as input to the analysis program.

Trace Analysis and Results. To simplify calculation, we make several assumptions.
First, the maximum measured total throughput in the traces corresponds to the
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Fig. 13. Facebook trace.

maximum aggregate performance across all the machines in the cluster. Second, the
maximum throughput a single machine can deliver, not differentiating reads and
writes, is derived from the maximum measured total throughput divided by the num-
ber of machines in the cluster. In order to calculate the machine hour usage for each
storage system, the analysis program needs to determine the number of active servers
needed at any given point of time. It does this in the following steps: First, it deter-
mines the number of active servers needed in the imaginary “ideal” case, where no
cleanup work is required at all, by dividing the total HDFS throughput by the maxi-
mum throughput a single machine can deliver. Second, it iterates through the number
of active servers as a function of time. For each decrease in the active set of servers,
it checks for any cleanup work that must be done by analyzing the data layout at
that point. If any cleanup is required, it delays resizing until the work is done or the
performance requirement demands an increase of the active set, to allow additional
bandwidth for necessary cleanup work. For increases in the active set of servers, it
turns on some extra servers to satisfy the read throughput and uses the extra band-
width to do a fraction of migration work, using the passive migration policy (for all the
systems) with the migration threshold set to be T=10.

Figures 13 and 14 show the number of active servers needed, as a function of time,
for the 6 traces. Each graph has 4 lines, corresponding to the “ideal” storage system,
SpringFS, Rabbit, and Sierra, respectively. We do not show the line for the Default
HDFS, but since it is not elastic, its curve would be a horizontal line with the number
of active servers always being the full cluster size (the highest value on the Y-axis).
While the original trace durations range from 9 days to 2.8 months, we only show
a 4-hour-period for each trace for clarity. We start trace replaying more than 3 days
before the 4-hour period, to make sure it represents the situation when systems are in
a steady state and includes the effect of delaying migration work.

As expected, SpringFS exhibits better agility than Rabbit, especially when shrinking
the size of the cluster, since it needs no cleanup work until resizing down to the offload
set. Such agility difference between SpringFS and Rabbit is shown in Figure 13 at
various points of time (e.g., at minute 110, 140, and 160). The gap between the two
lines indicates the number of machine hours saved due to the agility-aware read and
bounded write policies used in SpringFS. SpringFS also achieves lower machine-hour
usage than Sierra, as confirmed in all the analysis graphs. While a Sierra cluster can
shrink down to 1/3 of its total size without any cleanup work, it is not able to further
decrease the cluster size. In contrast, SpringFS can shrink the cluster size down to
approximately 10% of the original footprint. When I/O activity is low, the difference
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Fig. 14. Traces: CC-a, CC-b, CC-c, CC-d, and CC-e.

ACM Transactions on Storage, Vol. 10, Nos 4, Article 16, Publication date: October 2014.



�

�

�

�

�

�

�

�

Agility and Performance in Elastic Distributed Storage 16:25

Fig. 15. Number of machine hours needed to execute each trace for each system, normalized to the “Ideal”
system (1 on the y-axis, not shown).

Fig. 16. Total data migrated for Rabbit, Sierra and SpringFS, normalized to results for Rabbit.

in minimal system footprint can have a significant impact on the machine-hour usage
(e.g., as illustrated in Figure 14(b), Figure 14(c), and Figure 14(e)). In addition, when
expanding cluster size, Sierra incurs more cleaning overhead than SpringFS, because
deactivated servers need to migrate more data to restore its even data layout. These
results are summarized in Figure 15, which shows the extra number of machine hours
used by each storage system compared and normalized to the ideal system. In these
traces, SpringFS outperforms the other systems by 6% to 120%. For the traces with
a relatively high write ratio, such as the FB, CC-d, and CC-e traces, SpringFS is able
to achieve a “close-to-ideal” (within 5%) machine-hour usage. SpringFS is less close to
ideal for the other three traces because they frequently need even less than the 13%
primary servers that SpringFS cannot deactivate.

Figure 16 summarizes the total amount of data migrated by Rabbit, Sierra, and
SpringFS while running each trace. With bounded write offloading and read offload-
ing, SpringFS is able to reduce the amount of data migration by a factor of 9–208,
as compared to Rabbit. SpringFS migrates significantly less data than Sierra as well,
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because data migrated to restore the equal-work data layout is much less than that to
restore an even data layout.

All of the trace analyses in the preceding text assume passive migration during
server reintegration for all three systems compared, since it is useful to all of them.
To evaluate the advantage of passive migration, specifically, we repeated the same
trace analysis using the aggressive migration policy. The results show that passive
migration reduces the amount of data migrated, relative to aggressive migration, by
1.5–7× (across the six traces) for SpringFS, 1.2–5.6× for Sierra, and 1.2–3× for Rabbit.
The benefit for Sierra and SpringFS is more significant, because their data migration
occurs primarily during server reintegration.

6. CONCLUSION

SpringFS is a new elastic storage system that fills the space between state-of-the-art
designs in the trade-off among agility, elasticity, and performance. SpringFS’s data
layout and offloading/migration policies adapt to workload demands and minimize the
data redistribution cleanup work needed for elastic resizing, greatly increasing agility
relative to the best previous elastic storage designs. As a result, SpringFS can satisfy
the time-varying performance demands of real environments with many fewer ma-
chine hours. Such agility provides an important building block for resource-efficient
data-intensive computing (a.k.a. Big Data) in multipurpose clouds with competing de-
mands for server resources.

There are several directions for interesting future work. For example, the SpringFS
data layout assumes that servers are approximately homogeneous, like HDFS does,
but some real-world deployments end up with heterogeneous servers (in terms of I/O
throughput and capacity) as servers are added and replaced over time. The data layout
could be refined to exploit such heterogeneity, such as by using more powerful servers
as primaries. Second, SpringFS’s design assumes a relatively even popularity of data
within a given dataset, as exists for Hadoop jobs processing that dataset, so it will
be interesting to explore what aspects change when addressing the unbalanced access
patterns (e.g., Zipf distribution) common in servers hosting large numbers of relatively
independent files.
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