
Rateless Codes for Distributed Computations with
Sparse Compressed Matrices
Ankur Mallick

Electrical and Computer Engg.
Carnegie Mellon University

Pittsburgh PA 15213
Email: amallic1@andrew.cmu.edu

Gauri Joshi
Electrical and Computer Engg.

Carnegie Mellon University
Pittsburgh PA 15213

Email: gaurij@andrew.cmu.edu

Abstract—Unpredictable slowdown of worker nodes, or node
straggling, is a major bottleneck when performing large matrix
computations such as matrix-vector multiplication in a dis-
tributed fashion. For sparse matrices, the problem is compounded
by irregularities in the distribution of non-zero elements, which
leads to an imbalance in the computation load at different
nodes. To mitigate the effect of stragglers we use rateless codes
that generate redundant linear combinations of the matrix rows
(or columns) and distribute them across workers. This coding
scheme utilizes all partial work done by worker nodes, and
eliminates tail latency. We also propose a balanced row-allocation
strategy for allocating rows of a sparse matrix to workers that
ensures that equal amount of non-zero matrix entries are assigned
to each worker. The entire scheme is designed to work with
compressed, memory-efficient formats like CSR/CSC that are
used to store sparse matrices in practice. Theoretical analysis
and simulations show that our balanced rateless coding strategy
achieves significantly lower overall latency than conventional
sparse matrix-vector multiplication strategies.

A full version of this paper is accessible at: http://www.
andrew.cmu.edu/user/gaurij/rateless_coded_sparse.pdf

Index Terms—rateless codes, coded computing, sparse matrix
computations, straggler mitigation

I. INTRODUCTION

Matrix-vector multiplication is ubiquitous in scientific com-
puting and Big Data analysis, as numerous applications in signal
processing (For eg. FFT), machine learning (For eg. PCA), and
graph analytics (For eg. Page Rank) involve linear computations
that can be expressed as the multiplication of a large matrix
by a vector. Such large computations are usually distributed
across multiple computing nodes to store and process the data
in an efficient and scalable fashion. However, distributing the
computation over a large number of nodes makes it susceptible
to unpredictable node slowdown/failure [1]. Specifically, a few
slow nodes, called stragglers delay the computation even after
the remaining nodes have completed their assigned tasks.

In distributed computing systems like MapReduce [2] and
Spark [3], the problem of stragglers is countered by back-
up tasks. A more recent line of work [4], [5], called coded
computing, applies erasure coding, specifically maximum
distance separable (MDS) codes, to mitigate the effect of
stragglers – a (p, k) MDS code allows recovery of the matrix-
vector product from the computations of the fastest k out of p
workers. A major drawback of MDS codes is that they discard

the partial computations performed by the (p−k) slow workers
entirely. In [6] we address this issue by proposing a rateless
coded strategy (based on LT codes [7]) that can efficiently
utilize the computations performed by all workers including
the stragglers, and seamlessly adapt to varying node speeds.

Another drawback of coded computation strategies is that
they are agnostic to the entries of the matrix in question.
In practice, large matrices are often extremely sparse and
have a irregular distribution of non-zero entries. Conventional
methods that equally split rows/columns across workers can
cause an imbalance in the computation load at different workers.
Moreover, coding adds redundant and dense rows/columns to
the matrix, further increasing the computation load. Some
recent works [8], [9] try to limit the density of the coded rows,
but do not utilize the partial work performed by stragglers.

Moreover, sparse matrices are generally stored in a com-
pressed format such as compressed sparse row (CSR) and
compressed sparse column (CSC). Performing computations
directly in these compressed formats can save the cost of pre-
processing of the matrix for the purpose of encoding/decoding.
Sparse distributed computation solutions that split the non-
zero entries equally, and can operate in these compressed
formats have been proposed in the high-performance computing
community [10], [11]. But these are uncoded strategies and
thus are not naturally robust to straggling worker nodes.

To the best of our knowledge, this work is the first to combine
a rateless coding scheme with a balanced task allocation
strategy in order to perform straggler-resilient and efficient
sparse matrix computations. Our balanced rateless coding
strategy utilizes all partial work done by stragglers and also
provide robustness to uneven distribution of non-zero elements
in sparse matrices. Moreover, our coding strategy allows
computations directly in the CSR and CSC matrix formats
as we describe in Section III and Section V below. Latency
analysis in Section IV shows a large improvement over uncoded
and MDS coding strategies.

II. PRELIMINARIES

A. System Model

We consider the problem of multiplying a sparse m × n
matrix A with a n× 1 vector x using p worker nodes and a
master node. The worker nodes can only communicate with the

http://www.andrew.cmu.edu/user/gaurij/rateless_coded_sparse.pdf
http://www.andrew.cmu.edu/user/gaurij/rateless_coded_sparse.pdf

master, and cannot directly communicate with other workers.
The goal is to compute the result b = Ax in a distributed
fashion and mitigate the effect of unpredictable node slowdown
or straggling. While we consider the setting where a single
vector x is being multiplied with A, the proposed straggler
mitigation scheme is also applicable to the more general setting
where the matrix A is fixed (representing the system) while a
stream of vectors x1,x2, . . . , (representing inputs/tasks) arrive
and need to be multiplied with A.

