
SNC-Meister: Admitting More Tenants with Tail Latency SLOs

Timothy Zhu
Carnegie Mellon University

timothyz@cs.cmu.edu

Daniel S. Berger
University of Kaiserslautern

berger@cs.uni-kl.de

Mor Harchol-Balter
Carnegie Mellon University

harchol@cs.cmu.edu

Abstract
Meeting tail latency Service Level Objectives (SLOs) in

shared cloud networks is both important and challenging.
One primary challenge is determining limits on the multi-
tenancy such that SLOs are met. Doing so involves estimating
latency, which is difficult, especially when tenants exhibit
bursty behavior as is common in production environments.
Nevertheless, recent papers in the past two years (Silo,
QJump, and PriorityMeister) show techniques for calculating
latency based on a branch of mathematical modeling called
Deterministic Network Calculus (DNC). The DNC theory
is designed for adversarial worst-case conditions, which
is sometimes necessary, but is often overly conservative.
Typical tenants do not require strict worst-case guarantees,
but are only looking for SLOs at lower percentiles (e.g., 99th,
99.9th).

This paper describes SNC-Meister, a new admission con-
trol system for tail latency SLOs. SNC-Meister improves
upon the state-of-the-art DNC-based systems by using a new
theory, Stochastic Network Calculus (SNC), which is de-
signed for tail latency percentiles. Focusing on tail latency
percentiles, rather than the adversarial worst-case DNC la-
tency, allows SNC-Meister to pack together many more ten-
ants: in experiments with production traces, SNC-Meister
supports 75% more tenants than the state-of-the-art.

Categories and Subject Descriptors C.4 [PERFORMANCE
OF SYSTEMS]: Modeling techniques; D.4.8 [OPERATING
SYSTEMS]: Performance—Stochastic analysis, Modeling
and prediction

Keywords stochastic network calculus, tail latency guaran-
tees, quality of service

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’16, October 05-07, 2016, Santa Clara, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-4525-5/16/10. . . $15.00.

DOI: http://dx.doi.org/10.1145/2987550.2987585

Figure 1. Admission numbers for state-of-the-art admission
control systems and SNC-Meister in 100 randomized ex-
periments. In each experiment, 180 tenants, each submitting
hundreds of thousands of requests, arrive in random order and
seek a 99.9% SLO randomly drawn from {10ms, 20ms, 50ms,
100ms}. While all systems meet all SLOs, SNC-Meister is
able to support on average 75% more tenants with tail latency
SLOs than the next-best system.

1. Introduction
Meeting tail latency SLOs is important

Meeting tail latency Service Level Objectives (SLOs)
in multi-tenant cloud environments is challenging. A tail
latency SLO such as a 99th percentile of 50ms requires that
99% of requests complete within 50ms. Researchers and
companies such as Amazon and Google repeatedly stress
the importance of achieving tail latency SLOs at the 99th
and 99.9th percentiles [4, 12, 13, 21, 24, 25, 37, 43, 45, 46,
51, 55]. As demand for interactive services increases, the
need for latency SLOs will become increasingly important.
Unfortunately, there is little support for specifying tail latency
requirements in the cloud. Latency is harder to guarantee
since it is affected by the burstiness of each tenant and the
congestion between them, whereas bandwidth is much easier
to divide between tenants. Tail latency is particularly affected
by burstiness, and recent measurements show that the 99.9th
latency percentile can vary tremendously and is typically an
order of magnitude above the median [33].
The case for request latency SLOs

Throughout this paper, we consider cloud tenants that
issue a series of requests over time for data items on another
server VM within the same datacenter. For example, in Fig. 2,
the blue tenant, residing on VM V1, sends requests to server

tenant VMs serversnetwork

V1

queueV2

V179

V180

D1

D6

request latency

queuequeue

queue

queue

Figure 2. SNC-Meister meets tail latency SLOs for tenants
in the network shown. Our evaluation experiments involve
180 tenant VMs (on 12 machines), which replay recent
production traces, and six servers running memcached.

VM D1, which hosts its data. We define SLOs over a pair of
VMs (e.g., (V1, D1)), which is known in literature as the pipe
model. We define SLOs in terms of request latency (a.k.a.,
flow completion time), which is the total time from when a
tenant issues a request until all the requested data is received.
Request latency is different from packet latency, which is the
time it takes a single packet to traverse through the network.
Packet latency is the right metric when requests are small and
load is light. However, as the amount of data used increases,
request latency becomes the most relevant granularity (as
argued in [53]).
Queueing is inevitable for request latency

High request latency is almost always due to excessive
queueing delay [21, 25]. Queueing is inevitable. In production
environments, traffic is typically bursty. When these bursts
happen simultaneously, the result is high queueing delays.

Queueing can occur both within the network (in-network
queueing) and at the end-hosts (end-host queueing). Some
works (e.g., Fastpass [37], HULL [3]) claim to eliminate or
significantly reduce queueing. What they actually mean is that
they eliminate in-network queueing by shifting the queueing
to the end-hosts with rate limiting. This produces great
benefits for packet latency, which does not include this end-
host queueing time. However, these techniques do not solve
the problem for request latency, which by definition captures
the entire queueing time, both in-network queueing and end-
host queueing. Both forms of queueing delay comprise the
biggest portion of request latency, particularly when looking
at the tail percentiles [21]. This paper focuses solely on the
effects of queueing (i.e., congestion between tenants) and
leaves the mitigation of other sources of tail latency (e.g.,
VM scheduling, TCP artifacts) to other works (e.g., [50, 51]).
Dual goals: meeting tail latency SLOs and achieving high
multi-tenancy

The goal of this paper is two-fold: 1) We want to meet tail
request latency SLOs; and 2) we want to admit as many
tenants as possible. Clearly, there is a tradeoff between
achieving both goals. Admitting few tenants will likely meet
SLOs due to limited queueing. Admitting many tenants, in
contrast, creates the possibility of SLO violations due to
high contention between tenants. Admission control is the

component that limits the multi-tenancy so as to guarantee
that the system only admit tenants whose SLOs can be met.

A key challenge in admission control is predicting upper
bounds on the request latency for each tenant. Predicting
latency bounds is only possible with assumptions on tenant
behavior. We address the typical behavior of tenants (i.e.,
not flash crowds, faulty hardware, etc). We assume that
typical tenant behavior can be characterized (or at least upper
bounded) by a stationary trace of past behavior. The trace
allows us to extract information about the load and burstiness
of the tenant (Fig. 3(a) shows three example traces). Note that
bursts are short lived (on the order of seconds), and that these
bursts are not caused by diurnal (hourly) trends. In this work,
we specifically focus on this short-term burstiness, which is
separate from time-varying load1. These short-term bursts
occur during every hour of our traces, and they are known to
have a large impact on performance [23].
The state of the art in admission control: worst-case
bounds on the request latencies

The state-of-the-art in admission control are Silo (SIG-
COMM 2015 [25]), QJump (NSDI 2015 [21]), and Priori-
tyMeister (SoCC 2014 [55]). These systems perform admis-
sion control by using Deterministic Network Calculus (DNC)
to calculate upper bounds on the request latency. Typically,
DNC-based systems assume a tenant’s request process is
characterized based on a maximum arrival rate and burst size.
They then use DNC to calculate each tenant’s worst-case
latency based on the tenants’ maximum rate/burst constraints.
If the worst-case latency for a tenant is higher than its SLO,
the tenant is not admitted.

The above systems all use DNC, but in somewhat different
ways. Silo uses DNC to calculate the amount of queueing
within the network and performs admission control to ensure
that network switch buffers do not overflow. QJump offers
several classes with different latency-throughput trade-offs,
for which latency guarantees are calculated with DNC. Prior-
ityMeister considers different prioritizations of tenants. For
each priority ordering, PriorityMeister uses DNC to calculate
the worst-case latency of each tenant. PriorityMeister aims
to choose a priority ordering that maximizes the number of
tenants that can meet their SLOs if admitted.
The limitations of DNC

The DNC theory predicts worst-case latencies for the ad-
versarial case where the worst possible bursts of all tenants
happen simultaneously. While some tenants may be adversar-
ially correlated, it is very conservative to assume all tenants
are correlated with each other. The difference between as-
suming independence and dependence is substantial; as an
example, Fig. 3(b) shows the aggregate behavior of the three
traces in Fig. 3(a). The peak burst in each trace is marked with
a horizontal line. As DNC is an adversarial worst-case anal-

1 Time-varying load can be accommodated by using a trace from a period
of high load or by updating the tenant’s trace over time. Our work is still
relevant to the short-term burstiness that occurs during periods of high load.

