
Queueing Systems (2021) 97:3–37
https://doi.org/10.1007/s11134-020-09684-6

Open problems in queueing theory inspired by datacenter
computing

Mor Harchol-Balter1

Received: 1 December 2020 / Revised: 1 December 2020 / Accepted: 4 December 2020 /
Published online: 27 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Datacenter operations today provide a plethora of new queueing and scheduling prob-
lems. The notion of a “job” has becomemore general andmulti-dimensional. Theways
inwhich jobs and servers can interact have grown in complexity, involving parallelism,
speedup functions, precedence constraints, and task graphs. The workloads are vastly
more variable and more heavy-tailed. Even the performance metrics of interest are
broader than in the past, with multi-dimensional service-level objectives in terms of
tail probabilities. The purpose of this article is to expose queueing theorists to new
models, while providing suggestions for many specific open problems of interest, as
well as some insights into their potential solution.

Keywords Cloud computing · Tail probabilities · Speedup curve · Parallel
scheduling · Multi-core · Heavy tails

Mathematics Subject Classification 60K25 · 60K30 · 68M20 · 90B36 · 91B32

1 Introduction

Most computing today happens within datacenters, often in the form of public clouds
such as Amazon’s EC2 [1], Windows Azure [4], and Google Compute Engine [3], or
on private clouds. Global data center spending exceeds 150 billion dollars yearly [5].
Large datacenters typically consist of tens of thousands of servers, running jobs that
process petabytes of data daily.Behind these jobs sit ever-demandingusers, impatiently
waiting for the result of their jobs.

This work was supported by: NSF-CMMI-1938909, NSF-CSR-1763701, NSF-XPS-1629444, and a
Google 2020 Faculty Research Award.

B Mor Harchol-Balter
harchol@cs.cmu.edu

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-020-09684-6&domain=pdf
http://orcid.org/0000-0003-1721-6759

4 Queueing Systems (2021) 97:3–37

At the heart of the data center is the job scheduler, also known as the load balancer,
dispatcher, or front-end router. The scheduler manages the jobs in the datacenter. It
determines which jobs are given priority. It determines which jobs get assigned to
which queues and servers. It determines to what degree each job is parallelized. It
decides when jobs need to be restarted, preempted, or dropped. Because the work
of the scheduler is so complex, companies sometimes deploy multiple schedulers for
each datacenter [20,107].

The scheduler might have any number of goals that it is trying to optimize for. The
scheduler might be looking at the user perspective; for example, trying to minimize
the average user response time or the tail of response time. Response time, a.k.a.,
sojourn time, is the time from when a job first arrives until it completes service. On
the other hand, the scheduler might be looking at the system perspective; for example,
trying to minimize the number of servers in use or the total power consumption. Often
there are multiple competing metrics that the scheduler is trying to trade-off between.
Everywhere, the scheduler is dealing with queues: Which jobs to queue and which to
serve? How to order the jobs within each queue? How to prioritize between different
queues?

All of these computing questions are creating a new heyday for queueing theory.
There are amultitude of newqueueing problems generated from studying the operation
of datacenters. In collaborating with several of the major cloud providers, we find that
we are faced with many more queueing problems than we can answer. Many of these
problems are similar to queueing theory models of the past, but there are changes to
what jobs look like, what servers look like, what performance metrics we want to be
optimizing, and even what workloads look like today. The purpose of this article is to
expose queueing theorists to a few of the new problems.

Sections 2, 3, 4 and 5 deal with new job and server models. These new models
originate from the fact that today’s jobs are predominantly parallel jobs, which makes
them different from the traditional one-server-per-job model. Section 6 characterizes
today’s computing workloads. We will see that the variability in job service require-
ments today is orders of magnitude higher than anything in the past. Section 7 focuses
on today’s performance metrics. While almost all papers in queueing theory focus
on mean response time (or, equivalently, mean number in system), almost no one in
industry cares for this metric. In Sect. 7, we describe today’s metrics and what kinds
of scheduling policies might be needed to optimize for these metrics.

This document is aimed at queueing theorists. As such, we purposely avoid dis-
cussion of lower-level computer systems details that we consider to be of secondary
importance. One example of a simplification that we will make is to use the word
“server” whenever we are talking about something that processes jobs. A server might
refer to a whole machine, or it might refer to a single CPU core on a larger machine,
or even just a single thread. If it seems immaterial to the modeling problem, we will
simply use the word server, or write server/core, and gloss over the details.

123

Queueing Systems (2021) 97:3–37 5

2 Multiserver jobs

Traditional queueing theory is built upon models, such as the M/G/n model, that
assume that each job runs on a single server. These models were representative of
most jobs for a very long time. However, traditional one-server-per-job models are no
longer representative of modern computer systems.

If we look at the large data centers at Google, Microsoft, and Facebook today,
we see that most typically a single job runs on multiple servers simultaneously. One
difference is that today’s workloads include many machine learning jobs, all of which
are highly parallel. For example, Google’s Borg Scheduler [148] schedules many
parallel machine learning jobs like TensorFlow [9,106] among servers within its data
centers.

Figure 1 shows that jobs are very different in the number of servers that they request,
and the difference can vary by five orders of magnitude. We refer to jobs that occupy
multiple servers/cores as multiserver jobs. Multiserver jobs have always existed in
the unique world of supercomputing centers, which were built to run very large-
scale parallel simulations that cannot be run elsewhere. However now, even everyday
ordinary jobs are multiserver jobs.

Figure 2 illustrates what we will refer to as the multiserver job queueing model.
Here, there are a total of n servers. Jobs arrive with average rate λ and are served in
First-Come-First-Served (FCFS) order. With probability pi , an arrival is of class i . An
arriving job of class i requests ni servers and holds onto these servers for Si time.

Note that the term job size is a little ambiguous in this model. We need to be clear
whether we are referring to (i) the number of servers being requested (ni), or (ii) the
service duration (Si), or (iii) the product of the two. When looking at the product, it is
common to describe the size in units of CPU-seconds.

Importantly, we note that we are assuming that jobs are served in FCFS order.
This is the default scheduling policy used throughout the cloud-computing industry
when running multiserver jobs; see for example the CloudSim, iFogSim, EPSim and
GridSim cloud computing simulators [108], or the Google Borg Scheduler [144].
There may be multiple priority classes, where class 1 jobs are all served before class
2 jobs, and so on, but within each class the jobs are served in FCFS order.

The multiserver job model is fundamentally different from the one-server-per-job
model in that work conservation does not hold. In the one-server-per-job model, as
long as there are enough jobs present, none of the n servers will be idle. By contrast,

Fig. 1 Distribution of the
number of CPU cores requested
by individual Google jobs
according to Google’s recently
published Borg Trace [144,158].
For privacy reasons, Google
publishes only normalized
numbers; however, it is still clear
that the range spans 5 orders of
magnitude across different jobs

123

6 Queueing Systems (2021) 97:3–37

hold S time3

hold S time1

hold S time4

FCFS

Fig. 2 Multiserver job queueing model with n = 9 servers. An arriving job of class i requests ni servers
and holds onto these servers for Si time. In this particular illustration, ni = i

in the multiserver job model, there may be servers idle because the job at the head
of the queue does not “fit” into the available servers. (It needs more servers than are
available.)1 Consequently, server utilization and system stability both depend on the
scheduling policy and are often far below ideal values. Specifically, ideally our stability
region would be

λ ≤ n
∑

i pi niE [Si]
. (1)

However, the true stability region can be far smaller than (1), depending on the partic-
ulars of the model (in particular the ni ’s); half of all servers or more might be wasted
[82].

At present almost nothing is known about the performance of the multiserver job
model. A few works have attempted to derive the steady-state distribution of the
number of jobs in the system in highly simplified systems, where all jobs have the
same exponential service duration Si ∼ Exp(μ), ∀i , and there are only n = 2 servers;
see papers by Brill and Green [50] and Filippopoulos and Karatza [62]. However, the
solutions are highly complex, typically involving roots to a quartic equation, which
makes the solutions impractical. Earlier work byKim [102], based on amatrix analytic
approach, is similarly impractical since the complexity scales exponentially with the
size of the system. In summary, understanding the mean response time for multiserver
job systems with more than n = 2 servers is an entirely open problem, even when all
jobs have the same exponentially distributed service durations.

Not only is the multiserver job model largely unstudied with respect to response
time, but even the stability region for this model is only partially understood. In 2016,

1 In the multiserver job model, we assume FCFS scheduling, which is what is used in datacenters. This is
not to be confused with the virtual machine (VM) packing problem, where the literature has focused on
packing jobs into VMs based on the number of resources that they request, so as to achieve throughput
optimality (see [77,85,109,110,118]). However, even in the VM packing problem, waste can occur.

123

Queueing Systems (2021) 97:3–37 7

Rumyantsev and Morozov [123] derived the stability region for the multiserver job
model where all jobs have the same exponential service duration Si ∼ Exp(μ), ∀i ,
although, unlike [50,62], they do allow for any number of servers n. This work was
generalized in [114] and [15] to allow for more general arrival processes. However, the
assumption that all jobs have the same exponential service duration has prevailed. Very
recently, Grosof et al. [82] derived a simple closed-form expression for the stability
region of the multiserver jobmodel where jobs have different exponential service time
durations. Unfortunately, the work in [82] is limited to the case of only two classes.
Characterizing the stability region in a more general setting is an open problem.

Finally, we note that the multiserver jobmodel opens up new scaling regimes where
both the number of servers requested by a job and the system load scale with the total
number of servers. Wang et al. [151] investigate the probability of queueing under this
asymptotic scaling regime.

While very little is known about the performance of multiserver job models, there
is a close cousin of the model, which we will call the multiserver job dropping model,
or just dropping model for short, which is analytically tractable under very general
settings. In the dropping model, jobs which cannot immediately receive service are
dropped. The droppingmodel exhibits a beautiful product formwhen job durations (the
Si ’s) are exponentially distributed. Arthurs and Kaufman [24] were the first to observe
the product form. Whitt [156] generalized the model to allow jobs to demand multiple
resource types, while van Dijk [146] allowed durations to be generally distributed.
Tikhonenko [143] combined aspects of [146,156]. An interesting open problem is
whether anything can be said for the multiserver job model where there is a finite (but
nonzero) queue capacity.

The multiserver job model has appeared in the literature under other names. It is
closely related to streaming models for communication networks. In that setting, the
resource being shared is bandwidth in the network. The “jobs” are audio or video
flows which require a fixed bandwidth reservation to run. (This is akin to needing
a fixed number of servers.) Flows requiring fixed bandwidth are often referred to as
“streaming flows” (see [33]), but are also sometimes referred to as “inelastic jobs” (see
[112,117]). The papers dealing with streaming flows largely operate in the dropping
model,where the goal is to schedule tominimize a cost related to dropping probabilities
(see [31,54,97]). Note that the setting here can be more complex than the multiserver
job dropping model—sometimes because the authors are seeking an optimal dropping
policy, and sometimes because the setting is an entire network.

Another variant of our multiserver job model is a model where the ni servers of a
job are held for different i.i.d. times. This is also a challenging problem; see [16]. Yet
another related model, proposed by Baccelli and Foss [27], is the Poisson Hail model,
where the servers are viewed as a single Euclidean space, and each job occupies a
random interval of this space for some fixed period of time. Stability for Poisson Hail
is studied in [27,63].

123

8 Queueing Systems (2021) 97:3–37

3 Speedup functions

In Sect. 2, we considered large datacenters, running parallel jobs, where the jobs
explicitly request exactly the number of servers that they need.However, in the case of a
smaller server farmor just a singlemulti-coremachine, the number of servers/cores can
be far more limited. Here, we do not have enough servers to allow every parallel job to
specify the number of servers that it needs. Instead, it is the job of the operating system
or scheduler to figure out how to best allocate the limited number of servers/cores
among the jobs at every moment of time.

When determining a policy for sharing a set of servers among multiple jobs, it is
important to understand exactly how a job benefits by receiving more servers. Fortu-
nately, jobs are oftenmalleable, meaning that they are designed to be runnable on any
number of servers [51,57,86]. Parallelizing an individual job across multiple servers
reduces its response time. In practice, however, a job typically receives diminishing
marginal returns from being allocated more servers, because there is some overhead
to running the job in parallel.

It was shown in [38,95] that many of the benefits and overheads of parallelization
can be encapsulated in a job’s speedup function, s(k), which specifies a job’s “speedup”
when running on k servers. If we imagine that s(1) = 1, then a job which is allocated
k servers will run s(k) times faster than if the job were allocated just 1 server. Put
another way, if we define the inherent size of a job to be its service time on a single
server, then if x is the inherent size of a job, then x

s(k) is the job’s service time when

run on k servers.2

Typically, s(k) is concave and sublinear, as shown in Fig. 3a. The function

s(k) = k p,

where 0 < p < 1, is a commonly assumed speedup function; see [34,36,95,160].3

An alternative family of speedup functions is shown in Fig. 3b. These threshold-
based speedup functions take the form

s(k) = k for k < k0,
s(k) = k0 for k ≥ k0,

where k0 > 1. Threshold-based speedup functions are motivated by the fact that the
code associated with a job might only be parallelizable up to some point (k0). Thus,
giving the job more than k0, servers/cores does not provide additional benefit.

