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Abstract

We describe a new mechanism for cloud computing enabling near-real-time monitoring of virtual
disk write streams across an entire cloud. Our solution has low IO overhead for the guest VM, low
latency to file-level mutation notification, and a layered design for scalability. We achieve low IO
overhead by duplicating the virtual disk write stream as it passes through a managing VMM. We
achieve low latency by performing semantic inference at as high a level as possible—file-level. We
achieve cloud scale by layering our design allowing filtering of file-level mutations by each layer
such that network traffic to centralized monitoring infrastructure is minimized. We assume this
technique is used on pre-indexed virtual disks, most likely derived from a cooperating VM image
library such as those used in clouds today. Our new cloud primitive enables system administration
tasks that involve monitoring files—virus scanning, log file parsing, etc.—to be performed outside
of the running VM instance, either on the VMM host, or shipped to a central monitoring agent.
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1 Background and Problem Statement
Cloud computing centralizes the storage of virtual disks along with their associated snapshots
transforming historic virtual machine (VM) disk state into big data [22]. VM retrospection [23]
takes advantage of this newly available historic state and it is the mechanism for searching across
frozen virtual disks and their sequences of disk snapshots at a file-level. VM retrospection is used
to find prior good configurations of VM state among many other use cases, but the snapshotting
techniques retrospection relies on for inspecting the past do not provide a real-time view of the
cloud. For example, an instance owner can retrospect their instance’s historic file data scanning for
viruses, but they are limited by the frequency of snapshotting and the time needed for retrieval of
file-level data from snapshots. They know that as of yesterday’s snapshot their instance was free of
any virus; however, a compromise can happen within seconds and attackers could have control of
the instance today. The problem is that snapshots provide a quantized view of disk state changes
over time, which limits observable events to the frequency of snapshotting.

What we need is a mechanism transforming executing VM instances’ continuous virtual disk
write streams into big data. Waiting for a snapshot and understanding it at a semantic level causes
significant lag in retrieving file-level data from executing VM instances. There are two possible
paths to solving this problem: (1) VM instances could cooperate by reporting file-level mutations—
file creation, file deletion, file modification—as they occur in near-real-time, or (2) the cloud could
provide a mechanism for obtaining them in near-real-time. Although the path of least resistance
technically, the first path leads to unhappy customers for both public and private clouds. The
cloud forces them to run monitoring software within their instances which steals their CPU cycles,
memory, and network bandwidth. Refraining from stealing complicates billing for cloud operators
because it is difficult to separate CPU, memory, and network bandwidth between what the instance
owner uses, and what the monitoring software uses. Thus, we choose the second path: we obtain
file-level mutations in near-real-time without the monitored instance’s cooperation.

The second path requires a new mechanism for cloud computing, one that provides a stream
of near-real-time file-level mutations as they occur while VM instances execute. A naı̈ve solution
approximates capturing disk state in near-real-time by snapshotting at higher frequency. However,
current state-of-the-art snapshotting techniques suffer from at least one of two possible issues,
and most suffer from both. The first issue is the reason why VM instances are not snapshotted
in practice at high frequency today: snapshotting is a heavyweight operation that degrades the IO
performance of the VM instance. The second issue stems from the black box nature of snapshots.
The most common snapshotting techniques result in a collection of disk writes—à la copy-on-write
snapshotting, an opaque binary delta, or an entire virtual disk. None of these forms efficiently map
to file-level mutations. Understanding what file-level mutations occurred between two consecutive
snapshots requires mounting their file systems for a file-level view. One must replay the collection
of disk writes, apply the delta to an original, or directly mount the whole disk snapshot. Once
mounted, one must crawl the entire file system searching for mutations at a file-level. We have
encountered the second issue with current state-of-the-art snapshotting techniques: high latency
notification of file-level mutations.

Can we create a new lightweight mechanism for cloud computing that has minimal IO overhead
and also minimizes the notification latency for file-level mutations, while maintaining or exceeding
the fidelity of prior state-of-the-art snapshotting techniques? Can we obtain our desired real-time
view of the cloud by transforming executing VM instances’ disks into big data?
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2 Solution Strategy
The essence of our idea is to generate a stream of inferred file-level mutations from the virtual disk
write stream of an executing guest VM. Our approach builds upon techniques pioneered in virtual
machine introspection (VMI) research. VMI traditionally infers file-level mutations synchronously
by slowing the guest for analysis in real-time. To achieve high IO performance, our approach is
asynchronous which lags real-time, but we maintain a near-real-time stream of file-level mutations.
To achieve scale, we envision a layered architecture allowing filtering of file-level mutations at each
layer. In addition we provide a fidelity of state change that is, at a minimum, as good as, and, in
some cases, better than state-of-the-art snapshotting. Our novelty lies in adapting VMI to cloud-
scale by achieving three goals: (1) low IO overhead for VM guests, (2) low latency for file-level
mutation notifications, and (3) scalability.

