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Abstract

Public cloud providers offer a diverse collection of block storage options with different costs and performance SLAs. As a conse-
quence, it is difficult to select the right allocations for storage backends when moving data-heavy applications to the cloud. Mimir
is a tool for automatically finding a cost-efficient virtual storage cluster (VSC) configuration for a customer’s storage workload and
performance requirements. Importantly, since no single allocation type is best for all workloads, Mimir considers all allocation
types and even heterogeneous mixes of them. In our experiments, compared to state-of-the-art approaches that consider only one
allocation type, Mimir finds VSC configurations that reduce cost by up to 81% for substantial storage workloads.

Acknowledgements: We thank the members and companies of the PDL Consortium—Alibaba, Amazon, Datrium, Facebook, Google,
Hewlett Packard Enterprise, Hitachi, IBM Research, Intel, Micron, Microsoft Research, NetApp, Oracle, Salesforce, Samsung, Seagate, and Two
Sigma. Hojin Park is supported in part by Korea Foundation for Advanced Studies.



Keywords: Public cloud, Storage system, Automated resource provisioning



Mimir: Finding Cost-e�cient Storage Con�gurations
in the Public Cloud

Hojin Park, Gregory R. Ganger, George Amvrosiadis

1 Introduction
Companies are increasingly moving data-heavy applications
to the cloud, often replicating on-prem implementations of
integrated data processing and storage backend systems on
cloud instances. While researchers have introduced and stud-
ied e�ective approaches for auto-selecting cost-optimized
VM instances for computation work [2, 10, 13, 35, 37], less
attention has been paid to storage selection. For cold stor-
age, there is usually a clear option (e.g., S3 in AWS or Blob
Storage in Azure). For performant storage needs, however,
the option-set is increasingly diverse in volume types, SLAs,
and cost structures. Selecting the most cost-e�ective virtual
storage cluster (VSC) con�guration for a given data-heavy
application deployment is likely beyond all but the most
expert user.
Commonly, storage backends (e.g., distributed �le sys-

tems or key-value stores) are built for use with block storage
volumes providing traditional SSD or HDD interfaces. Select-
ing storage hardware for on-prem deployments is challeng-
ing [3, 4, 38], given the many options. The challenge in cloud
deployments is similarly di�cult, but di�erently so because
of cloud SLA and cost structures. Using AWS as a concrete
example, there are three types of block storage volume: local-
SSD associated with a compute instance, remote-SSD that
can be attached to any VM instance, and remote-HDD that
can be attached to any compute instance. Making matters
worse, each type has multiple allocation options with di�er-
ent costs and di�erent SLA structures regarding cost as a
function of performance and capacity required. For exam-
ple, some charge per-GB with a number of IOPS per-GB,
while others provide a speci�c capacity and performance for
a given cost, and still others a given MiB/s per-TB-rented.
Di�erent customers will be best served by di�erent choices,
and the best choice can be a mix of multiple types.
Figure 1 illustrates the need to consider the many types

and allocation options in selecting a VSC con�guration. For
each of three workloads on a distributed storage backend, it
shows the cost for the best VSC con�guration choice under
each of three constraints: only considering local-SSD allo-
cations, only considering remote storage (EBS) allocations
(e.g., as is done by a recent auto-selector called Optimus-
Cloud [29]), and considering arbitrary mixes of both storage
types. Two crucial takeaways are visible: (1) the best single-
type choice di�ers for di�erent workloads, and (2) a mixture
of allocation types is sometimes required to minimize cost.

Figure 1. No single storage type is most cost-e�cient for
every workload, and a mix of storage types is sometimes
best. The experimental setup and workloads (FR-A, FR-D,
and SYN) are described fully in Sec4.1.

This paper presents Mimir, a tool for �nding a cost-
e�ective set of instance and volume allocations for a dis-
tributed storage backend used by a data-heavy application
workload. Given high-level workload speci�cations and per-
formance requirements, as might be produced by pro�ling an
operational version of the system (whether on-prem or using
an over-provisioned pre-Mimir con�guration), Mimir con-
siders potentially heterogeneous VSC con�gurations to �nd
(for example) those shown as "Heterogeneous" in Figure 1.

Mimir casts VSC con�guration selection as an optimiza-
tion problem, like most prior tools for automated resource
selection. Central to how Mimir achieves its goals is predict-
ing the resources required for the given workload, includ-
ing both the I/O throughput of the access pattern and the
CPU+memory needs of the storage software. Predicting the
resources required, rather than a workload’s performance for
any given instance type like most previous works [2, 24, 29],
Mimir simpli�es both predictions and exploration of hetero-
geneous VSC con�guration options. It also allows Mimir to
�nd good VSC con�gurations for workload mixes composed
of multiple access patterns. With predicted resource require-
ments and analytically-formulated price-performance cost
models of public cloud resources, Mimir determines cost-
e�cient VSC con�gurations using dynamic programming.
We evaluate Mimir using distributed storage backends

and workloads inspired by discussions with engineers of a
top customer relationship management (CRM) service. Our
results show signi�cant cost savings arising from Mimir’s
approach and its ability to consider diverse storage types.
For example, compared to a state-of-the-art approach con-
sidering only EBS allocations, Mimir reduces cost by up to
81%. More generally, Mimir consistently and quickly �nds
cost-e�ective VSC con�gurations even when accounting for
imperfect pro�les and computation needs of the distributed
storage software.
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Contributions. This paper makes three primary contri-
butions. First, it shows that �nding cost-optimal cloud stor-
age VSC con�gurations requires consideration of diverse
allocation types. Second, it describes the architecture and
algorithms that allowMimir to �nd cost-e�ective VSC con�g-
urations for a distributed storage backend. Third, it demon-
strates that Mimir can e�ectively explore AWS’s diverse
block storage o�erings, reducing cost by up to 81% relative
to state-of-the-art approaches. Mimir will be shared as open-
source software.

2 Cloud Storage Con�guration Challenges
This section motivates the need for tools like Mimir that
automate the way virtual storage clusters are con�gured
in the public cloud. Speci�cally, we examine two aspects
of public clouds. First, we examine the diversity in perfor-
mance and cost characteristics of di�erent cloud storage
types, which complicate the manual con�guration process
(§2.1). Second, we examine how the diverse characteristics
of cloud storage types a�ect the overall cost of deploying
Apache BookKeeper, a scalable storage service, in the public
cloud (§2.2). Last, we survey related work and identify the
di�erence between Mimir with previous works (§2.3).