B. Compressed Sparse Matrices

The Compressed Sparse Row (CSR) format of storing
sparse matrices is a memory-efficient row-oriented approach
for storing sparse matrices. Instead of storing the matrix
A as a 2-dimensional array, it just stores an array A.data
containing all non-zero elements, the corresponding column
indices (A.indices), and the offsets (A.offsets) corresponding
to the starting position of each row of A in A.data. For
example, consider the following sparse matrix.

A =

1 5 7 −1
2 4 0 0
6 0 0 0

 .
In the CSR format it is represented by the following 3 arrays.

A.data = [1, 5, 7,−1, 2, 4, 6],

A.indices = [0, 1, 2, 3, 0, 1, 0],

A.offsets = [0, 4, 6, 7].

This can potentially reduce the storage cost from O(mn) to
O(m) for matrices which are highly sparse. A similar format,
Compressed Sparse Column (CSC) is used when the data
is to be stored in column major format by storing the row
indices and the starting position of each column along with
the non-zero elements of the matrix.

In addition to efficient storage, the CSR/CSC formats enable
efficient computation of the matrix-vector product Ax since
only the non-zero elements of each row/column of A are
multiplied with the corresponding elements of x instead of
multiplying the entire row/column. This is a huge saving for
highly sparse matrices and efficient routines exist for computing
the matrix-vector product in this fashion [10], [11], [12]. For the
rest of this paper we assume that A is stored in the CSR/CSC
format and propose rateless coding schemes that can perform
encoding, computations and decoding directly in these formats.

C. LT Codes and Systematic LT Codes

Rateless codes, also referred to as fountain codes, can be
used to generate a limitless number of encoded symbols from
a finite set of m input symbols. In this work, we employ Luby
Transform (LT) codes (proposed in [7]) and their systematic
version (proposed in [13]), which ensure decoding from m(1 +
ε) for small ε, and a low decoding complexity O(logm) per
symbol. In classic LT codes, each encoded symbol is the sum
of d input symbols chosen uniformly at random from the set of
input symbols. The number of input symbols in each encoded
symbol, or the degree d, is chosen according to the Robust

Soliton degree distribution, the details of which are described in
[7]. Decoding is performed by applying the belief propagation
or peeling decoder, which involves iteratively mapping a degree
1 encoded symbol to the corresponding input symbol, and then
eliminating it from any other encoded symbols [7], [13].

Systematic LT codes [13], are constructed first applying the
LT decoding algorithm to the m input symbols to generate a set
of m pre-input symbols. The parity symbols are generated by
applying the LT encoding process to these pre-input symbols.
The overall set of input symbols and parity symbols follow the
same properties as the encoded symbols of a general LT code
(since they can be generated by applying LT encoding to the
same set of pre-input symbols) and together form the systematic
LT code. The original m pre-input symbols can be recovered
from any set of m(1+ε) systematic and parity symbols, where
the overhead ε → 0 as m → ∞. If the m(1 + ε) received
symbols include all the systematic symbols then decoding is
unnecessary. Otherwise, LT encoding is applied to the decoded
pre-input symbols to obtain the missing systematic symbols.

III. RATELESS CODING FOR THE CSR FORMAT

In this section, we use rateless codes, specifically LT and
systematic LT codes, to mitigate the effect of stragglers in
computing the matrix-vector product b = Ax, where A is a
m× n sparse matrix stored in the CSR format. Systematic LT
codes preserve the sparsity of original matrix rows, but result
in denser encoded (parity) rows than classic LT codes. Both
provide seamless adaptation to fluctuations in node speeds
(straggling), and allow computations to be performed directly
in the CSR format. We also propose a balanced row allocation
scheme that balances the number of non-zero elements assigned
to each worker. In what follows we describe the encoding, task
allocation, and decoding for systematic LT codes and illustrate
it in Figure 1. The uncoded and LT coded approaches can be
viewed as two extremes of using systematic LT codes. In the
uncoded case we only have the input (systematic) rows, while
in the LT coded case we only have the encoded (parity) rows.

A. Encoding and Balanced Row Allocation

The m× n matrix A is encoded using systematic LT codes
(Section II-C), by treating the m rows as source symbols, to
generate an me×n encoded matrix A(e) where me = αm (α ≥
1). The first m out of me rows of the encoded matrix A(e) are
the same as the corresponding rows of A while the remaining
rows correspond to parity symbols of the systematic code i.e.
A(e) = [AT ,Ac

T]T where Ac has size (α− 1)m× n. Parity
symbols are expected to be slightly denser than the systematic
symbols (density quantified concretely in Section IV).

