
Tetrisched: Space-Time Scheduling for Heterogeneous
Datacenters

Alexey Tumanov∗, Timothy Zhu∗

Michael A. Kozuch†, Mor Harchol-Balter∗, Gregory R. Ganger∗

Carnegie Mellon University∗, Intel Labs†

CMU-PDL-13-112

December 2013

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Tetrisched is a new scheduler that explicitly considers both job-specific preferences and estimated job runtimes in its allocation of
resources. Combined, this information allows tetrisched to provide higher overall value to complex application mixes consolidated
on heterogeneous collections of machines. Job-specific preferences, provided by tenants in the form of composable utility functions,
allow tetrisched to understand which resources are preferred, and by how much, over other acceptable options. Estimated job
runtimes allow tetrisched to plan ahead in deciding whether to wait for a busy preferred resource to become free or to assign a
less preferred resource. Tetrisched translates this information, which can be provided automatically by middleware (our wizard)
that understands the right SLOs, runtime estimates, and budgets, into a MILP problem that it solves to maximize overall utility.
Experiments with a variety of job type mixes, workload intensities, degrees of burstiness, preference strengths, and input inaccuracies
show that tetrisched consistently provides significantly better schedules than alternative approaches.

Acknowledgements: We thank the member companies of the PDL Consortium (Actifio, APC, EMC, Emulex, Facebook, Fusion-IO, Google,
HP, Hitachi, Huawei, Intel, Microsoft, NEC Labs, NetApp, Oracle, Panasas, Riverbed, Samsung, Seagate, STEC, Symantec, VMware, Western
Digital) for their interest, insights, feedback, and support. This research is supported in part by Intel as part of the Intel Science and Technology
Center for Cloud Computing (ISTC-CC), by an NSERC Postgraduate Fellowship, and by National Science Foundation under awards CSR-1116282,
0946825 and CNS-1042537, CNS-1042543 (PRObE).

Keywords: cluster scheduling, cloud systems

Flexible Hard None0
10000
20000
30000
40000
50000
60000
70000
80000
90000

ut
ili

ty

tetrisched
alsched
hard
hard w/o plan-ahead
none
none w/o plan-ahead

Figure 1: Better guidance leads to better scheduling. The three bar pairs correspond to schedulers that ignore
constraints (None), that consider only hard constraints (Hard), and that consider soft constraints as well (Flexible).
In each pair, the left bar exploits runtime estimates to plan ahead, while the right bar does not. The best option, by
far, is tetrisched, which combines soft constraints with plan-ahead. Detailed explanation of how this data was
measured and of the parameters used is provided in Sec. 6; the key parameters (for reference) are: workload mix=W2,
plan-ahead=15min, slowdown=3, load ρ = 0.8, burstiness C2

A = 8.

1 Introduction

Datacenters increasingly use a heterogeneous collection of machines with different capabilities (e.g., memory
capacity, GPU accelerator) to execute a heterogeneous collection of workloads (e.g., long-running services,
batch data analytics, interactive development/test) [21, 19, 23]. To maximize resource efficiency and
utilization, the machines are often aggregated into a resource pool onto which the workloads are consolidated.
A cluster scheduler is then tasked with assigning resources to workloads.

The challenge is to assign the right resources to each, given varied characteristics and metrics of goodness.
One job might be concerned about completion time and run fastest on a machine with a GPU. Another
job might be concerned with long-term availability, which is enhanced by running its constituent processes
(tasks) on machines attached to separate power distribution units. When machines are homogeneous, such
concerns can often be ignored as all choices are equal. When workloads are homogeneous, understanding of
their concerns can be hard-coded into the scheduler (e.g., locality awareness in Hadoop [1]). But, neither
workloads nor resources are homogeneous in modern datacenters.

To achieve the promised efficiency benefits of consolidation, resource consumers must somehow
communicate their specific needs/concerns so that the scheduler can make informed decisions. One approach
is to associate some number of hard constraints with each resource request, based on some predetermined
machine attribute schema, to identify the subset of machines that are suitable [22, 24]. But, this approach
ignores an important issue: in many cases, desired machine characteristics provide benefit but are not
mandatory. For example, running a new task on the same machine as another with which it communicates
frequently can improve performance, but failing to do so does not prevent the task’s execution—it just makes
it somewhat less efficient. A scheduler that understands the quantitative tradeoffs involved with such soft
constraints should be able to make better decisions [26].

Fig. 1 illustrates the benefit of schedulers that have and exploit better information about each job’s
concerns and needs. Following best practices of economic theory, workloads’ distinct concerns (e.g.,
availabilities, runtimes, response times) are translated to a common metric called utility so that tradeoffs
between them can be quantified—higher utility is better. As should be expected, the more information about
significant needs/concerns used by the scheduler, the higher the utility. In this case, the most aware scheduler

2

None

Ignore Constraints

Hard

Hard Constraints

Tetrisched

Flexible Constraints
(Best of both worlds)

Figure 2: Tetrisched fills the constraint handling gap. Most schedulers take an all-or-nothing approach, either
treating all constraints as strict requirements or completely ignoring them. Tetrisched recognizes that tradeoffs are
inherent in user preferences, providing a flexible constraint scheme that encodes resource preferences and their relative
utility.

(tetrisched) provides 58% and 14× higher utility, respectively, than those that consider all constraints to
be hard or that ignore them entirely.

This paper introduces tetrisched (see Fig. 2), a scheduler that accepts resource requests in the form
of utility functions. These utility functions use an algebraic language to describe the utility associated
with one or more spatial (which machines) and temporal outcomes, quantifying the relative value of each
acceptable allocation. Tetrisched translates the collection of utility functions into a Mixed Integer Linear
Program (MILP) problem and solves it to plan a schedule that optimizes overall utility. Extensive simulation
study of a heterogeneous 1000-node cluster shows that tetrisched consistently and significantly outperforms
less-informed approaches to scheduling, across different workload mixes, workload intensities, degrees of
burstiness, and preference strengths. We also show that its decisions are robust to user mis-estimation of job
size.

This paper makes several important contributions over prior work, including our recent alsched position
paper [26]. First, it exposes the importance of making schedulers aware of workload-specific preferences
regarding both time and space. As illustrated in the Fig. 1 example, neither alone is sufficient, with tetrisched
outperforming the best space-only (alsched) and time-enhanced non-soft (Hard) options by 33% and 58%,1

respectively. Second, it describes a language for crisply specifying space-time concerns as utility functions.
Third, it describes a user objective wizard (middleware) that automatically translates completion-time SLOs,
budget constraints, and runtime estimates into these utility functions. Fourth, it provides extensive evaluation
of tetrisched’s behavior along many axes, explaining how different utility functions drive the choices that it
makes and how well it satisfies complex mixes of workload concerns.

2 Context and Motivation

Scheduling multiple types of jobs among heterogeneous machines is complex. Consider the example in
Fig. 3, which shows five space-time schedules for three jobs that each want two servers but are best served
by differing resource characteristics. All five schedules are viable options, and no schedule is ideal for all
three jobs. Not only does some job have to wait its turn, but the Availability job cannot run concurrently with
either of the other two unless some job uses non-preferred machine mixes.

Designing a scheduler to produce these optimized space-time schedules is an achievement, but if the
caption’s specification is the only information available to the scheduler, then the scheduler cannot determine
which of these schedules is the best. Fundamentally, the scheduler needs a concise representation of user
sensitivity to delay, availability, etc., as well as the importance of the job. For example, if the Availability
job is insensitive to delay, then the bottom schedule will be the best choice. However, if the Availability
job is much more revenue generating than the other jobs, then the middle schedules are more appealing.
Tetrisched takes in such user objectives and optimizes for the best overall tradeoff. The remainder of this

1As we’ll see in section 7, tetrisched can outperform these other options by 3x or more under certain conditions.

3

Availability

GPU

MPI

G
PU

Ra
ck

 1
Ra

ck
 2 M4

M3

M2

M1

Time

G
PU

Ra
ck

 1
Ra

ck
 2 M4

M3

M2

M1

Time

G
PU

Ra
ck

 1
Ra

ck
 2 M4

M3

M2

M1

Time

G
PU

Ra
ck

 1
Ra

ck
 2 M4

M3

M2

M1

Time

G
PU

Ra
ck

 1
Ra

ck
 2 M4

M3

M2

M1

Time

Figure 3: Five potential schedules for 3 jobs. Each grid shows one potential space-time schedule, with machines
along the rows and time units along the columns. Each job requests 2 servers, and its allocation is shown by filling in
the corresponding grid entries. The cluster consists of 2 racks each with 2 servers, and rack 1 is GPU-enabled. The
Availability job prefers 1 server per rack. The MPI job runs faster if both servers are in one rack (2 time units) than if
they are not (3 time units). The GPU job runs faster if both servers have GPUs (2 time units) than if they don’t (3 time
units).

section discusses the user and provider perspectives underlying the tetrisched approach, and then describes
the system usage model.

