
LOOKAHEAD CONVERGES TO STATIONARY POINTS OF
SMOOTH NON-CONVEX FUNCTIONS

Jianyu Wang?† Vinayak Tantia† Nicolas Ballas† Michael Rabbat†

?Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA
†Facebook AI Research, Montreal, Canada

Email: jianyuw1@andrew.cmu.edu, {tantia, ballasn, mikerabbat}@fb.com

ABSTRACT
The Lookahead optimizer [Zhang et al., 2019] was recently pro-
posed and demonstrated to improve performance of stochastic first-
order methods for training deep neural networks. Lookahead can be
viewed as a two time-scale algorithm, where the fast dynamics (in-
ner optimizer) determine a search direction and the slow dynamics
(outer optimizer) perform updates by moving along this direction.
We prove that, with appropriate choice of step-sizes, Lookahead
converges to a stationary point of smooth non-convex functions. Al-
though Lookahead is described and implemented as a serial algo-
rithm, our analysis is based on viewing Lookahead as a multi-agent
optimization method with two agents communicating periodically.

Index Terms— Lookahead optimizer, deep learning, stochastic
non-convex optimization.

1. INTRODUCTION

Deep neural networks (DNNs) are essential contemporary tools
for machine learning tasks across a range of domains, including
speech recognition, computer vision, and natural language under-
standing [1, 2, 3]. Training DNNs for supervised learning tasks
essentially involves solving a finite-sum optimization problem of the
form,

min
x∈Rd

f(x), with f(x) :=
1

m

m∑
i=1

fi(x), (1)

where fi quantifies the loss of the model being trained with respect
to the ith training sample when the model has parameters x, for a
model with d parameters and training dataset with m training sam-
ples. The objective of training is to find model parameters x which
make the loss as small as possible on average over the entire training
set. In the training of DNNs, one challenge is that the functions fi
are not convex. Moreover, the problem dimensions d and m may
both be very large.

The most widely-used training methods make use of stochastic
gradients. For example, stochastic gradient descent (SGD) performs
updates

xk+1 = xk − γkg(xk; ξk),
where γk is the learning rate and g(xk; ξk) is the stochastic gradient,
typically assumed to satisfy properties such as being unbiased and
having bounded variance; i.e.,

Eξ
[
g(x; ξ)

∣∣ x] = ∇f(x), and (2)

Eξ
[
‖g(x; ξ)−∇f(x)‖2

∣∣ x] ≤ σ2 (3)

where σ2 is a finite, non-negative scalar. In practice, stochastic gra-
dients arise when one estimates the gradient of f with a mini-batch

gradient: the average of the gradients of a small, randomly sampled
subset of terms fi.

Training large DNNs on large datasets is time-consuming, and
the search for more efficient optimization methods for this task
remains very active [4]. The recently-introduced Lookahead opti-
mizer [5] takes a novel approach to improving stability and reducing
variance for DNN training. Zhang et al. [5] propose the Looka-
head optimizer, which we describe in detail below, and empirically
demonstrate that it improves the performance of other methods like
SGD and ADAM [6] on image classification, language modeling,
and neural machine translation tasks. Zhang et al. [5] also provide
some theoretical guarantees in the case where f is quadratic. Specif-
ically, they derive an optimal step size and show that the variance
of Lookahead is lower than that of SGD when using stochastic gra-
dients, and they also provide some convergence guarantees in the
setting where f is quadratic and gradients are deterministic.

Our contribution in this paper is to provide a convergence analy-
sis of Lookahead in a more general setting. Specifically, we assume
that f is smooth (i.e., differentiable, with Lipschitz gradients) and
that the stochastic gradients satisfy the properties (2) and (3). In this
setting, our main results show that Lookahead converges to a first-
order stationary point; specifically, if one uses a sequence of step
sizes that decrease at an appropriate rate, then E[‖∇f(xk)‖2]→ 0,
and if one uses an appropriately-chosen constant step size, then

1

K

K−1∑
k=0

E[‖∇f(xk)‖2] = O
(

1√
K

)
.

Perhaps surprisingly, although it is a serial optimization method, our
proof approach involves viewing Lookahead as a multi-agent opti-
mization method [7] with two agents. This allows us to leverage
existing analysis techniques for multi-agent stochastic optimization
methods, and it also opens the door to natural parallel, multi-agent
extensions of Lookahead.