Since the straggling at the workers is unknown, we would
like to allocate equal amount of computations to all the workers
(to balance the load) and let the LT encoding of the rows
handle the straggling. To ensure that each worker performs
equal amount of computations in the absence of straggling we
divide non-zero elements of both A and Ac (almost) equally
among workers according to the following policy. We describe

Coded
Rows

CSR
format

Balanced Row
Allocation

m orig.
rows

W
ait for m

(1+𝜖) row
-vector products

Syst. LT
decoding

Vector x Matrix A

Zero
elements

Non-zero
elements

Worker 1

Worker p

Fig. 1: Rows of A in the CSR format are encoded by adding systematic LT coded rows. The systematic rows (yellow) are allocated to
workers by balancing the number on non-zero elements at each worker, while the parity rows (blue) are split equally across workers.

the row allocation policy for A below and note that the same
policy is used to divide rows of Ac among workers.

Definition 1 (Balanced Row Allocation). Let S̄ =
(1/p)

∑
j Sj , where row j of A has Sj non-zero elements.

Then A is split along its rows and worker i is assigned rows
J0
i to Jfi as per the following policy.

J0
1 = 0

J0
i = Jfi−1 + 1, i = 2, . . . , p

Jfi = min
l

l∑
j=J0

i

Sj ≥ S̄, i = 1, . . . , p− 1

Jfp = m

This ensures that (almost) equal number of non-zero elements
are assigned to each worker. The following lemma (proof in full
version) quantifies the load at each worker under this policy.

Lemma 1. Under our balanced row allocation policy the
number of non-zero elements in the systematic part at worker
i, Ni is Ni ∈ [S̄, S̄ + Smax] where Smax = maxj Sj .

B. Computation and Decoding

To multiply A with a vector x, the master sends x to the
workers. Each worker multiplies x with each row of A(e)

stored in its memory and returns the product (a scalar) to the
master. The master collects row-vector products of the form
ae,jx (elements of be = A(e)x) from workers until it has
enough elements to be able to recover b. Each worker first
computes the dot product of the systematic rows assigned to
it with x, and then that of the parity rows. If a worker node
completes all the row-vector products assigned to it before the
master is able to decode b = Ax, it will remain idle, while the
master collects more row-vector products from other workers.
Alternately, to minimize communication, the worker may only
send progress updates to the master node indicating the number
of row-product computation tasks it has completed, and send
the products only upon request by the master.

The master can recover b from the encoded symbols in be

using the iterative peeling decoder [7], [13]. In each iteration,
the decoder finds a degree one received symbol, covers the

corresponding source symbol, and subtracts the symbol from
all other encoded symbols connected to that source symbols.
For Systematic LT codes, the received symbols (elements of
be) are dot products of the rows of A or Ac with x. Since the
rows of A and Ac are obtained by applying LT encoding to the
pre-input symbols ã1, . . . , ãm, as described in Section II-C, the
decoder recovers dot-products of the form ã1x. LT encoding
can be applied to these symbols to recover the elements of b.

Since encoding uses a random bipartite graph, the number of
symbols required to decode the m source symbols is a random
variable M ′. Analysis in [7] for the Robust Soliton distribution
shows that md = E[M ′] = m(1 + ε), ε→ 0 as m→∞.

All operations in the encoding, task allocation, computations,
and decoding steps are performed on the rows of A or A(e).
Since A and A(e) are stored in the CSR format which allows
fast row access as described in [10], [11], therefore our strategy
can be efficiently implemented in existing sparse matrix vector
multiplication frameworks that use this format.

We can also obtain A(e) from A using a (αm,m) MDS code
on the rows of A. This allows us to use the partial work of the
stragglers since b is recoverable using MDS decoding on any m
elements of be. However MDS codes have a prohibitively large
encoding and decoding complexity (O(m2), and O(m3)). LT
codes have encoding and decoding complexity of O(m lnm)
which scales much more efficiently for large m due to which
they are practically applicable in this setting.

IV. ANALYSIS OF LATENCY

We compare latency of the uncoded and rateless coded
strategies for distributed sparse matrix-vector multiplication,
under the balanced row allocation scheme (Definition 1).

A. Delay Model

Definition 2 (Latency (T)). The latency T is the time required
by the system to complete enough number of computations so
that b = Ax can be successfully decoded from the worker
computations aggregated in be.

The dot product of the ith matrix row (containing Ni non-
zero elements) with vector x involves Ni scalar multiplications
and additions. We refer to each such operation of multiplying
two numbers and adding the product to the portion of the

0 2000 4000 6000 8000
s

0.00

0.02

0.04

0.06

0.08

0.10

P
r(
S
>
s)

Original

LT

Sys LT

(a) Non-zeros after encoding

10−1 100 101

t

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
T
>
t)

Uncoded

2-Rep

MDS

LT

Sys LT

(b) Latency (X ∼ Exponential with rate µ = 2.0)

100 101 102 103

t

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
T
>
t)

Uncoded

2-Rep

MDS

LT

Sys LT

(c) Latency (X ∼ Pareto(1, 1))

