
LithOS: An Operating System
for Efficient Machine Learning on GPUs

Patrick H. Coppock, Brian Zhang, Eliot H. Solomon, Vasilis Kypriotis, Leon Yang†, Bikash Sharma†,
Dan Schatzberg†, Todd C. Mowry, and Dimitrios Skarlatos

Carnegie Mellon University †Meta

Abstract
The rapid growth of machine learning (ML) has made GPUs
indispensable in datacenters and underscores the urgency of
improving their efficiency. However, balancing diversemodel
demands with high utilization remains a fundamental chal-
lenge. Transparent, fine-grained GPU resource management
that maximizes utilization, energy efficiency, and isolation
requires an OS approach. This paper introduces LithOS, a
first step towards a GPU OS.

LithOS includes the following new abstractions and mech-
anisms for efficient GPU management: (i) a novel TPC Sched-
uler that supports spatial scheduling at the granularity of
individual TPCs, unlocking efficient TPC stealing between
workloads; (ii) a transparent kernel atomizer to reduce head-
of-line blocking and allow dynamic resource reallocation
mid-execution; (iii) a lightweight hardware right-sizingmech-
anism that dynamically determines the minimal TPC re-
sources needed per atom; and (iv) a transparent power man-
agement mechanism that reduces power consumption based
upon in-flight work characteristics.
We build LithOS in Rust and evaluate its performance

across a broad set of deep learning environments, comparing
it to state-of-the-art solutions from NVIDIA and prior re-
search. For inference stacking, LithOS reduces tail latencies
by 13× compared to MPS; compared to the best-performing
SotA, it reduces tail latencies by 4× while improving ag-
gregate goodput by 1.3×. Furthermore, in hybrid inference-
training stacking, LithOS reduces tail latencies by 4.7× com-
pared to MPS; compared to the best-performing SotA, it
reduces tail latencies by 1.18× while improving aggregate
throughput by 1.35×. Finally, for a modest performance hit
under 4%, LithOS’s hardware right-sizing provides a quar-
ter of GPU capacity savings on average, while for a 7% hit,
LithOS’s transparent power management delivers a quarter
of GPU total energy savings on average. Overall, LithOS
transparently increases GPU efficiency, establishing a foun-
dation for future OS research on GPUs.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
SOSP ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1870-0/2025/10
https://doi.org/10.1145/3731569.3764818

ACM Reference Format:
Patrick H. Coppock, Brian Zhang, Eliot H. Solomon, Vasilis Kyprio-
tis, Leon Yang, Bikash Sharma, Dan Schatzberg, Todd C. Mowry,
and Dimitrios Skarlatos. 2025. LithOS: An Operating System for
Efficient Machine Learning on GPUs. In ACM SIGOPS 31st Sym-
posium on Operating Systems Principles (SOSP ’25), October 13–16,
2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3731569.3764818

1 Introduction
The rise of ML workloads has driven massive GPU deploy-
ments in datacenters. Yet, despite concerns over power and
supply constraints, utilization remains low—public reports
cite just 52% at Microsoft [30] and 10% at Alibaba [65]. Our
analysis of production services at Meta also reveals that
utilization can be low. In inference services, utilization can
be below 30% depending on model and service character-
istics. For training, Llama 3 achieves a GPU utilization of
around 40% [25]. Figure 1 shows normalized GPU utilization
metrics over a period of a week. Given the high monetary
cost and rising power demands—now exceeding 1,000 W per
GPU [36, 41]—this is unsustainable.

It is challenging to achieve high utilization without GPU
sharing.While dedicating a GPU to a single workload leads to
high performance, individual workloads often fail to keep the
GPU fully utilized: GPU cores idle on communication stalls,
low batch sizes result in insufficient parallelism, dynamic
request loads lead to overprovisioning, and so on [24, 27, 65].
As GPUs become more powerful with increasing Streaming
Multiprocessor (SM) counts and memory bandwidth [13, 41],
achieving high utilization will become more challenging.
One potential approach to GPU sharing is collocating

latency-critical (LC) tasks for which performance is of utmost
importance with best-effort (BE) tasks that lack hard dead-
lines. However, existing systems do not offer a practical so-
lution for prioritizing LC tasks over BE tasks when they con-
tend for resources. Many approaches lack transparency, ren-
dering them incompatible with large parts of theML software
stack [2, 18, 19, 26, 27, 29, 39, 42, 45, 51, 54, 59]. For instance,
some are tied to specific versions of frameworks like PyTorch
or TVM that are no longer maintained [2, 19, 26, 59, 65].
Other solutions like TGS [64] or Clockwork [26] fall short
of achieving high GPU utilization due to limited temporal
scheduling that cannot execute multiple models in parallel.
Spatial scheduling solutions, including NVIDIA’s MPS [12]

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731569.3764818
https://doi.org/10.1145/3731569.3764818

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Coppock et al.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6
Time (days)

GP
U

Ut
iliz

at
io

n SM
Device

Memory Capacity
Memory Bandwidth

Figure 1. GPU utilization metrics over a week in production
inference services at Meta.

and MIG [15] or research efforts like REEF [27], Orion [59],
and others [19], enable parallel execution of multiple appli-
cations. However, they are too coarse-grained, scheduling
entire inference requests, training batches, or DNN oper-
ators, resulting in low utilization and head-of-line (HoL)
blocking [2, 9, 19, 21, 27, 37, 39, 42, 51, 59, 60, 64, 66]. Effi-
cient multitenant scheduling on GPUs has remained elusive.

Beyond collocation mechanisms, datacenter GPU manage-
mentmustmove past static provisioning to address inefficien-
cies without sacrificing performance or transparency. Cur-
rent systems overlook the changing characteristics of deep
learning workloads—such as fluctuating compute intensity
and parallelism across models and execution phases—leaving
GPUs underutilized even as they consume significant power.
Bridging this gap requires approaches that adapt resource
allocation and power consumption to the fine-grained be-
havior of ML workloads.

This utilization crisis is in stark contrast with the situation
for CPUs, where time-sharing operating systems allocate
tasks to cores via inexpensive context switches, providing
isolation, resource allocation, power management, and trans-
parency. The extreme data-parallel nature of GPUs imposes
different trade-offs than do CPUs, but also exposes the limi-
tations of current abstractions built around compilers, frame-
works, and drivers. To transparently improve utilization and
efficiency, we believe that GPUs must evolve toward an op-
erating system model—one that brings first-class support for
control, isolation, and resource management.

1.1 Our Approach: An Operating System for GPUs
To address datacenter GPU efficiency challenges, we intro-
duce LithOS, which brings an efficient operating system
approach to deep learning on GPUs. LithOS is fully transpar-
ent to the ML stack, allowing seamless integration without
requiring modifications to models, runtimes, or frameworks.
LithOS moves the bulk of GPU scheduling from proprietary
drivers and hardware into software, allowing, for the first
time, fine-grained temporal and spatial scheduling of ML
workloads. LithOS operates at the granularity of individual
kernel thread blocks that are dynamically mapped onto the
GPU’s Texture Processing Clusters (TPCs). To achieve this,
LithOS introduces novel abstractions and mechanisms that
decouple kernel work submission from thread block exe-
cution on GPUs, enabling intelligent scheduling decisions,
resource allocation, and power management.

First, LithOS introduces a novel fine-grained TPC Scheduler
that asynchronously determines the compute unit allocation
and submission time for each piece of work. It enables pre-
cise control at the granularity of individual TPCs, providing
strong isolation between workloads. The scheduler is guided
toward efficient scheduling decisions by an online kernel
latency predictor and incorporates a technique called TPC
Stealing to improve GPU utilization.

To address the absence of hardware preemption, LithOS in-
troduces kernel atomization, which transparently partitions
kernels into schedulable atoms—subsets of thread blocks—
without compiler, runtime, source, or PTX changes. Atom-
ization reduces head-of-line blocking, mitigates interference,
and allows TPC reconfiguration mid-execution, providing
flexibility that is unavailable for monolithic kernels. Building
on this foundation, LithOS introduces a dynamic hardware
right-sizing mechanism that uses lightweight modeling to
determine the minimal TPC resources required for each ker-
nel and its atoms, saving significant capacity. Finally, LithOS
presents a fine-grained power management mechanism that
adjusts the GPU’s frequency in response to the characteris-
tics of in-flight work, saving substantial energy.
We implement LithOS in Rust and evaluate its perfor-

mance across a broad set of deep learning environments,
comparing it to state-of-the-art solutions from NVIDIA and
prior research. For inference stacking, LithOS reduces tail
latencies by 13× compared to MPS; compared to the best-
performing SotA, it reduces tail latencies by 4× while im-
proving aggregate goodput by 1.3×. Furthermore, in hybrid
inference-training stacking, LithOS reduces tail latencies by
4.7× compared to MPS; compared to the best-performing
SotA, it reduces tail latencies by 1.18× while improving ag-
gregate throughput by 1.35×. Finally, for a modest perfor-
mance hit under 4%, LithOS’s hardware right-sizing provides
a quarter of GPU capacity savings on average, while for a
7% hit, LithOS’s transparent power management delivers a
quarter of a GPU total energy savings on average. Overall,
LithOS transparently increases GPU efficiency, establishing
a foundation for future OS research on GPUs.