We offer better fidelity than snapshotting because our capture of file-level mutations occurs
continuously as a stream of inferred mutations, whereas snapshotting occurs at distinct points
in time. As mentioned in §1, snapshotting provides a quantized view of disk state over time.
There are events between snapshots that are lost—a file created and deleted—that our stream
contains, but no snapshot has any record of ever occurring. Creating a stream of inferred file-level
mutations requires duplicating virtual disk block writes to an external process we call inference
engine as described in §3. We only require capture of disk block writes and do not trap system
calls or interpret executing guest instructions. We explore many applications in §4 generalizing
beyond the normal scenarios where snapshotting is usually applied. We consider continuous
inference at the virtual disk level within the cloud and have explicit support for streaming file-level
mutations inferred by the inference engine over a network for centralized analytics in near-real-
time—centralized virus scanning, centralized anomaly detection, centralized configuration change
detection, etc. The rest of this section discusses VMI (§2.1), compares and contrasts our method
with snapshotting (§2.2), and outlines the prerequisites needed for a file system or application to
work with our method (§2.3).

2.1 Virtual Machine Introspection
The VMI [8] research community unwittingly invented a solution to the problem of snapshot
latency. VMI is a method of introspecting executing virtual machine state at a semantic level
used historically for intrusion detection and other security applications. Attackers compromising
a virtual machine can not hide from intrusion detection systems based on VMI because of the
strong isolation provided by the virtual machine monitor (VMM) between VMI applications and
the running VM. Techniques for disk-based VMI take advantage of the fact that every disk block
write must traverse through the VMM, because disks are emulated hardware. Thus, the disk block
write stream already passes under the inspection of the VMM and VMI simply adds more layers
of inspection.

However, the historic setting of VMI—security—has not focused on the IO performance of the
guest VM. Because they do not focus on maximizing IO performance, disk-based VMI techniques
often interpose on the critical IO path examining each block write. On top of this interposition,
intrusion detection systems check each write’s file-level interpretation against a database of rules—
synchronously—and allow, disallow, or report the write depending on current VM state and the set
of active rules. This synchronous nature, although lowering the latency for file-level mutation
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notification, causes IO slowdown in the guest VM, with one system reporting 33% [32] overhead.
Thus, VMI offers a partial solution, but it is not a panacea because the first issue we need to
address, high IO overhead, remains.

Cloud computing adds another dimension of complexity: scale. VMI is traditionally
implemented in a single system design without considering scale. Asynchrony solves the
performance issue that a single VM guest observes on a single system, but it is not enough to
scale to tens of thousands of running VM instances. Centralized virtual disk write monitoring
across an entire cloud requires a scalable architecture. To achieve scale we add layers to our
approach, filtering file-level mutations as early as possible to reduce the flow of traffic over
networks to centralized monitoring points. A layered approach creates flexibility by allowing
selective monitoring of file-level mutations by higher layers. Of course, higher layers must also
be designed with scale in mind, and the central monitoring point must scale with the size of the
cloud. We focus on scaling by minimizing communication via filtering, and distributing inference
computation.

Block Writes
Metadata Mutations

File Mutations

Figure 1: Three levels of abstraction in capturing state from a disk. Inferring file-level mutations is
the highest level.

Figure 1 shows a spectrum of possible block write introspection, with three points in the
semantic space highlighted as a stack. Considering introspection at each of the three highlighted
points reveals tradeoffs for our three constraints—we desire low IO overhead, low latency file-
level mutation notification, and scalability in a cloud setting. We could replicate the virtual disk
block writes without inferring any higher level activity, corresponding to the bottom of Figure 1.
This is equivalent to block replicated storage devices. Simple block write replication has low
IO overhead, but it has high latency to file-level mutations because the block writes must be
interpreted, and it does not scale well because it blindly copies all disk write traffic. We could
track metadata providing metrics such as space used by the file systems, depth of paths, number
of files, etc. corresponding to the middle of Figure 1. Tracking metadata has low IO overhead,
and also decreases the latency for file-level mutation notification; however, more interpretation
is still required for understanding file-level mutations. Scalability increases because we only
track metadata and do not blindly copy every disk block write. We could introspect disk block
writes at the highest semantic level corresponding to the top of Figure 1 by inferring entire file-
level mutations. This final form of introspection gives us low IO overhead, low latency to file-
level mutation notification, and also scalability—only “interesting” file-level mutations need to be
passed on as defined by higher layers. This last method minimizes network traffic to processing
layers which may be centralized, and also distributes initial inference computation and filtering
amongst all hosts executing guest VMs. Our method performs the last form of inference at the
highest semantic level, and because of this satisfies all three constraints while also enabling more
applications as discussed in §4.
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2.2 Correctness Relative to Snapshotting

Time τ file 
system

τ

Snapshot 1

τ'

Δ

Time τ' file 
system

Snapshot 2

Figure 2: Combining file-level mutations recorded as ∆ with the file system at time τ yields a file
system equivalent to the file system at time τ ′. The file systems may be mutating state on disk when
the snapshots occur.