2.1 Storage Characteristics in the Public Cloud
It is crucial to understand the characteristics of the public
cloud storage types in order to con�gure storage systems
atop virtual storage cluster in a cost-e�cient manner. Mimir
formulates the price and performance cost model with the
analyzed storage characteristics in this section.
One of the public cloud storage types we use to build

volumes for the distributed storage systems in this paper
is block storage, such as AWS Elastic Block Store [7], Azure
Disk Storage [8], and GCE Persistent Disk [18]. On AWS,
there are �ve di�erent types of block storage: local NVMe
SSD, remote SSD (gp2, io1), and remote HDD (st1, sc1).
Local SSD is served as an SSD locally attached to some

instance types, such as i3, c5d, and m5d. It delivers very
high performance with low latency, but the attached volume
capacity is �xed, and it can be an expensive option for the
data that does not require high throughput. Unlike local SSD,
users can attach any remote storage volumes (EBS) to the
machines they need. The performance of remote storage
types is de�ned as SLAs by the public cloud providers. For
instance, AWS currently o�ers gp2 volumes at 3 IOPS per
GiB of provisioned capacity, while it provides 40 MiB/s per
TiB of provisioned capacity for st1 volumes.

Figures 2 and 3 illustrate the characteristics of 1 TiB of gp2
volume and 1 TiB of st1 volume, in which the performance
of each volume is 3000 IOPS and 40 MiB/s, respectively, and
local SSD attached at i3.xlarge. We generated the test work-
loadswith the fio benchmark [16] varying the access pattern
(random/sequential), read ratio, and I/O unit size.

Figure 2. Performance characteristics of public cloud storage
types by I/O unit size. Both storage types have throughput
limits de�ned by AWS (horizontal lines).

Figure 3. Performance characteristics of public cloud storage
types by workload read ratio. EBS volumes are not a�ected
by the read ratio, while local SSDs are.

The performance of gp2 is de�ned in IOPS. As Figure 2
shows, as the I/O unit size increases, the throughput of gp2
also increases up to 250 MiB/s, which is the maximum single
gp2 volume throughput limited by SLA. In the case of st1,
performance is de�ned inMiB/s, but shows lower throughput
for the workloads with random access patterns and I/O units
less than 1MiB [22]. st1 has a throughput limit at 40MiB/s for
1 TiB st1 volume, in which the limit can be up to 500 MiB/s
for the larger st1 volume. The performance of gp2 is the same
for both random and sequential data access patterns, while
st1 shows better performance for sequential data access than
random access.

In Figure 3, the throughput of EBS volumes is not a�ected
by the read ratio of the storage workload as the read ratio
is not included in their performance SLAs. The local SSD,
however, shows much higher throughput than EBS, and we
observed that the throughput is not a�ected by the I/O unit
size for requests larger than 32KB.
We have measured the local SSD performance of all the

machines we used as candidates of the cost-optimal VSC.
Pro�ling is not a consuming process in terms of time or
cost because there are not many machines to pro�le (28
instance types in our experiment), and pro�ling need only
be performed once. There are other volume types (io1, sc1)
we also considered, but we omit them for brevity.
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2.2 Use Case: Apache BookKeeper Deployment Cost
Next, we give a motivating example demonstrating the po-
tential savings of careful machine con�guration for an appli-
cation. Inspired by discussions with engineers from a large
customer rights management (CRM) company shifting from
on-prem to cloud, we look at Apache BookKeeper. Apache
BookKeeper [23] is a storage system designed for high scal-
ability, fault-tolerance, and low-latency. It stores data as
streams of log entries in sequences called ledgers, and the
ledgers become immutable once the ledger is closed. The
primary data access pattern of the storage server (Bookie
server) is sequential writes and random reads. The concept
of ledgers and entries of Apache BookKeeper is similar to
that of the SSTables used in many storage systems, including
RocksDB [1].

Now we give a motivating example of reducing cost by ex-
ploiting heterogeneous resource allocations. Figure 4 shows
the resource utilization of the Bookie server running on
i3.2xlarge, with a 1.9 TiB local SSD. The workload is write-
only and requires 1.8 TiB of data capacity and 360 MiB/s of
write throughput. After 40 seconds, we add a 600GiB EBS
volume and increase both requirements by 30% so the work-
load’s required throughput per TiB remains the same.
For the �rst 40 seconds, 67% of CPU is idle on average

while the storage bandwidth of the local SSD is fully utilized.
Provisioning another instance with a local SSD would double
costs. Attaching an EBS volume to the original instance,
however, allows us to store 30% more data while paying only
12% additional cost, which reduces the cost per data size by
15%, and this heterogeneous allocation allows the workload
to utilize 15% more idle computing power.
Therefore, it is crucial to accurately predict how much

resources (e.g., CPU, memory, storage bandwidth, etc.) are
required for the given workload characteristics to con�gure
cost-e�cient heterogeneous virtual storage clusters (§3.3).
Also, though we restrict to a single instance type and one
workload characteristic in this example, if we consider more
instance types and workload characteristics together, the
gain from the heterogeneity compared to the homogeneous
allocation increases (§4.6).

2.3 Related Work
Con�guring storage and VMs in public cloud. Many
previous works [10, 27, 34, 40, 42] aim to optimize virtual
cluster con�guration in public clouds for various workloads.
Previous works [2, 24, 25] �nd near-optimal cloud storage
and VM con�guration for data analytics workloads, guaran-
teeing the performance and minimizing the cost. However,
the data service workloads we target have di�erent nature
from the data analytics workloads, e.g., data service work-
loads are long-running, rather than transient, and cannot
classify data into input/output and intermediate data, which
are common in data analytics applications.

Figure 4. Reducing the cost per data size by exploiting het-
erogeneous machine allocation. When Bookie server uses
only local SSD, CPU is underutilized. By attaching an EBS
volume it can store 30% more data paying only 12% addi-
tional cost, i.e., reduce the cost per data size by 15%.

OptimusCloud [29] jointly optimizes database and VM
con�gurations to �nd cost-e�cient VSC con�gurations for
distributed databases. We consider OptimusCloud as the
state-of-the-art to compare with Mimir, but OptimusCloud
seeks a cost-e�cient con�guration while considering only
the EBS storage type, which we show could be a costly con-
�guration compared to a VSC using both local SSD and EBS
volume types (§4.6).
Performance prediction on VMs. Numerous previous sys-
tems [9, 12, 14, 15, 30–33] studied the method of predict-
ing workload performance on VMs. PARIS [41] uses hybrid
o�ine/online data collection and trained a random forest
model using the collected data to predict the workload per-
formance on VMs. Ernest [39] predicts the performance of
large-scale data analytics workloads using pro�led data and
statistical performance modeling. Auto-con�guration sys-
tems [24, 29] also predict the workloads’ performance on
VMs using machine learning techniques, such as collabora-
tive �ltering and gradient boosting tree.
In contrast, our approach predicts resources required for

the given workload performance instead of predicting work-
load performance on VMs. Still, we can use similar data pro-
�ling techniques and prediction approaches that previous
works proposed, such as gradient boosting tree.