This paper makes the following contributions:

• A comprehensive study of inference services at Meta,
highlighting the behavior of production ML models
and the challenges of GPU underutilization.

• A fine-grained spatial TPC Scheduler that dynamically
allocates TPCs using TPC Stealing to boost utilization.

• A transparentKernel Atomizer that independently sched-
ules sets of kernel thread blocks, unlocking efficiency.

• A dynamic hardware right-sizing mechanism that opti-
mizes TPC allocations for significant capacity savings.

• A transparent power management mechanism that ad-
justs frequency based on kernel scaling to save energy.

• The design of LithOS, a step towards an OS for GPUs.
• The evaluation of LithOS across ML environments.

LithOS: An Operating System for Efficient Machine Learning on GPUs SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

TPC0SM

L2 C
ache

GPC L0 Instruction
Cache

Warp Scheduler

Tensor
Cores

Register File

L1 Cache &
Shared Memory

SM
TPC

SM SM
TPC

SM SM
TPC

SM SM
TPC

SM SM
TPC

SM SM
TPC

SM SM
TPC

SM SM
TPC

H
BM CUDA

Cores

Figure 2. GPU Architecture.

2 Background and Related Work
In this section, we first present a brief background onNVIDIA
GPU architectures and then cover related work.

2.1 A Brief Background on GPUs
GPU Architecture. Figure 2 depicts a typical GPU archi-
tecture using NVIDIA’s terminology. Each GPU consists of
several Graphics Processing Clusters (GPCs). Each GPC is
a collection of multiple Texture Processing Clusters (TPCs),
and each TPC includes a small number of Streaming Multi-
processors (SMs). Each SM is composed of tens of cores. For
example, NVIDIA’s H100 [13] includes 8 GPCs, 9 TPCs per
GPC, 2 SMs per TPC, and 128 cores per SM.
GPU Programming. GPU applications are composed of
kernels that execute specific operators (e.g., convolution). A
kernel defines its resources—thread blocks, threads, registers,
and shared memory—at launch time. Programmers divide a
kernel’s work among the thread blocks. Each thread block
executes on an SM and consists of multiple SIMD threads.
GPU Streams. CUDA streams enable concurrent execution
of independent tasks, similar to CPU threads. Stream work is
executed in FIFO order. Some CUDA calls are asynchronous,
while others wait for all previous tasks to finish.

2.2 Related Work
Cooperative multitenancy. Cooperative scheduling in-
volves tenants coordinating to share resources, typically at
the ML framework level, with all models running in the same
process [2, 18, 19, 26, 27, 29, 39, 42, 45, 51, 54, 59]. These
approaches require custom ML frameworks and are hence
limited by their inability to support arbitrary applications.
Some also rely on extensive offline profiling [27, 59] or kernel
source modifications [27, 42], which are impractical at scale.
Finally, any non-cooperating tenant invalidates guarantees
made by the runtime, making adoption difficult in practice.
Transparent multitenancy. Transparent GPU sharing sup-
ports unmodified applications through native mechanisms
such as time slicing, MPS [12], and MIG [15], or their com-
binations [44, 61]. By contrast, most prior software solu-
tions require application or framework changes. TGS [64] is
one exception, enabling transparent sharing across contain-
ers. In practice, however, uncooperative tasks and limited
application-specific knowledge make transparent multitask-
ing especially challenging.

Temporal multitenancy. Temporal multitenancy dedicates
the entire GPU to a single task at a time via native time slicing
or software scheduling. Some approaches work at the level
of entire inference requests (e.g., Clipper [18], Nexus [54],
TensorFlow-Serving [45], Clockwork [26], and INFaaS [51]),
while others schedule kernels (e.g., PipeSwitch [2], AntMan [65],
Gemini [7], KubeShare [67], and TGS [64]). Time slicing is
NVIDIA’s default temporal multitenancy solution. It shares
the GPU in a round-robin fashion, giving each task exclusive
access for several milliseconds. These methods execute only
one job at a time, leading to low utilization.
Spatial multitenancy. Spatial multitenancy typically builds
on MIG or MPS to enable multiple applications to run con-
currently on a GPU and improve utilization.MPS multiplexes
multiple GPU contexts onto one, allowing multiple tasks to
use the GPU concurrently. This can yield greater throughput
but leads to performance interference. MIG partitions the
GPU’s compute and memory resources along GPC bound-
aries, providing strong hardware isolation. However, the
coarse granularity of its partitioning and steep reconfigu-
ration overheads (>5s [63]) can leave resources idle. These
problems exist even at datacenter scale. As shown in our
study, hardware-based multitenancy is workable for Meta’s
production use cases. However, the fluctuations in Figure 1
also exist at finer granularities, necessitating overprovision-
ing and leaving capacity on the table. Dynamic reconfigura-
tion is currently too slow to be a viable remedy for this.
Like temporal systems, existing spatial sharing systems

are coarse-grained, operating at the level of inference re-
quests or kernels. Their goal is to protect latency-critical
(LC) applications by restricting kernels launched by other
jobs [19, 59] or limiting GPU resources allocated to best-
effort tasks, as seen in systems like REEF [27], MuxFlow [39],
PTask [52], and others [9, 21, 34, 37, 42, 60, 66]. However, the
coarseness of these approaches limits control over GPU re-
sources, often leading to HoL blocking, low utilization, and
interference. Figure 3 highlights the challenges of spatial
sharing. In Figure 3(a), a single workload runs on the GPU,
issuing two requests with five total kernels. This results in
fast kernel completion for 𝐴 and 𝐵 but leaves much of the
GPU underutilized.WhenMPS enables concurrent execution
of multiple tasks in Figure 3(b), utilization is improved, but
the original task’s requests face significant delays. Overall,
prior works have tackled some multitenant ML scheduling
challenges but fail to offer a complete, transparent solution.
Importantly, prior temporal and spatial strategies operate at a
coarse granularity, limit utilization, and cause HoL blocking,
which interferes with collocated workloads.
Right-sizing. Prior efforts have explored GPU job right-
sizing to improve resource efficiency. However, these ap-
proaches often rely on hardware modifications [10, 72], lack
transparency to application software [8, 9, 21, 35, 71], and
depend on offline profiling [9–11, 21, 35, 71]. Crucially, most
existing solutions operate at the granularity of entire jobs,

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Coppock et al.

A finishes fast

A1 A2 A3

Requests A and B arrive

B1 B2
Wasted

Capacity A1 A2 A3 B1 B2C1 C2

A is severely delayed

MPS allows C to run concurrently

TP
Cs

Figure 3. GPU timeline showcasing the pitfalls of MPS.

which limits their ability to fully exploit the benefits of fine-
grained right-sizing and can lead to suboptimal performance.
Dynamic Voltage Frequency Scaling. Recent efforts [31,
47, 48, 58, 69] have applied dynamic voltage frequency scal-
ing (DVFS) to minimize the power consumption of GPUs
with a particular focus on LLM inference clusters [31, 58].
Such approaches are based on extensive offline profiling
across several input lengths and train dedicated output length
predictors, failing to provide a transparent mechanism. Prior
work on DVFS operates at a coarser granularity, observing
the performance of the whole inference request and missing
finer optimization opportunities.

3 Motivation
In this section, we showcase a detailed study of production
GPU infrastructure challenges and opportunities.

3.1 Understanding GPU Utilization in Datacenters
To understand GPU utilization in datacenters, we analyze a
subset of inference services at Meta, which serve deep learn-
ing models across its fleet. At Meta, inference services rely
in part on NVIDIA H100 GPU nodes. Each node has 8 GPUs,
which can be further partitioned via software and hardware-
based multitenancy into different container shapes. The pro-
duction service performs offline analysis of each model, as-
signing models to hardware partitions for deployment. The
goal is to meet tight SLAs on tail response times for each
model. In Figure 1, we show normalized GPU compute and
memory utilization over a week. Device utilization in pro-
duction services can range between under 25% and higher
than 60%. As expected, SM utilization is lower than device
utilization, with lows of under 15%. In terms of memory,
there is bandwidth room for multitenancy, with a fifth of the
bandwidth being utilized on the lower end. Memory capacity
utilization behaves similarly, leaving room for multitenancy,
with utilization being steady as models are kept loaded in
GPU memory to meet tight SLAs. These SLAs also enforce
small batch sizes, preventing full GPU resource saturation
even at high request loads. Finally, the characteristics of in-
dividual models can lead to low utilization of GPU resources.
For example, memory-intensive models can lead to SM uti-
lization plummeting. As a result, multi-model stacking can
enable high utilization.
Inference Traffic. To investigate low GPU utilization, we
first examine inference traffic. Figure 4 shows the mean-
normalized requests per second (RPS) over a week, revealing
a diurnal pattern. RPS can scale by 2.2× between minimum

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6
Time (days)

1.6

1.4

1.2

1.0

0.8

0.6

N
or

m
al

iz
ed

 R
PS max

min = 2.23

Figure 4. Mean normalized traffic.