Our technique offers the same fidelity at a file-level as current state-of-the-art snapshotting
methods. We never report a file-level mutation that has not occurred within a file system on a
virtual disk—there are no false positives. In addition, we never miss a file-level mutation that has
been flushed to disk—there are no false negatives. If a snapshot of a disk is taken at a point in time,
the inferred file-level mutations we report are consistent with file-level changes observable in that
snapshot. For example, if a tool such as Tripwire [29] runs on the snapshot and runs on a virtual
disk maintained with updates from a stream of file-level mutations, the results are identical. This
does not mean that our technique provides the equivalent of a snapshot at a block-level.

Figure 2 superimposes our technique over snapshotting, and we use this figure to develop
an example illustrating the difference between inferring file-level mutations and snapshotting.
Figure 2 shows an initial snapshot created at time τ , and another snapshot at time τ ′. Assume
that these snapshots occur at a block-level, which is how snapshotting virtual disks happens today.
The snapshot at time τ ′ differs from the snapshot at time τ by exactly the disk blocks that were
written in the intervening time period. This is usually accomplished via a technique called copy-
on-write which copies disk blocks only when overwritten. Instead of providing a stream of disk
block writes, our technique provides a stream of file-level mutations in between these two time
points which we refer to as ∆. Thus, ∆ is a well-ordered set of inferred file-level mutations.
Applying our stream of file-level mutations ∆ to the snapshotted file system at time τ yields an
equivalent view of the file system within the snapshot taken at time point τ ′. With high probability,
this view will not be consistent at a block-level with the snapshot at time point τ ′, and an example
scenario leading to inconsistency is explained below. However, this does not mean that anything is
lost semantically from the snapshot method.

Snapshotting techniques do not understand disk blocks at a semantic level, thus they blindly
follow all disk block writes. File-level mutations are reported when disk block writes are visible
from a file system perspective. If disk block writes are invisible from a file system perspective,
they provide no higher semantic meaning because they are uninterpretable and contribute no
information to the file system. Disk block writes that are missing from inferred file-level mutations
are the file system invisible disk block writes. One example that leads to an inconsistency is file
creation that fails to complete before the snapshot. The snapshot contains disk blocks associated
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with the file, but, if mounted, the file would not appear in the file system because the creation was
not completely flushed to disk. A snapshot derived from inferring file-level mutations would not
contain disk blocks associated with the file because its creation did not complete.

2.3 File System and Application Requirements
What file systems are amenable to this approach? Sivathanu et al. [26] derive the properties a file
system must exhibit for this type of file-level inference. The guarantee a file system must maintain,
from [26], is,

{t (Ax) = k}D ⇒ {t (Ax) = k}M
In words, the type (k) of a block (A) on disk (D)—generally metadata or data—matches the

file system view in memory (M ) at some point in time (x). This ensures that incorrect inferences
can not occur; a data block for a file can not be mistaken for a metadata block for the same file. For
this guarantee to hold, a file system must exhibit, “a strong form of reuse ordering,” and metadata
consistency [26]. Strong reuse ordering means that the file system must commit the freed state of
any block and its allocation data structures to disk before reuse, and metadata consistency means
maintaining all file system metadata with a set of invariants [26] (e.g. directory entries point to
valid file metadata) to ensure correct operation. A practical example occurs upon file deletion.
The data blocks of a file must be marked as free and their corresponding inodes also marked free
before any of those blocks are reused on disk. If they are not marked as free on disk before reuse,
any inference might incorrectly believe that their type, and their contents, have not changed upon
future writes.

What class of applications are amenable to this approach? Any application that can resume or
operate on data flushed to disk works with both whole disk snapshotting and file-level mutation
inference. Recent research [10] reports that modern desktop applications frequently flush data to
disk which means many common applications already work with snapshotting and by extension
file-level mutation inference. Abstractly, a disk flush requires buffered IO operations to be flushed
to disk and the file system to have both metadata consistency and data consistency on disk after
the flush. Data consistency [26] means that all flushed data safely resides on disk and the contents
of the corresponding data blocks match the metadata structures pointing to them. Following a
reboot, an application reading from the file system sees the side effects of all flushed IO operations.
Our technique preserves flushed file-level mutations, which means applications properly flushing
critical data to disk can safely use data obtained via file-level mutation inference.

3 Architecture
In this section we begin by giving an overview of the abstract architecture and technical challenges
behind inferring file-level mutations from virtual disk block writes. We describe an asynchronous
architecture outside of the critical IO path that makes near-real-time inference feasible. We
continue with a concrete example of how this technique works with KVM [16] and ext2 [5];
however, KVM, a Type 2 VMM, is only an example. This technique works with both Type 1
and Type 2 VMMs. For a Type 1 VMM the technique could be implemented within the VMM
or execute as an extra VM managed by the VMM. Our example with KVM illustrates a potential
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implementation path for a Type 2 VMM. We finish with challenges posed by features of modern
file systems and guest OS kernels.

3.1 Inferring File-Level Mutations
Figure 3 shows the basic idea of inferring file-level mutations from disk writes. Each layer is
reverse mapped in order to understand the file or directory that a disk write modifies. Creations
and deletions of files and directories are detected via inference based on metadata manipulations;
this is file system specific and may need monitoring of a journal, inodes, or other file system data
structures laid out on the disk. Each layer needs a non-trivial amount of engineering to reverse—we
are essentially running the portions of a kernel devoted to handling disk writes in reverse outside
of the kernel initiating those writes. We introduce the term inference engine to refer to the process
responsible for performing this full stack reverse mapping. We also introduce the term monitoring
agent to refer to processes that register interest in certain file-level mutations with the inference
engine.