3 Mimir Design
Figure 5 shows the overall work�ow of Mimir. First, Mimir
takes as input information about multiple user-de�ned work-
loads (§3.1). Each workload can have a di�erent data access
pattern, such as the data request rate, data access locality,
and read and write request ratio. Then, our Resource pro�ler
pro�les each workload and collects data of how many re-
sources are required (ContainerSpec) to cost-e�ciently run
each workload on the machines in the cloud (§3.2). Using the
collected data, the Resource predictor learns how to convert
each workload speci�cation into the right size of the con-
tainer to run (§3.3). In Mimir, each storage server runs on
a docker container for resource isolation because multiple
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Figure 5.Mimir’s work�ow for optimizing the price of public
cloud resources. Mimir pro�les user-speci�ed workloads and
learn how much resources (e.g., CPU, memory) are required
for each of the workloads. The VSC Cost optimizer uses this
trained module and cost model of public cloud resources to
�nd the cost-e�cient VSC con�guration in the public cloud.

storage servers running on a single machine must be guaran-
teed the allocated resources. Lastly, the VSC Cost optimizer
uses the Resource predictor and the cost model of the pub-
lic cloud resources to �nd the cost-e�cient virtual storage
cluster con�guration of the distributed storage system (§3.4).

3.1 User-de�ned workloads
Mimir takes user-de�ned workload speci�cations as an in-
put. Table 1 shows the �ve attributes we use to describe
workload characteristics in Mimir. They are divided into
two categories: performance requirements and data access
pattern.
Data capacity and data request rate are the attributes of

the performance requirements that should be satis�ed for the
given workloads. Performance requirements are also used
as pro�ling knobs and they are proportional to the size of
workload fraction. For example, if a user de�nes a workload
with 1 TiB of data capacity and 10K QPS (i.e., queries per
second) of data request rate, we expect 3K QPS is required
for the 300 GiB of the given workload’s data.
The attributes of the data access pattern describe the be-

havior of the workloads: temporal/spatial data access locality,
percentage of the read operations, and distribution of data
size stored in the storage backend. Unlike the performance
requirements, Mimir expects the attributes of the data access
pattern to remain the same for any workload fraction and
uses this assumption in the Resource pro�ler to generate a
set of workload fractions to pro�le. As a future work, Mimir
will monitor the actual characteristics of the workload frac-
tion on runtime and give feedback to these assumptions to
recon�gure the VSC con�guration.

Many previous works [29, 36] have supported elastic right-
sizing cloud resources at runtime by predicting future work-
load characteristics or in a reactive manner. But elasticity is

orthogonal to our work. Instead, we focus on �nding the po-
tentially heterogeneous cost-e�cient VSC con�guration for
the mixture of static workloads with di�erent characteristics.

3.2 Resource pro�ler
Mimir should know the cost-e�cient container size to al-
locate for the storage servers, i.e., Mimir should be able to
allocate enough resources to satisfy the performance require-
ments of the user-de�ned workloads while not provisioning
more resources than the workload needs. However, many
factors make it challenging to compute the right size of
ContainerSpec for the arbitrary workload speci�cation an-
alytically. Read/write ampli�cation inherent in the storage
servers depends on the implementation and data access pat-
tern; memory size of the storage servers and read/write ratio
of workloads a�ect the necessary storage throughput and
computing power for the container to meet the performance
requirements. None of these factors can be precisely for-
mulated without the storage system experts and should be
reformulated for every storage system to be used. Instead of
formulating the right size of ContainerSpec, Mimir, therefore,
1) pro�les and collects data using the Resource pro�ler and
2) predicts the cost-e�cient size of ContainerSpec using the
Resource predictor trained with the collected data.

The Resource pro�ler runs the workloads de�ned by users
on a benchmark machine to collect the data of the cost-
e�cient size of containers for the given workload speci�ca-
tions. When pro�ling, Mimir uses the performance require-
ment attributes as knobs to get multiple data points. The
attributes of the ContainerSpec we use are: the number of
CPUs, memory size, storage bandwidth, storage capacity, and
network bandwidth. To get enough pro�ling data, we chose
i3.4xlarge of AWS as the benchmark machine, which has
the local SSD with the highest single-storage performance
(1900GB NVMe SSD), and su�cient memory and computing
resources in pro�ling our evaluation workloads.

Note that there are multiple suitable ContainerSpecs for a
single workload speci�cation. For example, a read-intensive
workload with a high degree of data access locality requires
less storage volume performance and computing power with
larger memory size because of memory caching. Figure 6
shows how di�erent the required resources are according to
the memory size, even for the same workload speci�cation.
So the Resource pro�ler pro�les the workload with di�erent
memory sizes to take into account multiple ContainerSpecs
in the optimization algorithm.
Algorithm 1 shows the Resource pro�ler’s logic to collect

the data of the right size of ContainerSpecs for the multiple
workload fractions with di�erent performance requirements.
The Resource pro�ler �rst measures the maximum perfor-
mance p of the workload on the benchmarkmachine with the
given data access pattern (Line 4 of Algorithm 1). Then, it gen-
erates a set of N di�erent workload fractions (i.e., workloads
with 1/# ⇤?, 2/# ⇤?, ...,# /# ⇤? performance requirements)
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Type Attribute Description Units
Performance requirement
(Pro�ling knobs)

data capacity total size of data stored in the storage system GB
data request rate rate of read and write requests arrive at the storage system QPS

Data access pattern
data request size mean or distribution of the requested data size Byte
read/write ratio ratio of the read and write request rates
access locality pattern of data access locality

Table 1. The workload characteristic attributes. The performance requirement attributes are the knobs used by Mimir in
pro�ling to get multiple pro�le data points, while the data access pattern attributes are not changed.