The speedup function associated with a job is often something one can easily
approximate just by looking at the code. In cases where it is very important to under-
stand the speedup function exactly, one can run benchmarks where the job is run
on different numbers of servers and its speedup is evaluated in each case. It is thus
reasonable for us to assume that the speedup function is known.

2 In the above example, we are thinking of the job as being run alone on the k servers. If two jobs are
time-sharing the same k servers, then the service time of each will double.
3 If k < 1, it is common to assume that s(k) = k, which is consistent with the intuition that if a job is
allocated half a server, then it runs at half speed.

123

Queueing Systems (2021) 97:3–37 9

0

5

10

15

20

25

0 10 20 30

Number of cores (k)

S
p
e
e
d
u
p
 s

(k
) Benchmark

blackscholes

bodytrack

canneal

0 2 4 6 8
Number of cores/servers (k)

0

2

4

6

8

S
pe

ed
up

 s
(k

)

Low Parallelizability
Medium Parallelizability
High Parallelizability

(b)(a)

Fig. 3 Two types of speedup curves. The speedup curve, s(k), depicts the speedup that a job obtains when
run on k servers/cores. a This figure shows speedup curves of the form s(k) = k p (dotted lines) which
have been fitted to speedup curves from real workloads (solid lines) measured from jobs in the PARSEC-3
parallel benchmarks [160]. The three workloads, blacksholes, bodytrack, and canneal, are best fit by the
function s(k) = k p , where p = 0.89, p = 0.82, and p = 0.69, respectively. b This figure shows various
speedup curves of the threshold type, where the job is fully parallelizable given k < k0 servers, but receives
no speedup benefit beyond that threshold point k0

3.1 The problem statement

Overall goal Typically, jobs arrive over time. There are a fixed number of servers,
n, as well as a queue. Each job follows a speedup function, s(k), which defines its
parallelizability. The high-level goal is to determine, at every moment of time, what
fraction of the n servers to allocate to each job, with the goal of minimizing mean
response time, or some similar metric. Aside from the optimization problem, it is also
useful to derive a formula for the mean response time, given a particular allocation
algorithm.

Some optimization tradeoffs If jobs have increasing but concave speedup functions,
then an individual job will benefit from being givenmore servers. However, the overall
efficiency of the system will drop if we give too many servers to a single job. We need
to balance this tradeoff. At the same time, we need to also consider the fact that some
jobs might have much smaller inherent size than others, and we might want to bias in
favor of these jobs to minimize mean response time.

Different settings of the problem There are several different settings one can consider,
all of practical importance. Firstly, there is the question of whether different jobs
have different speedup functions or whether they all have the same speedup function.
It is often the case that some jobs are more parallelizable than others, thus having
different speedup functions. However, if all jobs originate from the same workload, or
are different instances of the same program, then they will all have the same speedup
function.

Next, there is the question of whether a job’s inherent size is known at the time
when the job arrives. In the first case, the job’s inherent size is known when the job
arrives, or one has a reasonable guess as to its size, based on its name. In the second
case, we have no knowledge of an individual job’s inherent size. Despite not knowing
the job’s inherent size when it arrives, we might still be able to deduce something

123

10 Queueing Systems (2021) 97:3–37

2 jobs 8 jobs4 jobs

Fig. 4 EQUI policy shares servers equally among all available jobs

about its inherent size as it runs. Specifically, companies often maintain records of
jobs that complete, so it is easy to formulate an approximate distribution of inherent
job sizes. Let S be a random variable denoting the job’s size. We define a job’s age, a,
to be the amount of work that the job has completed so far. When a job arrives (a = 0),
its expected remaining inherent size is E [S]. However, once the job achieves age a,
its expected remaining inherent size is

E [S − a | S > a] .

Now if the inherent job size distribution is exponential, we will not learn anything
about a job’s remaining size as it ages. But in other cases, we might learn a lot.

3.2 Themost natural policy: EQUI

Given that speedup functions are concave, the most intuitive and simple allocation
policy is a policy we call EQUI. Under EQUI, at all times, the n servers are divided
equally among the jobs in the system. Specifically, whenever there are � jobs in the
system, each job is parallelized across n/� servers, as shown in Fig. 4. (Jobs can be
allocated fractional servers.) In the case where � > n, we can either imagine that the
first n jobs each get 1 server and the others wait in a queue, or that all the jobs share
the servers, with each getting a fractional piece (n/�) of a server.

The intuition behind EQUI is very clear: EQUI keeps every job running at the most
“profitable” part of the speedup curve. For any concave and sublinear speedup function,
EQUI maximizes the system efficiency. When job sizes are exponentially distributed,
and arrivals are Poisson, it is easy to see that for any system state (number of jobs),
the rate at which EQUI completes work is at least as high as any other allocation.

Berg et al. [34] prove that EQUI minimizes mean response time under the broad
setting where all jobs follow the same concave, sublinear speedup function s(k), and
all have sizes which are unknown but exponentially distributed, and the arrival process
is a Poisson process with rate λ. If we consider the same setting as in [34], but where
the inherent job size distribution is not exponential, then finding the optimal server
allocation policy is an open problem. As we will see in Sect. 3.3, it is very likely that
EQUI is not the optimal policy here.

123

Queueing Systems (2021) 97:3–37 11

3.3 Where EQUI fails: when sizes are known

In this section, we continue to assume that all jobs follow the same speedup function,
but nowwe assume that the inherent job sizes are all known.Optimizingmean response
time in this setting is still a largely open problem.

To understand why this setting is so complicated, let us consider a very simple
example. Suppose that there are only two jobs, both present at time 0, one of which
has twice the inherent size of the other, where both jobs follow the same concave,
sublinear speedup function, s(k).Which job should be allocatedmore servers? At first,
onemight think that the large job should be allocated twice asmany servers as the small
one. But the opposite is true: the small job should be allocated most of the servers. It is
best to get our intuition from the Shortest-Remaining-Processing-Time (SRPT) policy,
which at all times runs that job with the Shortest-Remaining-Processing-Time. SRPT
is defined for the case where there is only one server, and it is known to be optimal
for minimizing mean response time in that single-server case; see [124]. Observe that
SRPT is also optimal if all jobs are fully parallelizable (s(k) = k, ∀k), because that
is equivalent to the 1-server case, in that all n servers can be viewed as a single server.
However, given that jobs are not fully parallelizable, we no longer want to follow a
strictly SRPT policy, where we allocate all servers to the smaller job (because that can
waste servers), but we still want to give the majority of servers to the smaller job.

To further hone our intuition, let us consider a second example. Again suppose that
there are two jobs, where this time the jobs have the exact same inherent size. Again
both jobs follow the same concave, sublinear speedup function, s(k). Nowour intuition
tells us that the servers should be split evenly between the two jobs. However, this
intuition turns out to be false, and, as wewill see, it is once again typically better to give
one of the jobs a significantly larger fraction of the servers. The intuition behind this is
subtle. Although the two jobs start out with the same inherent size, by allocating more
servers to one of the jobs, say job j , we can quickly reduce the remaining inherent size
of job j , making job j now more attractive to serve than the other job. More intuition
can be gleaned by again looking at a single server, where it is known that in the case
of equal-sized jobs Processor-Sharing (PS) scheduling (which is akin to EQUI in the
multi-server case) is sub-optimal compared to FCFS4 [90, p.483].

In Sect. 3.2, we saw that when the inherent job sizes are not known and are expo-
nentially distributed, then EQUI is optimal. The intuition was that given a concave,
sublinear speedup function, EQUI keeps every job operating at the most profitable
part of its speedup curve. By contrast, the above intuitions tell us that if the inherent
job sizes are known (even if they’re all equal), then one wants more of an SRPT-like
policy. These intuitions are formalized in a 2020 paper, [36], which produces an exact
and simple formula for the optimal allocation5 in the case where all jobs are present
at time 0 and all jobs share the same speedup function, s(k) = k p. As explained in
[36], because the jobs are partially parallelizable, what’s needed is amixture of SRPT
and EQUI, which the authors call “high-efficiency SRPT” (heSRPT). Under heSRPT,

4 Note that SRPT and FCFS are equivalent in the case where all jobs have the same size.
5 The optimal allocation is derived both for the case where the goal is to minimize mean response time and
the case where the goal is to minimize mean slowdown. The slowdown metric is discussed in Sect. 7.1.3.

123

12 Queueing Systems (2021) 97:3–37

every single job at all times receives some share of the n servers, but the jobs with a
smaller inherent size receive a higher share.

The exact specification of heSRPT provided in [36] is given in terms of a formula
which specifies, at every moment of time t , a vector θ∗(t) = (θ∗

1 (t), θ∗
2 (t), . . . , θ∗

M (t))
that says what fraction of the total service capacity (the n servers) should be allocated
to each job, where M denotes the original number of jobs present at time 0. As an
example, consider the case where the speedup function is s(k) = k0.5. If there are only
two jobs of equal inherent size, then the optimal policy for minimizing mean response
time specifies that θ∗(t) = (3

4 ,
1
4

)
until the time t where one of the jobs completes, at

which time the remaining job is allocated all the servers. As another example, under
the same speedup function, suppose that there are three jobs, where one has inherent

size x and the other two both have size 2x . Now, θ∗(t) =
(
5
9 ,

3
9 ,

1
9

)
, where the job of

size x is the one given the largest share (59), until that time t when the job of size x
completes. At that time there are two jobs remaining, and these are allocated shares
according to θ∗(t) = (3

4 ,
1
4

)
. Interestingly, under heSRPT, the specific inherent sizes

of the jobs do not matter; it is only the ordering of the sizes of the jobs that affects the
allocation.

We have seen that heSRPT optimizes mean response time in the case where all jobs
are present at time 0 and the speedup function has the form s(k) = k p. However if
the speedup function is any non-trivial function other than s(k) = k p or the simple
threshold-based function, then it is an entirely open problem to determine how to
optimally allocate servers to jobs. Hopefully, the above intuition still hold though.

An even bigger open problem is the question of how to allocate servers to jobs
when jobs arrive over time, as in a Poisson process. One could of course try running
an online version of heSRPT. While the online version of heSRPT is not bad [36],
it is not optimal either. Allowing arrivals over time adds a great deal of complexity
to the optimization problem, since we now have to also consider how many jobs we
want to complete before the next arrival. Even for the simplest speedup functions (for
example, threshold-based speedup), once we add in arrivals, the optimal allocation is
an open problem.

3.4 When jobs have different speedup functions

In this section, we examine the important case where jobs have different speedup
functions. Here, almost everything is open, but there is some intuition that can be
learned from the little work that exists.

The simplest version involves going back to our setup in Sect. 3.2, where we assume
that jobs’ inherent sizes are unknown and are exponentially distributed. Recall that in
the case of a single speedup function, the optimal policy is EQUI, whose optimality
stems from the fact that it maximizes the rate of departures in every state. We now
imagine we have two classes of jobs, where class i has speedup function si , and where
class 1 jobs are less parallelizable than class 2 jobs, i.e.,

s1(k) < s2(k), ∀k.

123

Queueing Systems (2021) 97:3–37 13

With two speedup functions, EQUI clearly no longer maximizes the rate of depar-
tures in every state. At first, we might be tempted to give all the servers to the class
2 jobs (the more parallelizable jobs), but what if class 2 jobs are already saturated?
To maximize the rate of departures, it seems we really want to allocate each server to
that job that will get the most benefit from that additional server. So, for example, if
all jobs of class 2 are already at their saturated point, where they do not benefit much
from an incremental server, we would instead allocate the server to a job of class 1,
whose differential performance can still stand to improve a lot.

In [34], the authors define the GREEDY class to be those policies that achieve
the maximum total rate of departures in every state. Importantly, GREEDY is truly a
class of policies since there may be multiple allocations that all achieve the maximum
departure rate, given that jobs are at different points on their speedup curves. At
first, it might seem that any GREEDY policy should minimize mean response time.
However, consider this thought experiment. Imagine that we are in state (n1, n2),
where ni denotes the number of jobs of class i . Now consider two policies, P1 and
P2, where both are GREEDY policies. Suppose that in state (n1, n2), P1 runs more
class 1 jobs (and fewer class 2 jobs) than P2. Then, in some sense P1 seems preferable
to P2 because it next moves into a state that has more parallelizable work left (more
class 2 jobs). The fact that P1 defers parallelizable work is desirable because the class
2 jobs are more exploitable, particularly if we later enter a state with very few jobs,
since class 2 jobs can obtain more benefit from using all available servers.

