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Abstract

The 3Sigma cluster scheduling system uses job runtime histories in a new way. Knowing how long each job will run allows a
scheduler to more effectively pack jobs with diverse time concerns (e.g., deadline vs. the-sooner-the-better) and placement preferences
on heterogeneous cluster resources. But, existing schedulers use single-point estimates (e.g., mean or median of relevant subset of
historical runtimes), and we show that they are fragile in the face of real-world estimate error profiles. In particular, analysis of
Jjob traces from three different large-scale cluster environments shows that, while most job runtimes can be predicted well, even
state-of-the-art predictors have wide error profiles with 8-23% of predictions off by a factor of two or more. Instead of reducing
relevant history to a single point, 3Sigma schedules jobs based on full distributions of relevant runtime history, and explicitly creates
plans that mitigate the effects of anticipated runtime uncertainty. Experiments with workloads derived from the same traces show
that 3Sigma approaches the end-to-end performance of a hypothetical perfect predictor, and greatly outperforms a state-of-the-art
scheduler using point estimates from a state-of-the-art predictor. 3Sigma reduces SLO miss rate, increases cluster goodput, and
improves or matches latency for best effort jobs.
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Figure 1: Comparison of 3Sigma with three other scheduling approaches w.r.t. SLO (deadline) miss rate, for a
mix of SLO and best effort jobs derived from the Google cluster trace [18] on a 256-node cluster. (Details in Sec. 5)
3Sigma, despite estimating runtime distributions online with imperfect knowledge of job classification, approaches
the performance of a hypothetical scheduler using perfect runtime estimates (PointPerfEst). Full historical runtime
distributions and mis-estimation handling helps 3Sigma outperform PointRealEst, a state-of-the-art point-estimate-
based scheduler (detailed in Sec. 2.2). The value of exploiting runtime information, when done well, is confirmed by
comparison to a conventional priority-based approach (Prio).

1 Introduction

Modern cluster schedulers face a daunting task. Modern clusters support a diverse mix of activities,
including exploratory analytics, software development and test, scheduled content generation, and customer-
facing services [18]. Pending work should be mapped to the heterogeneous resources so as to satisfy deadlines
for business-critical jobs, minimize delays for interactive best-effort jobs, maximize efficiency, and so on.
Cluster schedulers are expected to make that happen.

Knowledge of pending jobs’ runtimes has been identified as a powerful building block for modern
cluster schedulers [3, 12, 26]. With it, a scheduler can pack jobs more aggressively in a cluster’s resource
assignment plan [3, 12, 26, 29], such as by allowing a latency-sensitive best-effort job to run before a
high-priority batch job provided that the priority job will still meet its deadline. Runtime knowledge allows
a scheduler to determine whether it is better to start a job immediately on suboptimal machine types with
worse expected performance, wait for the jobs currently occupying the preferred machines to finish, or to
preempt them [26, 2]. Exploiting job runtime knowledge leads to better, more robust scheduler decisions
than relying on hard-coded assumptions.

In most cases, the job runtime estimates come from previous runtimes observed for similar jobs (e.g.,
from the same user or by the same periodic job script)—a point estimate (e.g., mean or median) is determined
from the relevant history. When the estimates are accurate, schedulers relying on them outperform those
using other approaches. Previous research [26] has also shown that these schedulers are robust to a reasonable
degree of runtime variation (e.g., up to 50%).

Surprisingly, we find that the estimate errors, albeit expected in large, multi-use clusters, cover an
unexpectedly larger range. Applying a state-of-the-art ML-based predictor [25] to three real-world traces,
including the well-studied Google cluster trace [18] and new traces from data analysis clusters used at a
hedge fund and a scientific site, shows good estimates in general (e.g., 77-92% within a factor of two of
actual runtime and most much closer). But, 8-23% are not within that range, and some are off by an order of
magnitude or more. Thus, a significant percentage of runtime estimates will be well outside the error ranges
previously reported.

Worse, we find that schedulers relying on runtime estimates cope poorly with such error profiles.
Comparing the middle two bars of Fig. 1 shows one example of how much worse a state-of-the-art scheduler
does with real estimate error profiles as compared to having perfect estimates.

This paper describes the 3Sigma cluster scheduling system, which uses all of the relevant runtime

'We also obtained a copy of the recent TetriSched system [26] and confirmed that it suffers the same negative effects from the
estimate error profiles we observe with the real traces.



history for each job instead of just a point estimate derived from it. It associates and uses expected runtime
distributions (e.g., the histogram of observed runtimes), taking advantage of the much richer information
(e.g., variance, possible multi-modal behaviors, etc.) to make more robust decisions. The first bar of Fig. 1
illustrates 3Sigma’s efficacy, showing that it approaches the hypothetical case of a scheduler with perfect
point estimates.

By considering the range of possible runtimes for a job, and their likelihoods, 3Sigma can explicitly
consider the various potential outcomes from each possible plan and select a plan based on optimizing the
expected outcome. For example, the predicted distribution for one job might have low variance, indicating
that the scheduler can be aggressive in packing it in, whereas another job’s high variance indicates that it
might be better served by more conservative start times (e.g., relative to a deadline). 3Sigma similarly exploits
the runtime distribution to adaptively address a significant problem with point over-estimates, by deciding
when to give up on a job based on the likelihood of missing its deadline.

Full system and simulation experiments with production-derived workloads demonstrate 3Sigma’s
effectiveness. Using its imperfect but automatically-generated history-based runtime distributions, 3Sigma
outperforms a state-of-the-art point-estimate-based scheduler and runtime-unaware priority scheduling,
especially for mixes of deadline-oriented jobs and latency-sensitive jobs on heterogeneous resources. 3Sigma
simultaneously provides higher SLO attainment for deadline-oriented jobs and increases cluster goodput
(utilization). In most cases, 3Sigma performs nearly as well as the hypothetical system with perfect estimates.

This paper makes four primary contributions. First, it exposes a major problem with applying recent
runtime-estimate-guided schedulers to large, multi-use clusters: significant numbers of bad esimates including
some large outliers. Second, it describes a solution based on using full runtime distributions and a scheduling
system (3Sigma) that does so successfully. Third, it describes new core scheduler mechanisms, implemented
in 3Sigma, needed to make distribution-based scheduling efficient and scalable enough as well as to mitigate
the effects of outliers falling outside the observed history. Fourth, it reports on end-to-end experiments on a
real 256-node cluster, showing that 3Sigma robustly exploits runtime distributions to improve SLO attainment
and best-effort performance, dealing gracefully with the complex runtime variations seen in real cluster
environments.