Fig. 2: LT and Systematic LT encoding slightly increases the density of rows (Figure 2a). However, the latency tail is heaviest for the uncoded
scheme and lightest for LT and Systematic LT schemes (Figure 2b and Figure 2c). Results are obtained from 500 Monte-Carlo Simulations
with a 10000× 10000 matrix A, p = 10 worker nodes, τ = 5× 10−7, a (10, 8) MDS Code, and α = 2.0 for LT and Systematic LT codes.

row-vector product up to that point as a single computation.
The time taken by worker i to perform Ni computations as
the random variable Yi, which is given by

Yi = Xi + τNi, for all i = 1, . . . , p, (1)

where Xi is a random variable that includes the network latency,
initial setup time, and other random variations in computation
time, and τ is a constant shift which is the time taken by any
worker to perform a single computation. For eg., when Xi ∼
exp(µ), the time in which worker i performs b computations
is distributed as Pr(Yi ≤ t) = 1− exp(−µ(t− τb).

B. Latency Bounds for Uncoded and Rateless Coded Schemes

We present bounds on the expected latency (proofs are given
in the full version) for uncoded and LT coded distributed
sparse matrix vector multiplication. In both cases, the matrix
to be multiplied (A for uncoded, and A(e) for LT coded) is
distributed among p worker nodes using our balanced row
allocation scheme (Definition 1). We expect the latency for the
systematic LT coded case to lie somewhere between these two
extremes. Exact analysis for systematic LT codes is hard due
to randomness in the number of systematic and parity rows at
each worker, and is left for future work.

Theorem 1 (Latency of Uncoded Strategy). The expected
latency of the uncoded strategy E[Tunc] is bounded as

E[Xp:p] + τ S̄ ≤ E[Tunc] ≤ E[Xp:p] + τ(S̄ + Smax), (2)

where Xp:p = maxi∈[1,p]Xi and Smax = maxj Sj .

As expected, the uncoded strategy is bottlenecked by the
slowest worker (with setup time corresponding to Xp:p).

To characterize the latency of the LT Coded strategy we
first observe that encoding increases the density of matrix rows
because rows of A(e) are obtained by adding d rows of A.
We assume that A only contains non-negative entries (as is
the case for sparse matrices like graph adjacency matrices), so
that non-zero elements do not sum to zero upon encoding, and
that positions of non-zero entries in each row of A are chosen
uniformly at random.

Theorem 2 (Density of Encoded Rows). The number of non-
zeros, S(e) in any row of the encoded matrix A(e) satisfies

Pr(S(e) ≥ s) ≤
m∑
d=1

Ωd exp(−2ε2s,dn), (3)

where εs,d = (s̄n)d− sn, s̄n =
∑
s snρs, sn = 1− s/n, Ωd is

the probability of generating a degree d encoded symbol, and
ρs is the probability that a row of A has s non-zeros.

Thus, the probability of a row of A(e) having a large
number of non-zeros is upper bounded by a term that decays
exponentially. The exponent εs,d captures the deviation of sn,
the fraction of zeros in a row of A(e), from s̄n, the expected
fraction of zeros in a row of A. In Figure 2a, we simulate
the distribution of non-zero entries in the rows of A(e) for
both LT and Systematic LT coded strategies to illustrate this
exponential decay. Here A is a 10000 × 10000 matrix with
Pr[Si = s] ∝ s−2.5, 1 ≤ s ≤ 10000 (Power law distribution).

Theorem 3 (Latency of LT Strategy). For large me i.e. α =
me/m→∞, the expected latency for the LT-coded case with
p workers has the following upper and lower bounds.

E[TLT] ≤ τmdE[S(e)]

p
+ τ + E[X], (4)

E[TLT] ≥ τmdE[S(e)]

p
+ E[X1:p], (5)

where md = m(1 + ε), the expected number of symbols
necessary for successful decoding.

Thus latency of the rateless coded strategy is bounded by
E[X] as opposed to E[Xp:p] for the uncoded case. A small
penalty is paid in the other term due to the ε decoding overhead
(in md), and the slight decrease in sparsity after encoding (in
E[S(e)]). However in situations where the setup time at the
worker dominates the computation time (as is the case in
straggling) we can expect to benefit from coding.

We simulate the tail of the latency under different coded
computing strategies in Figure 2b and Figure 2c for an

exponential and Pareto distribution on the initial delay X
respectively. In addition to the uncoded, LT coded, and
Systematic LT coded strategies, we also compare against the
(p, k) encoded strategy [4] and a 2-replication strategy that is
often used in real distributed computing systems, [2], [3]. In
the 2-replication strategy, A is equally distributed across p/2
workers, and another copy is run of the remaining p/2 workers.
The master uses the result returned by the faster worker for
each submatrix. As expected, the LT and Systematic LT coded
strategies have a lighter latency tail than the other strategies.
The difference is especially stark when X follows a Pareto
Distribution. This is because the Pareto distribution has a much
heavier tail than the exponential distribution and thus represents
more severe straggling. We also observe that the LT coded
scheme appears to perform better than the systematic LT coded
scheme. This is probably because the encoded matrix A(e)

generated by LT coding is generally sparser than its systematic
LT coded counterpart (Figure 2a) due to which the row-vector
products are computed faster in the LT coded case. However,
the benefit of using systematic codes is that they can be easily
built on top of existing uncoded systems since they only require
addition of parity rows to A, and in situations where there is
little or no straggling, their performance is better than that of
the LT codes, as the systematic rows have lower density than
the LT coded rows and decoding is not required.