It turns out that bothmaximizing the rate of departures and deferring parallelizable
work are important characteristics in an optimal policy. The authors in [34] propose
a policy GREEDY∗, which is the GREEDY policy where in all states we pick the
option that maximally defers parallelizable work (when possible). Every intuition
would tell us that GREEDY∗ should be optimal. But this is still not true! It turns
out that sometimes the optimal policy is not a GREEDY one. Specifically, deferring
parallelizable work is so advantageous that it is worth deferring extra parallelizable
work at the expense of a slightly suboptimal rate of departures. Experiments indicate
that GREEDY∗’s mean response time is within 1–2% of optimal [34].

The above shows why the case of two speedup functions is so complex. Even in
the simplest case described above, where there are only two strictly ranked speedup
functions, and where all jobs have inherent sizes drawn from the same exponential
distribution, finding the optimal allocation policy is still an open problem.

One directionwhere progressmight be possible is to considermore specific, simpler
forms of speedup functions that are still realistic, for example, threshold-based speedup
functions (see Fig. 3b). We have observed such threshold-based speedup classes in
database workloads (specifically TPC-Hworkloads). In [35], the authors consider two
classes of jobs: class 1 with a threshold-based speedup, and class 2 which is fully
elastic, i.e. s2(k) = k, ∀k. A further assumption is made that class 1 jobs have smaller
inherent size than class 2 jobs. In this setting, GREEDY∗ is the policy that gives strict
priority to class 1 jobs, and [35] proves that GREEDY∗ is optimal here.

A similar situation, where there is an elastic class of jobs as well as an inelastic
class, also comes up in bandwidth sharing (see [32,33,45]). Here, the elastic jobs are
data flows, for example, file transfers. A file can be sent at low bandwidth, taking a long
time to complete the transfer, or it can be sent at high bandwidth, taking a short time

123

14 Queueing Systems (2021) 97:3–37

to complete the transfer. The file transfer speed scales linearly with the bandwidth
allocated [111]. The inelastic jobs here are typically referred to as streaming jobs.
They are voice or video calls that require a specific fixed amount of bandwidth. (This
is different from a threshold speedup function.)

In general, it is common that one has many types of jobs, each with a different
speedup function and each with a different distribution of inherent size. It is a huge
open problem to figure out how to allocate servers to jobs in this setting. Industry is
currently lagging behind research. Industry uses ad hoc solutions, where the upper
bound on the number of servers allocated to each job is a tuned (“voodoo”) parameter.
Having discussed this problemwith severalmajor companies, it is clear that companies
have not yet figured out how to make use of the individual speedup functions of jobs,
nor their inherent sizes, in determining the optimal allocation, both factors which we
have found to be critical. Even machine learning approaches aimed at “learning” the
optimal allocation do not yet take these critical factors into account [61].

4 Parallel DAG jobs and serverless computing

For many jobs, the level of parallelization will change over time. For example, a
database query might consist of a first phase that can be fully parallelized across all n
servers (with linear speedup), followed by a second phase where all the results from
the first phase need to be joined, which has to be done serially (no parallelization),
followed by a third phase where only partial parallelization is possible.

In traditional cloud computing, as described in Sect. 2, the user needs to specify a
number of servers (typically virtual machines, VMs) on which her job will run. For
jobs with changing levels of parallelization, the user will choose a number of servers
which is the maximum of what is needed in any phase of the job. This clearly results
in a lot of waste as VMs are left idle. Furthermore, the user is charged for VMs that
she is often not using.

In an effort to reduce this waste, in recent years, cloud providers have introduced
serverless computing, for example, AWS Lambda, Azure Functions, Google Cloud
Functions. Recent studies report that 74% of enterprises that use the cloud are already
using or experimenting with serverless [6], and projections forecast that most of the
applications currently in the cloud will transition to using serverless computing in
the near future [25,100,152]. These predictions have resulted in a flurry of computer
systems research on enabling a broader range of serverless applications [66,99,131,
137,161].

In serverless computing, a user no longer requests and pays for a fixed number of
VMs. Instead serverless frameworks like AWS Step [26] allow a user to express her
job as a Directed Acyclic Graph (DAG) of functions (tasks). The responsibility of
allocating servers to these tasks is relegated to the computing system which is being
shared by many users running many jobs. The user is only charged for the resources
actually used by her job, where the job’s resource needs are allowed to increase and
decrease as the job runs.

123

Queueing Systems (2021) 97:3–37 15

(b) General DAG(a) Layered DAG

Fig. 5 Examples of DAG jobs

The DAG job model Before, we can describe the server allocation problem for server-
less computing, we need to be clear on the job model. A job is described by a DAG.
Examples of DAGs are shown in Fig. 5.

There are a few things to note about the DAG: First, a job refers to the entire DAG.
The job is broken up into many independent tasks, where every node in the DAG is a
task. (In serverless computing, the tasks are referred to as functions.) The DAG is a
directed graph, specifying precedence relations (an ordering) for running the tasks:

– A layered DAG has explicit levels. For example, the DAG in Fig. 5a has five levels.
All the tasks within a level can be run in parallel. (However, we can choose to run
these serially, or run only a subset in parallel.) All tasks within a level need to be
completed before even a single task at the next level can be started.

– A more general DAG does not have explicit levels. There is a lot more flexibility
on the ordering of performing the tasks. Figure 5b shows a DAGwith two branches
that do not depend on each other at all, so we have a lot of leeway on scheduling
these.

Importantly, a job is not considered to be complete until all the tasks in its DAG are
complete.

The DAG scheduling problem One can now imagine that DAG jobs arrive over time,
and, as usual, we need to share our n servers among all the jobs. Our goal again is to
minimize mean response time across jobs. Now, at every moment of time, we need to
decide not only which jobs to run (we can imagine that the others wait in a queue) but
also which tasks within each job to run. Here, we assume that one task fully occupies
one server.

The DAGmodel differs from the speedup model that we saw in Sect. 3, because the
extent to which a job can be parallelized is specified by its DAG. Nonetheless, we still
have a lot of flexibility in choosing which jobs to run, and which tasks within those
jobs.

The DAG scheduling problem is as general as they come: different jobs can have
differently shaped DAGs; the tasks within a DAG can have different sizes (service
times); the sizes of the tasks can be known or unknown; even the DAG structure itself
(number of levels, etc.) can be known or unknown.

123

16 Queueing Systems (2021) 97:3–37

In practice, however, it is far more typical that all tasks within the same level have
the same size (or similar sizes). It is also common in practice that one has a good
estimate for what this size is. So, for example, if all k tasks within a level have size 1,
and they are run in parallel (on different servers), then after time 1 all k will complete.
It is also common that one either knows the DAG associated with each job in advance,
or that the DAG is “revealed” as the job runs, one level at a time.

Even with these simplifications, finding the optimal allocation policy is a very hard
open problem, and analyzing themean job response time of different allocation policies
is also a hard open problem. Intuitively, since one does not get credit for completing
a job until all its tasks are complete, it does not make sense to start up too many jobs
at once. Also, following the usual principle of “shortest-job-first,” and noting that the
number of levels of a job dictates its minimum runtime, it maymake sense to prioritize
jobs with a small number of levels or a small amount of total work.

DAG scheduling has received a good deal of attention from the theoretical computer
science community; see, for example, [14,17–19,23,39–44,52,67,80,115,134,147].
However the theoretical computer science community tends to think in terms of
a worst-case model, where arrivals and the job structures are adversarially chosen,
whereas in computing centers, it is more realistic to view the arrival times, job struc-
tures, and sizes as being drawn from some distributions.

5 Limited fork–join model for parallel jobs

In all the prior sections, we considered parallel job models where there was a single
centralized queue to hold jobs. All the schedulingwas also heavily centralized: a single
controller had full ownership of n servers and could make decisions on how to allocate
the n servers across the parallel jobs.

In this section, we consider a different parallel setting. While we are still dealing
with parallel jobs, composed of tasks, the servers are now distributed, and each server
has its own queue. The only control we have is on how we route each job’s tasks to
the different queues.

Our model in this section is motivated by the popular MapReduce framework [56].
MapReduce is an important model in many big data processing applications such as
search indexing, distribution sorts, log analysis, andmachine learning. InMapReduce,
every job is divided into independent tasks that can be run in parallel in any order (the
“map” phase). Once all the tasks of a job complete, their results need to be joined
together (the “reduce” phase). Figure 6 provides an illustration of the map phase. Jobs
arrive over time. When a job arrives, each of its tasks is dispatched to a different FCFS
queue. The different tasks will thus likely incur different queueing times; so even if
their sizes are similar, their individual response times can be different. The response
time of a job is the maximum of the response times of its tasks.

It is worth taking a minute to talk about the service time, a.k.a. runtime of a task,
i.e., the time from when the task gets the server until it completes. A task’s runtime
has two components. First, there is the inherent size of the task (in seconds), denoted
by random variable X . Next, there is a server slowdown factor associated with the
particular server on which the task is running, at the time when that task runs, denoted

123

Queueing Systems (2021) 97:3–37 17

Fig. 6 Limited fork–join model with n = 8 queues

by S > 1. Even if all servers have the same speeds, the fact that the servers are
distributed means that the servers may be experiencing different conditions. A task
might find that its server is currently going through garbage collection, or is being
slowed down by some other process running on it in the background. The runtime of
the task at a particular server is best modeled by the product S · X ; see [72] for details.

Given a job with k tasks, the dispatcher might choose to send the job’s tasks to the
k shortest of the n queues, or it might choose to send the tasks to k random queues.
The common practice is to send the tasks to those servers that have the data that they
need. If a task is sent to a server that does not have the data that it needs, then there is
an additional transfer cost needed to bring over the needed data, which takes time.

GoalsOur goal in this setting is twofold. Firstly, from an optimization perspective, we
want to dispatch a job’s k tasks to queues so as to minimize the response time across
jobs. Secondly, given a particular dispatching policy, like, “Send tasks to random
queues,”wewould like to derive themean job response time. Studying the performance
of parallel jobs in a distributed server setting is extremely complex. It is therefore
common to create theoretical abstractions, where we ignore certain issues like server
slowdowns or data location.

The classic fork-join model is one theoretical abstraction which deals with parallel
jobs in a distributed server setting. In the fork–join model, jobs arrive over time and
each job consists of k = n tasks which each join one of the n queues. The job is
considered to be complete only when all of its tasks complete. In the fork–join model,
if all the tasks had exactly the same size, then all the queueswould be synchronized and
the analysis would be trivial. But when tasks have different sizes, even exponentially-
distributed sizes, the queues can quickly start to look different from each other. The
classic fork–joinmodel has beenwidely studied. Unfortunately, tight characterizations
of job response time are unknown except when n = 2. See [141] for a survey. It has
been proven that the mean delay of a job scales as Θ(ln(n)) as n → ∞ under proper
assumptions [28,29,116], but a tight characterization of the constant in the Θ(ln(n))

is not known.

123

18 Queueing Systems (2021) 97:3–37

The MapReduce model is different from the classic fork–join model because k,
the number of tasks associated with a job, is typically far smaller than the number of
servers, n. Large data centers can easily have n = 10,000 servers or even n = 100,000
servers. By contrast, theMapReduce jobsmight have k = 100 tasks or k = 1000 tasks.
A more realistic theoretical abstraction is therefore the limited fork–join model where
jobs have k 	 n tasks.

Fortunately, the limited fork–join model can be much more analytically tractable
than the class fork–join model. Rizk et al. [122], Lee et al. [103], andWang et al. [150]
all give bounds on mean response time assuming that the tasks of a job are randomly
dispatched, as well as some other conditions. The Wang et al. [150] result shows that

when the jobs do not have too many tasks, specifically jobs have k = o
(
n

1
4

)
tasks,

then the queues are asymptotically independent (that is, they become independent for
n → ∞). Wang et al. also prove that independence leads to an upper bound on overall
job response time; this upper bound turns out to be good when n is not very large.

While good progress has beenmade on analyzing the limited fork–joinmodel, open
problems remain. It is unclear how much larger k can be made while still achieving
asymptotic independence. If the queues are not asymptotically independent, then a
different technique is needed to analyze mean job response time. Analyzing the case
where the k tasks are dispatched to the k shortest queues, or k queues with least work
is also an interesting open problem, with excellent recent progress in [132,154].

Of course there are far more open problems once one takes practical conditions into
account. As stated earlier, the routing of tasks to servers should factor in the fact that
the servers might be operating at different speeds and the fact that they have different
data stored. If a task is routed to a server that does not have the data that it needs,
a time cost must be specified for migrating that data. Finally, there is of course the
whole question of how to store data in the first place, given that servers typically have
limited space.