Figure 6. The cost-e�cient container sizes for the same
workload with di�erent memory sizes. The larger the mem-
ory size of the container running the storage server, the less
other resources such as storage bandwidth and computing
power are required.

to pro�le on the benchmark machine (Line 5 of Algorithm 1).
We used # = 10 in our experiments. For each workload frac-
tion in the set, the Resource pro�ler �nds the right container
size (Line 7-13 of Algorithm 1). It �rst measures the average
resource utilization while running the workload fraction on
the benchmark machine. However, the container allocated
with the average resource utilization may not meet the per-
formance requirements, or it may have been allocated more
resources than necessary. So, the Resource pro�ler repeat-
edly updates the candidate container size by measuring the
storage server performance and resource utilization in the
running container until it �nds the cost-e�cient size of the
container. As simple rules of updating the container size
iteratively (Line 10 of Algorithm 1), if the current container
size satis�es the workload requirements and the average uti-
lization values of some resources are less than the threshold
(we used 80%), it is considered those resources are allocated
more than necessary. So the pro�ler reduces their resource
allocations. If it does not satisfy the workload requirements,
Mimir increases the allocation of the resources with the av-
erage utilization higher than the threshold (we used 90%),
judging them as bottleneck resources.

3.3 Resource predictor
Based on the data pro�led by the Resource pro�ler, Mimir
predicts the cost-e�cient size of containers for the given

Algorithm 1 Pro�ling logic of the Resource pro�ler
1: W : User-de�ned workload speci�cation
2: BM: Benchmark machine
3: procedure P������(, )
4: p M������M��P���(W, BM)
5: S W�������F�������S��T�P������(W, p)
6: D {}
7: for wf in S do
8: u M������R�������U����������(wf, BM)
9: while ¬ I�C��������R����S���(wf, u) do
10: u U�����C��������S���(wf, u)
11: end while
12: D[wf] u
13: end for
14: return D
15: end procedure

workload characteristic. Currently, Mimir provides an imple-
mentation using interpolation, but other prediction models,
such as a gradient boosting tree [17], could be used instead.
The Resource pro�ler pro�led N di�erent workload frac-

tions, in which each requires the performance of the 8/# ⇥ ?
(where 8 = 1 · · ·# and ? is the maximum performance on the
benchmark machine). Thus, the ContainerSpecs for the work-
load requiring performance less than ? can be computed
using interpolation. As we noted, we use the large enough
instance types as a benchmark machine (i.e., the machine
that can pro�le up to large ?) in order to use the interpolation
for the workload fractions that require high performance.

The interpolation approach allows accurate prediction of
the right size of the ContainerSpecs as the Resource pro�ler
pro�les enough data. However, this approach requires a full
pro�ling process when the new workload comes in, which
requires additional pro�ling time and cost.

3.4 VSC Cost optimizer
Mimir uses a nested optimization loop tominimize the cost of
the virtual storage cluster while satisfying the performance
requirements. Figure 7 shows an example of how the outer
loop (O��C������) and the inner loop (O��S�����M������)
works. First, the outer loop uses dynamic programming to
break the problem of �nding the cost-e�cient VSC con�g-
uration that can run the entire workload into the smaller
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Figure 7. Example of the VSC Cost optimizer’s optimization algorithm. The outer loop uses dynamic programming to break
the optimization problem into smaller problems, and the inner loop �nds the answers for the base conditions.

Algorithm 2 Optim. algorithm of the VSC Cost optimizer
1: , : User-de�ned workload speci�cation
2: procedure O��C������(, )
3: (  W�������F�������P����(, )
4: 2  1
5: for Pair<, 1,, 2> in ( do
6: C  O��C������(, 1) + O��C������(, 2)
7: 2  min(C , 2)
8: end for
9: C  O��S�����M������(, )
10: 2  min(C , 2)
11: return 2
12: end procedure
13:
14: procedure O��S�����M������(, )
15: ⇡  W�������F�������P���������(, )
16: 2  1
17: for 3 in ⇡ do
18: (  R�������P��������(3)
19: 2  min(MIPS�����((), 2)
20: end for
21: return 2
22: end procedure

problems of �nding the cost-e�cient VSC con�guration that
can run the workload fractions. In order to obtain the values
of the base conditions of the dynamic programming problem,
the inner loop searches for the cost-e�cient resource con�g-
uration of a single machine that can execute each workload
fraction.

Algorithm 2 shows the pseudocode of the nested optimiza-
tion loop. We will �rst explain the algorithm assuming that
there is only a single workloadW as an input and then ex-
pand to the case where multiple workloads are given as an
input.
Outer loop: OptCluster. The VSC Cost optimizer uses

dynamic programming because our optimization problem
has optimal substructure property and overlapping subprob-
lems. Mimir �rst de�nes the workload fraction unit (,5 ) of

the given workloadW, the smallest unit of the workload data
stored in the same storage volume. The size of,5 provides
the trade-o� between the search space size and the optimal-
ity of the solution. We empirically evaluated the trade-o�
and found that using the data size between 50-100 GiB for
,5 is generally good in our experiments, e.g., Mimir uses 100
GiB of data size and 1K QPS as,5 for the workload requires
3 TiB of storage capacity and 30K QPS. Automatically adjust-
ing the size of,5 that considers both optimization time and
solution optimality is an interesting research problem, and
we left it as our future work.

If the size of,5 is 1/# of, , the optimization problem of
�nding the cost-e�cient VSC con�guration for, is:

O��C������(, ) = O��C������(# ⇥,5 )

We will now explain the optimal substructure property
of our optimization problem. Let’s assume that we already
know the cost-e�cient VSC con�guration for, , +(⇠>?C . If
+(⇠>?C hasmore than onemachine, any subcluster of+(⇠>?C

must be the most cost-e�cient VSC con�guration for the
workload fraction that the subcluster is running. Otherwise,
we can �nd another VSC con�guration cheaper than+(⇠>?C

by replacing the subcluster with the cheaper one, which
contradicts our assumption of +(⇠>?C .
Using this optimal substructure property, we can use dy-

namic programming (Line 5-10 of Algorithm 2). We �rst
divide the given workload (, = # ⇥,5 ) into two work-
load fractions. That is, there are b# /2c number of di�erent
workload fraction pairs, [8 ⇥,5 , (# � 8) ⇥,5 ]. Then the
O��C������(, ) is the minimum of O��C������ of b# /2c
pairs. As a base condition, all data of, can be stored in a
single machine:

O��C������(# ⇥,5 ) = min(
{O��C������(8⇥,5 )+O��C������((#�8)⇥,5 )}8= b# /2c

8=1 ,
O��S�����M������(# ⇥,5 ))

O��C������ function can be recursively called, until in-
put of O��C������ becomes,5 .
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Figure 8. Example of cost bene�ts when optimizing multiple
workloads together. In this example, Mimir can save the cost
of Machine 3 by attaching Workload Y’s storage volumes to
the Workload X’s virtual storage cluster.