2. THE LOOKAHEAD OPTIMIZER

The pseudo-code of Lookahead is listed in Algorithm 1. Lookahead
maintains two copies of the model parameters, the fast model and
a slow model. The fast model is updated at each iteration using the
selected base optimizer (e.g., SGD, ADAM). The slow model is only
updated every τ steps and considers the change of the fast model, i.e.
xt,τ − xt,0, as the descent direction and uses α < 1 as the step size
as shown in line 6 of Algorithm 1. In the next round, the initial fast
model will be reset to the current value of slow model (see line 2).

We compare LookAhead with SGD Momentum on the CIFAR-
10 and ImageNet datasets. We train a Resnet-34 following the exper-
imental protocol of [2] on CIFAR10 and an Resnet-50 on ImageNet



Algorithm 1: Lookahead Optimizer of Zhang et al. [5]
Input: Initial model parameter z0; Objective function f(x);

Base optimizer A; Slow learning rate α; Inner loop
length τ .

1 for t ∈ {0, 1, . . . , T − 1} do
2 Synchronize parameters xt,0 ← zt−1

3 for l ∈ {0, 1, . . . , τ − 1} do
4 Base optimizer step: xt,l+1 = xt,l −A(f,xt,l)
5 end
6 Update slow model: zt = zt−1 + α(xt,τ − xt,0)

7 end
8 Return slow model zT−1

0 50 100 150 200
 Epoch

10 3

10 2

10 1

Tr
ai

n 
Lo

ss

SGD with momentum
LookAhead = 0.3
LookAhead = 0.5
LookAhead = 0.7

(a) Resnet34 on CIFAR-10

0 20 40 60 80
 Epoch

100

2 × 100

3 × 100

Tr
ai

n 
Lo

ss

SGD with momentum
LookAhead = 0.3
LookAhead = 0.5
LookAhead = 0.7

(b) Resnet50 on ImageNet

Fig. 1: Comparison between SGD with Momentum and LookAhead
optimizers on CIFAR10 and ImageNet. We observe that LookAhead
provides optimization benefit over SGD with momentum on both
datasets. Using low values for the slow learning rate α can speed-up
the optimization initially, but do not achieve as good final training
loss as higher α values.

using a similar set-up than [8]. We use a batch-size of 256 and step-
wise learning rate decay. In both case, we observe that LookAhead
provides optimization benefit over SGD with momentum. Using low
value for the slow learning rate α can further speed-up the optimiza-
tion initially, but do not achieve as good final training loss as higher
α values. LookAhead did not lead to significantly better generaliza-
tion performances than SGD, in both settings.

3. CONVERGENCE ANALYSIS

In this section we provide a new perspective to analyze the Looka-
head optimizer by viewing the optimizer from a multi-agent perspec-
tive [7]. Specifically, one agent updates the fast model x and the
other agent updates the slow model z. While the fast model is up-
dated after every iteration using the base optimizer (e.g., SGD), the
slow model is only changed through the periodic synchronization
between agents. In a typical two-agent problem, the agents would
cooperate to minimize f1(x1)+ f2(x2) subject to a consensus con-
straint x1 = x2. Here we have f1 = f , f2 = 0, x1 = x, and
x2 = z.

The description of Lookahead originally presented in [5], and as
shown in Algorithm 1, involves nested loops, with the fast variables
updated in the inner loop, and the slow variables updated once in
each outer loop. Of course, the algorithm can be written equivalently
with a single loop (let us refer to an iteration counter k) where the
fast variables are updated at every iteration and the slow variables
are only updated at those iterations where, e.g., (k + 1) mod τ = 0.
We will analyze this single-loop setting.

Formally, let xk denote the fast model after k base optimizer
steps, and zk denote the corresponding slow model. Define the pa-
rameter matrix Xk = [xk,zk] ∈ Rd×2 and stochastic gradients
matrix Gk = [g(xk; ξk),0] ∈ Rd×2. Then, the update rule of the
Lookahead optimizer can be written as

Xk+1 = [Xk − γkGk]Pk (4)

where Pk ∈ R2×2 represents the model synchronization matrix,

Pk =

{
a1>, (k + 1) mod τ = 0

I, otherwise
(5)

with a = [α, 1−α]>. It is worth noting that (Pk)k≥0 is a sequence
of time-varying column stochastic matrices, unlike many previous
works on decentralized optimization [7, 9, 10] which require Pk to
be row-stochastic or doubly-stochastic. Moreover, not every Pk has
its second largest eigenvalue strictly less than one in magnitude. Pre-
vious studies using column-stochastic matrices include [11, 12, 13]
and those incorporating push-sum updates [14, 15].