(a) Individual burstiness

theoretical
worst-case burst

actual peak burst

0

2

4

6

8

10

12

14

16

18

0 300 600 900

Time [s]
R

eq
ue

st
 ra

te
 [M

bp
s]

(b) Aggregate burstiness

Figure 3. Three example production traces and their aggre-
gate trace. A worst-case analysis assumes that all three indi-
vidual traces have their worst peaks at the same time, which
is overly conservative as shown in the aggregate trace.

ysis technique, its equations account for the scenario where
each of the peak bursts happen at the same time. But as shown
in the aggregate trace, the actual peak is much lower than
the adversarial sum of peaks. As a result, DNC’s worst-case
assumption limits the number of tenants that can be admitted
into the system for any given SLOs.
The case for Stochastic Network Calculus (SNC)

Typical users do not seek strict worst-case guarantees.
Instead, users target tail latency percentiles lower than the
100%, e.g., the 99.9th latency percentile [13]. DNC only sup-
ports calculating the 100th percentile latency (i.e., adversarial
worst-case), so given 99.9th percentile SLOs, DNC-based sys-
tems simply pretend they are 100th percentile SLOs, resulting
in admission decisions which are conservative.

We therefore instead turn to an emerging branch of prob-
abilistic theory called Stochastic Network Calculus (SNC).
SNC provides request latency bounds for any user-specified
latency percentile, e.g., the 99th, 99.9th, or 99.99th latency
percentile. By not making adversarial worst-case assump-
tions, it is possible to admit many more tenants, even for high
percentiles (several 9s).
Support for dependencies in SNC

The SNC theory also supports having certain tenants being
dependent on each other, as indicated by a user-specified
dependency graph (Fig. 4). A user running several related
tenants can specify that a group of tenants are dependent on
each other. Dependent tenants in a group are allowed to be
adversarially correlated with each other, but are assumed to
behave independently in relation to tenants in other groups.
Thus, it is possible to capture the benefits of independence
without assuming all tenants are fully independent of every
other tenant.
Our SNC-based system: SNC-Meister

Our new system, SNC-Meister, uses SNC to upper bound
request latency percentiles for multiple tenants sharing a net-
work. Admission decisions are made for the specific latency
and percentile requested by each tenant. We implement and

V1 D1

V179 D1

V180 D6
V2 D6

V3 D6

D1V4

Figure 4. User-specified tenant dependency graph with three
groups. Tenants in a dependent group are assumed to be
adversarially correlated with each other.

run SNC-Meister on a physical cluster, and our experiments
with production traces show that SNC-Meister can support
many more tenants than the state-of-the-art systems by con-
sidering 99.9th percentile SLOs (see Fig. 1).

This paper makes the following main contributions:
• Bringing SNC to practice: SNC is a new theory that
has been developed in a purely theoretic context and has
never been implemented in a computer system. Our primary
contribution is identifying and overcoming multiple practical
challenges in bringing SNC to practice (details in Sec. 4). For
example, it is an open problem how to effectively apply SNC
in non-trivial network topologies and how to incorporate
tenant dependencies. We prove the correctness of SNC-
Meister’s analysis and show that SNC-Meister improves the
tightness of SNC latency bounds by 2-4× (Sec. 4).
• Extensive evaluation: We implement SNC-Meister and
evaluate it on an 18-machine cluster running the widely-used
memcached key-value store (setup shown in Fig. 2, details in
Sec. 5). We compare against three state-of-the-art admission
control systems, two of which we enhance to boost their
performance2. Across 100 experiments each with 180 tenants
represented by recent production traces, SNC-Meister is able
to support on average 75% more tenants than the enhanced
state-of-the-art systems (Fig. 1) while meeting SLOs of all
admitted tenants. This improvement means that SNC-Meister
allows tenants to transfer 88% more bytes in the median
(Sec. 6.1). SNC-Meister is also within 7% of an empirical
offline maximum, which we determined through trial-and-
error experiments (Sec. 6.2).
• Open-source release of SNC-Meister: Code for SNC-
Meister is available at https://github.com/timmyzhu/
SNC-Meister. We design SNC-Meister to operate in existing
infrastructures alongside best effort tenants without requiring
kernel, OS, or application changes. To simplify user adop-
tion, SNC-Meister only requires high-level user input (e.g.,
SLO, trace) and automatically generates SNC models and cor-
responding configuration parameters. Our representation of
SNC in code is simple and efficient, which results in the ideal
linear scaling of computation time for admission decisions in
terms of the number of tenants.

2 Silo++ admits 10% more tenants than a hand-tuned Silo baseline, and
QJump++ admits 5× more tenants than a hand-tuned QJump baseline.

https://github.com/timmyzhu/SNC-Meister
https://github.com/timmyzhu/SNC-Meister

2. SNC-Meister’s admission control process
In determining admission, SNC-Meister works with per-

tenant tail latency SLOs and traces representing the burstiness
and load added by each tenant. Traces consist of a sequence of
request arrival times and sizes, and they can be extracted from
historical logs or captured during operation. Using traces
avoids the burden of having users specify many complex
parameters to describe their traffic.

To understand the implications of selecting a representa-
tive trace, we first need to consider the differences between
short-term burstiness and long-term load variations. Short-
term burstiness denotes second/sub-second variations of a
tenant’s bandwidth requirements. Long-term load variation
denotes trends over the course of hours, such as diurnal pat-
terns. While both types of variation affect latency, tail latency
is mainly caused by transient network queues due to short-
term burstiness. Short-term burstiness can lead to tail latency
SLO violations even under low load: in our experiments, SLO
violations occurred for network utilizations as low as 40%.
In our production traces (described in Sec. 5.3), short-term
peaks have a rate that is 2× to 6× higher than the average
rate. By comparison, the difference between day-hour rates
to night-hour rates is often less than 2×.

After receiving a tenant’s SLO and trace, SNC-Meister
determines admission through the following three steps. First,
SNC-Meister analyzes the tenant’s trace to derive a statistical
characterization understood by the SNC theory (see Sec. 4.3).
Second, SNC-Meister assigns a priority to the tenant based
on its SLO where the highest priorities are assigned to tenants
with the tightest SLOs (i.e., lowest latency value). We opt
for this simple prioritization scheme since our experiments
with a more complex prioritization scheme [55] show similar
results. Third, SNC-Meister calculates the latency for each
tenant based on SNC (see Sec. 4.1) and checks if each tenant’s
predicted latency is less than its SLO. If the previously
admitted tenants and the new tenant all meet their SLOs, then
the new tenant is admitted at its priority level. Otherwise, the
tenant is rejected and can only run at the lowest priority level
as best-effort traffic.

SNC-Meister enforces its priorities both in switches and
at the end-hosts. To enforce priority at the end-hosts, SNC-
Meister configures the HTB queueing module in the Linux
Traffic Control interface. To enforce priority at the network
switch, we use the Differentiated Services Code Point (DSCP)
field (a.k.a. TOS IP field) and mark priorities in each packet’s
header with the DSMARK module in the Linux Traffic
Control interface. Our switches support 7 levels of priority for
each port; using this functionality simply requires enabling
DSCP support in our switches.

3. Stochastic Network Calculus background
At the heart of SNC-Meister is the Stochastic Network

Calculus (SNC) calculator. SNC is a mathematical toolkit for
calculating upper bounds on latency at any desired percentile

Figure 5. Example network with two tenants T1 and T2
flowing through two queues S1 and S2.

(e.g., 99th percentile). This is in contrast to DNC, which
computes an upper bound on the worst-case latency (i.e.,
100th percentile). Throughout this paper, we calculate upper
bounds on latency, which we refer to in the shorthand as
calculating latency. Sec. 3.1 describes the core concepts of
SNC by way of example (Fig. 5). Sec. 3.2 describes the
necessary mathematical details needed to implement SNC.
3.1 SNC core concepts

SNC is based on a set of operators that manipulate proba-
bilistic distributions. We refer to these distributions as arrival
processes (A1 and A2 for tenants T1 and T2 in Fig. 5) and
service processes (S1 and S2 in Fig. 5). One of the main re-
sults from SNC is a latency operator for taking an arrival
process (e.g., A1), a service process (e.g., S1), and a percentile
(e.g., 0.99), and calculating an upper bound on the tail latency.
We write this as Latency(A1,S1,0.99). The latency operator
works for any arrival and service process.