Host Maintains

Guest Blackbox

Logical Volume

Partition

File System

File/Directory

Virtual Disk

Logical Group

Figure 3: Reverse mapping of block writes observed by the host, to file writes in the guest.

We assume that the inference engine begins with a complete and consistent view of the virtual
disk before the VM instance begins running. If the VM disk is stored in a central repository,
this repository can maintain data structures for later inference. For example, it could store the
partition table, positions of key inodes, position of the journal for each partition, and the metadata
of LVM [28] partitions in a compact representation for initializing an inference engine at runtime.

When a VMM starts a VM guest on a host, it also starts an inference engine before the VM
guest is allowed to write to its virtual disk. Once virtual disk writes begin, they are duplicated
as a stream to the inference engine process running on, presumably, a separate core. Using a
separate core minimizes resource contention between the inference engine and the running VM.
However, if no extra cores are available, the inference engine can run on the same core as the
VM guest impacting its performance more than if dedicated cores were available. No host kernel
modifications or kernel modules are needed if the inference engine is a userspace application. An
optimization might be to move the inference engine to within the VMM, or enable configurable
filtering of the disk block write stream by the VMM. For example, inference engines could
configure the VMM to only pass along disk block writes within certain block ranges on the virtual
disk. The inference engine would receive only disk block writes of interest which require further
filtering or interpretation.
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An inference engine begins by identifying the partition a write affects as specified in the
partition table. Then it passes the write off to a partition handler. The partition handler may
or may not pass the write on. For example, if the partition is swap, it may not be deemed important
or useful as the memory pages are not reverse mappable into files or directories. However, another
inference engine that understands memory could find a use for such writes and reverse map them
into pages in use by the guest kernel and processes within the guest.

Assuming that the partition contains a valid file system or is an LVM volume, the write passes
to an appropriate LVM handler or file system handler. This next layer of handlers must determine
if the write is metadata or data. In the case of metadata, the write is inspected by the inference
engine and appropriate data structures for reverse mapping updated. For example, the metadata
manipulation might specify the creation of a new directory, or the resizing of an LVM volume.
Both must be retained by the inference engine, otherwise future inferences become out of sync
with the actual contents of the virtual disk. If a write is data, then the inference engine performs
a full stack reverse mapping to understand which file was modified. The full architecture just
described is shown graphically in Figure 4.

Disk
Block
Write

Inference Engine

Partition Handlers File System Handlers

Linux
LVM

Linux
Swap

Linux

FreeBSD

ext2

ext4

ext3

NTFS

Local Monitoring Agents

Virus Scanner

Log Auditor

Backup

Remote Monitoring Agents

Virus Scanner

Log Auditor

Backup

Remote
Comm.

Local
Comm.

Local
Comm.

Optional

Figure 4: Block write traversal through the layers of the inference engine to registered monitoring
agents.

Depending on which monitoring agents have registered with the inference engine, the
modification passes to them. Monitoring agents also run on other cores, if available, and do
not cause contention for CPU cycles with the running VM instance. This enables external virus
scanners, external log file auditors, external synchronization of specific files and folders, and any
other file-based agent to run external to the VM instance. The monitoring agents can operate across
a network, or split between a local presence on the host and a remote presence in a presumably
more centralized location as shown in Figure 4. A local copy of the monitoring agent could filter
file-level mutations from the virtual disk and pass on important file-level mutations to the remote
agent. Cooperation between the inference engine, local monitoring agents, and remote monitoring
agents provides a consistent view of the virtual disk in near-real-time for analysis. The inference
engine provides a stream of file-level mutations, and filtering at each level slows this stream to a
manageable trickle such that a centralized system could maintain a near-real-time consistent view
of thousands of VM instances.
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3.2 KVM with ext2
KVM’s design is ideal for our proposed inference engine as Figure 5 shows that all emulated IO
goes to userspace by default. We only need to copy the write stream to a userspace inference engine
from the emulator of the disk. In KVM’s case, the emulator is generally Qemu [4]. Figure 5 shows
the portion of KVM that we are interested in—the IO subsystem. We are not interested in all IO
operations, only disk write operations which are separated from other IO operations by the Qemu
process performing emulation.

User Mode
(QEMU)

Kernel Mode
(KVM)

Guest Mode
(Guest OS)

Issue Guest
Execution ioctl

Enter
Guest
Mode

Signal
Pending?

No

Yes

Yes

No

I/O?

Handle I/O

Handle
Exit

Execute natively
in Guest Mode

Figure 5: KVM architecture showing userspace, kernel, and physical boundaries. Figure
reconstituted from [16].

For the rest of this section, imagine that we are running an inference engine with a single
registered agent: an agent monitoring the file /home/monitorme/clock.jpg. Assume that
this file is stored within an ext2 formatted partition without LVM. Imagine that the clock.jpg
file gets updated every 5 seconds by a webcam pointed at a clock with a second hand. Thus, our
agent sees modifications to this file every 5 seconds. The inference engine discards the rest of the
virtual disk IO because no other registered agents exist.