V. RATELESS CODING FOR THE CSC FORMAT

Large matrices are often stored in the compressed sparse
column (CSC) format, which is an alternative to the CSR format
described in Section II-B. Row-based encoding strategies would
involve significant encoding and decoding overhead for matrices
in the CSC format. A naive strategy to compute the matrix-
vector product Ax in a distributed manner when A is in the
CSC format is to assign a subset of the columns c1, c2, . . . cn
to each worker. Each worker then computes the element-wise
(or outer) product cj⊗xj product for its assigned columns, and
the master computes b = Ax =

∑n
j=1 cj ⊗ xj . However, this

uncoded column-based strategy is susceptible to tail latency
due to one or more straggling nodes.

Thus, in order to combat straggling nodes, we aim to design
methods to encode the matrix along this compressed columns
c1, c2, . . . cn. Similar to the CSR case, we propose using
rateless codes for matrices in the CSC format. Each worker
now stores a subset of the n columns of the matrix A and
returns partial sums of the form

∑
j∈D cj ⊗ xj . The set D is

determined by the code construction, which can be a systematic
or a regular LT code. Unlike the coding strategy in Section II-B,
the sums of the elements are computed after multiplication
with the elements of the vector x. Thus, this column-based
strategy needs to store uncoded columns and uses more storage
per worker node than CSR-format coding. The master will use
the partial sums to determine b = Ax =

∑n
j=1 cj ⊗ xj . Due

to space limitations, we omit the latency analysis here; it is
same the latency analysis presented in Section IV.

Interestingly, since gradient codes proposed in [14] are
specifically designed to recover the sum of source symbols, they

can also be used for CSC-format matrix-vector multiplication.
In the future, we plan to explore other sum-recovery codes,
going beyond state-of-the-art gradient codes.

VI. CONCLUDING REMARKS

In this work we introduce the use of rateless codes to
compute the product of a sparse matrix A with a vector x using
a system of unreliable nodes. We combine a load balancing
scheme with rateless coding to achieve near-perfect load
balancing that overcomes heterogenity in the distribution of non-
zero elements in the matrix as well as slowdown or straggling
among worker nodes. Our theoretical analysis and simulations
show the superiority of our approach to prior theoretical
and system level solution, which are not designed to handle
both sparsity in the data and straggling. Another advantage
of our work is its applicability to matrices stored in sparse
compressed formats like CSR and CSC due to which it can be
easily incorporated into existing matrix-vector multiplication
frameworks. Future directions include conducting experiments
on existing distributed computing infrastructure, and exploring
low-density alternatives [15] to LT codes.

REFERENCES

[1] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Comm. of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[4] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Transactions on Information Theory, 2017.

[5] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Advances In
Neural Information Processing Systems, 2016, pp. 2100–2108.

[6] A. Mallick, M. Chaudhari, and G. Joshi, “Rateless codes for near-perfect
load balancing in distributed matrix-vector multiplication,” arXiv preprint
arXiv:1804.10331, 2018.

[7] M. Luby, “LT Codes,” in Proceedings of the IEEE Symposium on
Foundations of Computer Science, 2002, pp. 271–280.

[8] Y. Yang, M. Chaudhari, P. Grover, and S. Kar, “Coded iterative computing
using substitute decoding,” arXiv preprint arXiv:1805.06046, 2018.

[9] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,”
arXiv preprint arXiv:1802.03430, 2018.

[10] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multiplica-
tion on gpus using the csr storage format,” in Proceedings of ACM/IEEE
Supercomputing (SC). IEEE Press, 2014, pp. 769–780.

[11] D. Merrill and M. Garland, “Merge-based parallel sparse matrix-vector
multiplication,” in Proceedings of ACM/IEEE Supercomputing (SC), Nov.
2016, pp. 678–689.

[12] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sadayappan,
“Fast sparse matrix-vector multiplication on gpus for graph applications,”
in Proceedings of ACM/IEEE Supercomputing (SC), 2014, pp. 781–792.

[13] A. Shokrollahi, “Raptor codes,” IEEE transactions on information theory,
vol. 52, no. 6, pp. 2551–2567, 2006.

[14] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proceedings of the
International Conference on Machine Learning (ICML), vol. 70, 06–11
Aug 2017, pp. 3368–3376.

[15] G. Joshi and E. Soljanin, “Round-robin overlapping generations coding
for fast content download,” in IEEE International Symposium on
Information Theory (ISIT), Jul. 2013, pp. 2740–2744.