Mimir can e�ciently compute the dynamic programming
using the memoization if the VSC Cost optimizer has all the
results of the base conditions (i.e., O��S�����M������) in
advance.
Inner loop: OptSingleMachine. To compute the base

conditions of dynamic programming,OptSingleMachine �nds
the cost-e�cient VSC con�guration of a single machine for
the givenworkload fraction (:⇥,5 ). Within a single machine,
there are P��������(:) number of di�erent ways to distrib-
ute the data into the storage volumes, where P��������(=)
equals the number of possible partitions of n. Then for each
partition, Mimir generates a set of ContainerSpecs by predict-
ing them for each workload fraction in the partition using
the Resource predictor. As each set has the resource require-
ments of the workload fractions, Mimir uses mixed-integer
programming (MIPS�����) to minimize the price of a single
machine under the resource and the performance require-
ment constraints:

minimize
"02⌘8=4,(C>A064

Machine[Price] +
’
8

Storage[i][Price]

subject to
’
⇠(

CS[CPU,Mem,...]  Machine[CPU,Mem,...]

’
⇠( 2(C>A064 [8 ]

CS[Storage BW]  Storage[i][BW]

Lastly, O��S�����M������ selects the partition with the
smallest return value of the MIPS����� as the cost-e�cient
con�guration of a single machine.
Multiple workloads as an input.When the input has

more than one user-de�ned workload, running the optimiza-
tion algorithm using all the workloads as an input at once
can �nd more (or at least the same) cost-e�cient results than
using separate virtual storage clusters together after �nding
the cost-e�cient VSC con�guration for each (Figure 8). The
same nested optimization algorithm can be used for multiple
workloads. However, as the number of workloads increases,
the complexity of the search space becomes infeasible.
The time complexity of the optimization outer loop for

the set of workloads {,8 }, where each workload,8 can be

divided into #8 ⇥,58 , is proportional to the multiplication
of #8 .

TC of the outer loop /Œ
8
#8

The time complexity of the inner loop is proportional to
the multiplication of two values: the number of possible
partitions of k, which is proportional to the exponential
function of the square root of k [5], and the optimization
time of the MIPS�����.

TC of the inner loop / 0
p
: ⇥)MIPS����� (a>1)

Since the total time complexity is the product of these
two time complexities, it increases exponentially with the
number of workloads considered. To make it complexity
feasible, we use systematic sampling and pairwise workload
optimization.

In the inner loop, instead of computingMIPS����� for all
the possible partitions, Mimir samples some of the partitions
and �nd the minimum among them. The reason why we
used systematic sampling rather than random sampling is
that the order we generate partitions has a property that the
adjacent partitions tend to have similar con�gurations. So
by selecting every =th partition allows the Mimir to explore
various con�gurations.

As the search space complexity increases exponentially
to the number of workloads, Mimir runs the optimization
algorithm for up to twoworkloads at once for all the pairwise
workload combinations. For example, if there are six di�erent
workloads as an input, rather than give six of them at once
to the optimization function, run the pairwise workload
optimization

�6
2
�
times and �nd the total cost-e�cient VSC

con�guration using them.
Both approaches provide the trade-o� between the opti-

mization execution time and the solution’s optimality. We
could not directly evaluate the trade-o� because the search
space is infeasible without these approaches. But, we show
Mimir can �nd cheaper VSC con�guration using these ap-
proaches when multiple workloads are considered as an
optimization input at once (§4.6).

4 Evaluation
We evaluate Mimir using a synthetic benchmark and Face-
book’s RocksDB key-value workloads [11]. We �rst describe
our experimental setup (§4.1) and baselines that have di�er-
ent resource constraints to be used in sensitivity evaluation
(§4.2). Then we evaluate Mimir with experiments to answer
the following questions:

• Given a set of workload characteristics, can Mimir use
pro�ling data to determine a cost-e�cient container
size? (§4.3)

• Given a set of workload characteristics and insu�-
cient pro�ling data, can Mimir predict a cost-e�cient
container size accurately? (§4.4)
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• How crucial selecting a data distribution for �nding
the cost-e�cient virtual storage cluster (VSC)? (§4.5)

• Can Mimir �nd a cost-e�cient VSC to satisfy the re-
quirements of di�erent workloads? (§4.6)

• Do the con�gurations proposed by Mimir waste re-
sources, i.e., miss out on potential cost savings? (§4.7)

4.1 Experimental setup
Cluster con�guration and software.We evaluated Mimir
using AWS EC2 US-East-1. We used 55 di�erent instance
types on AWS for the candidate instance types of the cost-
e�cient VSC con�guration (Table 2). The instance types we
experiment with include all types of AWS instances except
ones with GPUs, i.e., instances that are general purpose (m5,
m5d), compute optimized (c4, c5, c5d), memory optimized (r5,
r5d), and storage optimized (i3). For the candidate storage
types, we used local SSD (i.e., the high performance SSD
already attached at i3, c5d, r5d) and remote EBS volume
types (gp2, io1, st1, sc1). Note that any new type of instance
or storage type (e.g., gp3, io2) can be easily added to the
resource candidate pool. We ran our optimization algorithm
on a Xeon E5-2670 2.60GHz CPU with 64 GiB DDR3 RAM,
using Gurobi 9.0.1 solver [19]. We used Apache BookKeeper
4.11.0 as the storage backend where upon our key-value
workloads were run, as described in §2.2.

Category Instance type (# of instance sizes)
general purpose m5 (6), m5d (6)
compute optimized c4 (5), c5 (8), c5d (8)
memory optimized r5 (8), r5d (8)
storage optimized i3 (6)

Table 2. AWS instance types we used as the candidate ma-
chine types. We selected at least one instance type from each
category.