2 Background and Related Work

Cluster consolidation in modern datacenters forces cluster schedulers to handle a diverse mix of workload
types, resource capabilities, and user concerns [18, 29, 21]. One result has been a resurgence in cluster
scheduling research. This section focuses on work related to using information about job runtimes to make
better scheduling decisions.

Accurate job runtime information can be exploited to significant benefit in at least three ways at
schedule-time.

1) Cluster workloads are increasingly a mixture of business-critical production jobs and best-effort
engineering/analysis jobs. The production jobs, often submitted by automated systems [10, 23], tend to be
resource-heavy and to have strict completion deadlines [3, 12]. The best-effort jobs, such as exploratory
data analytics and software development/debugging, while lower priority, are often latency-sensitive. Given
runtime estimates, schedulers can more effectively pack jobs, simultaneously increasing SLO attainment for
production jobs and reducing average latency for best-effort jobs [3, 12, 26].

2) Datacenter resources are increasingly heterogeneous, and some jobs behave differently (e.g., complete
faster) depending upon which machine(s) they are assigned to. Maximizing cluster effectiveness in the
presence of jobs with such considerations can be more effective when job runtimes are known [26, 2, 34].

3) Many parallel computations can only run when all tasks comprising them are initiated and executed
simultaneously (Gang-scheduling) [16, 15]. Maximizing resource utilization while arranging for such bulk
resource assignments is easier when job runtimes are known.

Thus, many recent systems [3, 26, 7, 12, 8] make use of job runtime estimates provided by users or



predicted from previous runs of similar jobs. Such systems assume that the predictions are accurate, and
we find that they may face severe performance penalties if a significant percentage of runtime estimates are
outside a relatively small error range. Worse, we find that this should be expected in many environments.

2.1 Inherent variation and uncertainty in runtimes
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Figure 2:  Analyses of cluster workloads from three different environments: (a) Distribution of job runtimes (b)
Distribution of Coefficient of Variation for each subset grouped by user id (c¢) Distribution of Coefficient of Variation
for each subset grouped by amount of resources requested (d) Histogram of Estimate Errors comparing runtime
estimates from the state-of-the-art JVuPredict predictor and actual job runtimes. Estimate Error values computed by

%@]’mdl % 100. Each datapoint is a bucket representing values within 5% of the nearest decile. The “tail” datapoint

includes all estimate errors > 95%. Cluster:SC. Workload:Google E2E, DFT_E2E, MUSTANG_E2E

Analysis of job runtime predictability in production environments reveals that consistently accurate
predictions should not be expected. Specifically, this section discusses observations from our analysis of
job traces from three environments (details in Sec. 5): (1) a quantitative HedgeFund running a collection of
exploratory and production financial analytics jobs on two computing clusters in 2016; (2) scientists at Los
Alamos National Laboratory running data analysis, smaller-scale simulation, and development/test jobs on
the Mustang capacity cluster between 2011 and 2016; (3) Google: the well-known Google cluster trace[19]
released in 2011 that has been used extensively in the literature. We observe the following:

First, job runtimes are heavy-tailed (longest jobs are much longer than others), suggesting that at least a
degree of un-predictability should be expected. Heavy tails can be seen in the distribution of runtimes for
each workload (Fig. 2(a)).

Second, job runtimes within related subsets of jobs exhibit high variability. We illustrate this with
distributions of the Coefficient of Variation (CoV; ratio of standard deviation to mean), within each subset
clustered by a meaningful feature, such as user id (Fig. 2(b)) or quantity of resources requested (Fig. 2(c)).
CoV values larger than one (the CoV of an exponential distribution) is typically considered high variability.
Large percentages of subsets in each of the workloads have high variability, with more occurring in the
HedgeFund and Mustang workloads than in the Google workload.

Third, we evaluate the quality of the estimates from a state-of-the-art predictor and confirm that a
significant percentage of estimates are off by factor of two or more. For this evaluation, we generated a
runtime estimate for each job and compared with the actual observed runtime in the trace. We obtained a
copy of and use JVuPredict, the runtime predictor module from the recent JamaisVu [25] project to generate
runtime estimates. JVuPredict produces an estimate for each job by categorizing jobs (historical and new)
using common attributes, such as submitting user or resources requested, and choosing the estimate from the
category that has produced the best estimates in the past.”

Fig. 2(d) is the histogram of percent estimate error. For all workloads, most job runtimes are estimated
reasonably (e.g., £25% error), but few are perfect. Worse, in each workload, a substantial fraction of jobs
are over- or under-estimated by a large margin, well outside the range of errors considered in previous

2Smith et al. [22] describe a similar scheme and its effectiveness for parallel computations.



works [26, 8]. Even for the Mustang workload, which has large proportion of jobs with very accurate
(£5% error) estimates, at least 23% jobs have estimate error larger than 95% and substantial amount of jobs
have estimate error less than -55%. The HedgeFund trace has the fewest jobs with very accurate estimates
and many jobs in both tails of the distribution. The Google cluster trace has fewer jobs in the tails of the
distribution, but still has 8% of jobs mis-estimated by a factor of two or more.

Overall, we conclude that multi-purpose cluster workloads exhibit enough variability that even very
effective predictors will have more and larger mis-estimates than has been assumed in previous research on
schedulers that use information about job runtimes.

2.2 Mis-estimate mitigation strategies

The scheduling research community has explored techniques to mitigate the effects of job runtime
mis-estimates, which can significantly hamper a scheduler’s performance.

Some environments (e.g. [31, 12]) use conservative over-provisioning to tolerate mis-estimates by
providing the scheduler more flexibility. Naturally, this results in lower cluster utilization, but does reduce
problems. Morpheus [12] re-assigns resources to jobs that require more resources at runtime. Not all
applications are designed to be elastic, though, and some cannot make use of additional resources.

Preemption can be applied to address some issues arising from mis-estimates, like it is used in many
systems to re-assign resources to new high-priority jobs, either by killing (e.g., in container-based clusters [31])
or migrating (e.g., in VM-based systems [33]) jobs.