[16] A. Wald, “On cumulative sums of random variables,” The Annals of
Mathematical Statistics, vol. 15, no. 3, pp. 283–296, 1944.

[17] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, vol. 58, no.
301, pp. 13–30, 1963.

APPENDIX

A. CSR Matrix-Vector Multiplication

Multiplying a sparse matrix A with a vector x in the CSR format, involves only multiplying the non-zero elements of each
row of A with the corresponding entries of x. The exact algorithm is given in Algorithm 1.

Algorithm 1: CSR Matrix-Vector Multiplication
Input : CSR Matrix A and input vector x
Output : Product b = Ax

1 for 0 ≤ i < m do
2 start = A.offsets[i]
3 end = A.offsets[i+1]
4 b[i] =< A.data[start : end],x[A.indices[start : end]] >
5 end

B. Systematic LT Codes

Systematic LT encoding involves applying LT decoding to the m input symbols a1,a2, . . . ,am to generate a set of m
pre-input symbols ã1, ã2, . . . , ãm. LT encoding is then applied to the pre-input symbols to generate parity symbols. The exact
algorithm is given in Algorithm 2 and is illustrated in Figure 4a

Algorithm 2: Systematic LT Encoder
Input :m input symbols a1,a2, . . . ,am
Output :me encoded symbols ae1 ,ae2 , . . . ,aeme

with aeij = aj , 1 ≤ j ≤ m
1 Draw m(1 + ε) vectors v1, . . . ,vm(1+ε) from Ω(x) on Fm2 . Let E be the matrix formed by v1, . . . ,vm(1+ε) as rows.
2 Set c = 0 and G = E
3 while c < m do
4 Identify a row of degree 1 in E. If no such row exists raise an error.
5 If a row of degee 1 exists, set ic equal to the index of the row in E. Delete the column of G corresponding to the

position of the non-zero element of this row.
6 end
7 Set ES equal to the rows i1, . . . , im of E
8 Apply the BP decoder on a1,a2, . . . ,aem with ES representing the encoding graph to get pre-input symbols ã1, ã2, . . . , ãm
9 Generate me encoded symbols ae1,ae2, . . . ,aem by performing LT encoding on ã1, ã2, . . . , ãm. Out of the first m(1 + ε)

encoded symbols, aeij = aj , 1 ≤ j ≤ m. All remaining symbols are parity symbols.

C. Additional Simulations

10−1 100 101 102 103 104

t

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
T
>
t)

Uncoded

Uncoded (Bal)

LT

LT (Bal)

Fig. 3: Comparison of uncoded and Systematic LT
coded strategies with and without balanced row
allocation (Bal)

To further study the effect of our balanced row allocation policy (Definition 1)
we simulated the multiplication of a 10000 × 10000 sparse matrix A with a
10000× 1 vector x, over p = 10 worker nodes using the uncoded and LT coded
(α = me/m = 2.0) strategies. The number of non-zeros in row j of A follows
a Power law distribution (Pr[Sj = s] ∝ s−2.5, 1 ≤ s ≤ 10000). We assumed
the time taken to perform a single computation (as per our delay model in (1))
is τ = 5× 10−7 and that the initial delay Xi at worker i follows a Pareto (1,1)
distribution (for all i = 1, . . . , p). The results are shown in Figure 3. Uncoded
distributed sparse matrix vector multiplication clearly benefits from the balanced
task allocation policy as seen by the much lighter latency tail of the balanced
version (Uncoded (Bal)). However the difference is much less stark in the LT
coded case where both the balanced and unbalanced versions have almost a
similar latency tail (that is much lighter than the uncoded cases). We hypothesize
that since the encoding involves adding a random subset of the rows of A to
generate a row of A(e), the variability in the number of non-zeros in the rows
of A(e) is much lower than the variability in the number of non-zeros in the
rows of A. Due to this, balanced row allocation in the coded case does not lead to a large difference in latency. We leave
theoretical/experimental analysis to justify this hypothesis for a future work.

a4(e)

a5(e)

a1

a2

a3

~

~

~

a1(e)

a2(e)

a3(e)

a4(e)

a5(e)

a1

a2

a3

Input Output Pre-Input Output

Input

a1
(e) = a1

a2
(e) = a2

a3
(e) = a3

(a)

X1Worker 1

Xp

Worker 2

Worker p

X2

TLT0

Np𝜏

N1𝜏
Time

(b)

Fig. 4: (a) Comparison between LT encoding (left) and Systematic LT encoding (right). (b) Worker i has a random exponential initial delay
Xi, after which it completes Ni computations (multiplications and additions), denoted by the small rectangles, taking time τ per computation.
The latency TLT is the time to complete S′ computations in total.

D. Proof of Theorems

1) Proof of Theorem 1:

Proof. In the uncoded strategy every worker needs to complete all computations assigned to it and the latency is equal to the
time taken by the slowest worker to complete its assigned task.