As an example, consider calculating the 99th percentile
latency for T1 in Fig. 5. Since T1 and T2 share the first
queue, T1 does not experience service process S1 since there
is congestion introduced by T2. Rather, T1 experiences the
leftover (a.k.a. residual) service process after accounting for
T2. In SNC, this is handled by the leftover operator,	, which
is used in our example to calculate a new service process
S′1 = S1	A2. T1’s 99th percentile latency at the first queue
is then calculated by using the latency operator with S′1 (i.e.,
Latency(A1,S′1,0.99)).

Calculating T1’s latency at the second queue in Fig. 5
requires arrival processes at the second queue, which are
precisely the output (a.k.a. departure) processes from the first
queue. In SNC, this is handled by the output operator, �,
which is used in our example to calculate T1’s output process,
A′1, as A′1 = A1�S′1 where S′1 is as defined above. T2’s output
process, A′2, is calculated similarly. T1’s latency at the second
queue is then calculated as Latency(A′1,S2	A′2,0.99).

One might try to calculate T1’s total latency by adding up
the latencies from each queue (i.e., Latency(A1,S′1,0.99)+
Latency(A′1,S2	A′2,0.99)). However, this is not a 99th per-
centile latency anymore. To get a 99th percentile overall
latency, higher percentiles are needed for each queue (e.g.,
99.5th percentile)3. There are in fact many options for per-
centiles at each queue (e.g., 99.5 & 99.5; 99.3 & 99.7; 99.1
& 99.9) for calculating an overall 99th percentile latency.
Choosing the option that provides the best latency bound
is time consuming, so SNC provides a convolution opera-
tor, ⊗, which avoids this problem by treating a series of
queues as a single queue with a merged service process. In

3 This is formally known as the union bound.

Purpose ρ(·) σ(·)
Arrival process A for MMPP with
transition matrix Q and diagonal ma-
trix E(θ) of each state’s MGF

ρA(θ) = sp(E(θ) Q) σA(θ) = 0

Service process S for network link
with bandwidth R

ρS(θ) =−R σS(θ) = 0

Leftover operator 	 for service pro-
cess S and arrival process A

ρS	A(θ) = ρA(θ)+ρS(θ) σS	A(θ) = σA(θ)+σS(θ)

Output operator � for service pro-
cess S and arrival process A

ρA�S(θ) = ρA(θ) σA�S(θ) = σA(θ) + σS(θ) −
1
θ

log
(

1− eθ(ρA(θ)+ρS(θ))
)

Aggregate operator ⊕ for arrival pro-
cess A1 and arrival process A2

ρA1⊕A2(θ) = ρA1(θ)+ρA2(θ) σA1⊕A2(θ) = σA1(θ)+σA2(θ)

Convolution operator ⊗ for service
process S1 and service process S2

ρS1⊗S2(θ) = max{ρS1(θ),ρS2(θ)} σS1⊗S2(θ) = σS1(θ)+σS2(θ)−
1
θ

log
(

1− e−θ |ρS1 (θ)−ρS2 (θ)|
)

Tail latency L for percentile p, arrival
process A, and service process S

L = min
θ

1
θρS(θ)

log
(
(1 − p) ∗

(
1 − exp(θ ∗ (ρA(θ) + ρS(θ)))

))
−

1
ρS(θ)

(σA(θ)+σS(θ))

Table 1. The SNC operators and equations used by SNC-Meister for independent tenants.

our example, the convolution operator is applied to T1’s left-
over service process at each queue as S′1⊗ (S2	A′2). This
new service process is then used to calculate T1’s latency as
Latency(A1,S′1⊗ (S2	A′2),0.99).

Lastly, SNC has an aggregation operator, ⊕, which cal-
culates the multiplexed arrival process of two tenants. For
example, the aggregate operator can be used to analyze the
multiplexed behavior of T1 and T2 as A1⊕A2.

The SNC literature provides this set of operators along
with proofs of correctness. However, little is known on how
to best combine these operators together to analyze networks,
and this is a challenging open problem. Sec. 4 describes the
challenges in bringing SNC to practice and how we overcome
them in SNC-Meister.
3.2 Mathematics behind SNC

In this section, we expand upon the high level description
of the SNC concepts in Sec. 3.1 and describe the mathemat-
ics behind SNC. To begin, we define the arrival process of a
tenant T1 as A1(m,n), which represents the number of bytes
sent by T1 between time m and n. As arrival processes are
probabilistic in nature, SNC is based on moment generating
functions (MGFs), which are an equivalent representation of
distributions. Directly working with MGFs is unfortunately
quite challenging mathematically, so SNC operates on an up-
per bound on the MGF, parameterized by two subcomponents
ρ(θ) and σ(θ). For example, the MGF of A1(m,n), written
MGFA1(m,n)(θ), is upper bounded by:

MGFA1(m,n)(θ)≤ eθ(ρA1 (θ)(n−m)+σA1 (θ)) ∀θ > 0
MGFs are parameterized by a variable θ to represent all mo-
ments of a distribution (e.g., A1(m,n)). All arrival processes
are specified in terms of the two subcomponents ρ(θ) and
σ(θ), and all SNC operators provide equations for these sub-

components (see Tbl. 1 for an overview, and Appendix A.2
in our tech report [54] for full details).

To calculate the ρA1(θ) and σA1(θ) for T1, we need
to assume a stochastic process for T1, such as a Markov
Modulated Poisson Process (MMPP) (see Sec. 4.3). A MMPP
is useful for representing bursty arrival rates. For example, a
2-MMPP switches between high-rate phases and low-rate
phases using a Markov process. The MMPP’s transition
matrix is given by Q, which for a 2-MMPP has four entries:

Q =

(
phh phl
plh pll

)
where, e.g., phl indicates the probability of switching to a
low-rate phase (l) after a high-rate phase (h). The distribution
of the arrival rate and request size for each phase is captured
in the matrix E, which is a diagonal matrix of the MGF for
each phase:

E(θ) =
(

MGFh(θ) 0
0 MGFl(θ)

)
Finally, the ρA1(θ) and σA1(θ) for T1 is calculated as:

ρA1(θ) = sp(E(θ) ·Q) and σA1(θ) = 0
where sp(·) is the spectral radius of a matrix.

Service processes are defined similarly to arrival processes
with the same two subcomponents ρ(θ) and σ(θ). Rather
than working with lower bounds on the amount of service
provided, SNC works with an upper bound:

MGFS1(m,n)(−θ)≤ eθ(ρS1 (θ)(n−m)+σS1 (θ)) ∀θ > 0
where the MGF has an extra negative sign on the θ parameter,
which transforms a lower bound into an upper bound. For
lossless networks, the ρS1(θ) and σS1(θ) have a simple form:

ρS1(θ) =−R and σS1(θ) = 0
where R is the bandwidth of the network link.

Lastly, tail latency is calculated by chaining together
the equations in Tbl. 1 based how the SNC operators are
combined and using the latency equation (last line in Tbl. 1).
Sec. 4.4 describes how we represent arrival and service
processes in code and how we evaluate the latency equation
with the θ parameter.

4. Implementation
In this section, we describe four challenges we overcome

in implementing SNC-Meister.
First, SNC is a new theory, and it is currently an open

problem how to effectively apply SNC to network topologies
(e.g., Fig. 2). The SNC literature is primarily concerned with
the theorems and proofs behind individual SNC operators, but
little is known about putting them together. Sec. 4.1 describes
SNC-Meister’s novel network analysis technique and the
corresponding improvement in accuracy.

Second, the SNC literature does not consider the analysis
of dependencies between tenants. Sec. 4.2 discusses how
SNC-Meister handles dependencies and its effect on latency.

Third, real traffic exhibits bursty behavior, particularly at
second/sub-second granularities, and it is important to capture
this behavior to properly characterize tail latency. Sec. 4.3
describes how SNC-Meister models burstiness and how it
estimates model parameters from trace data.