A B C D E F G H I J K L M
Model ID

1

10

100

1000

M
od

el
 Fr

eq
ue

nc
y

(lo
g

sc
al

e)

Figure 5. Model frequency distribution.

A B C D E F G H I J K L M
Model ID

0
2
4
6
8

10
12

No
rm

al
ize

d
M

od
el

 S
ize

Figure 6. Model size distribution.

and maximum traffic, closely correlating with the GPU uti-
lization trends shown in Figure 1. Next, we analyze model re-
quest frequencies. We sample thirteen of the most commonly
used models and plot in Figure 5 the normalized frequency
of inference requests over the same week. The distribution’s
variance is significant, with the most popular model A re-
ceiving several hundred times more requests than the least
popular model M. Over-provisioning GPUs for such a wide
request distribution can lead to underutilization, particularly
for less popular models.
Model Sizes. To better understand GPU utilization, we ex-
amine the sizes of the most commonly used models based
on weights, parameters, and embeddings. As shown in Fig-
ure 6, model sizes vary significantly, with a more than a 10×
difference between the largest and smallest models. Half are
relatively large, while the rest are smaller. Both large and
small models are frequently used: for example, the smallest
model B has usage comparable to larger models E andG. This
highlights the opportunity to collocate models of different
sizes while meeting each of their service-level agreements.
GPU Sharing Limitations and Takeaways. Despite the
urgent need to improve GPU utilization, datacenters often
rely on limited GPU sharing or hardware approaches like
MIG due to requirements for compatibility and transparency
within theML software stack. Non-transparent solutions that
require framework or application changes for multitenancy
are impractical at scale, given the complexity of maintaining

LithOS: An Operating System for Efficient Machine Learning on GPUs SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

2016 2018 2020 2022 2024 2026
Years

100

101

102

103

104

105

C
ou

nt
 (L

og
sc

al
e)

Tesla
P100

Volta
V100

Ampere
A100

Hopper
H100

Blackwell
B100

GPCs TPCs SMs Cores BW (GB/s)

Figure 7. NVIDIA GPU trends over a decade.

multiple ML frameworks, runtimes, and compilers. Impor-
tantly, in the rapidly evolving ML space, transparent solu-
tions help avoid the risk of locking infrastructure into rigid,
outdated designs. Based on these insights, we design LithOS
as a fully transparent OS for efficient ML multitenancy.

4 Abstractions, Interfaces, and Principles
for a GPU Operating System

LithOS is built on a set of abstractions, interfaces, and princi-
ples that define how a GPU operating system should manage
resources. These abstractions identify the right granularity of
control, the interfaces expose flexible yet predictable knobs,
and the principles guide how LithOS balances efficiency,
fairness, and robustness under multitenancy.

4.1 Resources and Isolation
Scheduling Granularity. GPU cores and memory band-
width have grown by orders of magnitude, yet GPC counts
have remained nearly flat (six in P100 to eight in B100) as
shown in Figure 7. With multi-die designs [22], coarse GPC-
level partitioning (e.g., MIG) will waste even more resources.
Conversely, intra-SM control is best handled by hardware
and compilers; OS intervention would break transparency
and portability. LithOS instead adopts the TPC as its sched-
uling abstraction. TPCs provide finer-grained control than
GPCs while remaining transparent to application-level op-
timizations. Although current APIs do not expose TPC/SM
control, LithOS leverages reverse-engineering to manage
them, and we argue that native support is feasible for future
hardware. Principle: Manage resources at the finest granularity
where the OS is effective while preserving transparency.
Resource Allocation. The one-application-per-GPU model
ignores that kernels scale differently: some saturate with few
resources while others benefit from many. LithOS allocates
TPCs to kernels based on runtime scaling behavior. Its inter-
face allows applications or administrators to specify tolerable
performance loss, enabling right-sizing while maintaining
predictability. Principle: Expose simple performance-tolerance
knobs while hiding hardware complexity.
Power Management. Today’s GPUs enforce device-wide
DVFS, assuming a single workload. In multitenant settings,
this is inefficient: memory-bound kernels saturate bandwidth

TPC TPC TPC
TPC TPC TPC

TPC TPC
TPC TPC

GPU Hardware

Memory

TensorRT
High Priority
Guaranteed
LibLithOS

Unmodified
Applications
Frameworks
& Binaries

JAX
Low Priority
Guaranteed

PyTorch
Best Effort

LibLithOS LibLithOS

TPC
Scheduler

Kernel
Atomizer

GPU Device Driver

LithOS
Hardware

Right-sizing
Power

Management

High Priority
A

High Priority
B Best Effort

TPC
TPC

TPC
TPC

TPC
TPC

Figure 8. LithOS architecture overview.
early, while compute-bound kernels benefit from high fre-
quencies. LithOS virtualizes frequency, letting eachworkload
appear to run at its preferred setting while the OS adjusts
DVFS policies for energy efficiency. The same tolerance inter-
face enables transparent performance/power trade-offs, and
future per-SM DVFS would further amplify these gains. Prin-
ciple: Virtualize frequency to preserve the illusion of dedicated
control while optimizing system-wide power gains.
Security and Fault Isolation. NVIDIA solutions lie at ex-
tremes: MIG offers strong but coarse GPC isolation; MPS
offers flexible sharing with no protection. LithOS adopts
TPC-level isolation, combining flexibility with protection.
Each application executes in its own address space with
hardware-enforced memory isolation. For faults, LithOS in-
terposes on common GPU errors [39], terminating only the
faulty process. LithOS reinitializes the driver in case of un-
recoverable errors. LithOS targets multi-tenant production
environments with shared GPU infrastructure. Principle: En-
force isolation at the finest practical granularity, and ensure
local faults degrade gracefully.

4.2 Closing the Gap
These abstractions define LithOS’s philosophy: virtualize re-
sources at the right granularity, expose predictable interfaces,
and ensure robustness under multitenancy. A key challenge
is bridging the gap between CPU and GPU OS design. LithOS
leverages OS principles to reimagine GPUs, transforming
them from single-model devices into fully virtualized multi-
tenant platforms. LithOS provides proven CPU OS principles
to GPU realities, transparently unifying GPU management.
This enables higher utilization, strong guarantees, and a
foundation for future GPU OS research.

5 LithOS Design
We propose LithOS, an OS designed to address GPU ineffi-
ciencies in datacenters. LithOS operates transparently across
the ML stack, enabling efficient machine learning on GPUs.

5.1 Architecture Overview
Figure 8 presents the architecture of LithOS. It runs on CPU
cores and interposes at the driver level, providing a dynami-
cally linked library, LibLithOS, that mimics the native CUDA
library. As a GPU operating system, LithOS maintains a

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Coppock et al.

userspace

Launch
Queues 0 1 2 3

TPC
Control

LithOS

321

Kernel
Atomization

atom
(~us)

kernel
(~ms) TPC Stealing

TPC Quotas

S
Freq

DVFS

7

..

Kernel
Submission

S
TPCs

Right-sizing

6

a0a1a2

..

a0

a0Sync
Queues

Outstanding
Work

ξ

ξ

TPCs
0 1 2 3

..

4

GPU
Hardware Device

Queues

5

ξ

ML App

a0 a0

Figure 9. LithOS operations overview.

system-wide view of GPU state across applications with
varying priorities, enabling efficient scheduling and manage-
ment. Applications follow the CUDA programming model
and submit kernels to LithOS, which decouples submission
from GPU execution. This transparently shifts scheduling
control from the driver and hardware to the LithOS layer.
The TPC Scheduler manages resources at the granularity of
individual TPCs, unlocking TPC Stealing opportunities. Idle
TPCs are lent to other tasks, improving utilization.

LithOS also introduces theKernel Atomizer, which—without
access to application source or PTX code—transparently
breaks kernels into smaller thread block chunks called atoms.
This enables finer-grained GPU scheduling and reduces head-
of-line (HoL) blocking. Building on fine-grained control,
LithOS supports dynamic hardware right-sizing, using light-
weight models to reduce TPC allocations for individual ker-
nels and atoms, yielding substantial capacity savings. Fi-
nally, LithOS applies transparent fine-grained DVFS, adjust-
ing GPU frequency based on in-flight work to save energy.
Together, these mechanisms enable intelligent scheduling
policies that maximize GPU utilization and efficiency across
diverse ML workloads. The rest of this section details how
these mechanisms operate and interact, referencing Figure 9.