Since the sub-matrix Ai assigned to worker i has Ni non-zero elements, worker i performs Ni computations. As per our
model, the time taken by worker i to perform Ni computations is given by

Yi = Xi + τNi, for i = 1, . . . , p. (6)

and the overall latency is the time taken by the slowest worker which is Yp:p = maxi Yi. Therefore

Yp:p = max
i

(Xi + τNi) (7)

From Lemma 1 we know that Ni ∈ [S̄, S̄ + Smax]. Thus

max
i

(Xi + τNi) ≥ max
i

(Xi + τ S̄) (8)

max
i

(Xi + τNi) ≤ max
i

(Xi + τ(S̄ + Smax)) (9)

The result of the theorem follows from the fact that the second part in both the upper and the lower bounds ((8), (9)) is
independent of i and Xp:p = maxiXi and hence we can take the expectation over both the lower and the upper bound.

2) Proof of Theorem 2:

Proof. We assume that the the jth row of the encoded matrix A(e) is generated by drawing Dj rows of the original matrix A
uniformly at random (Pr[Dj = d] = Ωd) and then adding them. Thus,

Pr[S
(e)
j ≥ s] =

∑
d

Pr[S
(e)
j ≥ s|Dj = d] Pr[Dj = d] (10)

=
∑
d

Pr[S
(e)
j ≥ s|Dj = d]Ωd (11)

For a given degree ’d’, the following lemma bounds the probability of the number of non-zeros in an encoded row obtained by
adding ’d’ original rows,

Lemma 2. Given ’d’ non-negative vectors a1, . . . ,ad each of length n, where vector ai has Si non-zeros (Pr[Si = s] = ρs),
the sum a(e) = a1 + . . .+ ad has S(e) non-zeros where

Pr[S(e) ≥ s] ≤ exp(−2ε2s,dn) (12)

where εs,d = (s̄n)d − sn, s̄n =
∑
s snρs, sn = 1− s/n.

Since the rows of A are chosen uniformly at random to obtain each row of A(e), we can substitute (12) in place of
Pr[S

(e)
j ≥ s|Dj = d] in (11) to obtain the final result.

3) Proof of Theorem 3:

Proof. As per our model, the time taken by worker i to perform Ni computations is given by

Yi = Xi + τNi, for i = 1, . . . , p. (13)

The latency TLT is the earliest time when the workers collectively complete M ′ row-vector products, as illustrated in
Figure 4b. Let S′ be the (random) number of non-zeros in the M ′ encoded row-vector products. Thus S′ is the total number of
computations completed by the workers in time TLT.

We note that, in this case it is not necessary that each worker has completed at least 1 computation. Specifically, if
T

(∞)
LT −Xi ≤ τ for any i then it means that worker i has not performed even a single computation in the time that the system

as a whole has completed S′ computations (owing to the large initial delay Xi). Therefore we define

WLT := {i : TLT −Xi ≥ τ} (14)

Here WLT is the set of workers for which Ni > 0. Thus

TLT = max
i∈WLT

Yi = max
i∈WLT

(Xi + τNi) , (15)

≥ min
i∈{1,...p}

Xi + τ max
i∈WLT

Ni, (16)

≥ X1:p + τ
S′

p
, (17)

where to obtain (16), we replace each Xi in (15) by mini∈[1,...p]Xi and then we can bring it outside the maximum. To obtain
(17), we observe that in order for the p workers to collectively finish S′ computations, the maximum number of computations
completed by a worker has to be at least S′/p. Taking expectation on both sides of (17) gives

E[TLT] ≥ E[X1:p] + τ
E[S′]

p
, (18)

= E[X1:p] +
τ

p
E[

M ′∑
j=1

S
(e)
j], (19)

= E[X1:p] +
τ

p
E[M ′]E[S(e)], (20)

= E[X1:p] +
τmd

p
E[S(e)] (21)

where S
(e)
j is the number of non-zero entries in row j of A(e) and S′ is the total number of non-zero entries in the

M ′ completed row-vector products. Since S
(e)
j are all i.i.d and independent of M ′, according to Wald’s identity [16],

E[
∑M ′

j=1 S
(e)
j] = E[M ′]E[S(e)] in (19).

To derive the upper bound, we note that

TLT ≤ Xi + τ(Ni + 1), for all i = 1, . . . , p (22)

This is because at time TLT each of the workers 1, . . . , p, have completed N1, . . . , Np computations respectively, but they may
have partially completed the next computation. The 1 added to each Ni accounts for this edge effect, which is also illustrated
in Figure 4b. Summing over all i on both sides, we get

p∑
i=1

TLT ≤
p∑
i=1

Xi +

p∑
i=1

τ (Ni + 1) (23)

pTLT ≤
p∑
i=1

Xi + τ (S′ + p) (24)

TLT ≤
1

p

p∑
i=1

Xi + τ

(
S′

p
+ 1

)
(25)

Likewise for the upper bound we can compute expectation on both sides of (25) to get,

E[TLT] ≤ 1

p

p∑
i=1

E[Xi] + τ

(
E[S′]

p
+ 1

)
(26)

= E[X] + τ +
τ

p
E[

M ′∑
j=1

S
(e)
j] (27)

= E[X] + τ +
τmdE[S(e)]

p
(28)

where (28) once again follows from Wald’s identity.