Fourth, it is non-trivial how to work with full represen-
tations of probabilistic distributions as required by SNC.
Sec. 4.4 describes how SNC-Meister is implemented in code.
4.1 Analyzing networks with SNC-Meister

Analyzing networks with SNC requires an algorithm
for combining the SNC operators described in Sec. 3.1.
Even with the simple example in Fig. 5, there are mul-
tiple ways to analyze the latency for T1. For example,
Sec. 3.1 describes how the latency can be analyzed one queue
at a time (i.e., Latency(A1,S′1,0.995) + Latency(A′1,S2 	
A′2,0.995)) as well as through a convolution operator (i.e.,
Latency(A1,S′1 ⊗ (S2 	 A′2),0.99)). Yet there is even an-
other approach by first applying the convolution operator
on S1 and S2 before accounting for the congestion from
T2 (i.e., Latency(A1,(S1⊗ S2)	A2,0.99)). While each ap-
proach is correct as an upper bound on tail latency, they
are not equally tight. One of our key findings is that some
approaches can introduce “artificial dependencies” where ar-
rival and service processes are treated as dependent processes
even though they should be independent. For example, in
Latency(A′1,S2	A′2,0.995), A′1 (= A1� (S1	A2)) and A′2
(= A2� (S1	A1)) are artificially dependent because they are
both derived from common sources A1, A2, and S1. Likewise,
the convolution S′1⊗ (S2	A′2) has an artificial dependency
because S′1 (= S1	A2) and A′2 are both derived from S1 and
A2. In reality, there shouldn’t be any dependencies between
A1, A2, S1, and S2, but the ordering of SNC operators can in-
troduce these artificial dependencies. A more comprehensive

Figure 6. Extending Fig. 5’s example with tenants T3 and T4
flowing through queues S3 and S2.

0

50

100

150

1 2 3 4 5 6 7
Tenants

99
.9

th
 L

at
en

cy
 p

er
ce

nt
ile

 [m
s] DNC

SNC convolution
SNC hop−by−hop
SNC−Meister
actual experiment

Figure 7. The tail latency calculated using DNC and mul-
tiple SNC methods, SNC convolution [15], SNC hop-by-
hop [5], and SNC-Meister. In this micro-experiment, we vary
the number of tenants connecting from a single client to a
single server through two queues.

example for artificial dependencies can be found in Appendix
A.3 in our tech report [54].

In our SNC-Meister SNC algorithm, we identify two key
ideas that allow us to eliminate artificial dependencies.
Key idea 1. When analyzing T1, SNC-Meister performs
the convolution operator before the leftover operator for
any tenants sharing the same path as T1. For example,
Latency(A1,(S1⊗S2)	A2,0.99).

Using this idea in our Fig. 5 example avoids the artificial
dependencies at the second queue. However, there are other
sources of artificial dependencies. Fig. 6 shows a slightly
more complex scenario with additional traffic from T3 and
T4. Calculating T1’s latency now requires accounting for the
effect of T3 and T4 at the second queue S2. The straightfor-
ward approach is to apply the output operator on A3 and
A4 to get arrival processes A′3 (= A3 � (S3 	 A4)) and A′4
(= A4� (S3	A3)) at the second queue. However, this ap-
proach introduces an artificial dependency between A′3 and
A′4 because they are derived from S3, A3, and A4.
Key idea 2. When handling competing traffic from the same
source, SNC-Meister applies the aggregate operator before
the output operator. For example, (A3⊕A4)�S3.

Using this idea, the aggregate flow to the second queue
now does not have any artificial dependencies. Combining
the two ideas for our Fig. 6 example, the latency of T1 is
calculated as Latency(A1,(S1⊗ (S2	 ((A3⊕A4)� S3)))	
A2,0.99). Through these two ideas, SNC-Meister is able to
produce much tighter bounds (see Fig. 7) than the straight-
forward approaches (analyzing one queue at a time: SNC

0

50

100

150

200

250

0% 25% 50% 75% 100%
Fraction of tenants with dependencies99

.9
th

 L
at

en
cy

 p
er

ce
nt

ile
 [m

s]

DNC
SNC−Meister

Figure 8. The tail latency calculated using DNC and SNC-
Meister as we vary the fraction of tenants that are dependent
on each other. In this micro-experiment, seven identical
tenants connect from a single client to a single server, and a
fraction of them (x-axis) are marked as dependent on each
other.

hop-by-hop [5]; applying convolution to a tenant’s leftover
service process at each queue: SNC convolution [15]). A
formal description of SNC-Meister’s SNC algorithm can be
found in Appendix A.4 in our tech report [54] and the proof
of correctness is given in Theorem 7 in Appendix A.5.
4.2 Dependencies between tenants

Since not all tenants are necessarily independent, SNC-
Meister also supports users specifying groups of dependent
tenants. Dependent tenants are analyzed assuming they can
have adversarially correlated bursts. This can be useful, for
example, when multiple tenants are part of the same load
balancing group.

SNC-Meister incorporates user-specified dependencies by
tracking dependency information with arrival and service
processes. When aggregating multiple arrival processes (as
with key idea 2), SNC-Meister also uses the dependency
information to minimize the number of SNC operators that
assume dependence (proved in Theorem 6 in Appendix A.5
in our tech report [54]).

Fig. 8 shows the effect of tenant dependency on latency.
In this experiment, we take a fraction of the tenants and mark
them as dependent on each other. As this fraction varies from
0% (i.e., all independent) to 100% (i.e., all dependent), we
see the latency calculated by SNC-Meister increases. This is
expected since dependent tenants can have higher latencies
due to simultaneous bursts. Nevertheless, SNC-Meister’s
latency is almost always4 under DNC since DNC assumes
adversarial correlation for all tenants.
4.3 Modeling tenant burstiness

Properly characterizing tail latency entails representing
the burstiness and load that each tenant contributes. In
SNC-Meister, we use a Markov Modulated Poisson Pro-
cess (MMPP) as an expressive and analytically tractable
model for burstiness. A MMPP can be viewed as a set of

4 SNC-Meister can generate higher latencies than DNC when nearly all
tenants are dependent because the SNC equations are not tight upper bounds,
whereas our DNC analysis is tight.

phases with different arrival rates and a set of transition
probabilities between the phases. A phase with high arrival
rate can represent a bursty period, while a phase with low
arrival rate can represent a non-bursty period. The MMPP
is flexible in that the number of phases can be increased to
reflect additional levels of burstiness.

The MMPP parameters for each tenant are determined
from its trace. The traces contain the arrival times of requests
and their sizes, where the size of a request is the number
of bytes being requested. SNC-Meister first determines the
number of MMPP phases needed to represent the range of
burstiness in the trace. We use an idea similar to [22] where
each phase is associated with an arrival rate and covers a range
of arrival rates plus or minus two standard deviations. SNC-
Meister then maps time periods in the trace to MMPP phases
and empirically calculates transition probabilities between
the MMPP phases.

While SNC-Meister adapts to the range of burstiness on
a per-tenant basis using multiple MMPP phases, the specific
number of phases is not critical. In our experimentation, we
find a big difference going from a single phase (i.e., a standard
Poisson Process) to two phases, but less of a difference with
more than two phases. If computation speed is a limiting
factor, it is possible to tune SNC-Meister to compute latency
faster using fewer phases.
4.4 How SNC-Meister represents SNC in code

In this section, we describe how SNC-Meister represents
the core building blocks in SNC, arrival and service processes,
as objects in code. We first show how to combine the SNC
operators by walking through the example in Fig. 5 and then
delve into details on how SNC operators are represented
internally.

To analyze the Fig. 5 example, we start with two arrival
processes (A1 and A2) and two service processes (S1 and S2):
ArrivalProcess* A1 = new MMPP(traceT1);

ArrivalProcess* A2 = new MMPP(traceT2);

ServiceProcess* S1 = new NetworkLink(bandwidth);

ServiceProcess* S2 = new NetworkLink(bandwidth);

We proceed to calculate the latency of T1, mathematically
written Latency(A1,(S1⊗ S2)	A2,0.99). First, the queues
are combined to create a service process for the convolution of
S1 and S2 (i.e., S1⊗S2), which is yet another service process
(named S1x2):
ServiceProcess* S1x2 = new Convolution(S1, S2);

Second, T1’s service process is calculated by using the left-
over operator on S1x2 and T2’s arrival process (i.e., (S1⊗
S2)	A2):
ServiceProcess* S1x2_A2 = new Leftover(S1x2 , A2);

Finally, the 99th percentile latency of T1 is calculated by:
double L_A1 = calcLatency(A1, S1x2_A2 , 0.99);

SNC-Meister is designed to allow the SNC operators to
compose any algebraic expression (e.g., (S1⊗S2)	A2 is new
Leftover(new Convolution(S1, S2), A2)). This is ac-
complished by having all of the operators as subclasses of

the ArrivalProcess and ServiceProcess base classes, which
have a standardized representation using the ρ(θ) and σ(θ)
form (see Sec. 3.2). To symbolically represent these ρ(θ) and
σ(θ) functions in code, the base classes define pure virtual
functions for rho and sigma that every operator overrides
with the equations in Tbl. 1.