Note that 1>a = a>1 = 1 and Ia = a. Therefore, Pka = a.
Multiplying the vector a on both sides of (4), we have

Xk+1a = [Xk − γkGk]Pka (6)
= Xka− αγkg(xk; ξk) (7)

For the purpose of analysis, let us define the sequence yk = Xka =
αxk+(1−α)zk, ∀k ≥ 0. Substituting the definition of yk into (7),
we obtain the simple vector-form update rule:

yk+1 = yk − αγkg(xk; ξk). (8)

Comparing (8) to the normal SGD updates (yk+1 = yk−γkg(yk; ξk)),
we can observe that yk performs perturbed gradient updates using
an effective learning rate αγk, and the stochastic gradients are
evaluated at xk instead of yk. Besides, note that, ∀t ≥ 0,

ytτ − xtτ = (1− α)(ztτ − xtτ ) = 0, (9)
ytτ − ztτ = α(xtτ − ztτ ) = 0. (10)

The fast model, slow model and yk are equal to each other after
every τ steps. Thus, if yk converges to a stationary point then the
fast model xk and slow model zk do too. In the sequel, we will
focus on analyzing the convergence of yk.

3.1. Main Results

The convergence analysis is based on the assumption that stochastic
gradients are unbiased and have bounded variance, as presented in
(2) and (3). Moreover, assume the objective function f(x) is L-
smooth, i.e.,

‖f(x)− f(y)‖ ≤ L ‖x− y‖ ,∀x,y ∈ Rd. (11)

We first show that Lookahead with diminishing learning rate can
converge to a stationary point in the considered setting. The proofs
of all theorems are deferred to Section 3.2.

Theorem 1 (Convergence of Lookahead, diminishing learning rate).
Suppose the Lookahead optimizer is initialized at y0 = x0 = z0.
If the fast learning rate is kept as a constant within each inner loop,
i.e., γtτ+l = γtτ , ∀t ≥ 0, l ∈ {0, 1, . . . , τ − 1}, and satisfies

∞∑
t=0

γtτ =∞,
∞∑
t=0

γ2
tτ <∞,

∞∑
t=0

γ3
tτ <∞, (12)

αγtτL+ (1− α)2γ2
tτL

2τ(τ − 1) ≤ 1, ∀t ≥ 0 (13)



then under Assumptions (2), (3) and (11), we have that

lim inf
k→∞

E[‖∇f(yk)‖2] = 0.

In order to get a sense of the convergence rate and how the op-
timization error bound is influenced by different hyper-parameters,
we have the following theorem.

Theorem 2 (Convergence of Lookahead, fixed learning rate). Sup-
pose the Lookahead optimizer is initialized at y0 = x0 = z0. If the
fast learning rate is kept as a constant within each inner loop, i.e.,
γtτ+l = γ, ∀t ≥ 0, l ∈ {0, 1, . . . , τ − 1}, and satisfies (13), then
under Assumptions (2), (3) and (11), we have that:

1

K

K−1∑
k=0

E[‖∇f(yk)‖2] ≤
2[f(y0)− finf]

αγK
+ αγLσ2

+ (1− α)2γ2L2σ2(τ − 1) (14)

where finf denotes the lower bound of the objective function. Fur-
thermore, if we set γ = 1/

√
K, then the above bound becomes:

1

K

K−1∑
k=0

E[‖∇f(yk)‖2] ≤
2[f(y0)− finf] + α2Lσ2

α
√
K

+
(1− α)2L2σ2(τ − 1)

K
(15)

=O
(

1√
K

)
. (16)

Theorem 2 shows that when the learning rate is configured prop-
erly, Lookahead can achieve the same asymptotic convergence rate
1/
√
K as mini-batch SGD [4]. Furthermore, note that when γ is

fixed and K approaches to the infinity, the optimization error bound
(14) becomes αγLσ2+(1−α)2γ2L2σ2(τ −1). There should be a
best value of α that minimizes the error bound. Besides, comparing
to the asymptotic error floor of mini-batch SGD (γLσ2), one can ob-
serve that only when (1−α)γL(τ−1) ≤ 1, Lookahead can achieve
a better bound. This puts a constraint on the minimal value of α and
is corroborated well by experiments in Figure 1: a small α cannot
achieve as good final training loss as higher α values.