Finally, there is an interesting related problem which comes up in practice when
implementing MapReduce and other similar models. It is common that one of the k
tasks takes far longer than the other tasks to complete. This could be because the task
was simply larger. (It is not always possible to subdivide a job into equal-sized tasks.)
However, this can also happen for many other reasons: (i) the task might be dispatched
to a longer queue; (ii) the other tasks in its queue might turn out to be exceptionally
large; (iii) the server to which the task is sent might be temporarily slowed down for
some reason. The fact that even just one task is taking an exceptionally long time
will cause the job’s response time to be high and can also impede many other jobs. In
an effort to reduce the tail due to one exceptionally lengthy task response time, it is
common to replicate just that task. Specifically, that task is restarted from scratch at
another queue, in the hope that it will experience a better task response time. As soon
as either the original task completes or the replica completes, the task is considered to
be done. Replication (a.k.a. “redundancy”) is both very powerful in reducing response
times, but also can be very dangerous because it adds work to the system, which can
in turn hurt response time [72]. While many theoretical papers have been written on
simple redundancy models where the “job” is a single task (for example, [21,22,72–
75,101,119–121,138]), mixing redundancy with limited fork–join makes the analysis

123

Queueing Systems (2021) 97:3–37 19

a lot harder, and there is room for a lot more research in this space. Some preliminary
work was done recently by Wang, Joshi, and Wornell [149] in the highly simplified
model where the servers have no queues.

6 Computing workloads: extreme job size variability and heavy tails

An important component of both performance and systems modeling is the workload.
Fortunately, we do not have to guess what modern workloads look like, since many
companies publish traces which allow us to understand their jobs; see, for example,
Google [157], Microsoft [2], and Alibaba [142]. In this section, we will examine jobs
from a new 2019 trace [158] that shows all jobs run during May 2019 from eight
different Google compute clusters. Much of our description will follow a paper by
Tirmazi et al. [144] that examines this trace.

The first thing to note about Google jobs is that they are multi-dimensional. A job
holds onto a certain number of processors (CPUs) and a certain amount of memory for
a certain amount of time. The resource consumption of a job is described in CPU-hours
(number of CPUs times hours held) and in Memory-Unit-hours (number of memory
units times hours held). Because Google does not like to reveal exact numbers, it uses
normalized units in expressing compute and memory usage. Thus, per-job compute
usage is expressed in units of NCU-hours (normalized CPU times hours) and per-job
memory usage is expressed in units of NMU-hours (normalized memory units times
hours). Note that a 100 NCU-hour job might have consumed 100 machines for 1h, or
5 machines for 20h, or various other combinations.

6.1 Compute usage in data centers

Figure 7a shows the distribution of compute usage. The fact that we see a reason-
ably straight line on a log–log scale tells us that compute usage follows a Pareto(α)

10 -2 10 0 10 2 10 4

x NCU-hours

10 -3

10 -2

10 -1

10 0

F
ra

ct
io

n
of

 jo
bs

 w
ith

 N
C

U
-h

ou
rs

 >
 x

10 -2 10 0 10 2 10 4

x NMU-hours

10 -3

10 -2

10 -1

10 0

F
ra

ct
io

n
of

 jo
bs

 w
ith

 N
M

U
-h

ou
rs

 >
 x

(b) Per-job NMU-hours(a) Per-job NCU-hours

Fig. 7 CCDF of resource usage based on the Google 2019 trace of millions of jobs run at Google in
May 2019 [144,158]. NCU-hours denotes Normalized CPU-hours used. NMU-hours denotes Normalized
Memory-Unit-hours used

123

20 Queueing Systems (2021) 97:3–37

distribution, where α is the negative slope of this line. That is

P {job uses > x NCU-hours} = x−α,

where−α is the slope of the line. For the Google jobs, α = 0.69, which is quite small.
This indicates that the distribution is quite variable and extremely heavy-tailed. For
background on heavy-tailed distributions, see [65,133].

To be specific, we find that, while the mean NCU-hours used per job is about 1.2,
the variance is 33,300, which means that the squared coefficient of variation is

C2 = variance

mean2
= 23,000,

which is huge! To put this in perspective, most queueing papers are based on expo-
nential job size distributions, which have C2 = 1. In 1996, measurements of compute
consumption in UNIX jobs at U.C. Berkeley found C2 = 50 [92,93]. A few studies of
job sizes at supercomputing centers in 2004 and 2005 found C2 in the range from 28
to 256 [105,126]. The compute variability across jobs seen at Google today is several
orders of magnitude higher than these numbers.

It is well-known that Pareto(α) distributions, particularly those with α < 1 exhibit a
strongheavy-tailed property, whereby a small fraction of the very largest jobs comprise
most of the load. In prior empirical studies of compute consumption and file sizes
[53,87,88,92,94], the authors found that the top 1% of jobs comprise 50% of the load.
This is much more extreme than the oft quoted “80–20 rule,” where the largest 20%
of the jobs comprise 80% of the load. The heavy-tailed property exhibited in Google’s
data centers today is even more extreme than what was seen in [53,87,88,92,94]. For
Google jobs today, the largest (most compute-intensive) 1% of jobs comprise about
99% of the compute load (see [144])!

6.2 Memory usage in data centers

Memory usage at Google’s data centers follows much the same patterns as compute
usage. Figure 7b shows the distribution of memory usage. Again, we see a Pareto(α)
distribution, where this time α = 0.72. Again, we see astronomical variability in
the memory usage: C2 ≈ 43,000. Again, we see an extremely strong “heavy-tailed
property”, whereby the top 1% of jobs comprise about 99% of the total memory usage.
In [144], it is further shown that there is a positive correlation between memory usage
and compute usage.

6.3 Some implications for scheduling

Scheduling of jobs at most companies basically follows First-Come-First-Serve
(FCFS). In particular, a job’s dimensions (number of servers needed, duration,memory

123

Queueing Systems (2021) 97:3–37 21

needs) are typically not taken into account in scheduling. As an example, the Google
Borg datacenter scheduler runs one large central FCFS queue. The jobs in the queue
are tiered in that “production jobs” have higher priority than “batch jobs.” However,
within a tier, the jobs are largely served FCFS, very much following our description in
Sect. 2. Each job has a CPU requirement (number of CPUs) and amemory requirement
(number of Memory Units) and a duration (service time requirement). The duration is
typically not known, although it certainly might be guessable based on the job name,
or it might be learnable as a job runs (as we saw in Sect. 3.1). However, the CPU and
memory requirements are both known a priori.

The extremely high variability in compute usage (and memory usage) that we saw
in the previous sections holds both across tiers, but also within a single tier. This is
particularly problematic for the batch jobs, which already have lower priority. Given
the extremely high variability across batch jobs, it seems quite likely that small batch
jobs (the “mice”) are getting stuck waiting in the queue behind large batch jobs (the
resource “hogs”). Thus in terms of response time, themice are essentially inheriting the
large size of the hogs (that size is adding to their response time). From the perspective
of minimizing mean response time, it makes much more sense to isolate the mice from
the hogs.

One solution is to give the mice priority over the hogs (as in scheduling policies
like Shortest-Job-First). However, it might be the case that the hogs are also the most
important jobs (hogs tend to be large machine learning jobs), and thus we do not want
to bias against these.

A better solution is to physically separate the mice from the hogs in accordance
with the Size-Interval-Task-Assignment (SITA) scheme proposed in [53,91]. In the
context of the heavy-tailed property, this might mean creating one region of the data
center for the 99% smallest jobs (the mice), and a separate region of the datacenter
for the 1% largest jobs (the hogs). The mice would then be scheduled FCFS into the
mice region of the datacenter, and the hogs would be scheduled FCFS into the hogs
region. Given that the mice comprise only about 1% of the total compute usage, the
mice region of the datacenter would be tiny (on the order of 1% of the servers), while
the hogs region would comprise about 99% of the datacenter. In this way, the hogs
would not be penalized, but the mice could receive some isolation.

There are of course other practical considerations that one would need to worry
about. First of all, one would need to make sure that the mice could fit into the mice
region. Specifically, if a mouse needs a large number of servers, but for a very short
time, the mouse region needs to have access to at least that number of servers. Another
practical consideration is that one might not know which jobs are mice versus hogs
because one does not know the duration of jobs a priori. Such an issue was addressed
in [89]. The basic idea is to assume that all jobs are mice until their compute usage
exceeds some threshold. At that point, the job is deemed to be a hog (and could be
moved to the hog section).

123

22 Queueing Systems (2021) 97:3–37

7 Performancemetrics

Mean response time (or, equivalently, the mean number of jobs in the system) is the
performance metric that receives the most attention in queueing theory papers. As
always, a job’s response time is the time from when it arrives to the system until it
completes service (a.k.a. sojourn time, or time in system). However, in the comput-
ing industry, the performance metrics of interest are often quite different from mean
response time. This section describes performance metrics that we see in industry.

When we talk about a performance metric, we have in mind two viewpoints:

– Analysis of the metric Here, we are interested in being able to derive a certain
performance metric. If, for example, our metric is mean response time, we would
be looking for a way to derive mean response time for the system.

– Optimizing the metric Here, we are interested in the optimal scheduling policy for
achieving a performance goal. If, for example, our metric is mean response time,
wewould be looking for the scheduling policy that minimizes mean response time.

For each performance metric, we describe what is known and what open problems
exist. For completeness, we start with the simplest metric, mean response time, where
the most is known (but open problems still exist), and then branch out to other more
popular industry metrics, where much less is known. This section is by no means
a complete list of all metrics; we have tried to focus on what we see most in the
computing industry.

All the metrics in this section apply both to parallel jobs (Sects. 2, 3, 4, 5) and to
serial jobs. However, to better align with prior work, which is mostly in the serial one-
server-per-job model, we will describe the metrics in terms of serial jobs. In particular,
when we refer to a job’s size, we will be talking about its service requirement in terms
of just time. Throughout, we will assume that jobs arrive to our system over time, for
example, according to a Poisson process.

7.1 The simplest metric: mean response time

Because mean response time is so strongly related to job sizes, it helps to differentiate
between the case where a job’s size is known when it arrives to the system, versus the
case where job sizes are not known a priori.

7.1.1 If sizes known

There are cases in computing where the job sizes are known at the time when a job
arrives. For example, if the job consists of downloading a file, then the size of the job
is typically proportional to the size of the file. When job sizes are known, and one
is dealing with a single-server system, the optimal scheduling policy is well-known
to be Shortest-Remaining-Processing-Time (SRPT) [124]. This is true not just for
an M/G/1 system, but even when the arrival process (arrival times and job sizes) is
adversarially chosen. SRPT at all times preemptively runs that job with the shortest

123

Queueing Systems (2021) 97:3–37 23

E[T]

ρ

5

4

3

2

0.20 0.4 0.6 0.8 1.0

1

6

7

8

9
FCFS

SJF

PS = PLCFS SRPT

FB

PSJF

FCFS

SJF

PS = PLCFS

SRPT

FB

PSJF

Fig. 8 Mean response time, E [T], as a function of load for theM/G/1 with various scheduling policies. The
job size distribution is a Weibull with mean 1 and C2 = 10. This figure taken from [90, p. 524]. Here, SJF
refers to (non-preemptive) Shortest Job First, while PSJF refers to Preemptive Shortest Job First. FB is the
Foreground-Background policy. PS is Processor-Sharing and PLCFS is Preemptive Last-Come-First-Served

remaining service requirement. Note that if all job sizes are the same, then SRPT is
equivalent to First-Come-First-Served (FCFS), assuming FCFS tie-breaking.

SRPT has the biggest impact when job size variability is high, because it ensures
that short jobs (or jobs with very little remaining work) do not get stuck waiting behind
long jobs. However, even when the job size variability is not that high, the benefits
of SRPT over policies that do not make use of size, like FCFS, are very clear, as
shown in Fig. 8 where the job size distribution has squared coefficient of variation
C2 = 10. Recall from Sect. 6 that job size variability is often much higher, with C2

in the thousands. The analysis of mean response time for the M/G/1/SRPT queue is
well-known [125], as is mean response time for all the other policies shown in Fig. 8
[90].

One would imagine that SRPT would also be optimal in the multi-server setting.
For the M/G/k, we define SRPT-k as the algorithm that at all times runs those k jobs
with the smallest remaining processing time, preempting jobs in service as needed. For
a multi-server system with no arrivals (all jobs present at the start), SRPT-k is optimal
under aworst-case adversarial setting [81].Oncewe add arrivals, however, surprisingly
SRPT-k is no longer optimal in the worst case adversarial setting [104], and in fact
SRPT-k can be arbitrarily far from optimal [104], [90, p.426]. For the (stochastic)
M/G/k setting, in 2018 Grosof et al. proved that SRPT-k is optimal under heavy traffic
[83]. A bound on its mean response time was also presented in [83], although that
bound is quite loose unless load is very high. Unfortunately, datacenters typically
operate under lighter traffic (see Sect. 7.4). Outside of heavy traffic, understanding
when SRPT-k is optimal and analyzing its performance are both big open problems.

Sometimes the multiple servers are distributed, each server with its own queue,
where there is a front-end dispatcher that routes each incoming job to a queue. As
shown in Fig. 9, now there are two questions related to optimality: (i) How should we
schedule jobs within the individual queues? (ii) What dispatching policy should be
used?When the goal is to minimize mean response time, unsurprisingly the answer to
question (i) is to use SRPT scheduling at each server. Regarding question (ii), Grosof

123

24 Queueing Systems (2021) 97:3–37

Fig. 9 Two decision points
within a distributed load
balancing system: (i) Pick the
scheduling policy for the servers.
(ii) Pick the dispatching policy

 Policy?
Dispatching

Scheduling Policy?

et al. [84] proves that a dispatching policy called Guardrails yields optimal mean
response time in the heavy-traffic limit. Outside of heavy traffic, optimal dispatching
is an open problem.