Lastly, calculating latency requires optimizing the θ pa-
rameter in the Tbl. 1 equations. In particular, the latency equa-
tion produces valid upper bounds on latency for every value
of θ > 0. Thus, to improve the accuracy of the latency bound,
SNC-Meister searches for a θ that produces the minimum la-
tency by sweeping over a range of values at a coarse granular-
ity (e.g., θ = 1,2,3, ...,10) and then progressively narrowing
down to finer granularities (e.g., θ = 2.1,2.2, ...,2.9).

5. Experimental setup
To demonstrate the effectiveness of SNC-Meister in a

realistic environment, we evaluate our implementation of
SNC-Meister and of three state-of-the-art systems in a phys-
ical testbed running memcached as an example application.
This section describes the state-of-the-art systems (Sec. 5.1),
our physical testbed (Sec. 5.2), our traces (Sec. 5.3), and the
procedure of each experiment (Sec. 5.4).
5.1 State-of-the-art admission control systems

We compare against three state-of-the-art systems: Silo [25],
QJump [21], and PriorityMeister [55]. We enhance Silo and
QJump to account for end-host queueing delay and to auto-
matically configure tenant parameters (e.g., rate limits).

Silo [25]: Silo offers tenants a worst-case packet latency
guarantee under user-specified rate limits. Admission control
is performed by verifying that no switch queue in the network
overflows using equations from DNC. The maximum packet
latency is calculated by adding up all maximum queue sizes
along a packet’s path.

A limitation with Silo is that choosing a rate limit (i.e.,
bandwidth and maximum burst size) is left to the user. In
the Silo experiments, the burst size is fixed to 1.5KB, and
bandwidth is chosen by trial and error. Selecting too high
a bandwidth causes few tenants to be admitted. On the
other hand, selecting a small bandwidth (e.g., the average
bandwidth of a tenant) entails a high end-host queueing
delay due to being slowed down by the rate limiting, and
compensating for the effect of end-host queueing is left to the
user.

Silo++: We extend Silo with an algorithm to automatically
choose the minimal bandwidth so that each tenant’s request
latency SLO can be guaranteed. This is achieved by profiling
each tenant’s traffic requirements and selecting rate limits us-
ing the effective bandwidth approach from DNC theory [29].
We also add support for calculating the end-host queueing
delay using DNC, which is used in conjunction with Silo’s
packet latency guarantee to check whether each tenant can
meet its SLO.

0

50

100

0 2 4 6
Ratio max/mean rate

P
er

ce
nt

ile
 (

C
D

F
)

Figure 9. The ratio between maximum and mean request
rate is high for many of our traces.

QJump [21]: QJump offers multiple classes of service
with different latency-throughput trade-offs. The first class
receives the highest priority along with a worst-case latency
guarantee using DNC-based equations [35, 36], but is aggres-
sively rate limited. For the other classes, tenants are allowed
to send at higher rates, but at lower priorities and without any
latency guarantee. There are two limitations in employing the
original QJump proposal: 1) users don’t know which class
to pick because the respective latency guarantee is unknown
in advance; and 2) users don’t know the end-host queueing
delay caused by the rate limiting of each class.

QJump++: We extend QJump with an algorithm to auto-
matically assign tenants to a (near) optimal class. The algo-
rithm iteratively increases the QJump level for tenants that
do not meet their SLOs. We add support for calculating the
latency for each class as well as the end-host delay, which
allows QJump++ to check if a tenant can meet its SLO.

Additionally, we find that instantiating the QJump classes
using the QJump equation (Eq. (4) in [21]) severely limits
the number of admitted tenants (5x fewer on average). By
fixing a set of throughput values independent of the number
of tenants, we significantly boost the number of admitted
tenants for QJump++.

PriorityMeister (PM) [55]: PriorityMeister uses DNC
to offer each tenant a worst-case request latency guarantee
based on rate limits that are automatically derived from a
tenant’s trace. PriorityMeister automatically configures tenant
priorities to meet latency SLOs across both network and
storage, and in this work, we tailor it to focus only on network
latency.
5.2 Physical testbed

Our physical testbed comprises an otherwise idle, 18-
machine cluster of Dell PowerEdge 710 machines, configured
with two Intel Xeon E5520 processors and 16GB of DRAM.
We use the setup shown in Fig. 2. Six machines are dedi-
cated as memcached servers running the most recent version
(1.4.25) of memcached. Twelve machines run a set of tenant
VM’s using the standard kvm package (qemu-kvm-1.0) to
provide virtualization support. Each tenant VM runs 64-bit
Ubuntu 13.10 and replays a trace using libmemcached. Each
physical machine runs 64-bit Ubuntu 12.04, and we use the
associated Linux Traffic Control interface without modifica-
tions. The top-of-rack switch connecting the machines is a

0

25

50

75

100

Silo++ QJump++ PM SNC−
Meister

Te

na
nt

s
ad

m
itt

ed

0

50

100

150

200

250

Silo++ QJump++ PM SNC−
Meister

B
yt

es
 tr

an
sf

er
re

d
[G

B
]

Figure 10. Comparison of three state-of-the-art admission control systems to SNC-Meister for 100 randomized experiments. In
each experiment, 180 tenants, each submitting hundreds of thousands of requests, arrive in random order and seek a 99.9% SLO
randomly drawn from {10ms, 20ms, 50ms, 100ms}. The left box plot shows that across the 100 experiments, SNC-Meister
admits more tenants than state-of-the-art systems. The right plot shows that SNC-Meister achieves a similar improvement with
respect to the volume of bytes transferred in each experiment.

Dell PowerConnect 6248 switch, providing 48 1Gbps ports,
with DSCP support for 7 levels of priority.
5.3 2015 production traces

Our evaluation uses 180 recent traces captured in 2015
from the datacenter of a large Internet company. The traces
capture cache lookup requests issued by a diverse set of
Internet applications (e.g., social networks, e-commerce,
web, etc.). Each trace contains a list of anonymized requests
parameterized by the arrival time and object size being
requested, ranging from 1 Byte to 256 KBytes with a mean
of 28 KBytes. Each trace is 30 minutes long and contains
100K to 600K requests, with a mean of 320K requests. We
find that these traces exhibit significant short-term burstiness,
and Fig. 9 shows that the CDF for the ratio of peak to mean
request rate ranges from 2 to 6. We also perform standard
statistical tests [1, 34] to verify the stationarity and mutual
stochastic independence of our traces as required by SNC.
5.4 Experimental procedure

In our experiments, we run up to 180 tenants that replay
memcached requests from each tenant’s associated trace. For
each experiment, tenants arrive to the system one by one in a
random order with a 99.9% SLO drawn uniformly randomly
from {10ms, 20ms, 50ms, 100ms}. When a tenant arrives,
the admission system makes its decision based on the tenant’s
SLO and the first half of the tenant’s trace (15 mins). After
the admission decisions for all 180 tenants have been made,
each admitted tenant starts a VM to replay the second half
of its request trace (15 mins). All tenants replay their traces
in an open loop fashion, which properly captures the end-
to-end latency and the effects of end-host queueing [41].
All admission systems meet the tenant SLOs, as verified by
monitoring the total memcached request latency for every
request (i.e., completion time - arrival time in the trace) and
checking that the 99.9% latency across 3min time intervals
for each tenant is less than its SLO. Thus, we evaluate the
performance of the admission control systems under the
following two metrics: 1) the number of tenants admitted
by each system; and 2) the total volume of bytes transmitted
by admitted tenants. Metric 1 indicates how many tenants

with tail latency SLOs can be concurrently supported by each
system. Metric 2 prevents a system from scoring high on
metric 1 by admitting only low-load tenants.