Various other heuristics have been used to mitigate the effects of mis-estimates. [24] addresses mis-
estimations of runtimes for HPC workloads by exponentially increasing under-estimated runtimes and then
reconsidering scheduling decisions. The “stochastic scheduler” [20] uses a conservative runtime estimate by
padding the observed mean by one or more standard deviations. Such heuristics help, and 3Sigma borrows
the first, but do not eliminate the problem.

2.3 A case for distribution-based scheduling

Are estimates of job runtime distributions more valuable than point estimates (e.g., estimates of the
average job runtime) for cluster scheduling?

One’s intuition may be to say “yes,” if for no other reason than that the distribution provides strictly
more information to the scheduler than the point estimate. However, a simple thought experiment might
deepen our confidence in this response. Imagine a very simple case: two jobs arrive to be scheduled on the
cluster, and the resources available are such that only one job may be scheduled at a time. Further, one job is
an SLO job with a deadline 15 minutes into the future and the other is a best-effort (BE) job. The objective of
the scheduler is to never miss the deadline of a SLO job, while also minimizing the latency of BE jobs. The
key question is then: which job should be run first?

To answer that question, the scheduler naturally needs more information. Let’s start by assuming a
point-estimate based scheduler. In our example, imagine that the average runtime of jobs like each of these is
known to be 5 minutes. Because the deadline window of 15 minutes is 50% longer the sum of the two point
estimates (10 minutes), one might assume that scheduling the BE job first would be relatively safe, which
would allow the BE job to start early while still respecting the deadline of the SLO job.

Consider, instead, a distribution-based scheduler, and let’s imagine two cases: A and B. In case A, the
runtime distribution of each job (SLO and BE) is uniform over the interval O to 10 minutes. The average
runtime is still 5 minutes, but the scheduler is able to calculate that the probability of the SLO job missing
its deadline would be 12.5% if the BE job were scheduled first. Hence, scheduling the SLO job first may
be desirable. For case B, in contrast, imagine that the distributions are uniform over the interval 2.5 to 7.5
minutes. Again, the average runtime is 5 minutes, but now the scheduler may safely schedule the BE job first,
because even if both jobs execute with worst-case runtimes, the SLO job will finish in the allotted 15 minute
window.

The key observation is that the distributions enable the scheduler to make better-informed decisions;
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Figure 3: Example curves for estimating utility for a given job. Each job is associated with a utility function (a)
describing its value as a function of completion time. 36Predict produces a PDF (b) describing potential runtimes for
the job. 36Sched combines them to compute expected utility (c) for the job as a function of its start time. [Note the
different x-axes for (a), (b), and (c).] As described in sec. 4.2, the overestimate handling technique involves modifying
the utility function (a) associated with the job with an extended version illustrated in (d).

knowing just the average job runtime is not nearly as valuable as knowing whether jobs are drawn from
distribution A or B. Two caveats should be mentioned here. First, we implied in this discussion that the SLO
deadline is strict; in some environments, this may not be true, and some weighting between BE job start time
and SLO miss rate is desirable. Second, the discussion assumed that the distribution supplied to the scheduler
is accurate. In practice, the distribution will have to be estimated in some way—probably from historical job
runtime data—and may differ from observed behavior. We address both of these topics later in the paper.

3 Distribution-based Scheduling

In this section, we describe the mechanisms that enable schedulers to use the full runtime distribution,
as opposed to runtime estimates. Any scheduler wanting to take advantage of runtime information can use
the following generic scheduling algorithm. The scheduler first generates all possible placement options
(resource, start_time), each of which has an associated utility. The scheduler chooses to run the set of jobs
which both maximize overall sum of utility and fit within the available resources.

Using job runtimes estimates, we can find the best schedule using basic optimization techniques (e.g.
MILP). However, with runtimes distributions, we have a much larger state-space to consider. For each
running job, there are many possible outcomes. Naively considering all scenarios easily makes this problem
intractable. Instead of considering each option, we use the expected utility per job and expected resource
consumption over time. This section describes how both of these values are calculated.

3.1 Valuation of scheduling options

For each job, there is a set of possible placement options. The placement of the job dictates the job’s
final completion time, and consequently it’s usefulness or utility. A scheduler needs to place jobs in a way
that maximizes overall utility. This section describes how to associate job placement options with the utility
of the job.

Utility. To make informed placement decisions, a scheduler must quantify its options relative to the
success metric the job cares about. We use utility functions to represent a mapping from the domain of
possible job placement options and completion times to the potential utility of the job. We assume that
a cluster administrator or an expert user will be able to define the utility function on a job-by-job basis.
However, in this work, we model the utility of SLO and latency sensitive jobs. The utility curve used for SLO
jobs is shown in Fig. 3(a). This curve models a job with constant utility if completed within the deadline, and
zero utility if completed after the deadline. On the other hand, we represent latency sensitive jobs as having a

linearly decreasing function over time to declare preference to complete faster.
Expected utility. For each placement option (resource, start_time), a scheduler computes the expected
utility of a job using the runtime distribution. The expected utility is calculated as the sum of utilities for each



runtime #, weighted by the probability that the job runs for ¢:

~max (runtime)
E[U (startTime)] = / U (startTime +¢)PDF (t)dt
0

where U (t) is utility function for placement in terms of completion time, and PDF is the probability density
function for the job runtime. Fig. 3 provides a simple example.

3.2 Estimating resource consumption of running jobs

To calculate the set of available resources over time, we need to estimate the resource usage of currently
running jobs. Using point estimates, we assume that the usage is deterministic. Using full distributions, we
acknowledge that the usage is probabilistic. Analogous to utility, we calculate and use expected resource
consumption.

Similarly to expected utility, the expected resource consumption of a job at time ¢ is the weighted average
of resource consumption observed in the runtime distribution. It is defined as 1 — CDF (t) per each unit of
resource, where the CDF is the cumulative density function of the job runtime.

To calculate the available resources of the cluster, 36Sched tracks the expected “remaining resource
consumption” (RRC) for each running job in the cluster. This metric is an up-to-date estimate of the remaining
resource consumption of running jobs. The RRC provides more information than the original expected
resource consumption by accounting for the fact that the job has run at least elapsed time so far. It is
calculated by recomputing the weighted average of resource consumption using a distribution that only
includes runtimes longer than elapsed.

1—CDF(t)
E[RRC(t,elapsed)] = 1— CDF (elapsed)

The remaining capacity of cluster at time ¢ is computed by subtracting E[RRC] at time ¢ for all jobs
from full cluster capacity.