3.2. Proofs of Main Theorems

It follows from (11) and the update rule (8) that

f(yk+1)− f(yk) ≤− αγk 〈∇f(yk), g(xk; ξk)〉

+
α2γ2

kL

2
‖g(xk; ξk)‖2 . (17)

For the ease of writing, we denote by Ek[·] the conditional expecta-
tion Eξk∼D[·|Fk], where Fk is the sigma algebra generated by the
noise in stochastic gradients until iteration k. Taking the conditional
expectation on both sides of (17), for the first term on RHS, we have

Ek[〈∇f(yk), g(xk; ξk)〉] = 〈∇f(yk), ∇f(xk)〉 (18)

=
1

2

[
‖∇f(yk)‖2 + ‖∇f(xk)‖2 − ‖∇f(yk)−∇f(xk)‖2

]
(19)

≥1

2

[
‖∇f(yk)‖2 + ‖∇f(xk)‖2 − L2 ‖yk − xk‖2

]
(20)

=
1

2

[
‖∇f(yk)‖2 + ‖∇f(xk)‖2 − (1− α)2L2 ‖xk − zk‖2

]
(21)

where (20) follows (11) and (21) comes from the definition of yk.
For the second term on RHS of (17), applying Assumptions (2)
and (3),

Ek
[
‖g(xk; ξk)‖2

]
≤ ‖∇f(xk)‖2 + σ2. (22)

Plugging (21) and (22) back into (17) and taking the total expecta-
tion, we get

E[f(yk+1)] ≤E[f(yk)]−
αγk
2

E
[
‖∇f(yk)‖2

]
+
α2γ2

kLσ
2

2

− αγk
2

(1− αγkL)E
[
‖∇f(xk)‖2

]
+
αγk(1− α)2L2

2
E
[
‖xk − zk‖2

]
. (23)

Without loss of generality, assume that k = tτ + l, where t ≥ 0
denotes the index of outer iteration and l ∈ {0, 1, . . . , τ−1} denotes
the index of inner loop steps. Note that the fast learning rate is kept
the same within each inner loop, that is, γtτ+l = γtτ ,∀t, l. Then,
summing over the t-th outer iteration,

E[f(y(t+1)τ )]− E[f(ytτ )]

≤− αγtτ
2

τ−1∑
l=0

E
[
‖∇f(ytτ+l)‖2

]
+
α2γ2

tτLσ
2τ

2

− αγtτ
2

(1− αγtτL)
τ−1∑
l=0

E
[
‖∇f(xtτ+l)‖2

]
+
αγtτ (1− α)2L2

2

τ−1∑
l=0

E
[
‖xtτ+l − ztτ+l‖2

]
. (24)

Now, we are going to bound the last term in (24). Recall that xtτ =
ztτ = ztτ+l, ∀t ≥ 0, l < τ . It follows that

E
[
‖xtτ+l − ztτ+l‖2

]
=E

[
‖xtτ+l − xtτ‖2

]
(25)

=E

∥∥∥∥∥
tτ+l−1∑
j=tτ

γtτg(xj ; ξj)

∥∥∥∥∥
2
 (26)

=γ2
tτE

∥∥∥∥∥
tτ+l−1∑
j=tτ

g(xj ; ξj)

∥∥∥∥∥
2
 . (27)

Repeatedly using the fact
∥∥∑n

i=1 ai
∥∥2 ≤ n∑n

i=1 ‖ai‖
2, we get

E

∥∥∥∥∥
tτ+l−1∑
j=tτ

g(xj ; ξj)

∥∥∥∥∥
2


≤2E

∥∥∥∥∥
tτ+l−1∑
j=tτ

(g(xj ; ξj)−∇f(xj))

∥∥∥∥∥
2

+

∥∥∥∥∥
tτ+l−1∑
j=tτ

∇f(xj)