6. Results
In this section, we experimentally evaluate the perfor-

mance and practicality of SNC-Meister. Sec. 6.1 shows that
SNC-Meister is able to support 75% more tail latency SLO
tenants than state-of-the-art systems across a large range of
experiments. SNC-Meister also transfers 88% more bytes,
which shows that SNC-Meister supports a higher network
utilization. Sec. 6.2 shows that SNC-Meister’s performance
is within 7% of an empirical offline solution. Sec. 6.3 demon-
strates that SNC-Meister is able to support low-bandwidth
tenants with very tight SLOs alongside high-bandwidth ten-
ants. Sec. 6.4 investigates the sensitivity of the SNC latency
prediction to the SLO percentile. Sec. 6.5 evaluates the scala-
bility of SNC-Meister and shows that both its computation
time and performance scale linearly with the number of ten-
ants.
6.1 SNC-Meister outperforms the state-of-the-art

This section compares SNC-Meister with enhanced ver-
sions of the state-of-the-art tail latency SLO systems (de-
scribed in Sec. 5.1). We run 100 experiments, each with 180
tenants arriving in a random order with random SLOs (de-
scribed in Sec. 5.4). All four systems, including SNC-Meister,
meet the SLOs for all admitted tenants, but differ in how many
tenants each system admits.

Fig. 10 shows a box plot of the number of admitted tenants
and a box plot of the volume of transferred bytes. We see
that the three state-of-the-art systems (Silo++, QJump++,
PriorityMeister) perform roughly the same as they draw
upon the same underlying DNC mathematics. SNC-Meister
achieves a significant improvement over all three systems
across all 100 experiments. Silo++ admits slightly more
than QJump++ and PriorityMeister, which is due to the
effective bandwidth enhancement of Silo++ (see Sec. 5.1).
Nevertheless, SNC-Meister outperforms Silo++ by a large
margin: of the 100 experiments, the 10-percentile of SNC-
Meister is above the 75-percentile of Silo++ for both the

0

25

50

75

100

Silo++ QJump++ PM SNC−
Meister

 OPT

Te

na
nt

s
ad

m
itt

ed

0

50

100

150

200

250

Silo++ QJump++ PM SNC−
Meister

 OPT

B
yt

es
 tr

an
sf

er
re

d
[G

B
]

Figure 11. Comparison between state-of-the-art systems, SNC-Meister, and an empirical optimum (OPT) for 10 of the 100
experiments in Fig. 10. The left box plot shows that the number of tenants admitted by SNC-Meister is close to OPT, whereas
the other state-of-the-art systems admit less than half of OPT. The right plot shows that SNC-Meister is also close to OPT with
respect to the volume of bytes transferred in each experiment.

number of admitted tenants and bytes transferred. The fact
that SNC-Meister performs well for both metrics shows that
SNC-Meister’s improvement is not just due to admitting more
low-load tenants, but is due to allowing higher utilization.
6.2 Comparison to empirical optimum

To evaluate how well SNC-Meister compares to an empir-
ical optimum, we determine the maximum number of tenants
that can be admitted without SLO violations (labeled OPT)
via trial and error experiments. In order to determine the
maximum in a reasonable time frame, OPT only considers
tenants in the order that they arrive. Thus, OPT is defined as
the largest n such that the first n tenants to arrive meet their
SLOs. Determining OPT via trial and error is time consuming
and hence we only do this for a random subset5 of 10 out of
the 100 experiments from Sec. 6.1.

Fig. 11 compares the state-of-the-art, SNC-Meister and
OPT. We find that SNC-Meister performs almost as well
as OPT. Specifically, SNC-Meister is within 7% of OPT in
the median, whereas the state-of-the-art admission systems
achieve only half of OPT. Thus, SNC-Meister captures most
of the statistical multiplexing benefit without needing to run
trial and error experiments.
6.3 Small-request tenants

While we have focused on request latency, many related
works focus on packet latency and the effects on small
requests (i.e., single packet-sized requests).

As SNC-Meister supports prioritization (Sec. 2), we
demonstrate that SNC-Meister can also support tenants with
small requests and very tight SLOs. Fig. 12 shows the results
from an experiment with a set of eleven tenants with single
packet requests and tight SLOs (4ms) along with twenty-one
other tenants with larger requests and higher SLOs (50ms).
Like before, we see that SNC-Meister is able to admit many
more tenants than the state-of-the-art systems. Here, Prior-
ityMeister does better than Silo++ and QJump++ since it
does not need to reserve a lot of bandwidth for the tight
SLOs. Nevertheless, all three of these state-of-the-art systems

5 Note that the results from the 10 experiments in Fig. 11 are representative
because the state-of-the-art systems and SNC-Meister perform similarly to
the 100 experiments in Fig. 10.

0

10

20

30

Silo++ QJump++ PM SNC−
Meister

Te

na
nt

s
ad

m
itt

ed

0

10

20

30

Silo++ QJump++ PM SNC−
Meister

B
yt

es
 tr

an
sf

er
re

d
[G

B
]

Figure 12. Number of admitted tenants (left) and bytes
transferred by admitted tenants (right) in an experiment with
two groups of tenants: a set of small-request low-latency
(4ms) tenants and a set of large-request higher-latency (50ms)
tenants. SNC-Meister admits more tenants and over three
times as many bytes as the state-of-the-art systems.

suffer from the drawbacks of DNC and are unable to admit
many of the large-request tenants once they’ve admitted the
small-request tenants with tight SLOs. This can particularly
be seen in the graph of the number of bytes transferred by
admitted tenants. SNC-Meister admits both the small-request
tenants as well as many large-request tenants, resulting in
a higher network utilization. SNC-Meister is able to do so
since, probabilistically, the small-request tenants do not have
a large effect on the large-request tenants. The large-request
tenants are assigned a lower priority due to their higher SLOs
and thus do not affect the small-request tenants.
6.4 Tail latency percentiles

One might wonder how SNC-Meister performs for latency
SLOs other than the 99.9th percentile. We address this
question by comparing SNC-Meister’s latency prediction to
the DNC latency prediction used by state-of-the-art systems.

Fig. 13 shows the latency prediction of SNC-Meister and
DNC vs. the number of 9s in the SLO percentile, where three
9s represents the 99.9th percentile. SNC-Meister’s latency
increases with the SLO percentile, as expected, and only
exceeds the DNC latency with thirty-three 9s. Thus, SNC-
Meister’s benefit primarily comes from considering non-
100th percentile SLOs. The relative difference between one
and three 9s is small compared to the difference between non-
100th percentiles (i.e., SNC-Meister) and the 100th percentile
(i.e., DNC). Thus, experiments with 90th percentile SLOs

0

10

20

30

0 10 20 30 40
Number of 9s

La
te

nc
y

pe
rc

en
til

e
[m

s]

DNC
SNC−Meister

Figure 13. Comparison between the latency predictions
of SNC-Meister and DNC for different SLO percentiles.
Specifically, the x-axis denotes the number of 9s, where three
9s represents the 99.9th percentile. As expected, the latency
using SNC increases with the SLO percentile, but is still
superior to DNC even with thirty 9s.

and experiments where tenants have mixtures of 90th, 99th,
and 99.9th percentile SLOs show similar results to the case
with all tenants having 99.9th percentile SLOs. DNC’s worst-
case analysis is conservative in accounting for rare events that
probabilistically should never occur, whereas SNC-Meister
is unaffected by these improbable events for almost any
percentile.
6.5 Scalability

In this section, we study the scalability of SNC-Meister.
Fig. 14 shows the runtime for computing latency as a function
of the number of tenants. We see that SNC-Meister’s runtime
scales linearly with the number of tenants, which is ideal
since each tenant’s latency is calculated one by one. This
is promising, given that the computation is currently single
threaded, and the analysis of each of the tenants can easily be
parallelized.

Fig. 15 shows how the number of admitted tenants scales
with the size of the cluster. We use the same setup with 180
tenants, but replicate the tenants and number of machines
by a scaling factor (x-axis) to show the effect of larger scale.
The order and assignment of tenant VMs to data servers is
random as before. As expected, the performance of SNC-
Meister scales linearly with the size of the cluster.

7. Related work
SNC-Meister addresses meeting tail latency SLOs, which

is an active research area with a rich literature. The related
work can be divided into four major lines of work. First, there
is a body of work that ensures that tail latency SLOs are
met based on worst-case latency bounds; unfortunately these
works are unable to achieve high degrees of multi-tenancy
due to the conservative nature of worst-case analysis. To
overcome these limitations, theoreticians have developed a
second line of work that provides probabilistic tail latency
bounds via Stochastic Network Calculus (SNC). These works
are entirely theoretical and have never been implemented
for any computer system. Third, there is a body of work that
proposes techniques for significantly reducing the tail latency;

0

200

400

600

0 2500 5000 7500 10000
Tenants

S
N

C
−M

ei
st

er
 r

un
tim

e
(s

)

Figure 14. SNC-Meister’s runtime scales linearly with the
number of tenants.