4 3Sigma Design and Implementation

This section describes the architecture and key components of 3Sigma (Fig. 4). 3Sigma replaces the
scheduling component of a cluster manager, such as Hadoop YARN. The cluster manager remains responsible
for job and resource life-cycle management.

Job requests are received asynchronously by 3Sigma from the cluster manager (Step 1 of Fig. 4). As is
typical for such systems, the specification of the request includes a number of attributes, such as (1) the name
of the job to be run, (2) the type of job to be run (e.g. MapReduce), (3) the user submitting the job, and (4) a
specification of the amount of resources requested.

The role of the predictor component, 36Predict, is to provide the core scheduler with the probability
distribution of the execution time of the submitted job. 36Predict (Sec. 4.1) does this by maintaining a history
of previously executed jobs, identifying a set of jobs that, based on their attributes, are similar to the current
job and deriving the runtime distribution from that set of completed jobs (Step 2 of Fig. 4).

Given such a distribution of expected job runtimes and request specifications, the core scheduler,
3oSched decides on which resources to place which jobs and when. To achieve this, the scheduler first
evaluates the expected utility of each option (described in Sec. 3.1) and computes the amount of resources
that will become available in the future (Sec. 3.2). Job valuations and computed resource capacity are then
compiled into an optimization problem (Sec. 4.3), which is sent to an external solver to be solved. 36Sched
translates the solution into an updated schedule and submits the schedule to the cluster manager (Step 3 of
Fig. 4).

When a job completes, its actual runtime is recorded by 3cPredict (along with the attribute information
from the job) to be incorporated into the job history for future predictions (Step 4 of Fig. 4).

In this section, we detail how 3cPredict estimates runtime distributions and how 36Sched copes with
mis-estimation. We also describe how 36Sched automatically generates the optimization problem used for
scheduling.
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4.1 Generating runtime distributions

For each incoming job, 3cPredict provides 36Sched with an estimated runtime distribution. 36Predict
generates this distribution using a black-box approach for prediction. It does not require user-provided
runtime estimates, knowledge of job structures, or explicit declarations of similarity to specific previous jobs.
However, it does assume that, even in multi-purpose clusters used for a diverse array of activities, most jobs
will be similar to some previous jobs.

3cPredict associates each job with set of features. A feature corresponds to an attribute of the job (e.g.,
user, program name, submission time, priority, resources requested, and etc.). Attributes can be combined to
form a single feature as well (e.g., user and submission time). 3c6Predict tracks job runtime history for each
of multiple features, because no single feature is sufficiently predictive for all jobs.

3oPredict associates the new job with historical job runtimes with the same feature. Because no single
feature is always predictive, 36Predict generates multiple candidate distributions for each job. For example,
one candidate distribution may consist of runtimes of jobs submitted a single user. A second candidate
distribution may consist of runtimes of jobs submitted with the same job name.

3oPredict selects one candidate distribution to send to 36Sched. To make this decision, 3cPredict
compares each distribution’s ability to make accurate point estimates. For a given candidate distribution,
3coPredict makes point estimates in multiple ways as different estimation techniques will be more predictive
for different distributions. Specifically, 3cPredict uses four estimation techniques: (a) average, (b) median, (c)
rolling (exponentially weighted decay with oo = 0.6), (d) average of X recent job runtimes. 3cPredict tracks
the accuracy of each feature-value:estimator pair, which we refer to as an “expert”, using the normalized
mean absolute error (NMAE) of past estimates. It designates the runtime distribution from the expert with
the lowest NMAE as the distribution estimate of the job.

3coPredict does not make any assumption about the shape of the distribution. Instead, we use empirical
distributions, stored as a histogram of the runtimes for each group. Runtimes often exhibit uneven distributions
(e.g. heavy-tailed, multi-modal), so we use varying bucket widths to ensure that the shape of the distribution
is accurately modeled. We dynamically configure bin sizes using a stream histogram algorithm [1] with a



maximum of 80 bins.

Scalability. Storing and querying the entire history of runtimes of a datacenter is not scalable. 36Predict
employs several sketching techniques to greatly reduce the memory footprint. 3cPredict 1) uses a stream
histogram algorithm [1] to maintain an approximate histogram of runtimes, 2) computes the average and
rolling estimates and NMAE metric for each expert in streaming manner, and 3) computes the median using
recent values as a proxy for the actual median. Using these techniques, 36Predict provides effective runtime
distributions using constant memory, per feature-value.

4.2 Handling imperfect distributions

3oPredict estimates the empirical distribution of a job using the history of previously executed jobs. In
practice, the estimated runtime distribution is imperfect. Not all jobs have sufficient history to produce a
representative distribution. The runtimes of recurring jobs will also evolve over time (e.g. different input data,
program updates). 36Sched uses the following mitigation strategies to tolerate error in the estimated runtime
distribution.

Under-estimate handling. Distribution schedulers encounter under-estimates when a job runs longer
than all historical job runtimes provided in the distribution. An under-estimate can cause a queued job waiting
for the busy resource to starve or miss its deadline. To mitigate this, when the elapsed time of the job reaches
the maximum observed runtime from the distribution, 36Sched exponentially increments the estimated finish
time by 2’ cycles, starting with ¢ = 0 in similar fashion to [24]. Exponential incrementing (exp-inc) avoids
over-correcting for minor mis-predictions. As 36Sched learns that the under-estimate is more significant, it
updates the runtime estimate by progressively longer increments. Note that under-estimates in 36Sched are
much more rare compared to using a single point estimate.

Over-estimate handling. 36Sched encounters over-estimates when all historical runtimes are greater
than the time to deadline. In this case, the expected utility is zero, leading the scheduler to not see any benefit
from spending resources on the job. 36Sched would prefer to keep resources idle, rather than scheduling
a job with zero utility. To mitigate the effects of over-estimates, 36Sched proactively changes the utility
functions of SLO jobs to degrade gracefully. Instead of a sharp drop to zero utility (Fig. 3(a)), 36Sched
uses a linearly decaying slope past the deadline (Fig. 3(d)). This way, the estimated utility of the job will be
non-zero, even if all possible completion times exceed the deadline. The post-deadline utility will be lower
than other SLO jobs submitted with the same initial utility. 36Sched will therefore only schedule seemingly
impossible jobs when there are available resources in the cluster.