2.1 User and Provider Perspectives

User Objectives. As exemplified in Fig. 3, users may have fundamentally different objectives, workload
characteristics, and incentives. Examples of user objectives may include finishing work as soon as possible
for a GPU job, maximizing uptime for an ensemble of web services (Availability), or starting a long-running
service as soon as possible. Specific examples we consider include:

– response time (completion time minus arrival time): users prefer to minimize the overall completion
time for submitted jobs. Examples include a number of batch jobs, such as MPI-based simulations or Hadoop
analytics jobs, and machine learning jobs.

– queueing delay (start time minus arrival time): preference is for minimal queueing delay. User-facing
interactive applications, such as augmented reality servers, are good examples of queueing delay sensitivity.

– availability: expected availability or fault-tolerance of a given ensemble of web services.
– expected quality of service output.
Many jobs that have the last two user objectives, such as long-running services, often also have

quantifiable preference for minimizing queueing delay. Full exposition of such multi-objective control is
deferred to section 7.4. Similarly to Jockey [10], we use time-based utility functions depicted in Fig. 4 as one
form of high-level input into tetrisched. For completion-oriented jobs, the top plateau of the utility function is
most desirable as it yields the highest utility. As the calculated completion time falls between the Desired
and Deadline points on the x-axis, utility starts to decline. After a certain point, utility may drop below zero,

4

B

ut
ili
ty

P
S t

DeadlineDesired

Figure 4: Users’ subjective utility over time. Temporal user objectives can be modeled as a time-based user-defined
utility function (uduf). S stands for earliest start time and allows support for expressing calendared jobs. Budget B is
the max utility this job gets. Penalty P is a negative amount of utility accrued for failure to meet the Deadline. Utility
starts to decline when the desired time objective is not reached.

inducing a utility penalty if a job wasn’t scheduled in a reasonable amount of time. The same user-defined
utility function (“uduf”, see Fig. 4) shape can be used for specifying queueing delay preferences, with times
on the x-axis representing queueing delay instead of response time.

Provider Perspective. Heterogeneity in both user objectives and increasingly diverse hardware intro-
duces new scheduling challenges as cluster resource providers face more tradeoffs. Providers often deal with
heterogeneity by trying to eliminate it or providing a mechanism to force conformance to a certain supported
standard. The latter approach doesn’t scale, and neither approach addresses the fundamental problem of
arbitrating inherent contention for resources and making reasonable tradeoffs in a heterogeneous cluster
environment. Instead, providers need a way to quantify the effects of tradeoffs and optimize their scheduling
decisions to meet provider’s goals. Goals can include maximizing revenue or customer-base happiness. In
both cases, a common currency of compensation is imperative, prompting us to adopt utility as such a metric.
Throughout this paper, we assume that providers wish to maximize the aggregate utility across all active
cluster users.

Optimizing aggregate utility puts the global good above giving each individual an equal share of
resources, for some definition of equal that considers heterogeneity and preferences. Some users may receive
lesser service. An economic notion of fairness can be realized by charging users according to the utility
indicated in their utility functions. These charges could be in dollars, in for-profit environments, or “credits”
in non-profit environments. For the latter, the distribution of credits allows for prioritized notions of fairness,
where users spend their limited resources according to their preferences.

Economics of user incentives. A utility-based approach should work for users, incentivizing them to
“play nice”, both in for-profit and non-profit environments. In both cases, flexibility in specified constraints
ultimately maximizes the probability of resource allocation, especially when load is high and requests are
large. Any profit margin that may exist behind user-specified utility curves is amplified by higher probabilities
of resource acquisition. In both for-profit and non-profit environments, a higher probability of getting
resources translates into higher volume of useful work done. That in turn either amplifies the profit margin or
increases user happiness (higher utility).

We do not make any assumptions about the truthfulness of user-specified utility. Tetrisched takes this
as a ground truth and allocates resources given the budget and the utility curve provided. Users will be
constrained by their budget in how much they overstate subjective value of resources. Understating that value
will lower their probability of being scheduled. Thus, the “invisible hand of the market” will govern the
price-setting, dynamically adjusting it relative to the supply and demand for resources.

5

Time

R
es

ou
rc

esUtility function to
MILP converter MILP solver

MILP objective function
and constraints

Tetrisched Scheduler

MPI

Hadoop

...Fr
am

ew
or

k
P

lu
gi

ns

Objective Wizard Utility function,
based on

placement/schedule
Job schedule
and placement

Job definition
including user

objectives

Time

U
til

ity

max

nCk nCk

Figure 5: System Overview. The Objective Wizard converts user job definitions including objective specifica-
tions into utility functions, and the Tetrisched Scheduler converts the utility functions into a Mixed-Integer
Linear Program (MILP) representation and uses a MILP solver to generate a placement and schedule.

2.2 System Usage Model Overview

Fig. 5 illustrates the tetrisched components and how they interact. While a user could interact directly with
the low-level scheduler interface, most will use a higher-level interface provided by a wizard that produces
the utility functions. An objective wizard for given job types can take in job definitions that include user
objectives (e.g., defined by the trapezoid vertices) and translate them to a scheduler-facing composable utility
function. The latter takes the form of an algebraic expression tree that will be further discussed in Section 3.

This resource request is subsequently managed by the tetrisched scheduler that fires at specified intervals
of time. At each tetrisched cycle, all outstanding resource requests are aggregated and converted into an
MILP formulation. Solving it produces the job schedule that maps tasks for satisfied jobs to machines.

3 Placement Preference Specification

This section introduces the specification language for expressing user placement considerations in space
and time. Three principal goals of this language are: (a) structural support for expressing subsets of cluster
resources and quantity desired, (b) support for grouping subsets and avoiding redundant enumeration of
combinatorial choices, and (c) support for associating value with a given choice of resources for a specified
interval of time. The tetrisched Wizard consumes uduf s (Fig. 4) and produces composable scheduler
expressions using the language specification we introduce here. This is accomplished with just two simple,
composable combinatorial primitives, which can be composed with a handful of algebraic binary and unary
operators—all defined in Sec. 3.3. These algebraic composable utility functions serve as input to the tetrisched
scheduler core. Power users can specify them directly to the scheduler, bypassing the Wizard.

3.1 Equivalence classes and partitions

An important notion in tetrisched is that of equivalence classes, which are equivalent sets of machines from
the perspective of a given job. For example, the GPU job in Fig. 3 is equally happy with machine M1 or M2
since both are GPU-enabled, but not as happy with machine M3. Furthermore, a GPU job is equally happy
with any k machines from the set of GPU-enabled machines (e.g. M1, M2). The ability to represent sets of
machines that are equivalent to a job greatly reduces the complexity of the scheduling problem because it
obviates the need to enumerate all combinatorial choices of machines.

For the solver to be able to utilize equivalence classes, the machines must be considered equivalent to
all users. Since multiple users may have overlapping equivalence classes, we need to treat each overlapping
set separately. In other words, the scheduler needs to identify partitions, which are sets of machines that
are equivalent from the perspective of any job currently being scheduled. Instead of statically defining
partitions, we developed an algorithm to dynamically calculate the partitions based on the equivalence classes

6

of currently queued jobs. This keeps the number of partitions to a minimum, which reduces the burden on the
scheduler. The partitioning algorithm is given in Appendix A.1.

3.2 Utility Functions

Conceptually, an algebraic utility function defines the value of a set of machines over a range of time for a
specific job. We refer to these machines over time as a space-time rectangle 2. For example, in the bottom
schedule in Fig. 3, the GPU job gets the space-time rectangle corresponding to machines M1 and M2 for
times 0 and 1. Utility functions are best represented as an algebraic expression tree with operands at its leafs
and operators, modifying the upward flow of utility from their children.

3.3 Language Specification

As initially introduced in [26], we have leaf primitives and non-leaf operators that act on one or more child
subtrees. Tetrisched extends primitive definitions to add support for plan-ahead. Thus, tetrisched space-time
primitives are defined as follows:

– nCk(eq,k,s,dur,u): out of the specified equivalence class eq, choose k machines starting at start time
s for duration dur to get utility u.

– LnCk(eq,k,s,dur,u): out of the specified equivalence class eq, choose up to k machines starting at
start time s for duration dur to get utility u. A choice of k′ < k returns utility u

k · k
′

Relative to our predecessor [26], we extend the “n Choose k” and its linear “n Choose k” counterpart
by qualifying when k machines chosen from eq yield specified utility u. This is defined by a time interval
[s;s+ dur). It helps to visualize the nCk building block as a function assigning scalar values to arbitrary
rectangles in resource space-time. In Fig. 3, each of the (potentially non-contiguous) rectangles can be
expressed with an nCk primitive (see section 3.4).

The operators are min, max, sum, barrier, and scale and are defined as follows:
– min(t1, ..., tn): returns the minimum resulting utility of the specified set of subtrees t1, ..., tn. This forces

a certain minimum utility across all subexpressions of the min operator and, therefore, semantically behaves
like an AND.

– max(t1, ..., tn): returns the maximum resulting utility of the specified set of subtrees t1, ..., tn. This
picks a subexpression of maximum utility and, therefore, semantically behaves like an OR.

– sum(t1, ..., tn): returns the sum of utility values evaluated across all specified subtrees t1, ..., tn.
– scale(t,s): unary scaling operator scaling the utility value of subtree t by scaling factor s.
– barrier(t,u): returns utility u if the utility of subtree t is ≥ u , or 0 otherwise.