5.2 Interface with Userspace
Kernel Submission. Applications interact with LithOS via
launch queues that buffer work (Figure 9, Step 1○), giving
LithOS full control over when work is dispatched to the GPU.
This is important because, once submitted, a kernel’s priority
or resources cannot be changed, nor can it be rescheduled.
Eagerly dispatching work can lead to sub-optimal scheduling.
LithOS therefore defers dispatch to minimize outstanding
work on the GPU. A launch queue is created when an applica-
tion creates a stream via cuStreamCreate. On asynchronous
CUDA calls like cuLaunchKernel, LithOS enqueues the ker-
nel and returns control to the application.
Compute Quotas. LithOS lets users and system adminis-
trators enforce GPU limits through TPC quotas (Figure 9,
Step 2○), guaranteeing each application a specified number
of TPCs when runnable work exists. TPCs are managed anal-
ogously to CPU cores, enabling fine-grained GPU control. A
lightweight TPC scheduler then coordinates launch queues
and quotas to maximize utilization and efficiency.

5.3 TPC Scheduler
LithOS introduces a novel scheduler that operates at the
granularity of individual TPCs, offering several advantages.
TPC-level control enables fine-grained GPU resource man-
agement. Unlike static partitioning schemes likeMIG, LithOS
supports dynamic, on-the-fly TPC allocation, allowing ker-
nels to run on different TPCs without reconfiguration over-
head. This flexibility maximizes utilization without coarse
partitioning or slow reallocation. Kernels are scheduled on as-
signed TPCs, ensuring guaranteed resources for high-priority
applications. However, as shown in Section 3, fixed alloca-
tions often leave TPCs idle due to traffic patterns or model
variability. To address this, LithOS employs dynamic sched-
uling and TPC Stealing to reassign idle resources. We believe
that TPC scheduling lays the foundation for evolving GPU
policies, much as CPU scheduling matured over time [23, 46].
Operation. At a high level, the TPC Scheduler uses dis-
patcher threads to monitor launch queues (Figure 9, Step 1○)
and submit work to the GPU. A key goal is to keep the GPU
busy while maintaining scheduling flexibility. The sched-
uler faces two main challenges: varying kernel durations
and balancing flexibility with GPU starvation. To address
the former, it applies Kernel Atomization (Figure 9, Step 3○,
Section 5.4) to split long-running kernels into smaller thread
block chunks called atoms. To address the latter, it tracks
outstanding work via sync queues (Figure 9, Step 5○), throt-
tling submissions until the backlog drops below a tunable
threshold. We use a 100𝜇s limit, sufficient to cover host-
device communication latency. A dedicated Tracker thread
monitors task completion and updates the scheduler state.
TPC Stealing. To improve work conservation, the scheduler
dynamically reassigns underutilized TPCs across applica-
tions. In Figure 10(a), static allocation leads to idle TPCs. In
Figure 10(b), stealing allows 𝐴1 to borrow TPCs from an idle
workload, reducing waste. However, this may cause head-of-
line (HoL) blocking from priority inversion if a new request
𝐵 is delayed by 𝐶2 occupying the stolen TPCs. To mitigate
this, the scheduler adopts a layered strategy. It maintains
per-TPC timers informed by a latency prediction module,
estimating kernel (and atom) durations at submission time.
These timers help avoid stealing from long-running TPCs. As
tasks complete, sync queues are cleared and timers updated,
potentially refining predictions (Section 5.7). LithOS also

LithOS: An Operating System for Efficient Machine Learning on GPUs SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

limits outstanding atoms and uses lower hardware stream
priorities for work on stolen TPCs. Combined with kernel
atomization, these mechanisms boost utilization while mini-
mizing interference.

5.4 Kernel Atomizer
At the core of LithOS lies the Kernel Atomizer. The Kernel
Atomizer transforms kernels into small chunks called atoms,
each containing a subset of the grid’s thread blocks (Figure 9,
Step 3○). Importantly, the Kernel Atomizer operates without
any access to source or PTX code, making it fully transpar-
ent to the entire ML software stack. This allows LithOS to
dispatch work at thread-block rather than kernel granularity.
This is a critical requirement for an OS targeting GPUs, as
the execution time of kernels can vary wildly from a few
microseconds to tens of milliseconds.
Impact of Kernel Scheduling on Latency. To illustrate the
need for kernel atomization, Figure 11 presents 𝑃99 kernel
latencies across various training and inference workloads.
Figure 11(a) shows how 𝑃99 latency increases with larger
training batch sizes. Since the typical batch size for each
model varies, we normalize by plotting memory usage at
each size. Most models quickly produce long-running ker-
nels lasting several milliseconds; DLRM [40] stands out with
kernel latencies exceeding 30 ms. While training workloads
are the major culprit, in Figure 11(b) we see that large lan-
guagemodel (LLM) inference based on a trace fromMicrosoft
Azure [58] containing small (S), medium (M), and large (L)
prompt lengths can also produce several-millisecond-long
kernels for large prompts. Given that models can have very
tight SLO constraints (in the low tens of milliseconds), we
guide the design of LithOS toward a finer-grained scheduling
unit that mitigates head-of-line blocking effects.
Operation.When a long-running kernel is about to be sched-
uled, LithOS predicts the duration of the kernel given its
TPC assignment using the predictor module (detailed in Sec-
tion 5.7). LithOS then computes the number of atoms into
which to split the kernel by dividing the predicted kernel du-
ration by a tunable parameter called the atom_duration. If
this parameter is set too low, an atomized kernel may actually
take longer to complete. Limits of 250-500 𝜇s are effective.
Crucially, LithOS is able to transparently chunk kernels into
atoms at runtime. Atoms are then submitted to the GPU and
can be scheduled on the TPCs dictated by the TPC Scheduler
(Figure 9, 4○). As a result, LithOS resolves a major challenge
faced by prior works that operate higher in the stack: the
Kernel Atomizer works on applications written in any frame-
work, that use any libraries (including closed-source ones
like cuDNN), and are built with any compiler.

To understand the benefits of scheduling at atom granular-
ity, we return to Figure 10(b). Stealing improves the schedule
but does not eliminate HoL blocking and wasted capacity. By
dividing the kernels into atoms, work can be packed more

Algorithm 1 Prelude Kernel Pseudocode.
1 kernel fn prelude(*args):
2 let atom : *const AtomMetadata = AtomMetadataAddr as _
3 let block_idx = blockIdx.z * gridDim.y * gridDim.x
4 + blockIdx.y * gridDim.x
5 + blockIdx.x
6 if atom->block_idx_lo <= block_idx < atom->block_idx_hi:
7 atom->kernel_entrypoint(*args)

tightly, as in Figure 10(c), and TPC allocations can be dy-
namically adjusted throughout a kernel’s execution. Now,
𝐵1 is no longer blocked by 𝐶2, as stealing is disabled for the
latter’s subsequent atoms 𝐶2 once request 𝐵 is submitted.
To demonstrate how LithOS’s Kernel Atomizer operates,

we consider a Conv kernel with a grid dimension of {8,8,1},
resulting in 64 blocks with block_idx ranging from 0 to 63.
Instead of launching the Conv kernel directly, LithOS invokes
a Prelude kernel, which calls into the original kernel using
the same launch configuration. The prelude kernel is shown
in Algorithm 1. At a high level, it checks whether block_idx
falls within a specified range—calling Conv if so, or exiting
early otherwise. For example, to partition the grid into 2
atoms, the kernel atomizer launches the prelude twice with
block index ranges [0,32) and [32,64). Using this technique,
LithOS can divide the kernel into up to 64 atoms. By speci-
fying non-overlapping block ranges, the atomizer ensures
each block is executed once, maintaining correctness.
Atomization Considerations. Kernels launch with an ex-
plicit set of resources; thus, the kernel atomizer ensures that
the Prelude kernel uses the same set of resources as the orig-
inal Conv kernel. Furthermore, the Prelude kernel needs to
know the entry point to the Conv kernel. The Kernel At-
omizer passes this information to the Prelude kernel in an
AtomMetadata struct as seen in Algorithm 1.
Performance Optimizations. LithOS continuously mon-
itors the effectiveness of the Kernel Atomizer to enhance
performance. First, to avoid the overhead introduced by ad-
ditional code in the Prelude kernel for kernels with many
short threads, LithOS may disable atomization for such ker-
nels. Additionally, for kernels with a large number of thread
blocks, the Kernel Atomizer dynamically adjusts the atom_-
duration parameter to control its aggressiveness. This min-
imizes the performance penalty due to the increased thread
block traffic from early-exiting threads.

5.5 Right-Sizing Hardware Resources
LithOS’s ability to schedule at the TPC level unlocks new
opportunities for fine-grained GPU right-sizing. Figure 12
highlights this potential by plotting kernel speedups as a
function of allocated TPCs for representative workloads (Sec-
tion 7). The selected kernels collectively account for 99% of
total execution time, with color gradients indicating each
kernel’s relative contribution. For Llama inference, general
matrix multiplication (GEMM) and multihead attention ker-
nels exhibit diminishing returns, while the kernel responsible

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Coppock et al.