Workloads.We evaluated Mimir using two benchmarks
on top of Apache BookKeeper: a read-only synthetic bench-
mark and a set of workloads similar to the Facebook RocksDB
key-value workloads described in the previous work [11].
Detailed information of each benchmark is in Table 3.
Our read-only synthetic benchmark (SYN) is comprised

of two workloads: high-throughput workload (SYN-H) and
low-throughput workload (SYN-L). For the BookKeeper con-
�guration parameters, we used 64 KB of entry size (i.e., data
request size) and 2 MB of ledger size, which are the aver-
age value one of the CRM companies uses in their Book-
Keeper storage cluster. It also represents the key-value work-
loads that have large value sizes which are common in real-
world [6, 21, 26, 28]. For the performance requirements,
SYN-H and SYN-L require 200 MiB/s and 50 MiB/s per TiB
of data capacity, respectively, and both have 3 TiB of data.
Lastly, they read randomly from data in the storage cluster.
Facebook presented the detailed characteristics of their

key-value workloads [11] in their storage cluster which uses

RocksDB as their backend storage engine. They described
three production use cases, which are UDB, ZippyDB, and
UP2X, and we selected UDB to evaluate Mimir. Because
UDB has six workloads that have di�erent characteristics to
each other, we can evaluate Mimir for the complicated real-
istic benchmark. To evaluate UDB-like workload on Apache
BookKeeper, we implemented our own benchmark (FR) on
Apache BookKeeper that has similar characteristics as Face-
book described. Our benchmark has the same data size (i.e.,
entry size in BookKeeper) distribution stored in the storage
cluster, data access locality and count distribution, and av-
erage Put/Get request ratio. We used the same distributions
presented by Facebook, which are General Pareto Distribu-
tion [20] for value size distribution and a simple powermodel
for access count distribution, to reproduce the similar work-
load characteristics. However, we implemented only Put and
Get operations, as semantics of other RocksDB deviate sig-
ni�cantly from available operations in Apache BookKeeper.
Also, Mimir does not support dynamic re-con�guration of
VSC, so we omitted diurnal patterns of data request rate and
used the maximum data request rate of the UDB workloads
instead.We described the detailed attributes of six workloads,
FR-A to FR-F, on Table 3 and you can refer the paper [11]
to see the detailed information of data size distribution, and
data access locality and count distribution.

4.2 Baseline
We chose three resource restrictions as baselines to demon-
strate the importance of constructing a heterogeneous VSC
con�guration for cost-e�ciency. We found the optimization
results under the resource restriction of each baseline using
the VSC Cost optimizer of Mimir and compared them to the
result without any resource constraint.
SingleInstance-only. The simplest way to con�gure a

VSC on the public cloud is to select one instance type and
provision the same instance type as many times as necessary.
User can easily decide the number of machines to provision
by measuring the storage server performance of the selected
instance type. However, as this approach has a single dimen-
sion (i.e., the number of machines) in the search space, it
cannot search enough candidates of the optimal solution. In
our evaluation, we used i3.xlarge on AWS as the instance
type because it is categorized as a storage optimized instance
and provides high-performance local SSD as a storage.
LocalSSD-only. Another way to con�gure the VSC is

to use only instance types with local SSDs. In addition to
storage optimized instance types, some compute or memory
optimized instance types, such as m5d, c5d and r5d, also have
local SSD. As local SSD provides high storage performance
cost-e�ectively, it is a good candidate con�guration for the
storage system. However, it can be an expensive option that
provisions more IOPS than the workload actually needs.

EBS-only/OptimusCloud-like.TheVSC consists of only
EBS volumes. EBS volumes can persist data independently
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Benchmark Workload Capacity Request rate (QPS) Request size Read request ratio Access locality
Synthetic
benchmark

H 3 TiB 9600 64 KB 1.0 Random accessL 3 TiB 2400 64 KB 1.0

Facebook
RocksDB
benchmark

A 3 TiB 40K 120 B 0.86

Same as
described in [11]

B 600 GiB 20K 3 B 0.0
C 800 GiB 80K 17 B 0.81
D 200 GiB 40K 5 B 0.0
E 400 GiB 100K 20 B 0.29
F 800 GiB 160K 19 B 0.14

Table 3. Two benchmarks used to evaluate Mimir. Synthetic benchmark has two workloads: throughput-intensive (SYN-H)
and capacity-intensive workload (SYN-L). Facebook RocksDB benchmark consists of six real-world workloads with di�erent
workload characteristics [11]. We have implemented the workloads atop Apache BookKeeper.

from the status of the instance, and users can provision
the volume capacity as much as they need. However, to
support the workload requires high-performance, it is less
cost-e�cient option compared to the local SSD. Optimus-
Cloud [29] chose to restrict the volume type to EBS volume
because of its persistent characteristic, but our result shows
that using only EBS volumes as a storage type can be very ex-
pensive compared to the cost-e�cient virtual storage cluster
with no resource restriction. So we use the terms EBS-only
and OptimusCloud-like interchangeably.

Heterogeneous. Finally, for heterogeneous VSC con�gu-
ration,Mimir optimizeswithout any resource restriction. The
cluster can have any instance and storage type, in which the
search space includes both search spaces of LocalSSD-only
and EBS-only, and mix of two.

4.3 Cost-e�ciency of the pro�led container size
Observation 1: Mimir pro�les a cost-e�cient container size
to run the storage server for the given workload characteristics.
Any workload we tested utilizes at least 83% of the container
resources allocated by Mimir.

In this section, we evaluate how the ContainerSpec pro-
�led by Mimir �ts for the given workload. Figure 9 shows
the example of how the container with the size of pro�led
ContainerSpec works for the workload fraction of FR-A. Data
access pattern of the workload fraction we tested is the same
as the one of the original workload, and the performance
requirements in this example are 6K QPS of data request
rate and 450 GiB of data capacity. The ContainerSpec pro�led
for this workload fraction is 4.1 vCPU and 166 MB/s read
throughput of the storage volume. To evaluate, we ran a
docker container with the pro�led amount of resources and
measured the CPU and storage throughput of the storage
server running on the docker container. As Figure 9 shows,
the storage server utilizes 85% of both allocated computing
power and storage read throughput. We con�rmed that the
storage server running on the same container (i.e., container
with 4.1 vCPU and 166 MB/s read throughput) satis�es the
workload requirements, but the storage server on the next

Figure 9. The resource utilization of FR-A’s workload frac-
tion. The resource utilization (green line) shows that the
storage server utilizes 85% of the vCPU and storage read
throughput of the allocated resources according to the Con-
tainerSpec (red line). If any resource allocation reduces to
the amount of the next smaller ContainerSpec (blue line), the
storage server cannot satisfy the performance requirements.

smaller container (i.e., container with 3.7 vCPU and 150MB/s
read throughput) following our container size update algo-
rithm (§3.2) cannot meet the performance requirements. We
also checked that even a container lack of a single resource
could not satisfy the performance requirements. We ran the
same experiment on 300 other ContainerSpecs we pro�led
and all the results showed the resource utilization higher
than 83% of the resources allocated according to the pro�led
ContainerSpecs.