E. Proof of Lemmas

1) Proof of Lemma 1: Recall the balanced row allocation policy for a m× n matrix A over p workers.

Definition 3 (Balanced Row Allocation). Let S̄ = (1/p)
∑
j Sj , where row j of A has Sj non-zero elements. Then A is split

along its rows and worker i is assigned rows J0
i to Jfi as per the following policy.

J0
1 = 0

J0
i = Jfi−1 + 1, i = 2, . . . , p

Jfi = min
l

l∑
j=J0

i

Sj ≥ S̄, i = 1, . . . , p− 1

Jfp = m

Let, ∆i =
∑Jf

i

j=J0
i
Sj − S̄. This denotes the number of additional elements allocated to worker i to avoid dividing a row of

A over multiple workers. Thus the total number of elements allocated to worker i is,

Ni =

Jf
i∑

j=J0
i

Sj = S̄ + ∆i (29)

≤ S̄ + max
j
Sj (30)

where (30) follows from the fact that ∆i ≤ maxj Sj (since ∆i is less than the number of entries in row Jfi of A which is
upper bounded by maxj Sj). This proves the upper bound in the lemma.

Moreover since for every worker i,

Jfi = min
l

l∑
j=J0

i

Sj ≥ S̄ (31)

Therefore,

Ni =

Jf
i∑

j=J0
i

Sj ≥ S̄ (32)

This proves the lower bound in the lemma.
2) Proof of Lemma 2: Define indicator variables Vj = 1{a(e)j 6= 0} and Uij = 1{aij 6= 0} for i = 1, . . . , d and

j = 1, . . . , n. Thus Uij indicates whether the jth element of ai is non-zero and Vj indicates whether the jth element of the sum
a(e) = a1 + a2 + . . .+ ad is non-zero. Since ai has Si non-zero elements whose positions are assumed to be chosen uniformly
at random, therefore

Pr(Uij = 1) =

n∑
s=1

Pr(Uij = 1|Si = s) Pr(Si = s) (33)

It is assumed that Pr(Si = s) = ρs. Also,

Pr(Uij = 1|Si = s) =

(
n−1
s−1
)(

n
s

) =
s

n
(34)

This is because Pr(Uij = 1|Si = s) is the ratio of the number of n length vectors with ’s’ non-zeros and a non-zero element at
position j (and the position of the other non-zero entries chosen uniformly at random), to the total number of n length vectors
with ’s’ non-zeros (with the position of the other non-zero entries chosen uniformly at random). Thus,

Pr(Uij = 1) =

n∑
s=1

s

n
ρs = ρ̄ (35)

Since a
(e)
j =

∑d
i=1 aij , therefore a

(e)
j = 0 only when aij = 0, i = 1, . . . , d (ai’s are assumed to be non-negative). Thus,

Pr(Vj = 0) =
∏
i

Pr(Uij = 0) = (1− ρ̄)d (36)

since Uij’s are i.i.d for all i with Pr(Uij = 0) = 1− Pr(Uij = 1).
Define,

s̄n = 1− ρ̄ =

n∑
s=1

(
1− s

n

)
ρs (37)

Thus, Pr(Uij = 0) = 1− Pr(Uij = 1) = s̄n and PrVj = 0 = (s̄n)d.
Finally, the number of non-zero elements, S(e) in a(e) is equal to the total number of positions at which a(e) has non-zero

entries. Thus,

S(e) = V1 + . . .+ Vn (38)

Thus,

Pr(S(e) ≥ s) = Pr(

n∑
j=1

Vj ≥ s) (39)

Using Hoeffding’s inequality [17] on the sum of i.i.d Bernoulli random variables V1, . . . , Vn, we can show that,

Pr(

n∑
j=1

Vj ≥ s) ≤ exp

(
−2n

(s
n
− (1− (s̄n)d)

)2)
(40)

This is because Pr(Vj = 1) = 1− Pr(Vj = 0) = 1− (s̄n)d for all j = 1, . . . , n. The result follows by setting sn = 1− s/n
and εs,d = (s̄n)d − sn

	Introduction
	Preliminaries
	System Model
	Compressed Sparse Matrices
	LT Codes and Systematic LT Codes

	Rateless Coding for the CSR Format
	Encoding and Balanced Row Allocation
	Computation and Decoding

	Analysis of Latency
	Delay Model
	Latency Bounds for Uncoded and Rateless Coded Schemes

	Rateless Coding for the CSC Format
	Concluding Remarks
	References
	Appendix
	CSR Matrix-Vector Multiplication
	Systematic LT Codes
	Additional Simulations
	Proof of Theorems
	Proof of thm:Unclatency
	Proof of thm:encnnzprob
	Proof of thm:ltlatency

	Proof of Lemmas
	Proof of lem:taskalloc
	Proof of lem:encnnzprob