TP
Cs

Stealing eliminates some wasted capacity

Wasted Capacity

Three reqs arrive at different times

A1 A2 A3 B1 B2

C1 C2 C1
C2A1 A2 A3

B1B2

B1is blocked by C2

A1

Minimal HoL blocking

All tasks
complete
sooner

Atomization enables optimal scheduling
Ĉ1 Ĉ1 Ĉ1 Ĉ1

Ĉ1Ĉ2 Ĉ2
Ĉ2 Ĉ2
B̂1 B̂1

B2Â2 Â2Â3Â3

^

Figure 10. GPU timeline for two workloads showcasing (a) TPC Scheduling, (B) Stealing, and (C) Atomization.

0 10 20 30 40
Training GPU Memory Usage (GiB)

0

10

20

30

P 9
9

Ke
rn

el
 L

at
en

cy
 (m

s)

DLRM
BERT
MobileNet
ResNet
VGG

Llama 3 GPT-J
Inference Model

0

1

2

3

4

5
S M L

Figure 11. (a) 𝑃99 kernel latency at different training batch
sizes normalized to memory usage. (b) 𝑃99 kernel latency for
different inference prompt sequence lengths for LLMs.

for applying the token frequency penalty does not scale. The
results show that whole-model right-sizing is suboptimal—
there is no single TPC configuration that fits all kernels.
Instead, a substantial opportunity lies in right-sizing at the
kernel level. First, individual kernels exhibit diverse scaling
behaviors: some scale linearly, while others show diminish-
ing returns. Second, the extent to which execution time is
distributed across many kernels varies from workload to
workload—highlighting the need for adaptive, per-kernel
scheduling to fully optimize GPU resource consumption.
Modeling Kernel Scaling. LithOS introduces on-the-fly
TPC right-sizing at the granularity of kernels (Figure 9, Step 6○).
The atoms of a given kernel inherit its allocated TPCs, as
they exhibit the same scaling behavior as the kernel itself.
To this end, LithOS introduces a model-based approach that
interpolates the scaling of individual kernels based on two
points: the latencies of a kernel running with all TPCs and
just one TPC. It then fits a curve of the form

𝑙 =
𝑚

𝑡
+ 𝑏

to these points, where 𝑙 is the predicted latency, 𝑡 is the
corresponding number of TPCs, and𝑚 and 𝑏 are constants.
Note that the form of this curve is consistent with Amdahl’s
law for parallel speedup. Intuitively, 𝑏 can be thought of as
how long it takes for a single one of the kernel’s thread blocks
to complete on a single SM, and𝑚 quantifies the extent to
which a kernel can take advantage of parallel processors.
Filtering Outliers. We find that, in practice, this simple
model accurately captures the scaling behavior of most deep
learning kernels. However, a small number of outlier kernels—
typically those with very short runtimes—deviate from the
model, as they fail to benefit from large TPC allocations
and are inherently harder to model. To handle these cases,
we introduce a filtering heuristic based on a kernel’s thread
block occupancy. Specifically, we estimate the number of

1 18 36 54
1

18

36

54 Llama 3 Inference

1 18 36 54

Llama 3 Finetuning

1 18 36 54

ResNet Inference

0%

25%

50%

75%

100%

%
 o

f T
ot

al
 T

im
e

of TPCs

Sp
ee

du
p

Figure 12. LithOS’s interpolated TPC scaling curves.

TPCs a kernel can effectively utilize by dividing its total
number of thread blocks by the occupancy per TPC—that
is, the number of thread blocks a single TPC can execute
concurrently. LithOS already tracks thread blocks per kernel
as part of atomization, while occupancy can be queried from
the driver API [43]. This heuristic provides an intuitive upper
bound on useful TPC allocations per kernel, helping avoid
overprovisioning even for difficult-to-model kernels.
Operation.When a kernel is submitted to LithOS, the dis-
patch thread first applies the filtering heuristic to estimate
an upper bound on the number of TPCs the kernel can effec-
tively utilize. If this estimate is lower than the job’s allocated
TPCs, the kernel is launched using the estimated bound.
Otherwise, the dispatch thread leverages the learned scal-
ing model to determine the minimum number of TPCs that
would increase the kernel’s latency by, at most, a multiplica-
tive factor 𝑘 that we call the latency slip parameter. This
tunable parameter allows users and administrators to intu-
itively configure LithOS, for example, by specifying that up to
10% performance degradation is acceptable. Overall, LithOS
enables highly efficient fine-grained right-sizing, while its
modeling and scaling techniques offer a robust and accurate
solution—as we will see in Section 8.2.
Supporting Hardware-Aware Optimizations. The right-
sizing approach of LithOS is orthogonal to, and naturally
complements, hardware-aware optimizations performed at
the framework and compiler layers. These optimizations typ-
ically focus on tailoring kernel implementations to intra-SM
architectural features (such as Tensor Cores), warp-level tech-
niques, and memory hierarchy tuning. In contrast, LithOS
operates at the inter-SM level by managing kernel-to-TPC al-
locations. Because these domains are independent, hardware-
aware optimizations can seamlessly coexist with LithOS.

5.6 Transparent Power Management
LithOS is well-positioned to enable transparent and efficient
power management via DVFS. Just as right-sizing lets LithOS
adapt resource allocation based on kernel scalability across

LithOS: An Operating System for Efficient Machine Learning on GPUs SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

TPCs, DVFS enables vertical scaling through frequency ad-
justment. Figure 13 shows how kernels from various work-
loads respond to frequency scaling. Many exhibit predictable
behavior, creating opportunities for energy savings with
bounded performance impact. To achieve efficient DVFS,
LithOS must address two key challenges. First, current GPUs
support relatively slow frequency switching (∼50 ms). While
future architectures may reduce this latency [16], DVFS re-
mains impractical for models with very short kernels. Thus,
LithOSmust consider the cumulative impact of scaling across
kernel sequences. Second, although many kernels scale lin-
early with frequency, enabling significant energy savings,
LithOS must balance these gains against increased latency.
Modeling Frequency Scaling. LithOS introduces a trans-
parent sequence-based kernel frequency scaling model that
guides DVFS (Figure 9, Step 7○). Similarly to right-sizing, the
atoms of a given kernel inherit its frequency target, as they
exhibit the same scaling behavior as the kernel itself. Specifi-
cally, each kernel is assigned a weight w, the ratio of its total
runtime to the cumulative runtime of all the kernels in a
particular stream. Then, LithOS approximates each kernel’s
relative slowdown as proportional to the fractional drop in
frequency based on a first-order Taylor approximation:

𝑘 =
𝑙𝑎𝑡 (𝑓𝑡ℎ)
𝑙𝑎𝑡 (𝑓𝑚𝑎𝑥)

− 1 = 𝑠 · (𝑓𝑚𝑎𝑥

𝑓𝑡ℎ
− 1)

where 𝑙𝑎𝑡 (𝑓) is the kernel’s latency at frequency 𝑓 . Specifi-
cally, 𝑓𝑚𝑎𝑥 is the maximum frequency, and 𝑓𝑡ℎ is one of the
device’s supported frequencies. Each kernel’s sensitivity is

𝑠 =
𝑘

𝑓𝑚𝑎𝑥

𝑓𝑡ℎ
− 1

and the aggregate sensitivity S across all kernels is equal to∑
𝑤 ∗ 𝑠 . Similarly, the total slowdown is equal to

𝑆 · (𝑓𝑚𝑎𝑥

𝑓𝑓 𝑖𝑛𝑎𝑙
− 1) ≤ 𝑘

and thus the final frequency that LithOS assigns to the work-
load is 𝑓𝑓 𝑖𝑛𝑎𝑙 =

𝑓𝑚𝑎𝑥

1+ 𝑘
𝑆

. Intuitively, compute-bound kernels
whose slowdown scales linearly with frequency reduction
skew the final frequency closer to the maximum according to
their sensitivity, while memory-bound kernels whose slow-
down is frequency-insensitive shift the final frequency to
lower levels depending on their weight.
Operation. Similar to right-sizing, LithOS uses a multiplica-
tive factor 𝑘 , the latency slip parameter, to guide DVFS de-
cisions. At runtime, this parameter is used to evaluate the
scaling model and select a target frequency. Due to the high
latency of switching, LithOS adopts a conservative strat-
egy and extends its learning period to avoid unnecessary
transitions. Initially, LithOS collects per-kernel metadata
at maximum frequency, forcing unseen kernels to run at
max frequency. At first, a kernel is assumed to scale linearly,

2

1
800 1000 1200 1400 800 1000 1200 1400 800 1000 1200 1400

0%

25%

50%

75%

100%

%
 o

f T
ot

al
 T

im
e

ResNet TrainingLlama 3 Inference InferenceResNet

Frequency (MHz)

Sp
ee

du
p

Figure 13. LithOS’s interpolated frequency scaling curves.

and its frequency is reduced based on the configured 𝑘 . De-
pending on the observed performance, LithOS either further
lowers the frequency or stops after confirming linear behav-
ior. Over time, it fits the collected data to the scaling model,
enabling more informed and efficient DVFS decisions.