Let us examine what happens when the file is modified, and for brevity we follow a single
virtual disk block write. First, an instruction executed by the guest VM traps into the KVM kernel
module as shown in Figure 5 by the arrow moving out of the box labeled, “Execute natively in
Guest Mode,” into the box labeled, “Handle Exit.” The KVM kernel module identifies whether or
not the trapped instruction is for an IO operation. Because it is an IO operation, the KVM kernel
module invokes the userspace process emulating IO devices for the guest VM—in this case a Qemu
process. The steps described here are highlighted in Figure 5.
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Before issuing the ioctl to the KVM kernel module to return to guest mode, the write is copied
to the inference engine process running as another userspace process not shown in Figure 5. At
this point the inference engine takes over analyzing the write to determine what action to take.
The first step requires reverse mapping the partition table. The inference engine identifies that
the write is within a partition of interest—specifically the ext2 formatted partition containing the
clock.jpg file.

The write is then passed to an ext2 specific handler that was initialized with reverse mapping
data for this partition. The handler performs a series of reverse mappings to understand the
individual file being modified and its full path. The first step in the process is to identify if the
block represents data or metadata. Metadata for ext2 includes the superblock, the block group
descriptor table, inode bitmaps, block bitmaps, and inode tables. In this case, the write is data
so the first reverse mapping yields the inode responsible for this data block. The next reverse
mapping yields the file name clock.jpg contained within the directory data block for directory
monitorme. The directory data block reverse maps to an inode and this process recursively
continues for the two other parent directories: home, and /.

The inference engine has performed four reverse mappings: one for the initial data block
to the responsible inode, and three for the three parent directories. The inference engine now
knows that this data block belongs to a file not a directory, and that the full path of the file is
/home/monitorme/clock.jpg. The next step is to determine if any registered agents are
interested in this file-level mutation. In this example, there is a registered agent monitoring this file
and the inference engine uses interprocess communication to notify the monitoring agent process
that there is new data to consume. The monitoring agent recieves the data block, updates its copy
of the file, and refreshes the screen if enough new data has been written. There may be more
block writes that are needed before the file is displayable. This process repeats every 5 seconds as
new images are written to disk. If data blocks are written without metadata structures pointing to
them, they must remain buffered by the inference engine until it associates them with a file. For
exposition, we assumed the data block was immediately associable with a file.

3.3 Technical Challenges
Beyond the technical challenges in performing the reverse mappings required as described earlier
in this section for multiple partitions and multiple file system types, there are several features of
modern file systems and OS kernels that stymie efforts to perform this type of inference.

Encrypted File Systems or Full Disk Encryption: In the case of encryption, some activities
can be inferred; however, the usefulness in terms of monitoring agents for tasks such as virus
scanning or log file auditing evaporates. Data is no longer readable without the keys used to encrypt
it, or a password enabling retrieval of those keys from the disk. The privacy-preserving way around
this is to obtain the password or keys via an escrow service or directly from the guest owner. Only
the owner of a running VM instance can judge if the benefit of external agents outweighs the risk
of divulging all data contained within a virtual disk. Introspecting VM memory also reveals the
encryption keys, but this clearly violates privacy without involving the VM instance owner. This
challenge can be mitigated if the owners of running VMs only encrypt, for example, /home/*,
but not other folders and files. They would still benefit from external agents without divulging the
contents of every file on disk.
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Transparent Compression: Compression adds an extra layer of indirection within the
inference engine. If a file system has enabled transparent compression, the inference engine must
decompress data blocks if they are needed for further processing. Modern file systems cluster data
blocks for files and compress the clusters. For example, a file with 24 data blocks and a cluster size
of 6 has 4 compressed clusters on disk. A write to any of these clusters must be decompressed with
all other 5 blocks in its cluster. There are other schemes such as per-file compression schemes, but
they just vary the cluster size parameter to the number of data blocks in individual files. Thus, the
inference engine must also implement various decompression algorithms used by the file systems
it supports.

Page Cache: The page cache of modern kernels acts as a buffer for writes to a disk in order to
increase the performance of the overall system. Flushing every write to disk synchronously would
cause systems to perform unnecessarily sluggish. Thus, it is unlikely that any modern kernel or
user would be willing to operate without the page cache in a production environment. In addition,
the page cache allows the kernel to coalesce and reorder writes for the most efficient ordering. This
means that we can only infer file-level mutations that have been flushed to disk and never have a
full record of all file-level mutations. Some writes may only go to the page cache, be overwritten,
and lost before they ever make it to disk. Some writes may be reordered and we will not know
their true sequence as initiated by system calls from writing processes.

4 Applications
In this section we assume that the inference engine and the architecture described in §3 exists and
we imagine the new possibilities that arise from having the capability to infer file-level mutations
in near-real-time. We describe applications of this technique in three domains: cloud, transient PC,
and mobile. Remember that most applications described below are now possible through our work
without running an agent inside the guest or modifying the guest kernel. The only exceptions are
applications that require modifying guest disk state. For example, if cloud users wish to retrieve a
deleted file, they will have to modify their virtual disk state. This is impossible to do with a black
box operation because of the kernel page cache which would not have knowledge of disk changes
occurring outside its purview. Thus, applications which cause modifications of virtual disk state
require a cooperating agent or actions by the guest administrator.