7.1.2 Sizes not known

More commonly, job sizes are not known a priori. What is known is the job size
distribution, since one can observe jobs as they complete. One also knows the current
age of a job, which is how much service the job has received so far. Let S be a random
variable denoting a job’s size. Then, one can imagine using the known age of the job,
a, to estimate the remaining size of the job, given its age. One could then assign every
job of age a a rank, r(a), where the job’s rank is its expected remaining size,

r(a) = E [S − a | S > a] .

It then makes sense to choose to always (preemptively) run the job with smallest rank,
i.e., the job with Smallest Expected Remaining Processing Time (SERPT). While the
SERPT policy sounds optimal for mean response time, because of its similarity to
SRPT, it is missing a subtlety. Imagine that a job’s remaining time has a Bimodal
distribution, where, with probability half it is very small, but with probability half it is
very large. While the expected remaining time of the job is large, it might nonetheless
pay to run the job for a very short time, just in case it completes. This is the principle
behind the Gittins Index policy which assigns to every job a rank, r(a), based on its
age a and its job size S, where

r(a) = inf
Δ>0

E [min{S − a,Δ} | S > a]

P {S − a ≤ Δ | S > a} (2)

and then (preemptively) runs that job with lowest rank. The rank in (2) takes into
account the expected remaining size of a job, given its age, but it also takes into
account the probability that the job will complete in the next Δ time.

The Gittins Index policy is known to be optimal for minimizingmean response time
in theM/G/1 queue, when job sizes are unknown, known, or partially known [7,8,78].6

However, Gittins is a complex policy. In [130], Scully et al. proved that a much simpler
policy, related to SERPT, is within a factor 5 of optimal. It is an open problemwhether

6 Gittins becomes SRPT when job sizes are known.

123

Queueing Systems (2021) 97:3–37 25

that factor can be improved, or whether other simple policies with near-optimal mean
response time exist. The response time analysis of both the Gittins policy and the
SERPT policy was only recently derived (2018), via the introduction of the SOAP
framework, see [129], which produces a closed-form expression for response time for
any policy which can be expressed via a rank function.7

For theM/G/k queue, one would imagine that the Gittins-k policymight be optimal,
where Gittins-k at all times runs the k jobs with the lowest Gittins ranks. Very recently
(2020), Scully et al. proved the first upper bound on the response time of Gittins-k
and also proved that Gittins-k is heavy-traffic optimal, under very general job models
[127,128]. Proving the optimality of Gittins-k outside of heavy traffic remains an open
problem.

7.1.3 A related metric with more practical value: mean slowdown

The mean slowdown metric is related to mean response time, but is somewhat more
practical. A job’s slowdown is defined as its response time divided by its inherent size:

Slowdown of job j = Response time of j

Size of j
. (3)

When the goal is minimizing mean slowdown, it becomes important to give short
response times to the short jobs, as their denominator in (3) is small. We save longer
response times for the longer jobs, which are better able to absorb the longer response
time over their larger denominators. Mean slowdown makes practical sense in that a
person who is downloading a web page has much less tolerance for high response time
than a person who is downloading a 2-h movie and does not mind a few minutes wait
(while they go make popcorn).

The optimal algorithm for minimizing mean slowdown in the M/G/1 system is the
RS algorithm [98]. Under RS, every job is assigned a rank which is equal to its current
remaining size (R) multiplied by its original size (S). At all times, the RS algorithm
preemptively runs that job with the lowest rank. The first analysis of the RS algorithm
(both its mean response time and mean slowdown) is given in [129].

7.2 Response time tail: jobs with deadlines

We now describe one of the most popular performance metrics for the computing
industry. Consider Facebook’s customers, who are busy downloading Facebook pages.
If the time to download a Facebook page is under 400ms, then the time is not noticeable
to a user; in particular, the user cannot differentiate between a 100ms response time
and a 200ms response time. If the time exceeds 400ms, the user will notice it, be
irritated, and might eventually stop using Facebook. Thus it is in Facebook’s interest
to minimize the fraction of downloads that take more than 400ms. If we think of a

7 A job’s “rank” is its priority, where lower rank is better, and where ties are broken in FCFS order. Rank
is a function of age, but can also depend on a job’s size or class [129].

123

26 Queueing Systems (2021) 97:3–37

stream of jobs arriving over time, we are trying to minimize

P {Response time > 400ms} .

How should we do that?
This problem is equivalent to imagining that every job that arrives has a deadline

of 400ms. We would like to schedule the jobs so as to minimize the fraction that miss
their deadlines. We can imagine, to start, that the job sizes are known a priori.

How to schedule jobs to minimize P {Response time > 400ms} is an open prob-
lem. One idea is to run Least Laxity First (LLF) [113], i.e., at all times, we would
(preemptively) run that job which is closest to missing its deadline. However, one can
imagine how this can become problematic, because the server starts working on one
job, and then switches to working on a new arrival that might be closer to meeting
the 400ms deadline, and then switches again when another job arrives, potentially
causing all the jobs (but the last one) to miss their deadlines because of all the sharing.

An alternative idea is an algorithm we will call Drop-If-Hopeless (DIH). Under
DIH, we schedule all the jobs in FCFS order. When a job arrives, it looks at the queue
ahead of it. If the job’s size plus its waiting time in the queue exceeds 400ms, then the
job is dropped; otherwise the job enters the queue. Thus, the jobs in the queue are all
guaranteed to have a response time within 400ms. We believe that DIH was originally
considered by [76]. While DIH makes a lot of sense, one can see that it too is not
optimal. Imagine that a large job arrives and enters the queue, causing the work in the
queue to now be close to 400ms. This induces drops of many future arrivals because
the work in the queue is too high. Was it really worth allowing that large job to enter?

We can imagine an improvement on DIH, which we will call Drop-The-Larger-
Hopeless (DTLH). Under DTLH, we again schedule all jobs in FCFS order. When a
job j arrives, if we see that the sum of j’s size and its waiting time exceeds 400ms,
then rather than immediately dropping j , we first check if there’s a job k in the queue
which has larger size than j . If there is such a job k, then we drop k, rather than j . In
this way, we are still keeping only jobs in the queue that will make the 400ms goal,
but we are biasing toward keeping smaller jobs, which should minimize the fraction
of future drops.

While DTLH sounds good, it too is not optimal, and it is an open problem to deter-
mine how close to optimal it is. Understanding the dropping probability under DTLH
is also an open problem, although the dropping probability for DIH is understood,
under certain conditions; see [76].

When it comes to evaluating the tail of response time, P {Response Time > t}, the
standard technique is to numerically invert the Laplace transform of the tail func-
tion. Abate, Choudhury, andWhitt [12] present an overview of the classical numerical
inversion techniques; see also [13,60,139].More recently den Iseger and others [58,59]
have invented different techniques to expand the class of functions that can be inverted
as well as to improve the precision of the inversion. Very recently, Horváth et al. [96]
found a way to invert the Laplace transform using concentrated matrix exponential
(CME) distributions, further improving accuracy and stability in arithmetic calcula-
tions.

123

Queueing Systems (2021) 97:3–37 27

While there is plenty of numerical work, there are very few analytical (non-
numerical) results on tails of response time. We do not have a closed-form expression
for P {Response Time > t} even for the simplest queueing systems. Almost all the
analytical research on tails of response time looks at the tail in the asymptotic limit,
i.e., finding a function f (t) such that

lim
t→∞

P {T > t}
f (t)

= 1.

The earliest work on asymptotic tail analysis dates back to Smith, [135], who inves-
tigates the tail of queueing times in a GI/G/1 FCFS system. Later work has looked
at tail asymptotics in the context of different scheduling policies: Glynn and Whitt
[79], Abate, Choudhury, and Whitt [10,11], and a beautiful series of papers includ-
ing Borst, Boxma, Deng, Núñez-Queija and Zwart; see [46–49]. The work has also
been extended to multi-server queues; see Foss and Korshunov [64]. Unfortunately,
while comparing the asymptotic tail under different scheduling policies is interesting
from a theoretical standpoint, it does not solve the practical question of scheduling to
minimize P {Response Time > t} for a particular t ; this remains an open problem.

7.3 The 99%-tile of response time

In datacenter work, both in industry and computer systems research, people like to
talk about the 99th%-tile of response time; see, for example, Dean and Barroso [55],
Berger et al. [37], Zhu et al. [162,163], Xu et al. [159]. The 99th%-tile might actually
be the most commonly discussed metric in computer systems.When people talk about
the 99th%-tile, they are intuitively imagining that they are studying the “almost worst-
case” situation, or as high as the worst will get in practice, while at the same time not
really thinking about an adversarial situation.

There are several ways that the 99th%-tile metric comes up in practice.
In the first way, there is a Service Level Objective (SLO), which is a response time

goal that we don’t want to exceed. This is akin to the 400ms number in Sect. 7.2. Now
we would like to find a way of scheduling jobs so as to ensure that 99% of the jobs
have response time under this 400ms SLO. That is, we want to schedule to ensure
that:

P {Response time > 400ms} < .01 .

This is similar to what we saw in Sect. 7.2, except that instead of simply trying to
minimize the fraction of jobs with response time > 400ms, now we are requiring that
no more than 1% have this behavior.

Sometimes the 99th%-tile SLO is combined with priority classes. In queueing
when we hear “priority” we think that class 1 has absolute priority over class 2. In the
compute industry, priority often comes in a different form, where class 1 jobs have a
much tighter SLO than class 2. For example, the goal might be:

123

28 Queueing Systems (2021) 97:3–37

How should we schedule jobs to guarantee class 1 jobs a 99%-tile of response
time of 400ms, while guaranteeing class 2 jobs a 99%-tile of 4000ms?

Sometimes the 99th%-tile SLO is phrased in terms of a capacity provisioning goal,
for example

How many servers do we need in our datacenter, to ensure that at least 99% of
jobs complete within the 400ms SLO?

Note that this sounds a lot like a square-root staffing kind of rule [155], except that
there’s a 400ms number which needs to factor into our answer somewhere.

Oftentimes, the 99th%-tile metric is phrased without reference to an SLO at all.
Here, the goal is stated simply as

We want to schedule jobs so as to minimize the 99th%-tile of response time.

This latter phrasing is now quite different from Sect. 7.2.
While all of these phrasings involving the 99th%-tile are commonly spouted in

industry, in our opinion, they are all a bit odd. In fact, after you think about them a
little while, it becomes unclear whether the people spouting these metrics really want
what they say they want! Consider for example this last metric of simply minimizing
the 99th%-tile of response time. Observe that 1% of the jobs are never counted in this
metric—they simply do not matter. So there is no point on even working on 1% of
the jobs. Why not pick in advance which 1% we are not going to work on and just
get rid of those? In fact, why not make that 1% be the very largest jobs, since they
are the ones that contain most of the work. So here is an idea: we look at the job size
distribution. We cut off the biggest 1% of the jobs. For the remaining 99% of jobs,
we schedule these in FCFS order, to minimize the maximum response time of these
remaining jobs.

When we suggest to companies that algorithms like the one above can achieve
their objectives, they complain that such algorithms are not OK. “You can’t simply
drop all the big jobs!” So then we suggest simply moving that 1% set of big jobs
permanently to the end of the line (always giving them lowest priority). This does not
make companies happy either, because then they complain, “But some of those jobs
might be important. You’re being unfair to those jobs.”

So, what do companies really want? They do care about having a low 99%-tile of
response time, but they don’t want to achieve a low 99%-tile at the expense of hurting
“important” jobs. If the important jobs are correlatedwith the largest jobs, then a policy
of the DIH type (which uses size only indirectly) would be preferable to a policy of
the DTLH type (which directly penalizes larger jobs), which is still preferable to just
dropping the top 1% of jobs. This is an issue that must be considered both for the tail
formulation in this section and that in Sect. 7.2.

7.4 Power consumption

Power consumption is a huge problem in datacenters. Datacenters consume over 3%
of the global electricity supply and account for over 2% of the total global greenhouse
gas emissions [145].

123

Queueing Systems (2021) 97:3–37 29

Datacenter utilization is typically under 30% [30,136,140]. The reason for this is
overprovisioning. One way this happens is that a user’s job’s resource needs might
fluctuate over time: say the job needs 2 servers in parallel for its first phase and then
100 servers for its second phase and then back to two servers. In that case, the user will
request 100 servers, which is over-provisioning much of the time. Another situation
is that the user’s job is providing a service, and the resource needs of the job depend
on the arrival rate into that service, where the arrival rate fluctuates over time. The
user will provision for the peak arrival rate into the service, which again leads to
over-provisioning much of the time.