5.7 Online Latency Prediction
The latency prediction module learns the execution time
of kernels, enabling the optimizations carried out by all of
LithOS’s components. In particular, it enhances TPC Stealing
by estimating the duration of outstanding tasks and guides
the number of atoms the Kernel Atomizer splits each kernel
into. It further assists right-sizing and DVFS by providing the
latencies that are used to calculate speedups based on TPC
and frequency scaling. This obviates the need for extensive
offline profiling, which is impractical for a transparent OS.
Latency prediction operates separately for independent

launch queues, allowing LithOS to dynamically adapt to
the behavior of different applications. During execution, the
module records kernel latencies and refines its predictions.
Each kernel’s latency varies based on the allocated TPCs,
the GPU frequency, and the granularity at which it is atom-
ized; therefore, the prediction module continuously monitors
these conditions. In the case where such metadata are not
available for a specific atom, the prediction module is con-
servative, assuming optimal linear scaling.
One pitfall in achieving accurate kernel latency predic-

tion is assuming a given kernel always has the same latency.
In practice, duration can depend on launch parameters and
inputs. For instance, a single Conv kernel function may be
used across model layers with varying tensor sizes. This ne-
cessitates that the latency prediction module track operators
rather than kernel functions. By recording explicit synchro-
nization events, we can determine the start and end of a
batch. We associate kernel launches with an ordinal index
𝑘 , referring to the 𝑘 th kernel after the start of a batch. This
uniquely identifies operator nodes in the model’s data flow
graph (DFG), despite LithOS lacking explicit access to this
higher-level information. This additional ordinal index is
sufficient to identify model operators and make accurate
latency predictions.

6 Implementation
We implement a prototype of LithOS targeting NVIDIAGPUs
in ∼5000 lines of Rust, excluding macro-generated code for

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Coppock et al.

interposing the entire CUDA Driver API. The LithOS proto-
type supports Ampere and Hopper architectures and applica-
tions running natively or in containers. To enable concurrent
execution across GPU contexts, we build on top of MPS.
Interposition Architecture. LithOS is fully transparent to
applications, supporting the diverse ML ecosystem and full
GPU stack. It interposes at the CUDA Driver API—the lowest
common denominator—so applications interact with LithOS
rather than the driver, while preserving CUDA call semantics.
This ensures generality and transparency at the OS level, en-
abling unmodified ML frameworks and libraries such as Py-
Torch, TensorFlow, JAX, TensorRT, and cuDNN. LithOS im-
plements only a small subset of Driver APIs (e.g., cuLaunchK-
ernel); our toolchain auto-generates the rest. Unlike prior
CUDA API interposition systems [68], LithOS avoids com-
plex cross-address-space marshaling, streamlining support
for new CUDA versions and long-term OS maintenance.
TPCs and Atomization. For TPC mappings, we extend
prior reverse-engineering work libsmctrl [4] and add sup-
port for Hopper, including handling its new TPC masking
layout. libsmctrl is an interface that exposes TPC map-
pings without additional logic. In LithOS, we reimplement
functionality to identify TPCs through the Queue MetaData
(QMD) data structure and enable dynamic TPC allocation on
kernel launch. Furthermore, on Hopper GPUs, NVIDIA intro-
duced Thread Block Clusters—a new scheduling abstraction.
We reverse-engineer these mappings and ensure atoms are
always multiples of the cluster size. We verified functional-
ity across NVIDIA datacenter GPUs: Ampere (A30, A100),
Hopper (H100), and Ada Lovelace (L4). On top of the TPC
mapping interface, the core implementation of LithOS re-
lies on a set of scheduling mechanisms responsible for work
submission, TPC scheduling, stealing, hardware right-sizing,
atomization, outstanding work monitoring, and power man-
agement. We believe that future GPU drivers can expose
these APIs to simplify the implementation of LithOS.

For kernel atomization, we inject Prelude logic bymodify-
ing the QMD struct used to launch kernels [4, 17]. To allocate
appropriate resources, LithOS first launches the original ker-
nel, allowing the CUDADriver to configure the environment.
We then patch the QMD’s program address to point to the
Prelude. As a result, execution begins at the Prelude while
retaining the original kernel’s resources. Due to space limits,
we defer low-level reverse-engineering details to a separate
technical report. The QMD reverse-engineering effort is min-
imal and often completed within days of a new architecture.
Special Kernels. There are a few cases of kernels that may
require special attention from LithOS. To extend atomization
for CUDA Graphs, LithOS can interpose graph creation APIs
and atomize graphs into subgraphs, ensuring correct execu-
tion ordering. Furthermore, some kernels comprise thread
blocks that synchronize with each other, e.g., with grid_-
group::sync(). These kernels require a certain number of
SMs during execution. LithOS can simply return the number

Model Mem. (GiB) Batch Size Latency (ms)
VGG-19 [56] 17.4 120 291
ResNet-50 [28] 18.4 184 281

MobileNetV2 [53] 18.4 216 254
DLRM [40] 6.7 32768 74

BERT-Large [20] 17.3 20 159
Llama 3 Finetuning 32.0 4 690

Table 1. Training model parameters.

of allocated SMs for the CU_DEVICE_ATTRIBUTE_MULTIPRO-
CESSOR_COUNT in cuDeviceGetAttribute. Furthermore, for
special kernels that involve cross-block synchronization or
persistent kernels, LithOS disables stealing and atomization.

7 Experimental Setup and Methodology
Testbed. Experiments were conducted on a 1x A100 (SXM4)
Lambda Labs GPU instance with 30 CPU cores and 216 GB
of host memory. The A100 GPU has 108 SMs and 40 GB
of memory. The server was configured with Ubuntu 22.04,
CUDA 12.6, Rust 1.83.0-nightly, Python 3.10, PyTorch 2.3,
TensorRT 10.1, TensorRT-LLM 0.11.0, and Triton 24.07.
Baselines. We compare LithOS to all four NVIDIA GPU
sharing methods: Time slicing,MPS, stream Priority, andMIG.
We further compare against SOTA prior work across the
spectrum of transparent solutions TGS [64], application mod-
ifications REEF [27], and both application modifications and
offline profiling Orion [59]. We used the open-source TGS
directly but had to reimplement Orion and REEF using our
own interposition infrastructure since the available code was
tied to specific CUDA drivers and software stacks. We extend
REEF and Orion to handle multiple HP apps in a straightfor-
ward manner. For REEF, BE kernels are not launched if any
HP app is running. For Orion, BE kernels are not launched
if they contend with any HP kernel.
Models and Configurations. All high-priority inference
tasks run on NVIDIA’s Triton Inference Server with dynamic
batching [14]. RetinaNet runs on ONNX Runtime, while
the other served models run on NVIDIA’s TensorRT and
TensorRT-LLM backends. We choose three representative
vision models (RetinaNet [38], YOLOv4 [5], and ResNet-50
v1.5 [28]) and three language models (Llama 3 8B [25], GPT-J
6B [62], and BERT-Large [20]) as inference workloads. For
large language models, we use a Microsoft Azure trace [58].
For the best effort training tasks, we use three vision models,
ResNet-50, MobileNetV2, VGG-19, and two language models,
DLRM and BERT-Large, as listed. The training batch size is
adjusted to use at most half of the GPU DRAM to keep all
models in memory when stacking. The best effort training
task runs continuously. More details are in Tables 1 and 2.
Latency Constraints. For workloads which require a la-
tency SLO, we use latency constraints from the MLPerf data-
center inference benchmark [50] (Table 2). This collection
of results is an industry standard for evaluating the perfor-
mance of inference servers, and the constraints vary from
2.3×–7.4× of baseline end-to-end request latency.

LithOS: An Operating System for Efficient Machine Learning on GPUs SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

Model Framework Load (rps) Constraint (ms)
ResNet [28] TensorRT 1000 15

RetinaNet [38] ONNX Runtime 9 100
Llama 3 [25] TensorRT-LLM 0.5 2000
GPT-J [62] TensorRT-LLM 0.5 2000
BERT [20] TensorRT 30 130

Table 2. Inference services for inference-only multitenancy.