Adaptive over-estimate handling. Enabling 36Sched’s over-estimate handling comes at a cost. It
increases the number of SLO jobs being tried in favor of completing lower priority jobs. For jobs that were
not over-estimated, resources are wasted. Ideally, we should only enable over-estimate handling for jobs
which have a reasonable probability of being over-estimates.

3oSched leverages the user provided deadline for SLO jobs in predicting the probability that a job is
over-estimated. The deadlines for high priority SLO jobs in production systems are known to be correlated
with its actual runtime, since they are usually the result of profiled test runs or previous executions of the same
jobs. Thus, 36Sched treats the time from submission to deadline as a reasonable proxy for the upper-bound of
the runtime. It compares this upper-bound with the runtime distribution and enables over-estimate handling
only if the likelihood of running for less than the upper-bound is below a configured threshold. If the historical
runtime distribution implies that the job has no chance of meeting its deadline, even if started immediately
upon submission, it is likely that the runtime distribution is skewed toward over-estimation.

4.3 Optimization problem formulation

3o6Sched solves an MILP problem to decide where and when a job will be run. The MILP is automatically
generated by 36Sched. Its inputs are the job submission, runtime distribution and utility curve of both
pending and currently running jobs. This section describes how 36Sched uses this information to generate
the optimization problem.



System Runtime Overestimate
Estimation Handling

3Sigma Real Distributions ADAPTIVE

PointPerfEst | Perfect Point Estimates | NO

PointRealEst | Real Point Estimates NO

Prio N/A N/A

Table 1: Scheduler approaches compared

The objective of the optimization problem is to maximize utility. There are multiple placement options
o, per pending job j, each of which is associated with a expected utility Uj,. The solution is subject to
demand constraints and capacity constraints. The demand constraints ensure that only one option of each job
is chosen. The capacity constraints ensure that all scheduled jobs fit within the cluster capacity.

At the start of each scheduling cycle, 36Sched computes the estimated cluster capacity C; at each time ¢.
This is computed using the RRC(¢) of each running job in the cluster. The terms of the objective function and
constraints are added iteratively with each pending job. The fully formulated problem is sent to the external
solver to be solved. 36Sched retrieves the solution and sends the placement decisions to the cluster manager
for jobs due to be started immediately. 36Sched repeats this process every scheduling interval.

Formulation. For completeness, we detail the formulation of the objective function and constraints.
36Sched uses one indicator variable [;,, for each placement option o of each pending job j, to indicate
whether the option is chosen. I;, = 1 when the option o is selected for job ;.

Objective function: The objective function }.; ,U;,l, maximizes the overall benefit across all selected
options.

Demand constraint: The series of demand constraints for each job VY, 1;, < 1 ensures at most one
option is selected for each job j.

Capacity constraint: The capacity constraint ). ;, kRC;(t — s)I;, < C; ensures that allocations do not
exceed the available capacity at time 7. k is the amount of resources needed by this placement option, and s is
the start time of this option.

Scalability. MILP is known to be an NP-hard problem. To minimize the excessive latency caused
by solver, we apply a few optimizations. 1) 36Sched does not include terms with a zero constant, 2) only
considers a bounded range of time into the future and 3) uses the best solution achieved within a timeout of
75% of its scheduling interval.

S Experimental Setup

We conduct a series of end-to-end experiments and microbenchmarks to evaluate 3Sigma, integrated
with Hadoop YARN [27]—a popular open source cluster scheduling framework. We find YARN’s support
for time-aware reservations and placement decisions and its popularity in the enterprise a good fit for our
needs. We implement a proxy scheduler wrapper that plugs into YARN’s ResourceManager and forwards job
resource requests asynchronously to 3Sigma. Jobs are modeled as Mapper-only jobs. We use a synthetic
generator based on Gridmix 3 to generate Mapper-only jobs that respect the runtime parameters for arrival
time, job count, size, deadline, and task runtime from the pre-generated trace.

Cluster configurations. We conduct experiments on two cluster configurations: a 256-node real cluster
(RC256) and a simulated 256-node cluster (SC256). RC256 consists of 257 physical nodes (1 master + 256

slaves in 8 equal racks), each equipped with 16GB of RAM and a quad-core processor. The simulations

. 1th . . . .
complete in 5 the time on a single node, allowing us to evaluate many more configurations and longer

workloads. We also conduct an experiment with a simulated 12,583-node cluster (GOOGLE) to evaluate
3Sigma’s scalability.

10



Systems compared. We compare the four scheduler approaches in Table 1. 3Sigma is our system in

which 36Sched is given real runtime distributions provided by 36Predict and uses adaptive overestimate
handling. Both PointPerfEst and PointRealEst uses enhanced version of [26] and is representative of
schedulers which rely on point estimates and techniques to handle imperfect estimates. This includes Rayon,
TetriSched and Morpheus [26, 3, 12].
PointPerfEst is a hypothetical system in which the scheduler is given a correct runtime for every incoming
job. PointRealEst uses point runtime estimates from 3cPredict. Prio is a priority scheduler, giving SLO
jobs strict priority over best-effort jobs rather than leveraging runtime information, which represent schedulers
like Borg [31].

Workloads. The bulk of our experiments use workloads derived from the Google cluster trace [18]. We
use a base Google-trace-derived workload (termed “E2E”) for overall comparisons among schedulers as well
as several workloads that vary individual workload characteristics (e.g., runtime variation for a job type or
cluster load) to explore sensitivities. All workloads are 5 hours in length ( 1500 jobs) except for E2E which is
2 hours ( 600 jobs), used to expedite the experiment in RC256.

We use the following process to generate a workload representing the Google cluster trace that will fit
on our available clusters (E2E). We first filter out all jobs larger than 256 nodes. We use k-means clustering
on the remaining jobs’ runtimes, associating each resulting cluster with a job class. We derive parameters for
the distributions of the job attributes (e.g., runtime and number of tasks) and the probability mass function of
the features in each job class. When generating the workload, we set the arrival time using an inter-arrival
distribution (exponential distribution with c2a=4). We draw jobs from each job class proportionally to
the empirical job-class distribution. We also pick job attributes and features for each job according to the
empirical job-class distribution. Each workload consists of an even mixture of Service Level Objective (SLO)
jobs with deadlines and latency sensitive best effort (BE) jobs. SLO jobs have soft placement constraints
(preferred resources set to a random 75% of the cluster, as observed in the original trace). SLO jobs run 1.5x
longer if scheduled on non-preferred resources.