3.4 Examples

To demonstrate how the language describes user placement preferences, we show an example for the GPU
job in Fig. 3. For each start time s ∈ [S,Deadline) (see Fig. 4), we have the following two choices:

nCk({M1,M2} ,k = 2,s,dur = 2,uG(s+2))

nCk({M1,M2,M3,M4} ,k = 2,s,dur = 3,uG(s+3))

where uG(t) is the user-defined utility function mapping absolute completion times to utility based on the
uduf shown in Fig. 4. The first choice represents getting GPU-enabled servers, which will complete in 2
time units, and the second choice represents running anywhere, but at a slower run time of 3 time units. To

2As can be seen in Fig. 3 “rectangles” can, of course, be non-contiguous.

7

combine these choices, we use the max operator, resulting in the following expression:

max(∀s ∈ [S;Deadline) nCk({M1,M2} ,k = 2,s,dur = 2,uG(s+2)),

∀s ∈ [S;Deadline) nCk({M1,M2,M3,M4} ,k = 2,s,dur = 3,uG(s+3)))

Tetrisched combines such expressions for all jobs pending placement with a top-level sum operator to form
the global optimization expression.

4 MILP Formulation

Tetrisched’s optimization problem can be represented as a Mixed Integer Linear Program (MILP). In this
formulation, we maximize a linear objective function over a set of binary, integer, and continuous variables
subject to a set of linear optimization constraints. At first, it seemed that our combinatorial placement
constraints were too complex to be represented as linear optimization constraints. We later realized that
branches in the tetrisched expressions correspond to placement choices or placement constituents, which
can be formulated in an MILP using binary indicator decision variables. For each branch, we assign an
indicator variable that represents if the branch was chosen. The utility for each branch appears in the objective
function multiplied by its indicator variable. Thus, the indicator variable is able to convey those branches
from which we extract utility. To ensure the scheduler stays within resource limits, we also have integer
partition variables that represent the quantity of resources consumed by nCk and LnCk leaf nodes. These are
used in two types of optimization constraints: supply constraints and demand constraints. Supply constraints
limit the scheduler to only use the available resources. Demand constraints indicate the resource requirement
for satisfying the nCk and LnCk leaf nodes. Using these ideas, we recursively generate an MILP problem for
the tetrisched expression corresponding to the sum of all queued jobs. The MILP generation algorithm is
given in Appendix A.2.

5 System Implementation

Fig. 5 shows the major components of tetrisched. Users typically3 submit job definitions and user objectives
to the wizard. The wizard builds a tetrisched utility function that defines the user’s value for space-time
rectangles. This is passed to the tetrisched scheduler, which queues jobs and computes job schedules. At
every scheduling cycle, the scheduler produces a job schedule for the cluster manager, which handles the
launching and monitoring of jobs. We now expand in more detail on three important features: the scheduler
(Sec. 5.1), plan-ahead (Sec. 5.2), and the wizard (Sec. 5.3).

5.1 Scheduler

The scheduler’s primary function is to produce space-time schedules for the currently queued jobs. On each
scheduling cycle, the scheduler aggregates job utility expressions across all pending jobs under a single sum
expression4. This global sum expression is then converted into an MILP problem and fed to the solver. We
use IBM CPLEX [6] for the purposes of this paper. Given the complexity and size of MILP models generated
from scheduler expressions, the solver is configured to return “good enough” solutions within 10% of the
optimal solution. Additionally, we cache solver results to serve as a feasible starting solution for subsequent
solver invocations. We found such result reuse to be quite effective for reducing solver execution time.

3Power users can bypass the wizard and directly submit tetrisched utility functions to the scheduler.
4Other aggregation operators are possible, enabling different optimization goals, including fairness.

8

5.2 Plan-ahead

An important aspect of tetrisched is considering future placements for multiple jobs with flexible constraints.
This allows tetrisched a wider range of options for where and when to schedule jobs in cluster space-time. It
is particularly important for the scheduler to know whether it should wait for preferred resources. In Sec. 7.3,
we will see that plan-ahead can lead to factor of 3 improvements. However, planning very far into the future
is computationally expensive and provides diminishing returns. Since we do not have oracular knowledge,
large planning horizons could even produce worse results. Thus, we limit how far tetrisched plans into the
future, which we define as the plan-ahead parameter. For example, the plan-ahead parameter in Fig. 3 is 5
time units.

5.3 Wizard

We use the term “wizard” to refer to a tool that translates specified user desires into utility functions. To allow
comparisons between jobs of different types, a user must specify a budget associated with each job. This can
be based on priority, job size, or some other user perceived valuation. Users can also specify a penalty for
dropping jobs. This allows providers the ability to form SLAs with a penalty for failing to run jobs by the
specified deadline. Users specify their sensitivity to delay by providing deadlines and desired completion
times. Fig. 4 shows how utility is affected as a function of response time. For power users, the wizard is also
generic enough to utilize any other function relating utility to completion time. Lastly, the wizard takes an
estimate of a job’s duration5. In Sec. 7.5, we show the robustness of tetrisched to inaccuracies in job duration
specification.

We now present five prototypical job types currently supported by our wizard: Unconstrained, GPU,
MPI, HA, and HDFS.

Unconstrained: Unconstrained is the most primitive type of job that has no placement preference and
derives the same amount of benefit from an allocation of any k servers. It can be represented with a single “n
Choose k” primitive, choosing k servers from the whole cluster serving as the equivalence class.

GPU: GPU preference is one of the simplest forms of non-combinatorial constraints. In addition to the
SLA parameters above, users also specify that they want k GPU-enabled servers. If the k servers are not all
GPU-enabled, then we assume the job is slowed down by a user-specified slowdown factor5. This translates
into a tetrisched max expression with two branches corresponding to k GPU-enabled servers and k servers
anywhere (see Fig. 6(a)). The max expression carries the semantics of an “OR” operator. This pattern is
repeated for each possible start time. The utility is calculated based on the start time, estimated duration, and
user sensitivity to delay. Tetrisched is responsible for evaluating these options in space-time to determine the
best way to schedule pending jobs. Note that “GPU” here is representative of any arbitrary accelerator or
machine attribute, such that performance benefit is achieved iff all k allocated machines have it.

MPI: Rack locality is a prime example of a combinatorial constraint. For example, many MPI workloads
are known to run faster with locality. Here, users request k servers on the same rack and get slowed down if
their allocated servers are on different racks. This translates into a tetrisched max expression with a branch
per rack plus a branch for running anywhere. Note that a “rack” could refer to any statically or dynamically
determined locality domain.

HA (High Availability): Rack anti-locality is another contrasting example of a combinatorial constraint.
Workloads that care about spreading servers across failure domains benefit from this type of scheduling.
The tetrisched expression for this type of job (Fig. 6(b)) consists of a max expression with two branches
corresponding to having up to k = 1 or k = 2 servers per rack. This limit is job-specific and is expected to
depend on the maximum number of service instances the job can tolerate losing at any given point in time. To
quantify the value of availability, users specify utility degradation as a function of availability. This function

5We envision estimated job runtimes and slowdown factors being provided by profiling tools rather than actual user knowledge.

9

max

nCk({m1,m2},k,s,d=dur, u(s+d))

nCk({m1,m2,m3,m4},k,s,d=slowdur, u(s+d))

(a) GPU

max

sum

scale1

barrier(u=k’) barrier(u=k’)

LnCk(R1,k=1,s,d,u(s+d))
LnCk(R2,k=1,s,d,u(s+d))

sum

LnCk(R1,k=2,s,d,u(s+d))
LnCk(R2,k=2,s,d,u(s+d))

scale2

(b) Availability

Figure 6: Algebraic utility expressions for GPU and Availability jobs.

is used to determine the scaling factors for each of the two main branches. Within each branch, we have a sum
operator that sums up the number of servers across all racks (used as an example of a failure domain). The
barrier operator ensures that the total number of servers aggregated across all racks is at least the requested k′.
The LnCk (linear “n Choose k”) leaf nodes correspond to each rack and limit how many servers can come
from any given rack. The translation from k′ to job’s budget is performed in the scale operator along with
utility attenuation due to respective availability degradation. HA jobs are noteworthy as they combine two
objectives: queueing delay and availability. In Section 7.4, we evaluate the extent of user control over their
relative importance by tuning the user-defined utility function (Fig. 4).

HDFS: The last example explores flexibility in both the number of servers requested and the type of
resources consumed. In this example, jobs are able to consume fewer servers at the cost of running longer.
Similar to GPU jobs, HDFS jobs prefer to run on HDFS storage nodes where there is data locality. However,
these jobs are able to extract partial benefit if some, but not all, of the tasks are on HDFS nodes. The tetrisched
expression for this job consists of a max expression across a collection of HDFS/non-HDFS combinations.
Each of these combinations is handled by a min expression, carrying the semantics of an “AND” operator.
Intuitively, we perform a selection of the maximum-utility pair (p,q), where p is the number of HDFS storage
nodes and q is the number of non-HDFS nodes.