8 Evaluation
Our evaluation answers the following questions:

1. Does LithOS improve performance for different multi-
tenancy environments and SOTA prior works?

2. What are the capacity savings due to LithOS’s hard-
ware right-sizing?

3. What are the energy savings of LithOS’s DVFS?
4. How do different LithOS features affect performance?

8.1 Performance in Multitenant Environments
In the following experiments, we disable the right-sizing and
power management features of LithOS to provide an apples-
to-apples comparison to other systems in terms of scheduling
efficiency alone. We evaluate these features afterwards.
Inference-only Multitenancy. We evaluate LithOS in a
multitenant environment with three inference applications:
two high-priority (HP) and one best-effort (BE). This is a
realistic stacking scenario as current GPUs can satisfactorily
fit two HP models, while the BE task utilizes the remaining
resources. The first HP app, HP A, has a latency-oriented
SLO: percentage of requests executed within a latency con-
straint. The second, HP B, has a throughput-oriented SLO:
attained throughput as a percentage of the case where it
executes alone. These vary according to the model (Table 2).

The BE and HP B models are chosen from Llama 3, GPT-J,
and BERT. For HP A, we add ResNet and RetinaNet. We run
all possible combinations. HP apps follow Poisson load and
run on the Triton inference server, while BE apps execute in
a closed loop. All model latencies are measured end-to-end.
We compare LithOS against all configurations. For sys-

tems that support partitioning, HP A and HP B are isolated
on partitions of 75% and 25%, respectively. MIG’s limited
partitioning configurations cannot support a 25%-75% split,
so we use a 3/7-4/7 split instead. MIG and Limits cannot
support a BE app, but only apps with provisioned resources;
therefore, the BE does not run on these systems. There is
no way to isolate multiple latency-sensitive applications on
systems like Priority, REEF, TGS, and Orion. For these, we
set both HP apps to high priority and the BE to low priority.
Figure 14 compares all systems across two dimensions:

SLO attainment and throughput. “SLO” of 100% means both
HPs reach 100% attainment. “Throughput” of 1 means that
the throughput achieved is as much as if any of the apps
had the entire device. Unsurprisingly, MPS sets the bar for
throughput. MPS’s fine-grained, intra-SM stacking ensures

0 0.25 0.5 0.75 1
Throughput (×)

0

20

40

60

80

100

SL
O

At
ta

in
m

en
t (

%
)

Limits

LithOS

MIG

MPS

Orion
Priority

REEFTGS

Time slicing

Figure 14. SLO Attainment and throughput by system.

High-priority Best-effort
0.0

0.2

0.4

0.6

0.8

Go
od

pu
t (

×)

MPS
Time slicing
MIG
Limits
Priority
REEF
TGS
Orion
LithOS

HP A
HP B

Figure 15. Inference-only multitenancy: Goodput by app.

device resources are maximally utilized, and it allows more
throughput when stacking than any application could have
alone; hence, it achieves a throughput of 1.11. MPS’s through-
put comes at the cost of SLO attainment, at 45%. MIG and
thread limits both successfully meet SLOs. This is expected,
as each systemminimizes interference by devoting resources
to individual apps. However, the partitions are not fully uti-
lized without a BE app. As a result, aggregate throughput
drops to 0.58 and 0.71 for thread limits and MIG, respectively.
Without isolating HP apps, priority-only systems cannot
attain SLOs, with TGS leading at 84%. LithOS provides the
best of both worlds, as it provides spatial isolation like MIG
with an SLO attainment of 100% and a throughput of 1.

Where do LithOS’s benefits come from? Figure 15 shows
LithOS consistently leading in goodput (throughput exclud-
ing HP A requests that violate SLOs) for the HP apps while
still allowing significant (0.15) BE throughput. While the
partitioning systems match LithOS in HP A goodput, they
lack in HP B goodput: MIG at 0.37 vs. LithOS at 0.50. They
also cannot support any BE throughput, while LithOS allows
HP apps to steal unused resources from each other and fur-
ther support BE throughput. No SOTA system can perform
effectively across all requirements. Specifically, Orion outper-
forms in latency-sensitive throughput, TGS in HP through-
put, and REEF in best effort. Only LithOS provides the best
HP throughput while sustaining high BE throughput.

Diving deeper, we next look into the latencies of the HP A
app in Figure 16. The figure shows the 𝑃99 latencies for each
model averaged across all combinations. Latencies diverge

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Coppock et al.

ResNet
0

10−2

10−1
100
101

P 9
9 L

at
en

cy
 (s

)

RetinaNet
0

10−1

100

101

Llama 3
0

100

101

GPT-J
0

100

101

BERT
0

10−1

100
MPS Time slicing Priority REEF TGS Orion LithOS constraint baseline

Figure 16. Inference stacking multitenancy: HP A tail latencies by model.

in many cases, with only LithOS and the partitioning sys-
tems limiting latencies to the constraints. MPS is the worst-
performing with respect to latencies; LithOS’s are 13× better.
LithOS reduces latencies by 4× compared to Orion. This is
expected as Orion cannot handle multiple HP apps. TGS
limits latencies much more effectively than Orion and REEF,
but LithOS still improves over it by 1.2×. Overall, LithOS
provides a robust solution for inference stacking.
Hybrid Inference/Training Multitenancy. In the first
scenario, we modeled a realistic multitenant scenario where
two primary HP inference jobs are placed on a GPU, and a
BE task makes use of the remaining idle resources. Next, we
evaluate an alternative realistic scenario that is commonly
examined by prior work. In this experiment, we stack an HP
inference app that has a latency-oriented SLO with a train-
ing BE app. Similar to the inference-stacking experiment,
resources unused by the sensitive inference app should be
donated to the best-effort training job. At the same time,
service latency must not increase. We choose the inference
model from the set: Llama 3 8B, GPT-J 6B, BERT-Large, Reti-
naNet, and YOLOv4. We choose the training model from
those listed in Table 1. We run all model combinations, and
our client creates Poisson loads. Load parameters are chosen
to keep GPU utilization around 80% for the HP app.

Figure 17 shows the 𝑃99 HP latency and aggregate through-
put, averaged across all training models. HP throughput is
normalized to the load before being added to the BE through-
put, which is normalized to the case where the BE model
runs alone on the device. Latencies are also normalized to the
HP running alone on the device. MPS yields latencies 5.83×
the ideal case, and its service throughput is the lowest at
60%. Time slicing fares better as it enables the long-running
kernels of the best-effort models to be preempted, guaran-
teeing the service approximately 50% of the GPU time. MIG
performs similarly to time slicing by allocating 50% of the
GPU to the service spatially rather than temporally. However,
both methods fail to sustain peak HP throughput. Stream
priority also falls short, leading to a 2.89× increase in service
latency and service throughput as low as 68%.

Both TGS and REEF also struggle to maintain low service
latencies. TGS has an average inference latency of 1.41×
the ideal, and REEF is 2.89×. TGS’s poor performance stems
from its adaptive rate control mechanism, which assumes
a constant work arrival rate. This assumption is invalid for

inference services, which have unpredictable load patterns.
REEF fails to sufficiently throttle the trainingmodel, allowing
tail latencies to reach 8.93×. In contrast, LithOS maintains a
tail latency within 20% of the ideal. On average, this is 2.34×
and 1.18× over REEF and TGS, respectively. Compared to the
native MPS solution, LithOS reduces latency by up to 13.54×
and 4.7× on average. LithOS maintains service throughput
within 1% of load in the worst case. LithOS improves training
throughput by an average of 34× and aggregate through-
put by 1.35× vs. TGS. In total, LithOS improves aggregate
throughput 1.23×–1.57× with an average of 1.38×.

8.2 Kernel-SM Right-Sizing
Capacity Savings. Figure 18 shows the capacity savings due
to right-sizing with LithOS. We compute savings by compar-
ing the time-weighted average of TPC utilization before and
after right-sizing. LithOS provides excellent savings of up
to 51%, and a mean of 26% across all workloads. We expect
that in future GPU architectures with an increased number
of TPCs, the fine-grained right-sizing approach of LithOS
will provide even greater savings.
Latency and Throughput Cost. With a latency slip pa-
rameter of 1.1, the performance cost of right-sizing in terms
of 𝑃99 and throughput is modest. The mean increase in 𝑃99
and decrease in throughput are both 4%. Our latency slip
parameter is conservative because not all of the end-to-end
execution time of each inference or training iteration is spent
inside a GPU kernel; this does not impede tuning in practice.
Accuracy. To quantify the accuracy of our prediction tech-
nique, we compute the kernel-execution-time weighted av-
erage of the 𝑅2 values for the curves we fit (i.e., for kernels
where the possible TPCs value exceeds the threshold). Across
all evaluated workloads, the average 𝑅2 values range from
0.92 (Llama finetuning) to 0.99 (RetinaNet inference), indicat-
ing that our linear models are sufficiently accurate. Future
work can explore more involvedmodeling to leverage LithOS
to extend right-sizing to even more diverse GPU workloads.