4.4 Resource predictor accuracy
Observation 2: Mimir can predict the cost-e�cient container
size using interpolation with small percent error.

We evaluate our Resource predictor using interpolation to
see how accurately it predicts the right size of ContainerSpec.
As a dataset, we use the ContainerSpecs that are pro�led by
the Resource pro�ler for the six workloads of FR.

As Mimir pro�les multiple data points with di�erent per-
formance requirements for each workload, we used all the
pro�led data as a test dataset to evaluate the interpolation ap-
proach. For instance, the maximum data request rate we mea-
sured for the FR-A workload on i3.4xlarge with memory-
to-data ratio of 1:16 is 20K QPS. So the Resource pro�ler
pro�led the right size of 10 di�erent ContainerSpecs for the
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Figure 10. Violin plot of FR-F showing the distribution of
the cost-e�cient VSC con�guration price for all possible
data distributions. Only a tiny portion of data distributions
can �nd the near cost-e�cient VSC con�guration.
workload fractions of FR-A with the performance require-
ments of 2K QPS, 4K QPS, ..., 20K QPS. So we evaluated
how close the pro�led ContainerSpec for 4K QPS to the in-
terpolation result of two ContainerSpecs for 2K QPS and
6K QPS. Table 4 shows at most 12.9% error for predicting
the cost-e�cient container size of FR’s six workloads using
interpolation.

Workload Avg % error of the interpolation predictor
CPU Read thpt. Write thpt. Net

FR-A 4.0% 1.1% 7.4% 2.0%
FR-B 2.4% 6.1% 8.4% 1.8%
FR-C 3.1% 0.8% 4.8% 1.1%
FR-D 5.9% 7.7% 1.4% 1.1%
FR-E 2.5% 0.6% 2.7% 1.0%
FR-F 12.9% 2.5% 4.5% 5.1%

Table 4. Percent error of the ContainerSpec prediction using
interpolation. The interpolation approach predicts the cost-
e�cient container size with small percent errors.

4.5 Analysis on ways of distributing data
Observation 3: The cost-e�cient VSC con�guration di�ers
greatly depending on how data is distributed.

We evaluate how much data distribution a�ects the cost-
e�ciency of the VSC con�guration. Here data distribution
is a partition of the workload data. For example, consider a
workload, that de�nes itsworkload fraction unit (,5 ) as 1/4
of the original size. Then, there are �ve di�erent partitions
(i.e., data distributions) of, , which are {4,� }, {3,� ,,� },
{2,� , 2,� }, {2,� ,,� ,,� }, and {,� ,,� ,,� ,,� }. The data
can be stored in the arbitrary number of storage servers.
So we �xed the number of machines to use and ran the
optimization algorithm of Mimir for each data distribution.

Figure 10 is a violin plot of FR-F showing the distribution
of the cost-e�cient VSC con�guration price for each data
distribution with a �xed number of machines. Mimir �nds
the most cost-e�cient VSC con�guration with 6 nodes at
the price of 2.09$/hr. For 6 nodes, out of 6043 possible data
distributions, only two of them could �nd the VSC con�g-
uration cheaper than 1.1x of the minimum price, which is

Figure 11. The sensitivity analysis of the optimiza-
tion results of the two benchmarks, SYN and FR. Mimir
�nds the most cost-e�cient VSC con�guration under the
Heterogeneous compared to the other baseline constraints.

2.3$/hr, i.e., except for the best data distribution, only one
distribution can �nd the VSC con�guration that costs less
than 1.1x of the minimum price. Even for 1.2x and 1.3x of the
minimum price, only 24 and 144 data distributions can �nd
the VSC con�guration cheaper than the respective prices. In
other words, only 2.4% of all possible data distributions can
unearth the VSC con�guration cheaper than 1.3x of the min-
imum cost. As we demonstrated, although there are many
data distributions and only a few of them can �nd near cost-
e�cient VSC con�gurations, Mimir successfully �nds the
cost-e�cient one using its optimization algorithm.

4.6 Sensitivity analysis
Observation 4: Mimir �nds the most cost-e�cient VSC con-
�guration when there is no resource constraint because dif-
ferent workloads prefer di�erent storage types to store data
cost-e�ciently.

We conducted the sensitivity test of the optimization re-
sults to show how the cost-e�cient VSC con�guration di�ers
between 1) the workloads with di�erent characteristics and
2) di�erent degrees of resource heterogeneity for the same
workload.

Figure 11 shows price comparison of the optimization
results with Heterogeneous and other baselines for both
SYN and FR. Mimir successfully �nds cheaper virtual storage
cluster with Heterogeneous than the other baselines and it is
up to 5.3x cheaper than the OptimusCloud-like constraint.
In both benchmarks, Mimir �nds more cost-e�cient VSC
con�guration under LocalSSD-only constraint compared
to the OptimusCloud-only constraint. However, it does not
mean that every workload data in the benchmarks is more
cost-e�cient to be stored in local SSD than EBS volume.

Figure 12 shows the storage preference of each workload
of SYN and FR. First, SYN-H is the workload that requires
high-performance (i.e., throughput-intensive workload) of
the storage system. Thus, Mimir �nds the virtual storage
cluster that only uses local SSD for the cost-e�cient solution
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Figure 12. The sensitivity analysis of the optimization results of the workloads of the two benchmarks, SYN and FR. Generally,
throughput-intensive workloads (e.g., SYN-H, FR-A,C,E,F) prefers local SSD as its storage volume type. In contrast, other
workloads (e.g., SYN-L, FR-B,D) that do not require high throughput prefer EBS volume to local SSD. An i3 instance type is a
costly option for some workloads (e.g., FR-B,D,E,F) that require the high computing power of the storage server, even if AWS
categorized i3 as storage optimized instance type.

with Heterogeneous. On the other hand, if Mimir uses EBS
volumes to store data that requires high storage performance,
it should provision much higher storage capacity than it
needs to provision enough volume IOPS. For example, in the
cost-e�cient VSC con�guration of SYN-H under EBS-only,
Mimir provisions total 15 TiB of gp2 volumes to store only 3
TiB of data to get enough volume IOPS. This con�guration
costs 2.5x higher price compared to the LocalSSD-only or
Heterogeneous.
In contrast, SYN-L is the workload that does not require

high-performance (i.e., capacity-intensive workload). So lo-
cal SSD is an expensive storage type to store data of SYN-L,
as it under-utilizes storage bandwidth of local SSD. The
throughput of gp2 (i.e., 3 IOPS per provisionedGiB) is enough
to support the workload. Figure 12 shows that the cost-
e�cient VSC con�guration under LocalSSD-only costs 1.7x
higher price than the one with EBS-only.