6 Experimental Setup

We performed extensive simulation studies to evaluate tetrisched’s schedules and those of competing ap-
proaches to handling placement constraints.

6.1 Cluster Configuration

Simulation allows us to study scheduling at much larger scale than we otherwise could. The results reported
are all for a simulated cluster of N = 1000 servers spread across 25 racks: 10 racks each with 25 GPU-enabled
servers, 5 racks with 40 servers, 5 racks with 60 servers, and 5 racks with 50 servers running an HDFS store.
So, 25% of the cluster has GPU-accelerators, 25% of the cluster has HDFS local storage, and 50% of the

10

Workload Mix GPU HDFS HA Unconstrained
W1 25% 25% 0% 50%
W2 25% 25% 50% 0%
W3 50% 0% 50% 0%
W4 100% 0% 0% 0%

Table 1: Workload compositions used in results section.

cluster is generic, spanning 10 racks. Throughout our experiments, we keep this cluster composition constant
and vary the workload composition to study the effect of spacial and temporal imbalances induced.

6.2 Workload Configuration

The experiments use four workload types described in Sec. 5.3: GPU, HDFS, HA (high availability), and
Unconstrained. In this section, we describe pertinent parameters that affect the workload.

Definition of ρ: An important parameter that affects the impact of scheduling is load (ρ). In all our
experiments, we adjust the job arrival rate (λ) to match a desired load (ρ). Formally, ρ is defined as

load = ρ =
λE[W]

N

where E[W] is the average work per job and N is the cluster size. The work per job (W = S∗K) is defined as
the size of the space-time rectangle consumed by executing the job, which is the job duration (S) multiplied
by the number of servers requested (K). Since a job may be flexible in S and K based on what resources it
consumed and how many it consumed, we take S and K to refer to the optimal placement as indicated by the
hard constraint. This implies that an unoptimal placement may increase the effective load on the system, if
the job is slowed down. We define slowdown in Table 2.

Workload Composition: Workloads are often composed of a heterogeneous mixture of job types. We
experimented with many different proportions of workload types, as well as a broad range of settings of the
other parameters. Table 1 shows the compositions used in our results section. Going from workload mix W1
to W4, the relationship of workload composition to resource composition becomes increasingly less balanced.
For W1, at full load, we expect all three present job types to fit within their preferred spacial partitions,
leaving no spacial imbalance. As we’ll see in Sec. 7.1, tetrisched still outperforms alternatives through better
handling of temporal imbalances caused by uncorrelated bursts in each workload type. W2 fits GPU and
HDFS jobs to preferred resources, if HA jobs can fit on generic racks. This can happen when HA job sizes do
not require spreading over more than the generic racks or if the scheduler exploits HA jobs’ spatial flexibility
to put more of the tasks on each generic rack. W3 is designed such that both GPU and HDFS jobs spill over
to non-preferred resources at loads exceeding ρ = 0.5. Lastly, W4 is the least spatially balanced of all.

Job parameters: Workloads can also vary in their budgets, penalties, and deadlines. Unless otherwise
stated, we set the budget as the job duration multiplied by the number of servers requested, which corresponds
to the space-time rectangle consumed by the job. We fix the penalty to be equal to the budget [10]. We set
the desired completion time to be the job duration, if the job runs on optimal resources. This indicates to
the scheduler that we would like our results ASAP. We set the deadline to be two times the job duration, if
the job runs on unoptimal resources plus the desired completion time. Thus, it is possible to extract positive
value from jobs even if they are running on unoptimal resources, assuming they are quickly scheduled.

High availability jobs are unique in that they care about availability as well as queueing delay. We set
the parameters so that the job would get full value if it runs with up to one server per rack. Under the flexible
placement policy, a job is able to sacrifice availability to run with up to two servers per rack, but it suffers a
loss in utility as a result. This availability vs utility tradeoff is configurable by the user. In our experiments,

11

E[T] Mean response time (completion time − arrival time)
Unavailability Fraction of job downtime (1 - availability)
Dropped jobs Fraction of jobs that have exceeded deadlines
ρ Cluster load
C2

A Burstiness of job arrivals
Slowdown Factor speed difference between running a job on preferred resources vs. non-preferred
Plan-ahead Amount of time into the future that policies can plan schedules for.

Table 2: Metrics and parameters used in results section.

we configured the parameters so that running on up to two servers per rack yields a 10% loss in utility. We
set the desired queueing delay to prefer starting ASAP, but we show in Sec. 7.4 how these two parameters
can be tuned by the user to prefer increased availability or reduced queueing delay.

Traces: We generate traces based on load, workload composition, job type, and burstiness. The trace
file for each contributing workload type is generated independently. The traces include arrival time, estimated
job duration, and the number of servers requested. Arrival times are generated based on each workload type’s
load and an inter-arrival squared coefficient of variation parameter (C2

A), which controls the burstiness
of the arrival sequence (Table 2). Setting C2

A = 1 yields a Poisson process, and higher values of C2
A yield

burstier arrivals. To target an interesting range of job durations, we use a shifted exponential distribution with
a minimum of five times the scheduling period and a mean of ten times the scheduling period. The number of
servers per job varies based on job type and is bounded so that any given resource request, in isolation, can be
satisfied by any one of the compared scheduling policies. Of course, real users may be unaware of the system
configuration and may set a hard constraint that can’t be satisfied even in isolation, but such ill-behaved jobs
would penalize the hard constraint policy more than the others.

6.3 Availability Calculation

To evaluate consideration of placement tradeoffs across multiple failure domains (e.g., racks) for availability-
sensitive jobs, we need a mechanism to quantify the relative impact of correlated failures. To do this, we
developed a Monte Carlo-based simulation to estimate the availability of a job given its server placement. In
this simulation, we assume that servers as well as server racks independently fail for a configurable percentage
of time. A job is considered temporarily unavailable any time k or more of its tasks are simultaneously
unavailable. We picked k = 3 as it seemed reasonable for the number of servers in our high availability jobs.

Job unavailability (Table 2) is then defined as the average percentage of time that a given simulated
HA job is unavailable (i.e., 1− availability). To approximate job unavailability, the simulator randomly
selects failure times and computes the job unavailability. This process is repeated 10,000 times for each high
availability job, and the resulting unavailability is then averaged across all high availability jobs within a
trace. We have found this to produce stable results (error bars on Fig. 10(c) provide indirect support for that).
Thus, the differences in availability between compared scheduling policies can be attributed to differences in
their respective effectiveness.

To quantify the utility change associated with different levels of availability, a user is able to specify
a discount factor as a function of unavailability. In our experiments, we use a basic function form of
log10(

1
unavailability), which has an asymptote at 0. This makes it increasingly more valuable to have lower

unavailability (i.e., each additional “9” of availability has a big impact on the discount factor). We take
this basic function form and scale it so that a placement yielding up to one machine per rack (roughly 10−5

unavailability in our setup) corresponds to no utility attenuation (i.e., scaling factor = 1.0). We also scale
the curve so that having two machines per rack (roughly 3 ∗ 10−4 unavailability, given our experimental
configuration) has a discount factor of 0.9.

12

0.1 0.3 0.5 0.7 0.8 0.9
ρ

0

20000

40000

60000

80000

100000
to

ta
l u

til
ity

tetrisched
hard
none

(a) W2, slowdown=3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

0

20000

40000

60000

80000

100000

to
ta

l u
til

ity

tetrisched
hard
none

(b) W3, slowdown=1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

20000

0

20000

40000

60000

80000

to
ta

l u
til

ity

tetrisched
hard
none

(c) W4, slowdown=1.5

Figure 7: tetrisched outperforms hard and none as cluster load(ρ) increases. Graphs 7(a), 7(b), and 7(c)
correspond to workload compositions in Table 1 with a Poisson inter-arrival process (C2

A = 1) and schedulers using
15-minute plan-ahead.

7 Experimental Results

This section evaluates tetrisched across a wide range of workload characteristics and mixes. Sec. 7.1
examines overall performance, showing that tetrisched consistently improves utility over hard and none,
by as much as a factor of 2 at high load, where scheduling has the most impact. Sec. 7.2 examines the
performance metrics behind utility, showing that tetrisched’s superior utility is often a consequence of
sometimes accepting less-preferred resources in order to avoid dropping as many jobs as other policies.
Sec. 7.3 examines the importance of plan-ahead, which is a key differentiator between tetrisched, which
supports plan-ahead, and alsched, which does not. We find that plan-ahead can improve the performance
of tetrisched by a factor of 3 or more over alsched, particularly when the slowdown factor is high and
job arrivals are bursty. Sec. 7.4 illustrates how the user can control the tradeoff between higher availability
and lower queueing delay using the interface provided by the wizard. Sec. 7.5 shows that tetrisched is
surprisingly robust to user error in specifying job durations.

All graphs plot median data points from a set of 6 runs per data point. Error bars are one ± median
absolute deviation (MAD). Observed variability comes primarily from regenerating trace files for each of the
6 sets of parameter sweeps. Per each workload composition (Table 1), the number of runs in each parameter
sweep depended on the number of scheduling policies compared (3), slowdown factors (5), plan-ahead
windows (4), load factors (6-9), and levels of burstiness (4). Thus, a typical single parameter sweep required
anywhere from 1440 to 2160 simulation runs, averaging more than ten thousand simulation runs per workload
composition.