Having servers occasionally idling would not be such a problem except that data-
center servers use nearly as much power (65%) when they are sitting idle as they do
when they are processing jobs, [71]. Thus, having servers sitting idle is very expensive.

Thus, the only way to reduce power is to dynamically turn servers off at times when
they are not needed. Unfortunately, once we shut down a server, it becomes very hard
to get it back up if it is suddenly needed again. Specifically, there is a huge setup time
needed to turn servers on. A setup time can easily be 200s, while desired response
times are in the 400−500ms range; thus, setup time can have a big effect on mean
response time. To make things worse, the server is operating at full (100%) power
during this setup time when it’s unavailable.

This leads to a great many questions: When should one turn servers off? When
should one turn them back on? How should one schedule jobs on the servers to mini-
mize the need to turn servers off?

Power management raises a lot of open problems. The first thing one needs to
understand is the effect of setup times in multiserver systems. The M/G/1 queue with
setup times was first analyzed in 1964 by Welch [153]; however, the M/M/k system
with setup time was not analyzed until 2013. In an M/M/k queue with setup, it is
assumed that any server that is not in use will immediately shut down (to save power).
Every arriving job picks an off server, if one exists, and puts it into setup mode; the
job then joins the queue. In 2014, Gandhi et al. [68] derived the Laplace transform
of response time for an M/M/k queue with setup, assuming exponentially distributed
setup times. Unfortunately, the formula for an M/M/k/setup system is complicated
and can only be cleanly expressed for small k. It would be really nice to have an
approximate formula akin to the beautiful decomposition result that exists for the
M/G/1/setup [153] and the M/M/∞/setup [70]. In particular, it turns out that the setup
time matters less and less for larger systems, i.e., the M/M/k/setup system eventually
starts to look just like an M/M/k queue without setup, as k gets high. It would be very
nice to have a simple approximation for the M/M/k/setup as a function of k. Finally,
the M/G/k system with setup time is also a wide open problem.

Ideally, what we really want is to be able to analyze a k server system with time-
varying load where idle servers are shut off during low load periods, but need to go
through setup when load goes back up. We could then better understand when it pays
to turn servers off and on. In Gandhi et al. [71], the authors describe a datacenter
operation with time-varying load and a front-end dispatcher which both handles the
routing of jobs to servers and also controls which servers are on and off. (They provide
a realistic prototype of a Facebook datacenter.) They propose a two-pronged policy
for dealing with time-varying load. First, their policy delays turning servers off; when

123

30 Queueing Systems (2021) 97:3–37

the server idles, it needs to stay idle for some designated amount of time before it is
shut off. This is called a “delayed-off.” This alone is insufficient, though. The problem
is that typical front-end dispatchers aim to balance load among servers, which means
that a server which becomes idle will not stay idle for long. To ensure that servers that
become idle will stay idle long enough to turn off, the policy defines an ordering on
the servers, wherein the dispatcher always tries to pack jobs into the lowest-numbered
servers first. This allows the high-numbered servers to become idle and then not receive
further arrivals, allowing them to turn off. The packing policy is referred to as “load
UNbalancing,” because it does the opposite of load balancing, which spreads out jobs
among all servers. In [69], the authors provide a very preliminary attempt at analyzing
policies of this nature. There is room formuchmorework in this space on the analytical
front.

8 Conclusion

The goal of this paper was to examine new queueing models, workloads, and metrics,
all inspired by datacenter computing today.

On the modeling front, we saw that the typical job in datacenters is a parallel
“multiserver” job which occupies multiple servers for some period of time. We also
saw that jobs are oftenflexible in the number of servers onwhich they can run, andbeing
allocated more servers does not typically translate into a proportional speed increase.
This sublinear speedup behavior makes allocating servers across jobs complex. We
also saw other common forms of parallel jobs, including the DAG job, made up of
independent tasks with precedence constraints, inspired by serverless computing, as
well as the limited fork–join job, inspired by the popular MapReduce framework.

On the computingworkloads front, we studied jobs at Google’s datacenters.We saw
that per-job compute usage (expressed as a product of number of servers and time) can
be extremely variable, with squared coefficients of variation in the tens of thousands.
The distribution of per-job compute usage is Pareto distributed with a surprisingly
strong heavy-tailed property: the top 1% of jobs are true resource hogs, comprising
99% of the total load.

On the metrics front, we examined performance metrics of interest in cloud com-
puting today. We saw that even relatively simple metrics, like mean response time,
are much harder to optimize when job sizes are unknown or only partially known
and multiple servers are involved. We studied the slowdown metric, response time tail
metrics, and the counter-intuitive but popular 99%-tile SLO. We also studied energy
metrics, which often involve combining response time tails, capacity needs, and power
usage.

Each newmodel,workload, andmetric has suggested newopen problems for queue-
ing theorists, of practical importance to cloud computing today.

Acknowledgements We would like to thank Sem Borst, Onno Boxma, and Isaac Grosof for their helpful
suggestions and careful proof-reading.

Funding Funding was provided by National Science Foundation (Grant numbers CMMI-1938909, CSR-
1763701, XPS-1629444) and Google (Grant number 2020 Faculty Research Award).

123

Queueing Systems (2021) 97:3–37 31

References

1. Amazon EC2. http://aws.amazon.com/ec2/. Accessed 15 Nov 2020
2. Azure Public Dataset (2019). https://github.com/Azure/AzurePublicDataset. Accessed 15 Nov 2020
3. Google Compute Engine. http://cloud.google.com/products/compute-engine.html. Accessed 15 Nov

2020
4. Windows Azure. http://www.windowsazure.com/. Accessed 15 Nov 2020
5. Datacenter Spending (2020). https://www.cbronline.com/news/data-centre-spending. Accessed 15

Nov 2020
6. Flexera.: State of the Cloud Report (2020). https://www.flexera.com/blog/industry-trends/trend-of-

cloud-computing-2020/. Accessed 15 Nov 2020
7. Aalto, S., Ayesta, U., Righter, R.: On the Gittins index in the M/G/1 queue. Queueing Syst. 63(1),

437–458 (2009)
8. Aalto, S.,Ayesta,U.,Righter,R.: Properties of theGittins indexwith application to optimal scheduling.

Probab. Eng. Inf. Sci. 25(3), 269–288 (2011)
9. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving,

G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D., Steiner, B., Tucker,
P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X..: Tensorflow: a system for large-scale
machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’16), pp. 265–283 (2016)

10. Abate, J., Choudhury, G.L., Whitt, W.: Asymptotics for steady-state tail probabilities in structured
Markov queueing models. Stoch. Mod. 10(1), 99–143 (1994)

11. Abate, J., Choudhury, G.L.,Whitt,W.:Waiting-time tail probabilities in queues with long-tail service-
time distributions. Queueing Syst. 16, 311–338 (1994)

12. Abate, J., Choudhury, G.L., Whitt, W.: An introduction to numerical transform inversion and its
application to probability models. In: Grassmann, W.K. (ed.) Computational Probability, pp. 257–
323. Springer, Boston (2000)

13. Abate, J., Whitt, W.: A unified framework for numerically inverting Laplace transforms. INFORMS
J. Comput. 18(4), 408–421 (2006)

14. Acar, U., Blelloch, G.E., Blumofe, R.: The data locality of work stealing. Theory Comput. Syst. 35(3),
321–347 (2002)

15. Afanaseva, L., Bashtova, E., Grishunina, S.: Stability analysis of a multi-server model with simul-
taneous service and a regenerative input flow. Methodol. Comput. Appl. Probab. 22, 1439–1455
(2020)

16. Afanaseva, L., Grishunina, S.: Stability conditions for a multiserver queueing system with a regen-
erative input flow and simultaneous service of a customer by a random number of servers. Queueing
Syst. 94, 213–241 (2020)

17. Agrawal, K., Li, J., Lu, K., Moseley, B.: Scheduling parallel DAG jobs online to minimize average
flow time. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’16), pp. 176–189 (2016)

18. Agrawal, K., Li, J., Lu, K., Moseley, B.: Scheduling parallelizable jobs online to minimize the max-
imum flow time. In: Symposium on Parallel Algorithms and Architectures (SPAA’16), pp. 195–205
(2016)

19. Agrawal, K., Li, J., Lu, K., Moseley, B.: Scheduling parallelizable jobs online to maximize through-
put. In: LATIN 2018: Theoretical Informatics—13th Latin American Symposium, Buenos Aires,
Argentina, pp. 755–776 (2018)

20. Ahmad, N., Greenberg, A.G., Lahiri, P., Maltz, D., Patel, P.K., Sengupta, S., Vaid, K.V.: Distributed
load balancer. Google Patents. U.S. Patent App. 12/189,438 (2008)

21. Anton, E., Ayesta, U., Jonckheere, M., Verloop, I.M..: On the stability of redundancy models (2019).
arXiv:1903.04414

22. Anton, E., Ayesta, U., Jonckheere, M., Verloop, I.M..: Improving the performance of heterogeneous
data centers through redundancy (2020). arXiv:2003.01394

23. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammedmultiprocessors.
In: 10th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 119–129 (1998)

24. Arthurs, E., Kaufman, J.: Sizing a message store subject to blocking criteria. In: IFIP Performance
Conference, pp. 547–564 (1979)

123

http://aws.amazon.com/ec2/
https://github.com/Azure/AzurePublicDataset
http://cloud.google.com/products/compute-engine.html
http://www.windowsazure.com/
https://www.cbronline.com/news/data-centre-spending
https://www.flexera.com/blog/industry-trends/trend-of-cloud-computing-2020/
https://www.flexera.com/blog/industry-trends/trend-of-cloud-computing-2020/
http://arxiv.org/abs/1903.04414
http://arxiv.org/abs/2003.01394

32 Queueing Systems (2021) 97:3–37

25. AWS. Netflix & AWS Lambda Case Study. https://aws.amazon.com/solutions/case-studies/netflix-
and-aws-lambda/. Accessed 15 Nov 2020

26. AWS. Step Functions. https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html.
Accessed 15 Nov 2020

27. Baccelli, F., Foss, S.: Poisson hail on a hot ground. J. Appl. Probab. 48(A), 343–366 (2011)
28. Baccelli, F., Makowski, A.M.: Simple computable bounds for the fork–join queue. Technical Report

RR-0394, INRIA (1985)
29. Baccelli, F., Makowski, A.M., Shwartz, A.: The fork–join queue and related systems with synchro-

nization constraints: stochastic ordering and computable bounds. Adv. Appl. Probab. 21, 629–660
(1989)

30. Barroso, L.A., Holzle, U.: The case for energy-proportional computing. Computer 40(12), 33–37
(2007)

31. Bean, N.G., Gibbens, R.J., Zachary, S.: Asymptotic analysis of single resource loss systems in heavy
traffic, with applications to integrated networks. Adv. Appl. Probab. 27(1), 273–292 (1995)

32. Bekker, R., Borst, S., Núñez-Queija, R.: Performance of TCP-friendly streaming sessions in the
presence of heavy-tailed elastic flows. Perform. Eval. 61(2), 143–162 (2005)

33. Benameur, N., Fredj, S. Ben,Delcoigne, F., Oueslati-Boulahia, S., Roberts, J.W.: Integrated admission
control for streaming and elastic traffic. In: International Workshop on Quality of Future Internet
Services, pp. 69–81 (2001)

34. Berg, B., Dorsman, J.-P., Harchol-Balter, M.: Towards optimality in parallel job scheduling. Proc.
ACM Meas. Anal. Comput. Syst. (POMACS/SIGMETRICS) 1(2), 1–30 (2017). Article 40

35. Berg, B., Harchol-Balter, M., Moseley, B., Wang,W., Whitehouse, J.: Optimal resource allocation for
elastic and inelastic jobs. In: Proceedings of the 32nd ACMSymposium on Parallelism in Algorithms
and Architectures (SPAA’20), pp. 75–87, Philadelphia, PA (2020)

36. Berg,B.,Vesilo,R.,Harchol-Balter,M.: heSRPT: Parallel scheduling tominimizemean slowdown. In:
38th International Symposium on Computer Performance, Modeling, Measurement, and Evaluation
(IFIP PERFORMANCE 2020), Milan, Italy (2020)

37. Berger, D., Berg, B., Zhu, T., Sen, S., Harchol-Balter, M.: Robinhood: Tail latency aware caching—
dynamic reallocation from cache-rich to cache-poor. In: 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2018), pp. 195–212, Carlsbad, CA (2018)

38. Bienia, C., Kumar, S., Singh, J. P., Li, K.: The PARSEC benchmark suite: characterization and archi-
tectural implications. In: Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques (PACT’08), pp. 72–81, New York, NY (2008)

39. Blelloch, G., Gibbons, P., Matias, Y.: Provably efficient scheduling for languages with fine-grained
parallelism. J. ACM 46(2), 281–321 (1999)

40. Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Simhadri, H.V.: Scheduling irregular parallel computa-
tions on hierarchical caches. In: Proceedings of the 23rd Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA’11), pp. 355–366, San Jose, California (2011)

41. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk: an
efficient multithreaded runtime system. J. Parallel Distrib. Comput. 37(1), 55–69 (1996)

42. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. In: IEEE
Symposium on Foundations of Computer Science, pp. 356–368 (1994)

43. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J. ACM
46(5), 720–748 (1999)

44. Blumofe, R.D., Papadopoulos, D.: Hood: a user-level threads library for multiprogrammed multipro-
cessors. Technical Report, University of Texas at Austin (1999)

45. Bonald, T., Proutière, A.: On performance bounds for the integration of elastic and adaptive streaming
flows. In: Joint International ACM SIGMETRICS/Performance Conference on Measurement and
Modeling of Computer Systems, pp. 235–245 (2004)

46. Borst, S., Núñez-Queija, R., Zwart, B.: Sojourn time asymptotics in processor-sharing queues. Queue-
ing Syst. 53(1–2), 31–51 (2006)

47. Borst, S.C., Boxma, O.J., Núñez-Queija, R., Zwart, B.: The impact of the service discipline on delay
asymptotics. Perform. Eval. 54(2), 175–206 (2003)

48. Boxma, O.J., Deng, Q., Zwart, B.:Waiting-time asymptotics for theM/G/2 queue with heterogeneous
servers. Queueing Syst. 40(1), 5–31 (2002)

49. Boxma, O.J., Zwart, B.: Tails in scheduling. SIGMETRICS Perform. Eval. Rev. 34(4), 13–20 (2007)

123

https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html

Queueing Systems (2021) 97:3–37 33

50. Brill, P.H., Green, L.: Queues inwhich customers receive simultaneous service from a randomnumber
of servers: a system point approach. Manag. Sci. 30(1), 51–68 (1984)

51. Cera,M.C., Georgiou, Y., Richard, O.,Maillard, N., Navaux, P.O.A.: Supportingmalleability in paral-
lel architectures with dynamic CPUSETsMapping and dynamic MPI. In: Kant, K., Pemmaraju, S.V.,
Sivalingam, K.M., Wu, J. (eds.) International Conference on Distributed Computing and Networking
(ICDCN’20), pp. 242–257 (2010)

52. Chowdhury, R.A., Ramachandran, V., Silvestri, F., Blakeley, B.: Oblivious algorithms for multicores
and networks of processors. J. Parallel Distrib. Comput. 73(7), 911–925 (2018)

53. Crovella, M., Harchol-Balter, M., Murta, C.: Task assignment in a distributed system: Improving
performance by unbalancing load. In: Proceedings of the ACM SIGMETRICS Joint International
Conference onMeasurement andModeling ofComputer Systems, pp. 268–269. Poster Session (1998)

54. Dasylva, A., Srikant, R.: Bounds on the performance of admission control and routing policies for
general topology networks with multiple call centers. In: Eighteenth Annual IEEE INFOCOM’99
International Conference on Computer Communications, pp. 505–512 (1999)

55. Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56(2), 74–80 (2013)
56. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM

51(1), 107–113 (2008)
57. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware cluster management. In:

ASPLOS’14, pp. 127–144, Salt Lake City, Utah (2014)
58. den Iseger, P.: Numerical transform inversion using Gaussian quadrature. Probab. Eng. Inf. Sci. 20,

1–44 (2006)
59. den Iseger, P., Gruntjes, P., Mandjes, M.: AWiener–Hopf based approach to numerical computations

in fluctuation theory for Lévy processes. Math. Methods Oper. Res. 78(1), 101–118 (2013)
60. Dubner, H., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier

cosine transform. J. ACM 15(1), 115–123 (1968)
61. Fan, Z., Sen, R., Koutris, P., Albarghouthi, A.: Automated tuning of query degree of parallelism

via machine learning. In: Proceedings of the 3rd International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management (2020)

62. Filippopoulos, D., Karatza, H.: AnM/M/2 parallel systemmodel with pure space sharing among rigid
jobs. Math. Comput. Model. 45(5), 491–530 (2007)

63. Foss, S., Konstantopoulos, T., Mountford, T.: Power law condition for stability of Poisson hail. J.
Theor. Probab. 31, 684–704 (2018)

64. Foss, S., Korshunov, D.: Heavy tails in multi-server queue. Queueing Syst. Theory Pract. 52, 31–48
(2006)

65. Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distribu-
tions, 2nd edn. Springer, New York (2013)

66. Fouladi, S., Wahby, R.S., Shacklett, B., Balasubramaniam, K.V., Zeng, W., Bhalerao, R., Sivaraman,
A., Porter, G., Winstein, K.: Encoding, fast and slow: low-latency video processing using thousands
of tiny threads. In: 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pp. 363–376, Boston, MA (2017)

67. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multithreaded language.
In: ACM PLDI, pp. 212–223 (1998)

68. Gandhi, A., Doroudi, S., Harchol-Balter, M., Scheller-Wolf, A.: Exact analysis of the M/M/k/setup
class of Markov chains via Recursive Renewal Reward. Queueing Syst. Theory Appl. 77(2), 177–209
(2014)

69. Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.: Optimality analysis of energy-peformance
trade-off for server farm management. Perform. Eval. 67(11), 1155–1171 (2010)

70. Gandhi, A., Harchol-Balter, M., Adan, I.: Server farms with setup costs. Perform. Eval. 67(11),
1123–1138 (2010)

71. Gandhi, A., Harchol-Balter, M., Raghunathan, R., Kozuch, M.: AutoScale: dynamic, robust capacity
management for multi-tier data centers. ACM Trans. Comput. Syst. 30(4), 1–26 (2012)

72. Gardner,K.,Harchol-Balter,M., Scheller-Wolf,A.,VanHoudt, B.:A bettermodel for job redundancy:
decoupling server slowdown and job size. ACM/IEEE Trans. Netw. 25(6), 3353–3367 (2017)

73. Gardner, K., Harchol-Balter, M., Scheller-Wolf, A., Velednitsky, M., Zbarsky, S.: Redundancy-d: the
power of d choices for redundancy. Oper. Res. 65(4), 1078–1094 (2017)

74. Gardner, K., Zbarsky, S., Doroudi, S., Harchol-Balter, M., Hyytia, E., Scheller-Wolf, A.: Queueing
with redundant requests: exact analysis. Queueing Syst. Theory Appl. 83(3), 227–259 (2016)

123

34 Queueing Systems (2021) 97:3–37

75. Gardner, K., Zbarsky, S., Doroudi, S., Harchol-Balter, M., Hyytiä, E., Scheller-Wolf, A.: Reducing
latency via redundant requests: exact analysis. In: ACMSigmetrics 2015Conference onMeasurement
and Modeling of Computer Systems, pp. 347–360 (2015)

76. Gavish, B., Schweitzer, P.J.: The Markovian queue with bounded waiting time. Manag. Sci. 23(12),
1349–1357 (1977)

77. Ghaderi, J.: Randomized algorithms for scheduling VMs in the cloud. In: 35th Annual IEEE Interna-
tional Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, April
10–14, 2016, pp. 1–9 (2016)

78. Gittins, J.C., Glazebrook, K.D., Weber, R.: Multi-armed Bandit Allocation Indices. Wiley, New York
(2011)

79. Glynn, P.W., Whitt, W.: Logarithmic asymptotics for steady-state tail probabilities in a single-server
queue. J. Appl. Probab. 31(A), 131–156 (1994)

80. Goldstein, S.C., Schauser, K.E., Culler, D.E.: Lazy threads: implementing a fast parallel call. J.
Parallel Distrib. Comput. 37(1), 5–20 (1996)

81. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation
in deterministic squencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

82. Grosof, I, Harchol-Balter, M, Scheller-Wolf, A.: Stability for two-class multiserver-job systems
(2020). arXiv:2010.00631

83. Grosof, I., Scully, Z., Harchol-Balter, M.: SRPT for multiserver systems. Perform. Eval. 127–128,
154–175 (2018)

84. Grosof, I., Scully, Z., Harchol-Balter, M.: Load balancing guardrails: keeping your heavy traffic on
the road to low response times. Proc. ACM Meas. Anal. Comput. Syst. (POMACS/SIGMETRICS)
3(2), 1–31 (2019). Article 42

85. Guo, M., Guan, Q., Ke, W.: Optimal scheduling of VMs in queueing cloud computing systems with
a heterogeneous workload. IEEE Access 6, 15178–15191 (2018)

86. Gupta, A., Acun, B., Sarood, O., Kale, L.: Towards realizing the potential of malleable jobs. In: IEEE
International Conference on High Performance Computing (HiPC’14) (2014)

87. Harchol-Balter, M.: Network analysis without exponentiality assumptions. Ph.D. thesis, University
of California at Berkeley (1996)

88. Harchol-Balter, M.: The effect of heavy-tailed job size distributions on computer system design. In:
Proceedings of ASA-IMS Conference on Applications of Heavy Tailed Distributions in Economics,
Engineering and Statistics, Washington, DC (1999)

89. Harchol-Balter, M.: Task assignment with unknown duration. J. ACM 49(2), 260–288 (2002)
90. Harchol-Balter, M.: Performance Modeling and Design of Computer Systems: Queueing Theory in

Action. Cambridge University Press, Cambridge (2013)
91. Harchol-Balter, M., Crovella, M., Murta, C.: On choosing a task assignment policy for a distributed

server system. In: Lecture Notes in Computer Science, No. 1469: 10th International Conference on
Modeling Techniques and Tools for Computer Performance Evaluation, pp. 231–242 (1998)

92. Harchol-Balter,M.,Downey,A.: Exploiting process lifetime distributions for dynamic load balancing.
In: Proceedings of ACM SIGMETRICS, pp. 13–24, Philadelphia, PA (1996)

93. Harchol-Balter,M.,Downey,A.: Exploiting process lifetime distributions for dynamic load balancing.
ACM Trans. Comput. Syst. 15(3), 253–285 (1997)

94. Harchol-Balter, M., Schroeder, B., Bansal, N., Agrawal, M.: Size-based scheduling to improve web
performance. ACM Trans. Comput. Syst. 21(2), 207–233 (2003)

95. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. Computer 41, 33–38 (2008)
96. Horvath, G., Horvath, I., Almousa, S.A.-D., Telek, M.: Numerical inverse Laplace transformation

using concentrated matrix exponential distributions. Perform. Eval. 137, 1–22 (2019)
97. Hunt, P.J., Kurtz, T.G.: Large loss networks. Stoch. Process. Appl. 53(2), 363–378 (1994)
98. Hyytiä, E., Aalto, S., Penttinen, A.: Minimizing slowdown in heterogeneous size-aware dispatching

systems. In: Proceedings of the 2012 ACMSIGMETRICS International Conference onMeasurement
and Modeling of Computer Systems (2012)

99. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht, B.: Occupy the cloud: distributed computing
for the 99%. In: Proceedings of the 2017 Symposium on Cloud Computing, pp. 445–451, New York,
NY (2017)

100. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C., Khandelwal, A., Pu, Q., Shankar, V., Carreira,
J., Krauth, K., Yadwadkar, N.J., Gonzalez, J.E., Popa, R.A., Stoica, I., Patterson, D.A.: Cloud pro-
gramming simplified: a Berkeley view on serverless computing (2019). CoRR, arXiv:1902.03383

123

http://arxiv.org/abs/2010.00631
http://arxiv.org/abs/1902.03383

Queueing Systems (2021) 97:3–37 35

101. Joshi, G., Soljanin, E., Wornell, G.: Efficient replication of queued tasks for latency reduction in
cloud systems. In: Allerton Conference on Communication, Control, and Computing, University of
Illinois, Urbana-Champaign (2015)

102. Kim, S.S.L M/M/s queueing system where customers demand multiple server use. Ph.D. thesis,
Southern Methodist University (1979)

103. Lee,K., Shah,N.B.,Huang, L., Ramchandran,K.: TheMDSqueue: analysing the latency performance
of erasure codes. IEEE Trans. Inf. Theory 63(5), 2822–2842 (2017)

104. Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. In: Proceedings of the
Annual ACM Symposium on Theory of Computing (STOC), pp. 110–119 (1997)

105. Li, H., Groep, D., Wolters, L.: Workload characteristics of a multicluster supercomputer. In: 10th
International Conference on Job Scheduling Strategies for Parallel Processing (IPPS’04), pp. 176–
193. Springer (2004)

106. Lin, S.-H., Paolieri, M., Chou, C.F., Golubchik, L.: A model-based approach to streamlining dis-
tributed training for asynchronous SGD. In: MASCOTS 2018, pp. 306–318 (2018)

107. Lu,Y.,Xie,Q.,Kliot,G.,Geller,A., Larus, J.R.,Greenberg,A.: Join-idle-queue: a novel loadbalancing
algorithm for dynamically scalable web services. Perform. Eval. 68(11), 1056–1071 (2011)

108. Madni, S.H.H., Latiff, M.S.A., Abdullahi, M., Abdulhamid, S.M., Usman, M.J.: Performance com-
parison of heuristic algorithms for task scheduling in IaaS cloud computing environment. PLoS ONE
12(5), 1–26 (2017)