0

200

400

600

0 2 4 6 8 10

Te

na
nt

s
ad

m
itt

ed

Scaling factor

Figure 15. The number of admitted tenants in SNC-Meister
scales linearly with the cluster size.

ensuring that request latency SLOs are met is not within the
scope of that work. Fourth, there are some recent systems that
try to meet SLOs based on measured latency; unfortunately,
these works aren’t suited for admission control and don’t
cope well with bursty tenants.
Guaranteed latency systems

There are three recent state-of-the-art systems that provide
SLO guarantees: Silo [25], QJump [21], and PriorityMeis-
ter [55] (described in Sec. 5.1 and listed in the top half of
Tbl. 2). All three systems are designed for worst-case latency
guarantees. For tenants seeking a lower percentile tail guar-
antee (e.g., a guarantee on the 99.9th percentile of latency),
these systems are overly conservative in their admission deci-
sions: they admit half the number of tenants as compared to
SNC-Meister (see Sec. 6.1).

Besides these recent proposals, there has been a long
history of DNC-based worst-case latency admission control
algorithms in the context of Internet QoS [14, 28, 32, 44,
49]. These older proposals are not tailored to datacenter
applications, and also suffer from the conservative nature
of worst-case latency guarantees.
Stochastic Network Calculus (SNC)

The modern SNC theory evolved as an alternative to the
DNC theory to capture statistical multiplexing gains and
enable accurate guarantees for any latency percentile [5–11,
15–17, 20, 27, 31, 38, 39, 42, 52]. However, all of this work
is in theory, and we are not aware of any implementations that
use SNC in computer systems. The only practical applications
of SNC are in the modeling of critical infrastructures such
as avionic networks [40] and the power grid [19, 48], which
support the robustness of SNC theory.

tail latency SLO multi-tenancy parameter configuration

gu
ar

an
te

ei
ng

ta
il

la
te

nc
y SNC-based SNC-Meister Any (e.g., 99.9th) high automated

Silo [25] 100th low manual
QJump [21] 100th low manual

worst-case
admission
control PriorityMeister [55] 100th low automated

re
du

ci
ng

ta
il

la
te

nc
y

pHost [18] no n/a manual
Fastpass [37] no n/a manual

datacenter
scheduling

pFabric [4] no n/a manual
D2TCP [45] no n/a n/acongestion

control DCTCP [2] no n/a n/a
other [12, 24, 43, 46, 51, 53] no n/a n/a

Table 2. While many systems aim to reduce tail latency (bottom half of table), few provide tail latency guarantees (top half).

Reducing tail latencies
There are many systems that demonstrate how to reduce

tail latency (listed in the bottom half of Tbl. 2). Datacen-
ter schedulers, such as pHost [18], Fastpass [37], and pFab-
ric [4], improve tail latency by bringing near-optimal sched-
ulers (such as earliest-deadline first) to the datacenter. These
approaches can also shift queueing from within the network
to the end-hosts, which greatly reduces tail packet latency
and the latency of short requests. These approaches, however,
are not designed to ensure tail latency SLO compliance.

Latency-aware congestion control algorithms, such as
D2TCP [45] and DCTCP [2], aggressively scale down send-
ing rates and prioritize flows with deadlines. These ap-
proaches react to congestion, which can lead to SLO viola-
tions in the face of bursty traffic [4, 25]. HULL [3] keeps tail
latencies low by controlling the network utilization through
rate limiting, but can still experience SLO violations [21].

Other techniques for reducing tail latency include issuing
redundant requests [12, 24, 46], latency-adaptive machine
selection [43, 51], and latency-adaptive load balancing [53].
While these techniques can reduce the tail latency, they are
not designed for meeting tail latency SLOs.
Measurement-based approaches

Several recent works measure the latency and adapt the
system to try to meet tail latency SLOs [30, 47]. Unfortu-
nately, these approaches aren’t suited for admission control
where admission decisions cannot be made dynamically. Fur-
thermore, prior work has shown that reactive approaches
struggle with bursty tenants and often do not meet their
SLOs [55].

The recent Cerebro [26] work uses measurements to
characterize the latency of requests composed of multiple
sub-requests. Unlike SNC-Meister, Cerebro is not designed
to account for the interaction between multiple tenants, which
is a primary benefit of SNC.

8. Conclusion and discussion
SNC-Meister is a new system for meeting tail request

latency SLOs while achieving higher multi-tenancy than
the state-of-the-art. In experiments with production traces
on a physical implementation testbed, we show that SNC-

Meister can admit two to three times as many tenants as
the state-of-the-art while meeting tail latency SLOs. SNC-
Meister benefits from applying a new probabilistic theory
called Stochastic Network Calculus (SNC) to calculate tail
latencies, while prior systems use the conservative worst-case
Deterministic Network Calculus (DNC) theory.

As SNC is a new theory, there are many challenges in
bringing it to practice, and there is much room for further
research. One challenge we identify is the important role of
the order in which SNC operators are applied – a fundamental
problem that was not previously considered in SNC literature.
Our novel algorithm for analyzing networks with SNC makes
a significant step forward in making SNC a practical tool. We
also add support in SNC-Meister for dependencies between
subsets of tenants, which addresses a practical issue that is
generally ignored in SNC theory. Nevertheless, it is still an
open question on how to better apply SNC techniques to get
tighter bounds.

While this work focuses on the admission control prob-
lem, the ideas behind SNC-Meister and SNC are applicable
to many applications beyond admission control. One such ex-
ample is the datacenter provisioning problem. By being able
to analyze tenant behavior and compute tail latency, SNC-
Meister could be extended to deciding when (and how many)
more resources are required for meeting tail latency SLOs.
Similarly, these techniques could apply to tenant placement
problems: SNC could be used to identify bottlenecks and
make placement decisions in a tail latency aware fashion.
Also, the mathematics behind SNC is applicable to other re-
sources beyond networks such as storage bandwidth. We thus
believe that the SNC theory can develop into a practical tool
for working with tail latency.

Acknowledgments
This research is supported in part by Intel as part of the

Intel Science and Technology Center for Cloud Computing
(ISTC-CC), by a Google Faculty Research Award 2015/16,
and by the National Science Foundation under awards CMMI-
1538204, CMMI-1334194, CSR-1116282, and XPS-1629444.
We also thank the member companies of the PDL Consortium
for their interest, insights, feedback, and support.

References
[1] A. Agresti. Building and applying logistic regression models.

Categorical Data Analysis, Second Edition, pages 211–266,
2007.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center tcp
DCTCP. In ACM SIGCOMM, pages 63–74, 2011.

[3] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda. Less is more: trading a little bandwidth for
ultra-low latency in the data center. In USENIX NSDI, pages
19–19, 2012.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pfabric: Minimal near-optimal
datacenter transport. In ACM SIGCOMM, pages 435–446,
2013.

[5] M. A. Beck and J. Schmitt. The disco stochastic network
calculator version 1.0: when waiting comes to an end. In
Valuetools, pages 282–285, 2013.

[6] A. Burchard, J. Liebeherr, and F. Ciucu. On superlinear scaling
of network delays. IEEE/ACM Transactions on Networking
(TON), 19(4):1043–1056, 2011.

[7] C.-S. Chang. Stability, queue length, and delay of deterministic
and stochastic queueing networks. IEEE Transactions on
Automatic Control, 39(5):913–931, 1994.

[8] C.-S. Chang. Performance guarantees in communication
networks. Springer Science & Business Media, 2000.

[9] F. Ciucu, A. Burchard, and J. Liebeherr. A network service
curve approach for the stochastic analysis of networks. In ACM
SIGMETRICS, pages 279–290, 2005.

[10] F. Ciucu and J. Schmitt. Perspectives on network calculus: No
free lunch, but still good value. In ACM SIGCOMM, pages
311–322, 2012.

[11] R. Cruz. Quality of service management in integrated services
networks. In Proceedings of the 1st Semi-Annual Research
Review, CWC, 1996.

[12] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,
56(2):74–80, Feb. 2013.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazon’s highly available key-value store. In
ACM SOSP, pages 205–220, 2007.

[14] D. Ferrari and D. C. Verma. A scheme for real-time channel
establishment in wide-area networks. IEEE JSAC, 8(3):368–
379, 1990.