7.1 Overall tetrisched performance

Benefits of spacial flexibility: Figures 7 and 8 compare utility as a function of load (ρ) for the 4 workload
compositions in Table 1. For each, tetrisched is superior to hard and none, while the exact relationship
between hard and none depends on the mix. For W2 (Fig. 7(a)), we see that hard performs similarly to
tetrisched when load is low, as there’s enough preferred resources to give most jobs their first choices. As
load increases beyond ρ = 0.5, however, hard starts to deteriorate as expected since all preferred resources
saturate at ρ ≈ 0.5. HA jobs in the mix prefer thin placement across most racks, cutting into the GPU
and HDFS capacity. hard policy takes this as a requirement, increasing contention for preferred resources.
Specifically, 50% HA jobs at ρ = 0.5 contend for 25% of the cluster, cutting into 25% of GPU rack capacity
and leaving only 3

4 ∗
1
4 = 3

16 of the total cluster capacity to GPU jobs. Since the hard policy insists on
preferred placement, the GPU workload starts to saturate GPU racks at ρ = 0.5, squeezed by HA jobs. The

13

0.1 0.3 0.5 0.7 0.9
ρ

0

20000

40000

60000

80000

100000

120000
to

ta
l u

til
ity

tetrisched
hard
none

(a) W1, 1x budget

0.1 0.3 0.5 0.7 0.9
ρ

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

to
ta

l u
til

ity

tetrisched
hard
none

(b) W1, 2x budget

0.1 0.3 0.5 0.7 0.9
ρ

0

100000

200000

300000

400000

500000

600000

700000

to
ta

l u
til

ity

tetrisched
hard
none

(c) W1, 10x budget

Figure 8: tetrisched leverages spacial flexibility, outperforming hard and none through better handling
of temporal imbalances. Increased importance of picky jobs leads to increased differential in performance,
following Amdahl’s Law.

situation is similar for HDFS. Tetrisched, on the other hand, extracts benefit from the spacial flexibility of
HA jobs as well as GPU jobs. Scheduling HA jobs with up to 2 tasks per rack (see Sec. 5.3) eases that
contention, allowing all three job types to benefit from non-preferred spacial capacity. As a result, we observe
the inflection point for tetrisched occurring at a higher load of ρ = 0.7.

Fig. 7(b) shows results for a less spatially balanced W3 mix. The more unbalanced the composition is,
the further left the inflection point moves for hard (the earlier hard starts failing). At ρ = 0.4, the workload
is already close to the 0.25 cluster GPU capacity, given that GPU is 50% of the workload in this composition.
As we move from Fig. 7(a) to 7(b) to 7(c) (with GPU fraction increasing from 25% to 50% to 100%), the
workload becomes increasingly unbalanced, shifting the inflection point for hard further left, from ρ = 0.5
to ρ = 0.4 to ρ = 0.2.

none performs quite well at sufficiently small slowdowns, since there is little penalty caused by ignoring
preferences. Unaware of constraints, it enjoys the same access to spare capacity as tetrisched does. For
slowdown factor of 1 and workload compositions consisting entirely of completion oriented jobs, we expect
and observe none behave the same as tetrisched. As shown in Fig. 7(a), it quickly loses this benefit
with an increase in load. In all cases, however, tetrisched extracts benefit from the spare capacity and
outperforms hard and none by up to a factor of 2.

Handling temporal imbalance: In the perfectly choreographed match between resources and jobs,
where each workload type can fit in its preferred cluster partition at full load, we expect the hard policy to
perform well (Fig. 8). It would, in fact, resemble the static partitioning allocation policy, with job sizes for
each workload type carefully tuned to fit the corresponding partition on average. The key, however, is that job
arrivals can be bursty and create transient temporal imbalances. Fig. 8 shows that spacial flexibility-aware
scheduling policy handles such imbalances better than the alternatives. At low loads, temporal imbalances
are absorbed by spare capacity in each of the preferred partitions, as each is overprovisioned. As load
increases, however, tetrisched outperforms hard and none, as transient overload is allowed to spill over
into potentially available spare capacity in non-preferred partitions.

Lastly, we examine the effect of raising the priority of “picky” jobs. Recall that all completion oriented
jobs are described by the uduf s in Fig. 4. Budget is the maximum utility a job can extract from the cluster.
Relative budget differences, therefore, translate into relative job importance, as the scheduler will favor jobs
that yield higher utility. In Fig. 8(a), all jobs have the same budget. We increase the budget for “picky” jobs
in Fig. 8(b) and 8(c) . As a result, tetrisched achieves higher relative gains if unconstrained jobs are less
important than jobs with spacial preferences. Indeed, relative gains here are governed by Amdahl’s Law—as
the fraction of utility from “picky” jobs increases, so does the benefit of flexible scheduling.

14

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty

tetrisched
hard
none

(a) utility

1.11.5 3.0 5.0 10.0
slowdown

10

15

20

25

30

35

E[
T]

tetrisched
hard
none

(b) mean response time

Figure 9: Utility and response time as function of slowdown. Workload is same as Fig. 7(a) at load (ρ = 0.7).

0.1 0.3 0.5 0.7 0.8 0.9
ρ

8

10

12

14

16

18

20

22

24

E[
T]

tetrisched
hard
none

(a) mean response time

0.1 0.3 0.5 0.7 0.8 0.9
ρ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

dr
op

pe
d

jo
bs

tetrisched
hard
none

(b) dropped jobs

0.1 0.3 0.5 0.7 0.8 0.9
ρ

10-5

10-4

10-3

10-2

un
av

ai
la

bi
lit

y

tetrisched
hard
none

(c) unavailability

Figure 10: Under tetrisched more jobs meet the completion time SLO, while maintaining a response time
comparable to hard. Availability is reduced in preference to dropping jobs. none does worse on all metrics.
Workload is identical to Fig. 7(a).

Effect of slowdown: Slowdown (see Table 2) is an important factor that affects the relative performance
comparison of the three policies. For slowdowns as low as 1.1, none performs well (see Fig. 9(a)), since
it doesn’t suffer much from failing to prioritize preferred resources in the schedules it produces. As the
slowdown increases, none starts performing increasingly worse, as the penalty for missing preferred resources
increases with the slowdown factor on the x-axis. It thus passes hard on its downward trend. Indeed, simply
waiting for preferred resources becomes a reasonable scheduling policy when the benefits of doing so are
orders of magnitude. tetrisched continues to outperform both of these policies, including and especially at
all the intermediate slowdown values in this range (Fig. 9(a)). Lastly, slowdown affects tetrisched mean
response time, E[T], as well. Note that in Fig. 9(b) tetrisched actually surpasses hard with respect to
E[T], particularly at slowdown factors of 3 or less.

7.2 Under the hood

What makes tetrisched yield 2x better utility in Fig. 7(a)? Fig. 10 shows the underlying metrics that affect
the difference in utility. In Fig. 10(a), we see, surprisingly, that the average response time, E[T], (defined in
Table 2) of hard matches that of tetrisched. In Fig. 10(b), we see that the utility difference is due to hard

dropping significantly more jobs. Note that hard will always cause jobs to wait for preferred resources, if
not immediately available. When resources become available, hard is likely to pick younger jobs to place

15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

8

10

12

14

16

18

20

E[
T]

tetrisched
hard
none

(a) mean response time

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

dr
op

pe
d

jo
bs

tetrisched
hard
none

(b) dropped jobs

Figure 11: Under the hood of Fig. 7(c) (Workload composition W4). tetrisched drops fewer jobs while
providing response times akin to hard. Lower is better.

on preferred resources, as they have the highest value (see Fig. 4). As older jobs eventually reach their
response time deadlines, they are dropped. hard thus achieves good response times at the expense of dropped
jobs. tetrisched matches the response time performance of hard, but manages to drop a lot fewer jobs by
exploiting the availability tradeoff for HA jobs (see Fig. 10(c)). Note that this tradeoff only occurs at high
load when the cluster is contended.

tetrisched extracts benefit from spare capacity. This is especially pronounced in homogeneous
compositions, when tradeoffs cannot be made between multiple job types. In Fig. 11(a), we see that
tetrisched continues to match the response time of hard, but it drops far fewer jobs in the process as
shown in Fig. 11(b). In this case, tetrisched is able to drop fewer jobs as it can use the less optimal
resources, whereas hard stubbornly insists on using preferred resources only.

7.3 Benefits of time-aware placement

A major feature of tetrisched is its ability to plan ahead in time, using future resource availability estimates
as well as job delay sensitivity information. This section quantifies the benefit from the plan-ahead feature
and shows that it is an important differentiator between tetrisched and alsched – the two policies that
understand spacial flexibility.

Fig. 12 plots utility for tetrisched, hard, and none as slowdown increases from 1.1 to 10. tetrisched
without plan-ahead (Fig. 12(a),12(e),12(i),12(m)), positioned in the first column of Fig. 12, represents the
alsched system, which only understands soft constraints. We see that alsched starts making bad placement
decisions relative to hard at progressively higher slowdown factors because it does not understand the
concept of waiting for preferred resources. As we go horizontally across this 4x4 grid, however, we see that
tetrisched is able to leverage plan-ahead to avoid this mistake and outperform both hard and none, as the
plan-ahead window increases from none to 15 min.