∥∥∥∥∥
2


(28)

≤2σ2l + 2E

∥∥∥∥∥
tτ+l−1∑
j=tτ

∇f(xj)

∥∥∥∥∥
2
 (29)

≤2σ2l + 2l

tτ+l−1∑
j=tτ

E[‖∇f(xj)‖2] (30)

where (29) uses the fact that {ξj} is an i.i.d. sequence of random
variables, and hence, for all j, s,

E [〈g(xj ; ξj)−∇f(xj), g(xs; ξs)−∇f(xs)〉] = 0. (31)



Combining (27) and (30) and summing from l = 0 to l = τ − 1,

τ−1∑
l=0

E
[
‖xtτ+l − ztτ+l‖2

]
(32)

≤σ2γ2
tτ (τ − 1)τ + 2γ2

tτ

τ−1∑
l=0

l

tτ+l−1∑
j=tτ

E[‖∇f(xj)‖2] (33)

=σ2γ2
tτ (τ − 1)τ + 2γ2

tτ

τ−2∑
l=0

[
E[‖∇f(xtτ+l)‖2]

τ−1∑
s=l+1

s

]
(34)

=σ2γ2
tτ (τ − 1)τ + γ2

tτ

τ−2∑
l=0

[
E[‖∇f(xtτ+l)‖2](τ + l)(τ − 1− l)

]
.

(35)

Note that (τ + l)(τ − 1− l) achieves its maximal value when l = 0.
Therefore, we have

τ−1∑
l=0

E
[
‖xtτ+l − ztτ+l‖2

]
(36)

≤σ2γ2
tτ (τ − 1)τ + γ2

tτ (τ − 1)τ

τ−2∑
l=0

E[‖∇f(xtτ+l)‖2] (37)

≤γ2
tτ (τ − 1)τ

[
σ2 +

τ−1∑
l=0

E[‖∇f(xtτ+l)‖2]

]
. (38)

Here, we finish bounding the last term in (24). Substituting (38) into
(24), one can obtain

E[f(y(t+1)τ )]− E[f(ytτ )]

≤− αγtτ
2

τ−1∑
l=0

E
[
‖∇f(ytτ+l)‖2

]
+
α2γ2

tτLσ
2τ

2

+
(1− α)2αγ3

tτL
2σ2τ(τ − 1)

2
− αγtτC

2

τ−1∑
l=0

E
[
‖∇f(xtτ+l)‖2

]
(39)

where C = 1−αγtτL− (1−α)2γ2
tτL

2τ(τ − 1). According to the
constraint given in (13), C ≥ 0 and thus,

E[f(y(t+1)τ )]− E[f(ytτ )]

≤− αγtτ
2

τ−1∑
l=0

E
[
‖∇f(ytτ+l)‖2

]
+
α2γ2

tτLσ
2τ

2

+
(1− α)2αγ3

tτL
2σ2τ(τ − 1)

2
(40)

Summing over both sides of (40) from t = 0 to t = T − 1,

E[f(yTτ )− f(y0)]

≤− 1

2

T−1∑
t=0

αγtτ

τ−1∑
l=0

E
[
‖∇f(ytτ+l)‖2

]
+
α2Lσ2τ

2

T−1∑
t=0

γ2
tτ

+
(1− α)2αL2σ2(τ − 1)τ

2

T−1∑
t=0

γ3
tτ . (41)

After minor rearranging, we have

1

τST

T−1∑
t=0

γtτ

τ−1∑
l=0

E
[
‖∇f(ytτ+l)‖2

]
≤2E[f(y0)− f(yTτ )]

ατST
+ αLσ2

∑T−1
t=0 γ2

tτ

ST

+ (1− α)2L2σ2(τ − 1)

∑T−1
t=0 γ3

tτ

ST
(42)

≤2[f(y0)− finf]

ατST
+ αLσ2

∑T−1
t=0 γ2

tτ

ST

+ (1− α)2L2σ2(τ − 1)

∑T−1
t=0 γ3

tτ

ST
(43)

where ST =
∑T−1
t=0 γtτ . Recall the learning rate constraint (12),

as the increase of T , the RHS of (43) approaches to 0. Here, we
complete the proof of Theorem 1.