[15] M. Fidler. An end-to-end probabilistic network calculus with
moment generating functions. In IEEE International Workshop
on Quality of Service (IWQoS), pages 261–270, 2006.

[16] M. Fidler and A. Rizk. A guide to the stochastic network
calculus. IEEE Communications Surveys & Tutorials, 17(1):92–
105, 2015.

[17] V. Firoiu, J.-Y. Le Boudec, D. Towsley, and Z.-L. Zhang. The-
ories and models for internet quality of service. Proceedings
of the IEEE, 90(9):1565–1591, 2002.

[18] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy,
and S. Shenker. phost: Distributed near-optimal datacenter

transport over commodity network fabric. In ACM CoNEXT,
2015.

[19] Y. Ghiassi-Farrokhfal, S. Keshav, and C. Rosenberg. Toward
a realistic performance analysis of storage systems in smart
grids. IEEE Transactions on Smart Grid, 6(1):402–410, 2015.

[20] Y. Ghiassi-Farrokhfal and J. Liebeherr. Output characterization
of constant bit rate traffic in fifo networks. IEEE Communica-
tions Letters, 13(8):618–620, 2009.

[21] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W.
Moore, S. Hand, and J. Crowcroft. Queues don’t matter when
you can jump them! In USENIX NSDI, 2015.

[22] D. P. Heyman and D. Lucantoni. Modeling multiple ip traffic
streams with rate limits. Networking, IEEE/ACM Transactions
on, 11(6):948–958, 2003.

[23] S. Islam, S. Venugopal, and A. Liu. Evaluating the impact of
fine-scale burstiness on cloud elasticity. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages
250–261, New York, NY, USA, 2015. ACM.

[24] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin,
and C. Yan. Speeding up distributed request-response work-
flows. In ACM SIGCOMM, pages 219–230, 2013.

[25] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo: Pre-
dictable message latency in the cloud. In ACM SIGCOMM,
pages 435–448. ACM, 2015.

[26] H. Jayathilaka, C. Krintz, and R. Wolski. Response time ser-
vice level agreements for cloud-hosted web applications. In
Proceedings of the Sixth ACM Symposium on Cloud Comput-
ing, SoCC ’15, pages 315–328, New York, NY, USA, 2015.
ACM.

[27] J. Kurose. On computing per-session performance bounds in
high-speed multi-hop computer networks. In ACM SIGMET-
RICS, 1992.

[28] J.-Y. Le Boudec. Application of network calculus to guaranteed
service networks. IEEE Transactions on Information Theory,
44(3):1087–1096, 1998.

[29] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of
deterministic queuing systems for the internet, volume 2050.
Springer Science & Business Media, 2001.

[30] N. Li, H. Jiang, D. Feng, and Z. Shi. Pslo: Enforcing the xth
percentile latency and throughput slos for consolidated vm
storage. In Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys ’16, pages 28:1–28:14, New
York, NY, USA, 2016. ACM.

[31] J. Liebeherr, Y. Ghiassi-Farrokhfal, and A. Burchard. On
the impact of link scheduling on end-to-end delays in large
networks. IEEE JSAC, 29(5):1009–1020, 2011.

[32] J. Liebeherr, D. E. Wrege, and D. Ferrari. Exact admission
control for networks with a bounded delay service. IEEE/ACM
Transactions on Networking (TON), 4(6):885–901, 1996.

[33] J. C. Mogul and R. R. Kompella. Inferring the network latency
requirements of cloud tenants. In Usenix HotOS XV, 2015.

[34] G. Nason. A test for second-order stationarity and approximate
confidence intervals for localized autocovariances for locally
stationary time series. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 75(5):879–904, 2013.

[35] A. K. Parekh and R. G. Gallager. A generalized processor shar-
ing approach to flow control in integrated services networks:
the single-node case. IEEE/ACM Transactions on Networking,
1(3):344–357, 1993.

[36] A. K. Parekh and R. G. Gallagher. A generalized processor
sharing approach to flow control in integrated services net-
works: the multiple node case. IEEE/ACM Transactions on
Networking, 2(2):137–150, 1994.

[37] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal.
Fastpass: A centralized zero-queue datacenter network. In
ACM SIGCOMM, pages 307–318, 2014.

[38] F. Poloczek and F. Ciucu. Scheduling analysis with martingales.
Performance Evaluation, 79:56–72, 2014.

[39] J.-y. Qiu and E. W. Knightly. Inter-class resource sharing using
statistical service envelopes. In IEEE INFOCOM, volume 3,
pages 1404–1411, 1999.

[40] J.-L. Scharbarg, F. Ridouard, and C. Fraboul. A probabilistic
analysis of end-to-end delays on an afdx avionic network. IEEE
Transactions on Industrial Informatics, 5(1):38–49, 2009.

[41] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open
versus closed: A cautionary tale. In Proceedings of the 3rd
Conference on Networked Systems Design & Implementation -
Volume 3, NSDI’06, pages 18–18, Berkeley, CA, USA, 2006.
USENIX Association.

[42] D. Starobinski and M. Sidi. Stochastically bounded burstiness
for communication networks. In IEEE INFOCOM, volume 1,
pages 36–42, 1999.

[43] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting
tail latency in cloud data stores via adaptive replica selection.
In USENIX NSDI, 2015.

[44] G. Urvoy-Keller, G. Hébuterne, and Y. Dallery. Traffic en-
gineering in a multipoint-to-point network. IEEE JSAC,
20(4):834–849, 2002.

[45] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware
datacenter tcp (d2tcp). In ACM SIGCOMM, pages 115–126,
2012.

[46] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy,
and S. Shenker. Low latency via redundancy. In ACM CoNEXT,
pages 283–294, 2013.

[47] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica.
Cake: enabling high-level slos on shared storage systems. In
Proceedings of the Third ACM Symposium on Cloud Comput-
ing, SoCC ’12, pages 14:1–14:14, New York, NY, USA, 2012.
ACM.

[48] K. Wang, F. Ciucu, C. Lin, and S. H. Low. A stochastic power
network calculus for integrating renewable energy sources into
the power grid. IEEE JSAC, 30(6):1037–1048, 2012.

[49] S. Wang, D. Xuan, R. Bettati, and W. Zhao. Providing
absolute differentiated services for real-time applications in
static-priority scheduling networks. IEEE/ACM Transactions
on Networking, 12(2):326–339, 2004.

[50] Y. Xu, M. Bailey, B. Noble, and F. Jahanian. Small is better:
Avoiding latency traps in virtualized data centers. In Proceed-
ings of the 4th Annual Symposium on Cloud Computing, SOCC
’13, pages 7:1–7:16, New York, NY, USA, 2013. ACM.

[51] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail:
Avoiding long tails in the cloud. In USENIX NSDI, pages
329–342, 2013.

[52] O. Yaron and M. Sidi. Performance and stability of commu-
nication networks via robust exponential bounds. IEEE/ACM
Transactions on Networking, 1(3):372–385, 1993.

[53] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. Detail:
reducing the flow completion time tail in datacenter networks.
In ACM SIGCOMM, pages 139–150, 2012.

[54] T. Zhu, D. S. Berger, and M. Harchol-Balter. SNC-
Meister: Admitting More Tenants with Tail Latency
SLOs. Technical Report CMU-CS-16-113, School of
Computer Science, Carnegie Mellon University, May 2016.
available at http://reports-archive.adm.cs.cmu.edu/
anon/2016/CMU-CS-16-113.pdf.

[55] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and
G. R. Ganger. PriorityMeister: Tail Latency QoS for Shared
Networked Storage. In ACM SOCC, pages 29:1–29:14, New
York, NY, USA, 2014. ACM.

http://reports-archive.adm.cs.cmu.edu/anon/2016/CMU-CS-16-113.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2016/CMU-CS-16-113.pdf

	Introduction
	SNC-Meister's admission control process
	Stochastic Network Calculus background
	SNC core concepts
	Mathematics behind SNC

	Implementation
	Analyzing networks with SNC-Meister
	Dependencies between tenants
	Modeling tenant burstiness
	How SNC-Meister represents SNC in code

	Experimental setup
	State-of-the-art admission control systems
	Physical testbed
	2015 production traces
	Experimental procedure

	Results
	SNC-Meister outperforms the state-of-the-art
	Comparison to empirical optimum
	Small-request tenants
	Tail latency percentiles
	Scalability

	Related work
	Conclusion and discussion