A natural question to ask is just how far ahead to plan. In Fig. 12(c) it may appear that a smaller
plan-ahead window of 5 minutes might be sufficient. However, we also discovered that the positive effect
of plan-ahead is significantly amplified by workload burstiness. As the temporal imbalance created by
burstier workloads exerts more pressure on the cluster’s scarce preferred resources, it becomes evermore
important to leverage job runtime estimates and plan ahead pending job placement, instead of falling back to
secondary options instantaneously. As we vertically trace Fig. 12(a),12(e),12(i),12(m), we observe a drop for
alsched both in absolute utility and relative to hard. The same downward trend can be observed, in fact, for
any of the four subfigure columns of Fig. 12. Plan-ahead helps tetrisched handle this increasing temporal
imbalance, however, illustrated with a gradually improving relative performance, as we horizontally scan any

16

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000
ut

ili
ty

tetrisched
hard
none

(a) no plan-ahead, C2
A = 1

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty

tetrisched
hard
none

(b) 2min plan-ahead, C2
A = 1

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty

tetrisched
hard
none

(c) 5min plan-ahead, C2
A = 1

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty

tetrisched
hard
none

(d) 15min plan-ahead, C2
A = 1

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty

tetrisched
hard
none

(e) no plan-ahead, C2
A = 4

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000
ut

ili
ty

tetrisched
hard
none

(f) 2min plan-ahead, C2
A = 4

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty tetrisched
hard
none

(g) 5min plan-ahead, C2
A = 4

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty tetrisched
hard
none

(h) 15min plan-ahead, C2
A = 4

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty

tetrisched
hard
none

(i) no plan-ahead, C2
A = 6

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty

tetrisched
hard
none

(j) 2min plan-ahead, C2
A = 6

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty tetrisched
hard
none

(k) 5min plan-ahead, C2
A = 6

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty tetrisched
hard
none

(l) 15min plan-ahead, C2
A = 6

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty

tetrisched
hard
none

(m) no plan-ahead, C2
A = 8

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty

tetrisched
hard
none

(n) 2min plan-ahead, C2
A = 8

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty tetrisched
hard
none

(o) 5min plan-ahead, C2
A = 8

1.11.5 3.0 5.0 10.0
slowdown

40000

20000

0

20000

40000

60000

80000

100000

120000

ut
ili

ty tetrisched
hard
none

(p) 15min plan-ahead, C2
A = 8

Figure 12: Time-aware scheduling is essential as slowdown increases. These graphs correspond to the W2
mix with a load (ρ = 0.7), horizontally varied plan-ahead, and vertically varied burstiness (C2

A). We see that
plan-ahead becomes even more important as the level of burstiness increases, particularly at high slowdowns.
In fact, utility in this figure improves by a factor of upto 2.4x in going from no plan-ahead (alsched) to 15
min plan-ahead (tetrisched).

of the 4 subfigure rows. Fig. 13 highlights the factors of improvement tetrisched achieves from plan-ahead.
Specifically, the highest factor difference for tetrisched between Fig. 12(p) and Fig. 12(m) is plotted in
Fig. 13(b) as 2.4x (ρ = 0.7), and we see even higher factors of improvement for higher loads.

7.4 Exerting control through utility

While utility is, by design, the single primary objective for which tetrisched optimizes, user-specified
utility functions can serve as expressive tools to guide the scheduler in the tradeoff space towards desired

17

0.1 0.3 0.5 0.7 0.8 0.9
ρ

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

ut
ili

ty
 fa

ct
or

 b
et

te
r

1min
2min
5min
15min

(a) slowdown=5

0.1 0.3 0.5 0.7 0.8 0.9
ρ

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ut
ili

ty
 fa

ct
or

 b
et

te
r

1min
2min
5min
15min

(b) slowdown=10

Figure 13: This graph shows factors of improvement for the tetrisched policy over alsched as a function
of cluster load (ρ) and plan-ahead windows.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

10-5

10-4

10-3

10-2

un
av

ai
la

bi
lit

y

tetrisched 0.0
tetrisched 1.0
hard
none

(a) 1x availability job budget

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

10-5

10-4

10-3

10-2

un
av

ai
la

bi
lit

y

tetrisched 0.0
tetrisched 1.0
hard
none

(b) 2x availability job budget

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

10-5

10-4

10-3

10-2

un
av

ai
la

bi
lit

y

tetrisched 0.0
tetrisched 1.0
hard
none

(c) 10x availability job budget

Figure 14: User-defined utility functions provide a mechanism to control the tradeoff between availability
and delay sensitivity. This experiment is run with the W2 mix. Higher HA job budgets give them preference
over the other GPU and HDFS jobs, particularly at high loads (ρ).

outcomes. Specifically, a user-defined utility function (uduf) maps a desired completion time or queueing
delay to utility. For HA jobs, that utility value is additionally scaled by a factor ∈ [0;1] computed as a
function of expected failure probability for a given placement. Fig. 14 shows that, in cases of multiple such
considerations, uduf’s provide knobs to tune user preference for one such consideration (e.g., queueing delay)
over the other (e.g., failure probability).

Turning the uduf knob away from queueing delay as the primary consideration (“tetrisched 0.0”) to
higher availability (“tetrisched 1.0”) increases the separation between blue triangle curves in Fig. 14 – a
delta most visible at higher ρ with an increased budget (Fig. 14(c)). Whereas in Fig. 14(a), under high load,
the scheduler traded off availability for the utility it extracted from scheduling competing workload, we
see in Fig. 14(c) higher availability is achieved. Furthermore, availability increases both across all ρ and
specifically for the “tetrisched 1.0” case, which sets the HA-sensitivity to the maximum for availability jobs.
The takeaway is that user-defined utility functions, as exemplified by availability jobs, offer several control
knobs, such as budget and desired queueing delay deadline, empowering users to control the tradeoffs made
by the scheduler.

18

0 20 40 60 80
Percent error

20000

0

20000

40000

60000

80000

100000

ut
ili

ty tetrisched
hard
none

Figure 15: Effect on utility as users are more erroneous about duration estimates. tetrisched is robust
to error in duration estimates. The average error is kept constant so that load (ρ = 0.7) remains constant.
Percent error is calculated as the root mean square error divided by the average duration. This experiment
uses the W2 mix with some burstiness (C2

A = 4).

7.5 Sensitivity to duration mis-estimation

Users are unlikely to provide perfectly accurate guidance to the scheduler. This section evaluates the effect of
inaccurate job duration estimates. Given that tetrisched uses plan-ahead, inaccurate job duration estimates
could lead to bad scheduling decisions. But, somewhat to our surprise, we found that tetrisched’s efficacy
is robust to such inaccuracy. As expected, we found a qualitative correlation between situations for which
plan-ahead matters the most and the utility drop-off as a function of inaccuracy (quantified as the coefficient
of variance of root-mean-squared-error, or CV(RMSE)). In other words, duration estimate inaccuracies
affect tetrisched only in cases where plan-ahead matters the most. But, the utility drop-off is small as
we increase the coefficient of variance by as much as 0.8 of the mean job duration, which corresponds to
80% error on average. It’s worth mentioning that perturbed runtime estimates could deviate by as much
as 3.4x. Figure 15 plots utility as a function of CV(RMSE). The dropoff in utility is insignificant until the
CV(RMSE) of 0.6. none is least affected as it extracts the least benefit from plan-ahead, oblivious to benefits
of preferred resources altogether. Utility difference for tetrisched was observed to be within 10-15% of
perfect runtime estimates across a large range of workload parameters.

8 Previous Work

Recent studies of datacenter traces [24, 21] have highlighted the facts that (a) datacenter infrastructures
are often heterogeneous, (b) workloads are heterogeneous, and (c) scheduling constraints often accompany
heterogeneous workloads. Tetrisched builds upon a tremendous amount of prior scheduling research and
extends it by addressing the scheduling of diverse workloads on heterogeneous servers while comprehending
soft constraints expressed in both space and time as well as combinatorial and gang scheduling constraints.

Datacenter Scheduling: Recent work on datacenter schedulers has studied multi-level scheduler
designs [23], dynamic resource partitioning in heterogeneous datacenters [13], fairness [11], and placement
considerations [12, 20, 14]. Omega’s [23] key contribution is enabling multi-scheduler designs for datacenter
scheduling. Tetrisched is complementary to this objective. Omega explicitly supports hard scheduling
constraints, as evidenced by the authors’ high fidelity simulator support for them [23]. But, there’s no
mention of preferential placement constraints in that work. Mesos [13] addresses the problem of dynamically
partitioning resources in heterogeneous datacenters via a multi-level scheduler design. Mesos defers the
complexity of constraints to framework-specific schedulers by design. As such, any gang scheduling or

19

preferential constraints can only be accomplished via hoarding.
Other cluster scheduling work has painted fairness as the most important metric [12, 11, 8]. While

Choosy [12] does consider constraints, it accommodates neither soft constraints nor combinatorial constraints.
While fairness is important in some situations, such as scheduling on some academic clusters, results-oriented
measurements (e.g., throughput, availability, or utilization) dominate in other environments. Consequently,
our work focuses on exploring the use of utility functions as a means of optimizing over potentially diverse
results-oriented user objectives.