When the (fast) learning rate is a fixed constant, i.e., γtτ =
γ, ∀t ≥ 0, the upper bound (43) changes to

1

τT

T−1∑
t=0

τ−1∑
l=0

E
[
‖∇f(ytτ+l)‖2

]
=

1

K

K−1∑
k=0

E
[
‖∇f(yk)‖2

]
≤2[f(y0)− finf]

αγK
+ αγLσ2 + (1− α)2γ2L2σ2(τ − 1) (44)

where K = Tτ is the total number of iterations. When we set
γ = 1/

√
K, it follows that

1

K

K−1∑
k=0

E
[
‖∇f(yk)‖2

]
≤2[f(y0)− finf] + α2Lσ2

α
√
K

+
(1− α)2L2σ2(τ − 1)

K
, (45)

which completes the proof of Theorem 2.

4. CONCLUSIONS

We have shown that Lookahead converges to a first-order stationary
point of smooth non-convex settings when the stochastic gradients
are unbiased and have finite variance and the base optimizer is SGD.
Our proof approach involves viewing Lookahead, which is readily
described as a two-timescale algorithm, as a multi-agent optimiza-
tion method with two agents (one fast, one slow) which periodically
synchronize.

While a direct approach to scaling up Lookahead would be to use
a method like large mini-batch SGD as the fast optimizer, the multi-
agent perspective also naturally leads to a decentralized implemen-
tation where nodes use approximate distributed averaging. Another
natural extension of Lookahead is to incorporate some form of mo-
mentum into the slow update step. We found that using momentum
in the slow update did not provide any advantage for serial Looka-
head. However, using momentum in the slow updates provides a
substantial improvement in the multi-agent setting. We investigate
this further in our recent submission [16].

5. REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kings-
bury, “Deep neural networks for acoustic modeling in speech



recognition,” IEEE Signal Processing Magazine, vol. 29, no.
11, pp. 82–97, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, USA, Jun. 2016, pp.
770–778.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all
you need,” in Advances in Neural Information Processing Sys-
tems, Long Beach, USA, Dec. 2017, pp. 5998–6008.

[4] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods
for large-scale machine learning,” SIAM Review, vol. 60, no.
2, pp. 223–311, 2018.

[5] M. R. Zhang, J. Lucas, G. Hinton, and J. Ba, “Lookahead
optimizer: k steps forward, 1 step back,” in Advances in Neu-
ral Information Processing Systems, Vancouver, Canada, Dec.
2019.

[6] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in International Conference on Learning Represen-
tations, San Diego, USA, May 2015.

[7] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology
and communication-computation tradeoffs in decentralized op-
timization,” Proceedings of the IEEE, vol. 106, no. 5, pp. 953–
976, 2018.

[8] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large
minibatch SGD: Training ImageNet in 1 hour,” arXiv preprint
arXiv:1706.02677, 2017.

[9] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochas-
tic gradient push for distributed deep learning,” in Interna-
tional Conference on Machine Learning, Long Beach, USA,
Jun. 2019.

[10] J. Wang and G. Joshi, “Cooperative SGD: A unified framework
for the design and analysis of communication-efficient SGD
algorithms,” arXiv preprint arXiv:1808.07576, 2018.

[11] J. Chen and A. H. Sayed, “On the learning behavior of adaptive
networks – Part I: Transient analysis,” IEEE Trans. Informa-
tion Theory, vol. 61, no. 6, pp. 3487–3517, Jun. 2015.

[12] A. H. Sayed, “Adaptation, learning, and optimization over net-
works,” Foundations and Trends in Machine Learning, vol. 7,
no. 4–5, 2014.

[13] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex
environments – Part I: Agreement at a linear rate,” arXiv
preprint 1907.01848, Jul. 2019.

[14] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum dis-
tributed dual averaging for convex optimization,” in IEEE
Conf. Decision and Control (CDC), 2012, pp. 5453–5458.

[15] A. Nedić and A. Olshevsky, “Distributed optimization over
time-varying directed graphs,” IEEE Trans. Automatic Control,
vol. 60, no. 3, pp. 601–615, 2015.

[16] J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “SlowMo: Im-
proving communication-efficient distributed SGD with slow
momentum,” in International Conference on Learning Rep-
resentations (ICLR), Addis Ababa, Ethiopia, Apr. 2020.