4.1 Cloud
Cloud has the most applications as it is the setting first envisioned for the techniques described in
§3; however, many of these applications are also applicable in the transient PC and mobile cases.
The cloud is convenient as the use of VM technology in clouds is widespread and clouds centralize
management and maintain virtual disks in VM libraries.

In general, cloud operators today can not pierce the black box of a running VM instance without
installing an agent inside the instance that reports back or using modified guest kernels for reporting
fine-grain information such as installed software. With an inference engine, they could inspect the
virtual disks of their users in near-real-time to identify what software they are running and how
they are using their instance at a disk level—what type of data they manipulate, if they install
security updates etc.
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Fine-Grain Monitoring: Both public and private cloud operators are left in the dark as to
what software their users are running. VM images that are used as instances in clouds often have
descriptive names and tags; however, once they begin executing as an instance within the cloud
they are easily modified. Software that was initially installed in the original VM image can be
jettisoned for newer versions, competing software, or never replaced. For example, a user might
start with a known Apache [21] web server VM image. Thus, the cloud operator assumes that this
user uses Apache. However, unknown to the cloud operator, the user has uninstalled Apache and
installed Nginx [7] as a replacement. The cloud operator could register a monitoring agent with
inference agents to track the installation and removal of software packages. This does not imply
actual execution of software, but provides a view over what software interests cloud users.

System Administration: Managing large numbers of VM instances has become standard
practice for many system administrators. Challenges include coalescing logs and searching them
for important events, checking if security updates are installed, intrusion detection, monitoring
critical configuration files for changes, and ensuring that pushed configuration changes are applied.
Before, these administrators used a mix of agents that report based on scans of the file system, and
tools that log in remotely to check specific files and install updates. Now, system administrators
have the capability to register monitoring agents with an inference engine at each VMM to monitor
log files in near-real-time, observe security update installations, watch configuration files for any
modifications, and check if pushed configuration changes occured. This is without needing to log
into instances which are not necessarily used by them, or using CPU cycles of an instance they
manage on behalf of another entity.

Compliance Monitoring: Enterprise clouds, and to a lesser extent public clouds, are interested
in software license compliance, the proliferation of proprietary data, and securing systems through
the use of approved and mandated software. Using an inference engine they attach monitoring
agents to each VM instance in their cloud and monitor what software licenses are being used
by inspecting known license files, what software is being used by tracking installations, if any
proprietary data is leaking and how widely by scanning for known signatures, and if approved best
practices are being followed by inspecting the software stack in use. For example, users might be
operating with a version of software that has unpatched security vulnerabilities. This also helps
in capacity planning—determining how many more licenses for software might be needed in the
future based on the number currently in use.

Mirrored Instances: Using a management interface, users create two identical instances and
specify that user data kept in /home/* be synchronized between the two instances. The cloud
operator uses a monitoring agent registered at the inference engine assigned to one of the user’s
instances to monitor /home/* and replicate all observed file-level mutations to the other running
instance.

In near-real-time, the cloud maintains on behalf of this user two nearly identical VM instances.
If the user switched to the back up instance, they would not observe any difference beyond network
configuration—although IP addresses could also be reassigned in this case.

Virus Scanning: With inference engines in place across a cloud, virus scanning is now
performed outside of the running VM instance. Virus scanning can become centralized in that
all file-level mutations are sent back to a central location for checks against a virus database. If the
whole file is required, mutations may need to be buffered until the full file is written to disk, or if
it is being updated the incoming mutation would be merged with the original file as stored in the
central VM library and then scanned by the virus scanner.
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Continuous Snapshotting: The frequency of snapshotting in the past has been on the order of
minutes, to hours, to days depending on how paranoid users were and how much they were willing
to pay. The benefit of high frequency snapshotting is that rolling back implies less loss of data if
the nearest snapshot is close in time. With an inference engine, individual file-level mutations can
be recorded and rolled back.

For example, with continuous snapshotting a user can revert permissions changes to a folder
by finding the appropriate mutations recorded by an inference engine and instructing their cloud
to revert those mutations on their virtual disk. They could also recover deleted files from their
virtual disk by reverting the mutations that led to their deletion. The entire chain of mutations from
VM instance start to the current time could be presented as a timeline of events recorded by an
inference engine via a cloud management interface.

Efficient Backup: As in the mirroring instance case, users of a cloud specify which portions of
their virtual disk they want backed up. Thus, whole virtual disk snapshots are no longer necessary
cutting down on storage costs for both users and the cloud operator. In addition, backups of the
specified directories or files may be kept in near-real-time.

Semantic-Based Prefetching: He et al [11] note that the iSCSI protocol benefits from caching
disk blocks. Semantic knowledge about disk blocks could be used to further boost performance
by prefetching blocks. For example, the cache might be prepopulated with all metadata blocks.
As metadata block accesses occur, data blocks associated with them could be cached to speed
reads across the network. Our scheme maintains semantic knowledge about disks in near-real-time
which could optimize caching schemes inside a cloud when disks are exported between hosts.