109. Maguluri, S.T., Srikant, R.: Scheduling jobs with unknown duration in clouds. IEEE/ACM Trans.
Netw. 22(6), 1938–1951 (2014)

110. Maguluri, S.T., Srikant, R., Ying, L.: Stochastic models of load balancing and scheduling in cloud
computing clusters. In: Proceedings of IEEE INFOCOM, pp. 702–710 (2012)

111. Massoulie, L., Roberts, J.W.: Bandwidth sharing and admission control for elastic traffic. Telecom-
mun. Syst. 15, 185–201 (2000)

112. Melikov, A.: Computation and optimization methods for multiresource queues. Cybern. Syst. Anal.
32(6), 821–836 (1996)

113. Mok, A.: Fundamental design problems of distributed systems for the hard real-time environment.
Ph.D. thesis, MIT, Department of EE and CS (1983)

114. Morozov, E., Rumyantsev, A.S.: Stability analysis of a MAP/M/s cluster model by matrix-analytic
method. In: Fiems, D., Paolieri, M., Platis, A.N. (eds.) Computer Performance Engineering—13th
European Workshop, EPEW 2016, Chios, Greece, October 5–7, 2016, Proceedings, volume 9951 of
Lecture Notes in Computer Science, pp. 63–76. Springer (2016)

115. Narlikar, G.J.: Scheduling threads for low space requirement and good locality. Theory Comput. Syst.
35(2), 151–187 (2002)

116. Nelson, R.D., Tantawi, A.N.: Approximate analysis of fork/join synchronization in parallel queues.
IEEE Trans. Comput. 37(6), 739–743 (1988)

117. Ponomarenko, L., Kim, C.S., Melikov, A.: Performance Analysis and Optimization of Multi-traffic
on Communication Networks. Springer, Berlin (2010)

118. Psychas, K., Ghaderi, J.: On non-preemptive VM scheduling in the cloud. Proc. ACM Meas. Anal.
Comput. Syst. 1(2), 1–29 (2017). Article 35

119. Raaijmakers, Y., Borst, S., Boxma, O.: Delta probing policies for redundancy. Perform. Eval.
127(128), 21–35 (2018)

120. Raaijmakers, Y., Borst, S., Boxma, O.: Redundancy scheduling with scaled Bernoulli service require-
ments. Queueing Syst. 93(1–2), 67–82 (2019)

121. Raaijmakers, Y., Borst, S., Boxma, O.: Stability of redundancy systems with processor sharing. In:
Proceedings of the 13th International Conference on Performance Evaluation Methodologies and
Tools (VALUETOOLS’20), pp. 120–127 (2020)

122. Rizk, A., Poloczek, F., Ciucu, F.: Stochastic bounds in fork–join queueing systems under full and
partial mapping. Queueing Syst. 83(3), 261–291 (2016)

123. Rumyantsev, A., Morozov, E.: Stability criterion of a multiserver model with simultaneous service.
Ann. Oper. Res. 252(1), 29–39 (2017)

124. Schrage, L.E.: A proof of the optimality of the shortest remaining processing time discipline. Oper.
Res. 16, 678–690 (1968)

125. Schrage, L.E., Miller, L.W.: The queueM/G/1 with the shortest remaining processing time discipline.
Oper. Res. 14, 670–684 (1966)

123

36 Queueing Systems (2021) 97:3–37

126. Schroeder, B., Harchol-Balter,M.: Evaluation of task assignment policies for supercomputing servers:
the case for load unbalancing and fairness. Clust. Comput. J. Netw. Softw. Tools Appl. 7(2), 151–161
(2004)

127. Scully, Z., Grosof, I., Harchol-Balter, M.: The Gittins policy is nearly optimal in the M/G/k under
extremely general conditions. Proc. ACM Meas. Anal. Comput. Syst. (POMACS/SIGMETRICS)
3(4), 1–29 (2020). Article 43

128. Scully, Z., Grosof, I., Harchol-Balter, M.: Optimal multiserver scheduling with unknown job sizes in
heavy traffic. In: 38th International Symposium on Computer Performance, Modeling, Measurement,
and Evaluation (IFIP PERFORMANCE 2020), Milan, Italy (2020)

129. Scully, Z., Harchol-Balter, M., Scheller-Wolf, A.: SOAP: one clean analysis of all age-based schedul-
ing policies. Proc. ACM Meas. Anal. Comput. Syst. (POMACS/SIGMETRICS) 2(1), 1–30 (2018).
Article 16

130. Scully, Z., Harchol-Balter, M., Scheller-Wolf, A.: Simple near-optimal scheduling for the M/G/1.
Proc. ACM Meas. Anal. Comput. Syst. (POMACS/SIGMETRICS) 4(1), 1–29 (2020). Article 11

131. Shankar, V., Krauth, K., Pu, Q., Jonas, E., Venkataraman, S., Stoica, I., Recht, B., Ragan-Kelley, J.:
Numpywren: serverless linear algebra (2018). CoRR, arXiv:1810.09679

132. Shneer, S., Stolyar, A..: Large-scale parallel server system with multi-component jobs (2020).
arXiv:2006.11256

133. Sigman, K.: Appendix: a primer on heavy-tailed distributions. Queueing Syst. 33(1/3), 261–275
(1999)

134. Simhadri, H.V., Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Kyrola, A.: Experimental analysis of
space-bounded schedulers. In: Proceedings of the 26thACMSymposiumonParallelism inAlgorithms
and Architectures (SPAA’14), pp. 30–41, Prague, Czech Republic (2014)

135. Smith, W.L.: On the distribution of queueing times. Math. Proc. Camb. Philos. Soc. 49(3), 449–461
(1953)

136. Snyder, B.: Server virtualization has stalled, despite the hype (2010). InfoWorld. https://www.
infoworld.com/article/2624771/server-virtualization-has-stalled--despite-the-hype.html. Accessed
15 Nov 2020

137. Sreekanti, V., Chenggang,W., Lin, X.C., Schleier-Smith, J., Gonzalez, J., Hellerstein, J.M., Tumanov,
A.: Cloudburst: stateful functions-as-a-service. Proc. VLDB Endow. 13(11), 2438–2452 (2020)

138. Sun, Y., Zheng, Z., Koksal, C.E., Kim, K.-H., Shroff, N.B.: Provably delay efficient data retrieving
in storage clouds. In: Proceedings of IEEE INFOCOM (2015)

139. Talbot, A.: The accurate numerical inversion of Laplace transforms. IMAJ.Appl.Math. 23(1), 97–120
(1979)

140. Tang, C., Yu, K., Veeraraghavan, K., Kaldor, J., Michelson, S., Kooburat, T., Anbudurai, A., Clark,
M., Gogia, K., Cheng, L., Christensen, B., Gartrell, A., Khutornenko, M., Kulkarni, S., Pawlowski,
M., Pelkonen, T., Rodrigues, A., Tibrewal, R., Venkatesan, V., Zhang, P.: Twine: a unified cluster
management system for shared infrastructure. In: 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’20) (2020)

141. Thomasian, A.: Analysis of fork/join and related queueing systems. ACMComput. Surv. 47(2), 1–71
(2014)

142. Tian, H., Zheng, Y., Wang, W.: Characterizing and synthesizing task dependencies of data-parallel
jobs in Alibaba cloud. In: 10th ACM Symposium on Cloud Computing (SoCC’19), Santa Cruz, CA
(2019)

143. Tikhonenko, O.M.: Generalized Erlang problem for service systems with finite total capacity. Probl.
Inf. Transm. 41(3), 243–253 (2005)

144. Tirmazi, M., Barker, A., Deng, N., Haque, M.E., Qin, Z.G., Hand, S., Harchol-Balter, M., Wilkes, J.:
Borg: the next generation. In: Proceedings of the 15th European Conference on Computer Systems
(EuroSys’20), pp. 1–14, Greece (2020)

145. Trueman,C.:Why data centres are the new frontier in the fight against climate change. Computerworld
(2019)

146. Van Dijk, N.M.: Blocking of finite source inputs which require simultaneous servers with general
think and holding times. Oper. Res. Lett. 8(1), 45–52 (1989)

147. Vandevoorde, M.T., Roberts, E.S.: WorkCrews: an abstraction for controlling parallelism. Int. J.
Parallel Program. 17(4), 347–366 (1988)

123

http://arxiv.org/abs/1810.09679
http://arxiv.org/abs/2006.11256
https://www.infoworld.com/article/2624771/server-virtualization-has-stalled--despite-the-hype.html
https://www.infoworld.com/article/2624771/server-virtualization-has-stalled--despite-the-hype.html

Queueing Systems (2021) 97:3–37 37

148. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.: Large-scale cluster
management at Google with Borg. In: Proceedings of the 10th European Conference on Computer
Systems, p. 18 (2015)

149. Wang, D., Joshi, G., Wornell, G.W.: Efficient straggler replication in large-scale parallel computing.
Proc. ACM Meas. Model. Comput. Syst. (ACM SIGMETRICS 2019) 4(2), 1–23 (2019). Article 7

150. Wang,W.,Harchol-Balter,M., Jiang,H., Scheller-Wolf,A., Srikant, R.:Delay asymptotics and bounds
for multi-task parallel jobs. Queueing Syst. Theory Appl. 91(3), 207–239 (2019)

151. Wang,W., Xie, Q., Harchol-Balter,M.: Zero queueing formulti-server jobs (2020). arXiv:2011.10521
152. Wardley, S.: Why the fuss about serverless? (2016). https://blog.gardeviance.org/2016/11/why-fuss-

about-serverless.html. Accessed 15 Nov 2020
153. Welch, P.D.: On a generalizedM/G/1 queueing process in which the first customer of each busy period

receives exceptional service. Oper. Res. 12, 736–752 (1964)
154. Weng, W., Wang, W.: Dispatching parallel jobs to achieve zero queueing delay (2020).

arXiv:2004.02081
155. Whitt, W.: Understanding the efficiency of multi-server service systems. Manag. Sci. 38(5), 708–723

(1992)
156. Whitt, W.: Blocking when service is required from several facilities simultaneously. AT&T Bell Lab.

Tech. J. 64, 1807–1856 (1985)
157. Wilkes, J.: More Google cluster data. Google research blog (2011). http://googleresearch.blogspot.

com/2011/11/more-google-cluster-data.html. Accessed 15 Nov 2020
158. Wilkes, J.: Google cluster-usage traces v3 (2019). http://github.com/google/cluster-data. Accessed

15 Nov 2020
159. Xu, Y., Musgrave, Z., Noble, B., Bailey, M.: Bobtail: avoiding long tails in the cloud. In: Proceedings

of the 10th USENIX Conference on Networked Systems Design and Implementation (NSDI’13), pp.
329–342, USA (2013)

160. Zhan, X., Bao, Y., Bienia, C., Li, K.: PARSEC3.0: a multicore benchmark suite with network stacks
and SPLASH-2X. ACM SIGARCH Comput. Arch. News 44, 1–16 (2017)

161. Zhang, W., Fang, V., Panda, A., Shenker, S.: Kappa: A programming framework for serverless com-
puting. In: ACM Symposium on Cloud Computing (SoCC’20), pp. 328–343 (2020)

162. Zhu, T., Berger, D., Harchol-Balter, M.: SNC-Meister: admitting more tenants with tail latency SLOs.
In: ACM Symposium on Cloud Computing (SoCC’16), pp. 374–387, Santa Clara, CA (2016)

163. Zhu, T., Tumanov, A., Kozuch, M.A.. Harchol-Balter, M., Ganger, G.R.: PriorityMeister: tail latency
QoS for shared networked storage. In: ACM Symposium on Cloud Computing 2014 (SoCC’14), pp.
1–14, Seattle, WA (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2011.10521
https://blog.gardeviance.org/2016/11/why-fuss-about-serverless.html
https://blog.gardeviance.org/2016/11/why-fuss-about-serverless.html
http://arxiv.org/abs/2004.02081
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://github.com/google/cluster-data

	Open problems in queueing theory inspired by datacenter computing
	Abstract
	1 Introduction
	2 Multiserver jobs
	3 Speedup functions
	3.1 The problem statement
	3.2 The most natural policy: EQUI
	3.3 Where EQUI fails: when sizes are known
	3.4 When jobs have different speedup functions

	4 Parallel DAG jobs and serverless computing
	5 Limited fork–join model for parallel jobs
	6 Computing workloads: extreme job size variability and heavy tails
	6.1 Compute usage in data centers
	6.2 Memory usage in data centers
	6.3 Some implications for scheduling

	7 Performance metrics
	7.1 The simplest metric: mean response time
	7.1.1 If sizes known
	7.1.2 Sizes not known
	7.1.3 A related metric with more practical value: mean slowdown

	7.2 Response time tail: jobs with deadlines
	7.3 The 99%-tile of response time
	7.4 Power consumption

	8 Conclusion
	Acknowledgements
	References