For the experiment in Sec. 6.1.1, we also use workload HEDGEFUND _E2E and MUSTANG_E2E
derived from the HedgeFund and Mustang cluster, respectively. For these workloads we filtered out jobs
larger than 256 nodes, but took a 5 hour segment of the original workload instead of deriving parameters and
regenerating based on the distribution. The segment was randomly selected among many segments that have
a similar load to the E2E workload.

HedgeFund: This workload is collected from two private computing clusters of a quantitative hedge
fund firm. Each cluster uses an instance of an internally developed scheduler, run on top of a Mesos cluster
manager. The workload consists of 3.2 million jobs submitted to two clusters over a nine month period. The
majority of jobs analyze financial data and there are no long-running services.

Mustang: This workload includes the entire operating history of the Mustang HPC cluster used for
capacity computing at Los Alamos National Laboratory. Entire machines are allocated to users, in similar
fashion to Emulab[32, 9]. The workload consists of 2.1 million jobs submitted within a period of 61 months
(2011 ~ 2016).

Estimates. We pre-train 3cPredict before running experiments to produce steady-state estimates for
3Sigma and PointRealEst. For the Google workload, we use the original trace for pre-training. (In our
experiments, we use the generated workload representing the Google trace, rather than the original trace.)
For other workloads, we pre-train on jobs completed before the selected 5 hour segment begins.

Workload configurations. For SLO jobs, the deadline slack is an important consideration. Deadline
slack is computed by (deadline — submissiontime — runtime) /runtime * 100 (i.e., a slack of 60% indicates
that the scheduler has a window 60% longer than the runtime in which to complete the job). Tighter deadlines
are more challenging for schedulers. By default, we select each job’s deadline slack randomly from a set of 4
options: 20%, 40%, 60%, and 80%. The default values are much smaller than experimented in [26] (250%
and 300%), matching the finding in [12] that tighter deadlines are also possible.
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SLO miss rate | Fraction of SLO jobs that miss their deadline

Goodput Total useful work measured in
machine-hours consumed (M-hrs)

BE latency Mean response time for best effort jobs

Table 2: Key goodness metrics measured.

Load is a measure of offered work (machine x hours) submitted to the cluster scheduler as a proportion
of cluster capacity. The nominal offered load is 1.4 (unless specified otherwise). We first chose the load for
SLO jobs as 0.7, approximating the load offered by production jobs in [19]. We added equal proportion of
BE jobs as to not unfairly bias the scheduling problem towards SLO jobs and to demonstrate the behavior of
system under stressful conditions.

Note our definition of load is different from effective load, a ratio of actual resources allocated for all
jobs (successful and not successful) to the cluster capacity. Effective load is different for each scheduling
approach as they make different allocation decisions, even if the same jobs are injected to the system. In all
experiments and for all scheduling approaches, the cluster was run close to its space-time capacity.

Success metrics. We use the goodness metrics of Table 2 when comparing schedulers. Our primary
goal is to minimize SLO miss rate: the percentage of SLO jobs that fail to complete before their deadline.
We also want to measure the total work completed (BE goodput and the goodput of incomplete SLO jobs is
not represented by the SLO miss rate). Therefore, we measure the goodput in machine-hours, showing how
much aggregate work is being completed. Finally, we also measure mean BE latency.

6 Experimental Results
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Figure 5: Compares the performance of 3Sigma with other systems in the real cluster. 3Sigma constantly outper-
forms PointRealEst strict priority scheduler on SLO miss rate and Goodput while nearly matching PointPerfEst.
Cluster:RC256. Workload:E2E

This section evaluates 3Sigma, yielding five key takeaways. First, 3Sigma achieves significant im-
provement over the state-of-the-art in SLO miss rate, best-effort job goodput, and best-effort latency in a
fully-integrated real cluster deployment, approaching the performance of the unrealistic PointPerfEst
in SLO miss rate and BE latency. Second, all of the 36Sched component features are important, as seen
via a piecewise benefit attribution. Third, estimated distributions are beneficial in scheduling even if they
are somewhat inaccurate, and such inaccuracies are better handled by distribution-based scheduling than
point-estimate-based scheduling. Fourth, 3Sigma performs well (i.e., comparably to PointPerfEst) under a
variety of conditions, such as varying cluster load, relative SLO job deadlines, and prediction inaccuracy.
Fifth, we show that the 3Sigma components (3cPredict and 36Sched) can scale to >10000 nodes.

6.1 End-to-end performance

Fig. 5 shows performance results for the four scheduling systems running on the real cluster (RC256).
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Metric A SLO miss | A goodput | A BE latency
(unit) (%) (M-Hr) (s)
PointPerfEst 0.6784 25.27 7.282
3Sigma 0.2875 27.10 11.08
PointRealEst 2.025 22.83 2.383
Prio 1.853 19.83 12.07

Table 3: Absolute performance deviation between RC256 real experiment and SC256 simulation. Work-
load:E2E.

3Sigma is particularly adept at minimizing SLO misses, our primary objective, and completing more use-
ful work, approaching PointPerfEst and significantly outperforming the non-hypothetical systems. 3Sigma
performs well, despite not having the luxury of perfect job runtime knowledge afforded to PointPerfEst.
It uses historical runtime distributions to make informed decisions, such as whether to start a job early to
give ample time for it to complete before its deadline, or to be optimistic and schedule the job closer to the
deadline. However, 3Sigma is not perfect. It misses a few more SLO job deadlines than PointPerfEst, and
it completes fewer best-effort jobs because 36Sched preempts more best-effort jobs to make additional room
for SLO jobs for which the distribution indicates a wider range of possible runtimes for a job. BE latency is
similar across all system.

PointRealEst exhibits much higher SLO miss rates (18%, or 4.0X higher than 3Sigma), and lower
goodput (5.4% lower than 3Sigma), because previous approaches struggle with realistic prediction error
profiles. Because PointRealEst schedules based on only point estimates (instead of complete runtime
distributions) and lacks an explicit overestimate handling policy, it makes less informed decisions and struggles
to handle difficult-to-estimate runtimes (e.g., due to greater variance for a job type). For underestimated SLO
jobs (that ran shorter in the past on average), PointRealEst is often too optimistic and starts the job later
than it should. For overestimated SLO jobs, PointRealEst is often too conservative, potentially neglecting
to schedule SLO jobs which are predicted to not finish in time, even if cluster resources are available.