4.2 Transient PC
Transient PC [25] is the space of computing which migrates a desktop VM between different host
machines to maintain a cohesive environment for computing as a user travels—perhaps between
work and the home. Many of the benefits mentioned for the cloud also apply here—system
administration, compliance monitoring, virus scanning, and backup. Because transient PC users
are naturally tied to a central server storing their VM while they roam, this central point acts as the
ideal location for remote monitoring agents registered with inference engines. They also need to
transmit all virtual disk changes back to this central point before resuming elsewhere. This is an
Achille’s heel for transient PC systems, because disk state change can be large—in the gigabytes—
and therefore takes time to transmit.

Prioritized File Synchronization: Imagine an overburdened transient PC user working 100-
hour work weeks. They are working on a document and decide it is finally time to go home at
3 AM. Unfortunately, their transient PC system needs to synchronize before they can go home to
continue working on the document (naturally, they are hard working and not going home to just
sleep). This delay is both annoying and unnecessary. The user stops the synchronization and then
expresses to the transient PC system to only synchronize the file-level mutations from /home/*—
where the document lives. This means that the cause of the slowdown—a recent update to their
kernel and other system packages—will not be synchronized; however, from the comfort of the
home those updates may be reapplied and synchronized whenever they do finally decide to sleep.

Of course, with an inference engine in place, the user can specify priorities for synchronizing
data: user data first, system data second, temporary data third and so on. When they are ready
to change locations, the transient PC system can synchronize data based on the user’s time
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constraints—the user is no longer constrained by their transient PC system. If there isn’t enough
time to synchronize system data, the system can stop after the user data is synchronized. The
synchronization of file-level mutations could occur in near-real-time as in the mirrored instance
cloud case to further reduce the wait time when moving to a new location. In addition, when
resuming at home, the transient PC system can selectively prefetch disk blocks in a prioritized
order based on whether they contain file system metadata or important user data.

4.3 Mobile
VM technology has already come to mobile devices [3, 13], and presumably will continue into the
future for separation of business tasks from personal tasks and security reasons. Inference engines
enable synchronization of file data and transfer of data from inside mobile VMs to the cloud or the
home in near-real-time if energy and bandwidth permit. Mobile devices are continuously gaining
more and more cores as progress by Nvidia, Qualcomm and others continues. In mobile computing
transmission costs dominate CPU cycle costs. Thus, synchronizing whole VM virtual disks or even
binary deltas could be prohibitively costly.

Cloudlets [24] assume that VM’s are synthesizable at infrastructure close to mobile devices for
low latency applications. Prior methods of VM synthesis treated virtual disks as black boxes and
created opaque overlays to apply to original VM images to synthesize a VM running the desired
application. The same technique, discussed above, for synchronizing user data with the cloud
also aids VM synthesis: individual files and folders could be uploaded as a more compact overlay
into the cloudlet for VM synthesis rather than an opaque set of bytes which might include more
data than is necessary. For example, OS updates which are irrelevant to the application running
inside the synthesized VM need not be uploaded to the cloudlet. The cloudlet synthesizes a VM
by applying file-level mutations to a virtual disk before booting the VM, or the VM could be
booted, file-level mutations uploaded, and applied from within the VM. If these files or folders are
manipulated either in the cloudlet or inside a VM on the mobile phone, the overlay of folders and
files can be directly updated in near-real-time.

Cloud Synchronization: Inferring file-level mutations from VM disk writes enables the same
data to be synchronized to a cloud without the full overhead of binary diff-ing the VM with a cloud
stored original. For example, imagine that OS updates need not synchronize with a cloud version
of data, but user added music and photos must synchronize. The VMM can now be instructed to
backup individual folders within running VMs on the mobile device using an inference engine.

The mobile case is not as clear, because mobile cores and IO are not as powerful as cloud
servers—their focus is on the conservation of energy. However, the possiblities offered by an
inference engine could provide a more secure environment by having the capability of inspecting
virtual disk writes from the VMM as well as more efficiently synchronizing data by multiplexing
communication across multiple VMs on the mobile device.

5 Related Work
Building blocks for our described architecture in §3 that satisfy our constraints of low IO
overhead, low latency for file-level mutation notification, and scale exist scattered amongst three
research communities: storage, smart disks, and VMI; however, no prior work offers all three
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of our properties. The storage community [1, 9, 17, 18] tends to solve the performance issues
of snapshotting, and ignores semantic understanding of disk block writes. The smart disk
community [2, 27] has invented methods of semantically understanding file systems and file-
level mutations in order to increase performance via intelligent prefetching and reorganizing
block layout on disk. The VMI community [6, 12, 14, 15, 19, 31, 32] provides techniques for
introspecting running VM guests including semantically understanding their disk write stream and
disk blocks for security applications at the cost of IO performance. We gain an edge by combining
the efficiency sought after by the storage community with the live semantic understanding of disk
block writes developed within the smart disk community, paired with the virtual expertise of the
VMI community.