Condor ClassAds [20] supports behavior akin to what we call “soft constraints”. The ClassAd mechanism
allows resource providers to declaratively describe each individual resource with expressions built on a
collection of resource-descriptive attributes (e.g., disk, memory, MIPS, arch, name). Resource consumers,
through the same mechanism, express their resource allocation preferences by submitting a classad describing
their respective attributes as well as, optionally, specifying Constraint and Rank expressions for desired
resources. The former serves as a hard constraint—a filter on allowable resources. The Rank can be thought
of as the expression of preference over individual machines. The matchmaking algorithm then evaluates each
consumer classad against each resource classad and picks the highest ranked resource. This approach has
two shortcomings relative to tetrisched. First, it relies on an a priori agreed upon static set of attributes—the
underlying expression vocabulary. Tetrisched instead “compiles” a heterogeneous set of objectives to a
common algebraic expression scheduler language that need not change as new resource attributes, job
characteristics, or user objectives appear. Second, it is fundamentally bilateral, matching a single job to
a single machine. That leads to lack of support for combinatorial constraints and gang scheduling, which
tetrisched enables.

A family of work including Quincy [14], MapReduce [9], and ABACUS [7] provides support for
specific types of placement preference with a hard-coded preference structure. Quincy [14], in particular,
offered an interesting range of support for data locality, fairness, and starvation-freedom. It represents
the scheduling problem as a network flow problem, capitalizing on such problems’ good worst-case time
complexity properties. Quincy achieves admirable cost-savings by addressing one specific type of placement
preference – data locality. Tetrisched generalizes that to arbitrary placement preferences, by providing support
for associating preferences with arbitrary subsets of resources. The latter is key to supporting combinatorial
constraints (rack-affinity, failure domain anti-affinity) as well as gang scheduling in a single scheduling
cycle. This helps tetrisched avoid hoarding (and associated potential for deadlock) needed by other systems,
including Mesos [13], to achieve the same. Additionally, none of the systems mentioned above have support
for plan-ahead. Tetrisched extracts factors of improvement (Fig. 13), in some cases, from its ability to consider
future placements and does so in a manner resilient to up to 3.4x runtime mis-estimation (Section 7.5).

Apache Hadoop YARN [27] is an open source cluster resource management system with multi-
framework support. It enables resource allocation support for a heterogeneous mix of programming
frameworks. YARN’s ResourceManager (RM) exports a resource request interface [3], enabling an Applica-
tionMaster (AM) to submit resource requests. Similarly to [14],[9], and [7] above, however, YARN focuses
its soft constraint support on a specific type of preference—data locality, with preference fallback structure
embedded in the ResourceRequest API [3]. The latter makes it possible to specify specific servers, racks,
and wildcard placement preferences. Further, while [27] claimed support for gang-scheduling, we found no
details of that in the paper. In fact, YARN API examples [5] and API documentation [3, 2, 4] revealed no
way of specifying that requested containers must be gang-allocated, explicitly stating that “all containers
may not be allocated at one go” [5]. Granted, as is the case with several other systems we’ve looked at,
gang-allocation is possible through hoarding allocated containers at the AM level. Thus, YARN offers support
for data locality with a narrow, predetermined preferential structure, no support for combinatorial constraints,
and no plan-ahead.

alsched: The closest prior work, by far, to tetrisched is our vision paper describing a system called
alsched [26]. This paper sketched the idea of using utility functions to schedule jobs with soft constraints

20

(using a more primitive language for utility functions and a crude bin-packing placement algorithm rather than
tetrisched’s complete MILP formulation). However, alsched ignored the time dimension: its utility functions
did not include time considerations, and it did not (and could not) use plan-ahead in scheduling. (Recall, from
Figures 12(a), 12(e), 12(i) and 12(m), alsched’s inability to wait for preferred resources to become available).
Further, while alsched hypothesized the possibility of a wizard for user objectives, tetrisched introduces the
first design and realization of such a wizard. Finally, the present paper provides a thorough evaluation of
utility function-based scheduling, which was lacking in the earlier work.

Utility functions: Wilkes [28] provides a tutorial and partial coverage of utility theory in scheduling,
particularly for managing tradeoffs between services with distinct service level objectives. Kelly [15]
describes utility-directed allocation using combinatorial auctions and solving the scheduling problem as a
multi-dimensional multi-choice knapsack problem. Tetrisched employs a richer formulation that supports
specifications over arbitrary subsets of resources (rather than only quantities of each resource type) as well as
those enhanced by time specifications; further, tetrisched supports plan-ahead.

Most proposed uses of utility functions for scheduling [17, 15, 25, 18, 16] have focused on quantifying
the value of resource quantities to each consumer, informing scheduling decisions when tradeoffs must be
made between them. Other papers use utility functions to model the cost of resource allocation or otherwise
help the scheduler arrive at allocations that optimize for the overall utility of the cluster [25, 18, 16]. Recently,
Jockey [10] used utility functions to map the duration of job execution to a utility value that decreases and
potentially drops below zero as the duration exceeds predetermined deadlines– a concept tetrisched borrows
for user-defined utility functions. However, Jockey makes only local optimization decisions per job and does
not reason about tradeoffs between multiple latency SLO jobs.

9 Conclusion

Tetrisched effectively schedules heterogeneous resources among a collection of diverse applications. Given
job-specific utility functions quantifying tradeoffs among preferences, plus estimated job runtimes, it plans
resource assignments to maximize overall utility. Simulation results of a 1000-node cluster show that it
consistently outperforms competing schemes that fail to consider either preferences or estimated runtimes,
across a wide range of workload scenarios and even with estimate inaccuracy. As a result, tetrisched is a
promising scheduling solution for heterogeneous datacenters and cloud infrastructures.

References

[1] Hadoop, 2012. http://hadoop.apache.org.

[2] Apache Hadoop main 2.2.0 API: Class Resource, Nov 2013. http://hadoop.apache.org/docs/
current/api/org/apache/hadoop/yarn/api/records/Resource.html.

[3] Apache Hadoop main 2.2.0 API: Class ResourceRequest, Nov 2013. http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/yarn/api/records/ResourceRequest.html.

[4] Apache Hadoop Main 2.2.0 API: Interface ApplicationMasterProtocol, Nov 2013.
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/yarn/api/

ApplicationMasterProtocol.html.

[5] Hadoop MapReduce next generation - writing YARN applications, Nov 2013. http://hadoop.

apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.

html.

21

 http://hadoop.apache.org
 http://hadoop.apache.org/docs/current/api/org/apache/hadoop/yarn/api/records/Resource.html
 http://hadoop.apache.org/docs/current/api/org/apache/hadoop/yarn/api/records/Resource.html
 http://hadoop.apache.org/docs/current/api/org/apache/hadoop/yarn/api/records/ResourceRequest.html
 http://hadoop.apache.org/docs/current/api/org/apache/hadoop/yarn/api/records/ResourceRequest.html
 http://hadoop.apache.org/docs/current/api/org/apache/hadoop/yarn/api/ApplicationMasterProtocol.html
 http://hadoop.apache.org/docs/current/api/org/apache/hadoop/yarn/api/ApplicationMasterProtocol.html
 http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.html
 http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.html
 http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.html

[6] IBM CPLEX Optimizer, 2013. http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/.

[7] Khalil Amiri, David Petrou, Gregory R. Ganger, and Garth A. Gibson. Dynamic function placement
for data-intensive cluster computing. In Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’00, pages 25–25, Berkeley, CA, USA, 2000. USENIX Association.

[8] Arka A. Bhattacharya, David Culler, Eric Friedman, Ali Ghodsi, Scott Shenker, and Ion Stoica.
Hierarchical scheduling for diverse datacenter workloads. In Proc. of the 4th ACM Symposium on Cloud
Computing, SOCC ’13, 2013.

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, January 2008.

[10] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo Fonseca. Jockey:
guaranteed job latency in data parallel clusters. In Proc. of the 7th ACM european conference on
Computer Systems, EuroSys ’12, pages 99–112, 2012.

[11] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica.
Dominant resource fairness: fair allocation of multiple resource types. In Proc. of the 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’11), 2011.

[12] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Choosy: max-min fair sharing for datacenter
jobs with constraints. In Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 365–378, New York, NY, USA, 2013. ACM.

[13] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in the data center. In Proc. of the 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’11), 2011.

[14] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew Goldberg.
Quincy: Fair scheduling for distributed computing clusters. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09, pages 261–276, New York, NY, USA, 2009.
ACM.

[15] Terence Kelly. Utility-directed allocation. Technical Report HPL-2003-115, Internet Systems and
Storage Laboratory, HP Labs, June 2003.

[16] Terence Kelly. Combinatorial auctions and knapsack problems. In Proc. of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems - Volume 3, AAMAS ’04, pages 1280–1281,
2004.