Prio misses 12% of SLO job deadlines (2.3x more than 3Sigma). It does not take advantage of any
runtime information, thereby missing opportunities to wait for preferred resources or exploit one job’s
large deadline slack to start a tighter deadline job sooner. Prio is better than PointRealEst in terms of
SLO misses but much worse in BE goodput, as it always prioritizes SLO jobs at the expense of increased
preemption of BE jobs, even when deadline slack makes preemption unnecessary.

Simulator experiments. We validate our simulation setup (SC256) by running the identical workload
to that in experiment in Fig. 5. Similar trends are observed across all our systems and success metrics. Table 3
shows the small differences observed for the 12 bars shown in Fig. 5.

6.1.1 Performance comparison varying workload

Fig. 6 summarizes the performance of all scheduling systems under three different workloads.

We observe that the overall behavior of the systems in comparison is similar to our observations in
Sec. 6.1. For all workloads, 3Sigma outperforms PointRealEst and Prio, while approximately matching
the performance of PointPerfEst. Surprisingly, for the HedgeFund and Mustang workloads, 3Sigma
slightly outperforms PointPerfEst. This possible because, while PointPerfEst does receive perfect
runtime knowledge as jobs arrive, it does not possess knowledge of future job arrivals (nor do any of the other
systems). Consequently, it may make sub-optimal scheduling decisions, such as starting a SLO job late and
not leaving sufficient resources for future arrivals.

We also observe that PointRealEst performs poorly on SLO miss rate across different workloads.
Further, miss-rate is only slightly better for Mustang. This is surprising, as much a larger portion — com-
pared to other workloads — of jobs in Mustang have very accurate point estimates (Fig. 2(a)). We believe
PointRealEst still performs poorly as a small number of the estimates are off by large margin, adversely
affecting the ability of the scheduler to make informed decision. However, many of the mis-estimated
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Figure 6: Compares the performance of 3Sigma with other systems under workloads from different environments
in simulated cluster. 3Sigma constantly outperforms PointRealEst and strict priority scheduler on SLO miss rate
and Goodput while nearly matching PointPerfEst. The Google workload is 5Shr variant of E2E. Cluster:SC256.
Workload:E2E, HEDGEFUND_E2E, MUSTANG_E2E

runtimes are associated with small jobs; consequently, PointRealEst and Prio are able to perform well on
the goodput metric despite having high SLO miss rates.

6.2 Attribution of benefit
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Figure 7: Attribution of Benefit. The lines representing 3Sigma with individual techniques disabled— demonstrating
that all are needed to achieve the best performance. The workload is E2E with a constant deadline slack. Cluster:SC256

Workload:DEADLINE-n where n € [20,40,60,80, 100, 120, 140,160, 180] . .
3o6Sched introduces distribution-based scheduflng and adaptive overestimate handling to robustly address

the effects of runtime uncertainty. This section evaluates the individual contributions of these techniques.
Fig. 7 shows performance as a function of deadline slack for 3Sigma, PointPerfEst, PointRealEst, and
three versions of 3Sigma, each with a single technique disabled: 3SigmaNoDist uses point estimates instead
of distributions, 3SigmaNoOQE turns off the overestimate handling policy, and 3SigmaNoAdapt turns off just
the adaptive aspect of the policy and uses maximum overestimate handling for every job.

When the scheduler explicitly handles overestimates (e.g., compare 3SigmaNoDist to PointRealEst),
SLO miss rate decreases because over-estimated SLO jobs are optimistically allowed to run, rather than
discarding them as soon as they appear to not have enough time to finish before the deadline. However, SLO
miss rate for 3SigmaNoDist is still high, because the lack of distribution awareness obscures which jobs are
more likely to succeed if tried; therefore, 3SigmaNoDist wastes resources on SLO jobs that won’t finish in
time.

Simply using distribution-based scheduling (see, e.g., 3SigmaNoOE) drops SLO miss to the level of
PointPerfEst for most deadline slacks. By considering the variance of job runtimes, the scheduler can
conservatively schedule jobs with uncertain runtimes and optimistically attempt jobs that are estimated to
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have a non-zero probability of completion.

Blindly turning on overestimate handling decreases SLO miss rates at the lowest deadline slacks
(3SigmaNoAdapt). However, 3SigmaNoAdapt is overly optimistic— even attempting jobs that would
seem impossible given their historical runtimes— provided there are enough resources for SLO jobs in the
cluster. This over-optimism results in lower BE goodput relative to 3Sigma’s adaptive approach of enabling
overestimate handling only for a small proportion of the jobs whose distributions indicate likely success.

6.3 Benefits of distribution-based scheduling
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Figure 8: 3Sigma’s performance when artificially varying runtime distribution shift (x-axis) and width (Coefficient
of Variation curves). The runtime distribution provided to the scheduler is ~ A (u = job_runtime x (1 + 135),0 =
Jjob_runtime * CoV'). Each trace consists of jobs that are either within 10% accuracy or under- or over-estimates jobs.
The group of jobs achieves a target average artifical shift. (c) shows the breakdown of these job types for each artificial
shift value. Distribution-based schedulers always outperforms the point estimate-based scheduler. Tighter distributions
perform better than wider distribution with a smaller artificial shift, but wider distributions are better with a larger
artificial shift. The workload is 2 hrs in length. Cluster:SC256. Workload:E2E

This section explores the robustness of 3Sigma to perturbations of the runtime distribution. In this study,
for each job drawn from the E2E workload, we provide 36Sched with a synthetically generated runtime
distribution instead of the distribution produced by 3cPredict.

We adjust the synthetic distributions in two dimensions, corresponding to an off-center mean and
different variances. The former is realized by artificially shifting the entire distribution by an amount equal
to a selected percent difference between the mean of the distribution and the actual runtime. The latter is
represented by the CoV, which refers to the ratio of standard deviation to the actual runtime of the job. For
each job, the artificial distribution is ~ A (u = job_runtime * (1 + shift), 6 = job_runtime * CoV), where
the shift itself is ~ A[(u = shift,c =0.1).

Fig. 8 shows the results. Comparing point estimates (point) and distribution estimates, we observe that
it is strictly better to use distribution estimates (CoV=x%) than to use point estimates (point) for scheduling
jobs. Even at artificial shift= 0.0, where ~ 70% of estimates are generally accurate (within +10% estimate
error), using distribution estimates yields 2X fewer SLO misses compared to the point estimates. Hence, even
a small proportion of jobs with inaccurate estimates can cause the scheduler to make mistakes and miss the
opportunity to finish more jobs on time. Comprehending entire distributions enables the scheduler to reason
about uncertainty in runtimes.