Petal [17] is an early example of a system that creates copy-on-write snapshots rapidly—within
650 milliseconds. The Olive [1] distributed block storage system provides snapshotting with IO
overhead in the tens of milliseconds. In addition, Olive also creates snapshots within tens of
milliseconds which enables a high frequency of snapshotting. Parallax [18] provides virtual storage
via a layer of storage VMs in a cloud. Parallax was explicitly designed to support “frequent, low-
overhead snapshot[s] of virtual disks.” Indeed, Parallax supports snapshotting within less than 30
milliseconds under heavy IO load. Snapshotting at a high frequency of 100 times per second
caused only 4% IO overhead to the guest OS using the virtual disk served by Parallax. A design
goal of Lithium [9], like Parallax, is to provide instant snapshots. Hansen et al. [9] do not report
IO overhead while snapshotting, but presumably they have low IO overhead similar to Parallax.
The storage community leads to two conclusions: (1) rapid snapshotting with low IO overhead is
valuable, and (2) rapid snapshotting with low IO overhead is possible.

Semantically-smart disk systems [27] interpret metadata and the type of a block on disk as
well as associations between blocks, but generally do not maintain a full reverse mapping to the
file-level for all disk blocks. Thus, they are efficient because they are implemented in hardware;
however, they do not have full semantic knowledge of every block write. IDStor [2] implements
inference for disk block writes for iSCSI with the ext3 file system and their application area is
disk-based intrusion detection. Thus, their interface is not general, but their implementation is
very close in spirit to our described architecture as it is asynchronous and out of the critical write
path. Zhang et al. [32] describe a VM-based approach by leveraging smart disk technology they
call, “file-aware block level storage.” Their application area is also intrusion detection and they
require a guest agent to run to populate their data structures for reverse mapping. In addition, their
implementation blocks the critical write path of the guest OS causing a 33% overhead for write-
heavy workloads. The smart disk community leads to two conclusions: (1) semantic knowledge of
disk block writes is valuable, and (2) semantic interpretation of disk block write streams efficiently
is possible.

Garfinkel and Rosenblum [8] coin the term virtual machine introspection and develop a VMI
architecture that focuses on analyzing memory and requires an OS-specific introspection library.
Pfoh et al. [20] develop a formal model for describing VMI techniques and the technique we
present is an out-of-band monitoring method according to their terminology. The VMI library
XenAccess [19] provides introspection of both memory and disk on the Xen platform and uses
the term inference engine. Their architecture approaches the generality we intend; however, their
inference engine is limited only to inferring file creations and deletions. By architecting their
solution outside of the critical write path as we do, they show no statistically significant difference
in performance. Zhang et al. [31] use the Extensible Firmware Interface (EFI) to implement
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an inference layer between guest virtual disk writes and physical writes. Their focus is on
implementing access control rules for file reads and writes outside the guest. They are in the critical
IO path and presumably incur overhead similar to the 33% observed in [32]. VMWatcher [15]
implements a technique called “guest view casting” to interpret memory and disk operations within
a guest instance. This technique assumes that the kernel data structures and device drivers of the
guest are open source or well known. Thus, they do not support proprietary file system formats
such as those used by the Windows platform. VMScope [14] uses binary translation to deeply
inspect and capture events such as system calls, but do not provide a framework for virtual disk
write interpretation. Virtuoso [6] automatically generates introspection tools based on programs
run inside of a guest. Their technique works well for operations involving the memory image
of a guest, but they do not support disk operations. Hildebrand et al. [12] describe a method of
performing disk introspection to the point of identifying disk blocks as metadata or data. However,
inference of file-level mutations is not described. The VMI community leads to two conclusions:
(1) disk-based VMI is important for security applications, and (2) efficiently introspecting disk
block writes originating from VMs is possible.

CloudVisor [30] argues for a security model guaranteeing secrecy and integrity of guest VMs
including disk IO. They provide an implementation based on nested virtualization that, from the
guest’s viewpoint, transparently encrypts and decrypts all disk IO operations. This is anathema to
the VMI philosophy for monitoring and security. However, they assume that customers in a public
cloud do not want introspection. This is not true of all customers and also not true for enterprise
clouds where there is a single administrative domain.

6 Conclusion
We proposed an architecture for a new cloud computing mechanism enabling near-real-time
monitoring of virtual disk writes in clouds without requiring guest cooperation. Our solution
has low IO overhead, low latency for file-level mutation notification, and a layered design for
scalability. We expect trends of cloud computing growth to continue into the foreseeable future,
which increases the need for cloud-wide monitoring tools. We also anticipate a future with
ubiquitous VM technology where multiple VMs run on clouds, desktops, and mobile devices for
individual users. In this future, our lightweight near-real-time inference of file-level mutations
offers a powerful capability aiding in seamless and quick transitions between the cloud, desktop,
and mobile devices by helping synchronize important file-level mutations. The generality of
our technique allows inference to operate independent of the guest VM—only understanding file
system metadata on disk is needed. Near-real-time inference of file-level mutations continues the
tradition of centralizing services in clouds by pushing cloud computing towards a paradigm shift
to centralized system monitoring.
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