[17] Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A. Huberman. Tycoon: An implemen-
tation of a distributed, market-based resource allocation system. Multiagent Grid Syst., 1(3):169–182,
August 2005.

[18] Cynthia B. Lee and Allan E. Snavely. Precise and realistic utility functions for user-centric performance
analysis of schedulers. In Proc. of the 16th international symposium on High performance distributed
computing, HPDC ’07, pages 107–116. ACM, 2007.

[19] Cade Metz. Why even google will embrace cellphone chips in the data center, 2013. http://www.

wired.com/wiredenterprise/2013/05/google-jason-mars/, Wired.

22

 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
 http://www.wired.com/wiredenterprise/2013/05/google-jason-mars/
 http://www.wired.com/wiredenterprise/2013/05/google-jason-mars/

[20] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed resource management
for high throughput computing. In Proceedings of the Seventh IEEE International Symposium on High
Performance Distributed Computing (HPDC7), Chicago, IL, July 1998.

[21] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A. Kozuch. Hetero-
geneity and dynamicity of clouds at scale: Google trace analysis. In Proc. of the 3nd ACM Symposium
on Cloud Computing, SOCC ’12, 2012.

[22] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A. Kozuch. Towards
understanding heterogeneous clouds at scale: Google trace analysis. Technical Report ISTC-CC-TR-12-
101, Intel Science and Technology Center for Cloud Computing, Apr 2012.

[23] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega: flexible,
scalable schedulers for large compute clusters. In ACM Eurosys Conference, 2013.

[24] Bikash Sharma, Victor Chudnovsky, Joseph L. Hellerstein, Rasekh Rifaat, and Chita R. Das. Modeling
and synthesizing task placement constraints in Google compute clusters. In Proc. of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, pages 3:1–3:14. ACM, 2011.

[25] Ion Stoica, Hussein Abdel-wahab, and Alex Pothen. A microeconomic scheduler for parallel computers.
In Proc. of the Workshop on Job Scheduling Strategies for Parallel Processing, pages 122–135. Springer-
Verlag, 1994.

[26] Alexey Tumanov, James Cipar, Michael A. Kozuch, and Gregory R. Ganger. alsched: algebraic
scheduling of mixed workloads in heterogeneous clouds. In Proc. of the 3nd ACM Symposium on Cloud
Computing, SOCC ’12, 2012.

[27] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert
Evans, Thomas Graves, , Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen
O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another
resource negotiator. In Proc. of the 4th ACM Symposium on Cloud Computing, SOCC ’13, 2013.

[28] John Wilkes. Utility functions, prices, and negotiation. Technical Report HPL-2008-81, HP Labs, July
2008.

A Appendix

A.1 Partitioning algorithm

As defined in Sec. 3.1, equivalence classes contain machines that are equivalent in the context of a single
tetrisched leaf node expression, and partitions contain machines that are equivalent in the context of all jobs
and expressions. For example, Fig. 16 illustrates how three overlapping equivalence classes (circles) are
related to the partitions. Algorithm 1 converts a set of equivalence classes into a set of partitions. The key
insight is that a partition is uniquely identified by the set of equivalence classes of which it is a member. Each
bitvector position corresponds to a given equivalence class. To illustrate this, Fig. 16 labels each partition
with a bitvector encoding the equivalence classes it is a member of. Our algorithm creates these bitvectors
and assigns partition numbers to each unique bitvector.

23

001 010011

111

100

101 110

Equivalence class 0 Equivalence class 1

Equivalence class 2

Figure 16: The circles represent equivalence classes that have overlapping machines. Each region is a
partition and is uniquely determined by the bitvector of equivalence classes.

A.2 MILP generation algorithm

In Sec. 4, we present the intuition behind representing our scheduling problem as an MILP problem. In
this section, we present the algorithm for translating a tetrisched expression into an MILP problem. As
tetrisched expressions are built as expression trees, we perform the translation recursively on each branch of
the expression tree. Each branch roughly corresponds to a choice of whether a set of resources is consumed
or not, and we associate an indicator variable to represent if the branch is chosen. In our generation function,
the indicator variable is passed as one of the parameters. We do this instead of creating an indicator variable
for each expression because it allows the min operator to pass the same indicator variable to each child
expression. This ensures all its branches are either chosen or not chosen without needing extra constraints.

The min operator is also different in that it creates a variable corresponding to the minimum utility
across its child branches. This variable is constrained to be less than the utility from each branch and returned
as the objective function to maximize, thus making the variable equal to the minimum utility. Unlike the
min operator, the max operator does not need to create an additional variable, because it can simply limit the
child indicator variables to choose at most one branch. By returning the sum of child objective functions, the
solver will attempt to choose the one branch that maximizes utility, subject to capacity constraints.

The last set of variables we use are partition variables, which correspond to the number of machines
that a particular nCk or LnCk leaf node consumes within a specific partition. Partition variables are used
in demand and supply constraints. Demand constraints ensure leaf nodes get their requested number of
machines across their allowable partitions. Supply constraints ensure the number of allocated machines is
limited by the cluster capacity. As supply constraints depend on the entire expression tree, we only collect
partition usage info in the gen function in cap(x, t), which stores the set of partition variables that are used for
a given partition x at a given time t. After the MILP generation is performed, we add the supply constraints
so that each set of partition variables sums to less than the capacity of the partition x at time t (e.g., number of
machines in partition x minus the number of machines in partition x that are expected to be in use at time t).

24

partition: equivClasses→ partitions
func partition(equivClasses):

// Create bitvectors for each machine corresponding to the equivalence classes

// of which the machine is a member

bitvectors := new array of bitvector
foreach index, equivClass in equivClasses :

foreach machineId in equivClass :
bitvectors[machineId].setBit(index)

// Machines with the same bitvector get assigned the same partition number

partitions := new array of int
hashtable := new hashtable from bitvector to int
nextPartition := 0
for machineId := 0 to cluster size :

partition, found := hashtable.find(bitvectors[machineId])
if ! found :

// Bitvector hasn’t been seen before; assign new partition number to bitvector

partition = nextPartition
hashtable.insert(bitvectors[machineId], nextPartition)
nextPartition++

partitions[machineId] = partition
return partitions

Algorithm 1: Partitioning algorithm

25

gen: (tetrisched expr tree, indicator var)→ objective function
func gen(expr, I):

switch expr :
case nCk(partitions,k,u,s,dur)

foreach x in partitions :
Px := integer variable // Create a partition variable per partition in equiv class

for t := s to s+dur :
Add Px to cap(x, t) // Add partition variable to cap to track supply constraints

Add constraint ∑x Px = k ∗ I // (Demand) Ensure this node gets k nodes if chosen

return u∗ I // Return utility if chosen

case LnCk(partitions,k,u,s,dur)
foreach x in partitions :

Px := integer variable // Create a partition variable per partition in equiv class

for t := s to s+dur :
Add Px to cap(x, t) // Add partition variable to cap to track supply constraints

Add constraint ∑x Px ≤ k ∗ I // (Demand) Ensure this node gets up to k nodes

return u∗∑x
Px
k // Return scaled utility based on the number of allocated nodes

case sum(t1, ..., tn)
for i := 1 to n :

Ii := binary variable // Create indicator variable for each branch

fi = gen(ti, Ii)

Add constraint ∑i Ii ≤ n∗ I // Ensure that no branches are chosen if I = 0
return ∑i fi

case max(t1, ..., tn)
for i := 1 to n :

Ii := binary variable // Create indicator variable for each branch

fi = gen(ti, Ii)

Add constraint ∑i Ii ≤ I // Ensure that at most one branch is chosen

return ∑i fi

case min(t1, ..., tn)
U := continuous variable // Create variable representing min utility

for i := 1 to n :
fi = gen(ti, I) // Choose branches based on the same indicator variable I
Add constraint U ≤ fi // Ensure U is less than the min utility

return U // Given the constraints, maximizing U makes U equal to the min utility

case scale(t,s)
return s * gen(t, I) // Scale the objective function by s

case barrier(t,bar)
f = gen(t, I)
Add constraint bar ∗ I ≤ f // Ensure the child expression meets barrier constraint

return bar ∗ I // Barrier also caps the utility at bar
I := binary variable // Dummy indicator variable

f = gen(expr, I)
foreach x in partitions :

for t := now to now+horizon :
// Add supply constraints for each partition x and time t
Add constraint ∑P∈cap(x,t) P≤ size(x) - in use(x, t)

solve(f , constraints)

Algorithm 2: MILP generation algorithm

26

	Introduction
	Context and Motivation
	User and Provider Perspectives
	System Usage Model Overview

	Placement Preference Specification
	Equivalence classes and partitions
	Utility Functions
	Language Specification
	Examples

	MILP Formulation
	System Implementation
	Scheduler
	Plan-ahead
	Wizard

	Experimental Setup
	Cluster Configuration
	Workload Configuration
	Availability Calculation

	Experimental Results
	Overall tetrisched performance
	Under the hood
	Benefits of time-aware placement
	Exerting control through utility
	Sensitivity to duration mis-estimation

	Previous Work
	Conclusion
	Appendix
	Partitioning algorithm
	MILP generation algorithm