FR workloads with di�erent characteristics also show dif-
ferent preferences on the volume type. FR-A,C,E,F require
4.13x, 8.3x, 4.2x, 3.6x higher price with EBS-only constraint
than LocalSSD-only constraint, respectively, while FR-B,D
require 1.1x, 1.3x higher price under LocalSSD-only. As
Table 3 indicates, FR-B,D need lower data request rate and
smaller data request size than the other workloads, which
makes both workloads well suited to EBS volume type.

Observation 5: Considering various instance types is also
crucial to �nd the cost-e�cient VSC con�guration.

Not only the volume type, but also the instance type is
the important factor that a�ects the price of the virtual stor-
age cluster. For example, FR-F workload requires the second
highest storage system throughput per GiB of data among
the workloads of FR, andMimir �nds more cost-e�cient VSC
con�guration under the LocalSSD-only constraint com-
pared to the EBS-only constraint. However, i3.xlarge, a
storage optimized instance type (SingleInstance-only),
is costly option for the FR-F workload. Instead, the cost-
e�cient VSC con�guration uses c5d instance type under

Heterogeneous and LocalSSD-only constraints, in which
c5d is a compute optimized instance type that has small ca-
pacity of local SSD. This is because the the storage server
for FR-F needs high computing power (i.e., CPU-intensive)
as the workload requires high data request rate. Similarly,
FR-B,D,E prefer m5d or c5d to i3 instance type.

Observation 6: Considering two workloads together in the
optimization algorithm can save cost up to 10.3% compared to
using two clusters optimized for each.

Lastly, we evaluate the pairwise workload optimization of
the FR’s workloads. We ran the VSC Cost optimizer for the�6
2
�
number of pairwise combinations of the FR’s workloads.

Table 5 shows the selected combinations of the workloads
that minimize the total price of the virtual storage cluster
when the cluster should support all the workloads. (FR-B,
FR-E) pair yields the highest �nancial gains, 10.3% lower
price, when Mimir considers them together to optimize the
virtual storage cluster. FR-B and FR-E are cost-e�cient when
data is stored in EBS volume and local SSD, respectively.
Thus, Mimir �nds the VSC con�guration that remote EBS
volumes for FR-B are attached to the machines for FR-E
that have local SSDs. In this way, the cost of provisioning
instances for FR-B could be saved. (FR-A, FR-D) pair also
have the same property (i.e., they prefer di�erent volume
types), but there is no �nancial gain as no computing power
left in the machines of FR-A to support additional workloads
in the same machine. By the pairwise workload optimization,
Mimir could save total 4% additional cost compared to using
six individual virtual storage clusters optimized for each
workload.

Despite the large search space for the resource heterogene-
ity and numerous factors to consider (e.g., complex work-
load and storage characteristic, many price and performance
SLAs), Mimir could �nd the cost-e�cient VSC con�guration
under Heterogeneous.
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Optimal Cost/Hour ,1 ,2 ,1 +,2 Gain
,1 = FR-A,,2 = FR-D $1.86 $0.46 $2.32 0%
,1 = FR-B,,2 = FR-E $0.33 $1.8 $1.91 10.3%
,1 = FR-C,,2 = FR-F $2.25 $2.09 $4.21 3%
Table 5. Pairwise workload optimization of FR application.
Mimir �nds 10.3% cheaper VSC con�guration when it opti-
mizes the con�guration for both workloads at once.

Figure 13. Resource utilization of CPU, storage bandwidth
and storage capacity under various baseline constraints, eval-
uated with FR-D and FR-Fworkloads. The cost-e�cient VSC
con�guration with no resource constraint (Heterogeneous)
shows the highest and most balanced resource utilization.

4.7 Average resource utilization of cluster
Observation 7: When a workload is run on the cost-e�cient
virtual storage cluster, it shows high and balanced resource
utilization of machines in the cluster.

Weobserved that the poorly con�gured VSC con�guration
often waste large amount of provisioned resources, which
increases the total price of the virtual storage cluster. On the
contrary, the cost-e�cient VSC con�guration shows high
and balanced resource utilization.
Figure 13 shows the average resource utilization of the

machines in the clusters, in which each VSC con�guration
is optimized with Mimir under various baseline constraints.
We tested with two FR workloads, FR-D and FR-F, and we
measured the utilization of CPU, storage bandwidth, and
storage capacity (i.e., what fraction of provisioned storage
capacity is actually used).

First, FR-Dworkload under EBS-only constraint uses only
35% of the provisioned volume capacity, because more EBS
volume capacity is provisioned than the actual data size to
satisfy the throughput requirement of the workload, as EBS
volume’s throughput is proportional to the provisioned vol-
ume capacity. With the LocalSSD-only, only 20% of the pro-
visioned storage bandwidth is utilized because FR-D work-
load does not require high data request rate. Even though the
machines with local SSD o�er high-performance storage at a

low price, using only the machine types that have local SSD
is not the most cost-e�cient way to con�gure the cluster
if the storage bandwidth utilization is very low. So, with-
out any resource restriction, Mimir �nds the virtual storage
cluster that uses both types to store data by attaching EBS
volumes to the machines that have small local SSDs. As a
result, it achieves more balanced resource utilization under
the Heterogeneous constraint.

FR-F workload, on the other hand, uses only 3% of pro-
visioned volume capacity, which is much lower utilization
compared to the FR-D, under EBS-only constraint. As FR-F
requires very a high data request rate, 33x of the actual data
size should be provisioned for the EBS volume capacity to
get enough volume throughput. Therefore the cost-e�cient
VSC con�guration only uses local SSD with no resource con-
straint, in which the resource utilization is also balanced
using this con�guration.

5 Conclusion
Mimir �nds cost-e�cient virtual storage cluster (VSC) con-
�gurations for distributed storage backends. Given workload
information and performance requirements, Mimir predicts
resource requirements and explores the complex, heteroge-
neous set of block storage o�erings to identify the lowest-
cost VSC con�guration that satis�es the customer’s need.
Experiments show that no single allocation type is best for
all workloads and that a mix of allocation types is the best
choice for some workloads. Compared to a state-of-the-art
approach, Mimir �nds VSC con�gurations that satisfy re-
quirements at up to 81% lower cost.
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