Furthermore, for small artificial shifts (within 20%), it is better to have narrower distributions with
smaller CoV. This is because a wider distribution indicates greater likelihood of runtimes that are much
shorter and much larger than the actual runtime. The scheduler is more likely to incorrectly make risky
decision to start some jobs later than it should and make overly conservative decisions for other jobs.

However, if the actual runtime is far away from the center of the runtime distribution (larger artificial
shift), wider distributions provide a benefit. As the distribution widens, the scheduler correctly assigns higher
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Figure 9: 3Sigma outperforms others on SLO misses for a range of loads, matching PointPerfEst closely. All
systems prioritize SLO jobs by sacrificing BE jobs when load spikes. Cluster:SC256, Workload: E2E-LOAD-¢ where
£e€(1.0,1.2,1.4,1.6]

expected utility to scenarios that hedge the risk of runtimes being farther away from the mean. On the other
hand, narrower distributions suffer more as the artificial shift deviates further from zero. The likelihood of the
job running for the actual runtime decreases significantly, and causes the scheduler to discount the placement
options that hedge the associated risks.

6.4 Sensitivity analyses

Sensitivity to deadline slack. As noted above, Fig. 7 shows performance as a function of deadline slack.
We make two additional observations. First, smaller slack makes it harder to meet SLOs, for all policies,
because of increased contention for cluster space-time, leading to higher SLO miss rates. Second, best effort
goodput decreases for all systems, but for different reasons. As slack increases, PointPerfEst sees more
wiggle room for placement and tries (and completes) more difficult larger SLO jobs. Since the schedule
is optimally packed, it needs to bump best effort jobs in order to schedule more SLO jobs. BE goodput
of PointRealEst shows similar trends; PointRealEst tries more over-estimated jobs, since increasing
slack reduces the number of seemingly impossible jobs. 3Sigma, on the other hand, was already trying most
completable overestimated jobs, so it sees the smallest decrease in BE goodput. More of the SLO jobs it tries
do succeed, though.

Sensitivity to load. Fig. 9 shows performance as a function of load. As load increases, we observe
an increase in all systems’ SLO miss rates due to increased contention for cluster resources. The relative
effectiveness of PointPerfEst and the three realistic scheduling approaches is consistent across the range.
We observe that as the load increases, all systems increasingly prioritize SLO jobs, decreasing BE goodput.
The gap between the BE goodputs of PointPerfEst and 3Sigma widens as 3Sigma makes more room for
each incoming SLO job to address its uncertainty about runtimes.
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Figure 10: 3Sigma outperforms others on SLO Misses for a range of runtime variability. 3Sigma matches

PointPerfEst in terms of SLO misses at the sacrifice of Best Effort goodput. Cluster:SC256. Workload:E2E-
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Sensitivity to sample size. Another concern may be: how is the performance of the scheduler affected
by the number of samples observed per feature (user, job names, etc.)? To answer this question, we used
another modified version of the E2E workload where we controlled the number of samples comprising the
distributions used by 3Sigma, drawing those samples from the original distributions. We also created a
version of PointRealEst where the point estimates were derived from the observed samples. In Fig. 10, we
vary the number of samples used from 5 to 100. We observe that increasing the number of samples from
5 to 25 significantly improved performance (for both schedulers), but by 25 samples, the performance of
3Sigma converges to the performance of PointPerfEst. 3Sigma outperforms PointRealEstat each point
and benefits more from additional instances, since it uses the distribution rather than just the mean. Naturally,
PointPerfEst and Prio are not affected.

6.5 Scalability

This section shows that 3Sigma can handle the additional complexity from distribution-based scheduling
even while managing more than 12500 nodes and a job submission rate comparable to the heaviest load
observed in the Google cluster trace (3668 jobs per hour).

3Sigma requires more CPU time to make decisions than not using runtime estimates (e.g., Prio),
which can affect scheduler scalability. Although previous work [3, 26] has shown that packing cluster
space-time using runtime estimates can be sufficiently efficient for 100s to 1000s of nodes, 3Sigma adds
sources of overhead not evaluated in such previous work: (1) latency of 36Predict at Job Submission (I/0
and computation for looking up the correct group of jobs in the runtime history database and generating
distribution), (2) latency from additional computation (e.g. computing expected utility and expected resource
consumption) to formulate the bin-packing problem, and (3) increased solver runtime due to increased
complexity of the bin-packing problem at 36Sched.

In this experiment, 3Sigma schedules microbenchmark workloads, SCALABILITY-n. Each workload
consists of 7 jobs per hour for 5 hours. The ratio of tasks to job matches those observed in the Google cluster
trace. The load is set to 0.95. Even under these conditions, the latency of producing distributions at 3cPredict
is negligible (maximum=14ms) compared to the job runtimes in the trace. 36Predict maintains minimal state
for each group of jobs, so the cost of data retrieval is low. Similar latency is observed for producing point
estimates, since most of the work is the same (accessing histories and choosing among them).

We also compare the performance of PointRealEst and 3Sigma in Fig. 11. Fig. 11(a) depicts the
runtime of each scheduling cycle, including generation of scheduling options, evaluation, formulation of
optimization problem, and execution of the solver. Fig. 11(b) reports the runtime of the solver. For both
systems, the solver execution is a non-trivial fraction of the scheduling cycle runtime. We observe that
distribution-based scheduling also results in a moderate increase in worst-case solver time. As noted in
Sec.4.3, distribution-based scheduling induces a moderate increase in the number of constraint terms but
does not change the number of decision variables. Also note that the actual impact on the solver runtime is
upper-bounded by a a solver timeout parameter, so the impact of solving on scheduling latency is bounded.
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Figure 11: 3Sigma scalability as a function of job submission per hour. Cluster: GOOGLE, Workload:
SCALABILITY-n where n € [2000,3000,4000)
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7 Summary

3Sigma’s use of distributions instead of point estimates allows it to exploit job runtime history robustly.
Experiments with trace-derived workloads both on a real 256-node cluster and in simulation demonstrate
that 3Sigma’s distribution-based scheduling greatly outperforms a state-of-the-art point-estimate scheduler,
approaching the performance of a hypothetical scheduler operating with perfect runtime estimates.
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