8.3 Kernel-Dependent DVFS
In this experiment, we compare the energy consumption of
the LithOS DVFS mechanism to the default settings of the
GPU, for a variety of inference and training jobs with high
GPU utilization; the baseline runs mostly under the maxi-
mum GPU frequency (1410 MHz). We run experiments for a

LithOS: An Operating System for Efficient Machine Learning on GPUs SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

Llama 3 RetinaNet GPT-J BERT YOLO
High-priority Inference Model

0

2

4

P 9
9 L

at
en

cy
 (×

)

5 4 7 9545

Llama 3 RetinaNet GPT-J BERT YOLO
High-priority Inference Model

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (×

)

BE HP

baseline MPS Orion Priority REEF Time slicing MIG TGS LithOS

Figure 17. Hybrid multitenancy: (a) 𝑃99 service latency and (b) aggregate throughput.

Lla
ma 3

GPT
-J

BER
T

Res
Net

Reti
na

Net
YO

LO

Lla
ma 3

BER
T

Res
Net

Mob
ile

Net

DLR
M

VGG
Mea

n
0

15

30

45

60

G
PU

 C
ap

ac
ity

Sa

vi
ng

s
(%

) Inference Training / Finetuning

Figure 18. Hardware right-sizing GPU capacity savings.

Lla
ma 3

GPT
-J

BER
T

Res
Net

Reti
na

Net
YO

LO

Lla
ma 3

BER
T

Res
Net

Mob
ile

Net
DLR

M
VGG

Mea
n

0

15

30

45

60

G
PU

 E
ne

rg
y

Sa
vi

ng
s

(%
) Inference Training / Finetuning

Figure 19. Power management GPU energy savings.

fixed number of requests or training epochs for a fair energy
comparison. Energy is calculated as the average power con-
sumption multiplied by the time required for the experiment
to complete. We measure power with nvidia-smi every
100 ms, the smallest granularity at which the tool operates.
Energy Savings. Figure 19 shows the energy savings of
LithOS’s DVFS mechanism across different inference and
training workloads. We define energy savings as the differ-
ence between executing the workload at default frequency
and under LithOS’s DVFS policy. LithOS provides significant
energy savings of up to 46%, and a mean of 26% across all
workloads without offline profiling requirements.
Performance Cost. The slip parameter for this experiment
was set at 1.1, and the mean increase in 𝑃99 latency is 7%. The
minimal increase in 𝑃99 latency demonstrates that LithOS’s
DVFS policy is inherently conservative. It respects latency
constraints across workloads while transparently providing
substantial energy savings. Finer-grained frequency control
could unlock additional energy savings.

8.4 Ablation and Case Studies
Multi-tenancy Breakdown. Figure 20 presents a perfor-
mance analysis for inference-training as explored in Fig-
ure 17. Enabling the TPC scheduler improvesHP tail latencies
to 1.38× of ideal by throttling BE work, while maintaining

ideal HP throughput. Kernel Atomization offers additional
gains, reducing tail latencies to an average of 1.19× and up
to 1.55×, by splitting long BE kernels and improving TPC
Stealing. Because of space limitations, we plot only laten-
cies. Kernel Atomization does introduce a 10% throughput
overhead, as LithOS prioritizes HP workloads by reducing
BE throughput. Overall, each of LithOS’s features plays a
crucial role in optimizing end-to-end performance.
Kernel Atomization. To highlight the challenges of sched-
uling long-running kernels, we collocate an HP BERT infer-
ence workload with either a BE VGG training or a BE Llama
3 inference. In Figure 21, we vary (a) the batch size of the
BE training job and (b) the sequence length of the BE infer-
ence job and measure the 𝑃95 latency of the HP inference job.
LithOS outperforms REEF by 6.5× and 3.9× in (a) and (b),
respectively. Unlike REEF, which simply throttles BE work,
LithOS accounts for kernel durations, which can vary signif-
icantly. To understand the impact of Kernel Atomization, we
further evaluate LithOS with Kernel Atomization disabled.
Kernel Atomization provides an improvement of 2× and 1.3×
in (a) and (b), respectively. As described in Figure 11, kernel
durations grow with training batch size and inference input
sequence length. As Kernel Atomization allows LithOS to
schedule at thread block granularity, HoL blocking is mini-
mized. Consequently, the HP tail latency for the full LithOS
system is within 14% (or 1 ms) or 7% (or 0.45 ms) of ideal for
even the largest batch size or sequence length, respectively.
Without atomization, noisy neighbors with large batch sizes
or long sequence lengths can substantially degrade the per-
formance of latency-critical tasks.
Latency Prediction Module. Next, we evaluate the accu-
racy of the latency prediction module of LithOS that en-
hances the TPC Scheduler and the Kernel Atomizer. We
record the predicted atom latencies and compare them with
the corresponding CUDA events, treating absolute errors
greater than 50 𝜇s as mispredictions. Overall, we find very
low misprediction rates of just 0.9% and 0.38% for the HP
workloads in inference-inference and inference-training en-
vironments, respectively. Additionally, the prediction er-
ror tails are small with 𝑃99s of 49 𝜇s and 31 𝜇s. Mispredic-
tion rates for the BE workloads are higher at 14% and 11%
for inference-inference and inference-training, respectively.

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Coppock et al.

Llama 3 RetinaNet GPT-J BERT YOLO
High-priority Inference Model

0

2

4

P 9
9 L

at
en

cy
 (×

)

5 4 7 9
MPS + TPC Scheduling + Kernel Atomization

Figure 20. Breakdown of LithOS features for inf-train.

0 64 128 192 256 320
BE Training Batch Size

0
5

10
15
20
25

P 9
5 L

at
en

cy
 (m

s) 47.9 ms

0 128 256 384 512
BE Inference Prompt Seqlen (Tok)

0
3
6
9

12
15

26.9 ms

REEF LithOS (w/o Kernel Atomization) LithOS

Figure 21. 𝑃95 latency of HP inference collocated with varied
(a) batch sizes training and (b) sequence lengths inference.

This is acceptable as BE work is frequently preempted by
HP work and has lower priority for GPU resources. Future
work can explore more complex modeling to reduce error
rates; however, our evaluation shows that the existing pre-
dictor’s accuracy allows for sufficient performance isolation
in practice.
Overheads. The interposition and control logic of LithOS
impose modest overhead. By measuring inference models
without multitenancy against the vanilla NVIDIA driver,
LithOS adds an overhead of only 4%. Atomization adds less
than 1%. For comparison, the overhead of TGS and REEF is
close to 2%, while Orion stands at 6%. In general, we believe
this overhead is small and can be further optimized away.
Memory Contention. From our study of production ser-
vices, memory capacity contention is not a concern asmodels
are kept in GPU memory. In our evaluation, bandwidth con-
tention can be a concern for some workload combinations.
Using MIG and thread limits, we estimate that bandwidth iso-
lation would yield 4–13% performance gains for contention-
heavy cases. Compute isolation is significantly more critical,
yielding more than an order of magnitude improvement.

9 Discussion
Other GPU Resources. This work focuses on compute and
power, but the same principles extend to other resources.
Prior systems target GPU memory [1, 3, 6, 32, 64], band-
width [29, 70], PCIe [33, 70], SSDs [3, 49], and network-
ing [57]. Others interpose at higher layers, via custom dri-
vers [34, 52] or CUDA APIs [7, 67]. GPUfs [55] is the clos-
est to an OS-like design, providing file-system extensions.
LithOS complements these efforts, offering a foundation to
virtualize and manage additional GPU resources.

Driver and Hardware Support. LithOS demonstrates what
is possible with today’s hardware, but additional driver and
architectural support would unlock further gains: kernel-to-
SM assignment, preemption, cache and memory partitioning,
NUMA-style placement, fine-grained (sub-ms) DVFS, per-
SM power control, and richer context management. Similar
capabilities are standard in CPUs and will be increasingly
essential as GPUs scale, integrate multiple dies (e.g., Black-
well), and grow more heterogeneous. Open-source drivers
will be critical for enabling efficient OS-level control.

While LithOS targets TPC-level scheduling, emerging het-
erogeneity within SMs (e.g., tensor cores) highlights opportu-
nities for intra-SM resource management. Hardware support
here could enable even finer-grained efficiency.
Lessons Learned. A central lesson is that both spatial and
temporal partitioning are required for efficient GPU multi-
tenancy. Without dedicated resources, latency-critical tasks
suffer interference, as in MPS, while without time-sharing,
utilization drops, as in MIG. Fine-grained control is equally
crucial: TPC scheduling allows GPUs to be sliced into many
more virtual devices than MIG, improving packing and uti-
lization, while kernel-level atomization enables fast switch-
ing to high-priority tasks, strengthening isolation. Power
management also emerged as a key challenge. Device-wide
DVFS proves effective for today’s relatively well-behaved
kernels, but future workloads are more diverse and input-
dependent, demanding finer-grained mechanisms that adapt
at sub-ms timescales, distinguish between compute, caches,
and memory, and apply power controls spatially. Finally, our
experience showed that the CUDA Driver API forms a sta-
ble “narrow waist” for interposition. By intercepting only a
handful of calls, LithOS remains lightweight, portable across
driver versions, and easy to retarget from Ampere to Hopper,
suggesting this is a robust control point for OS research.
LithOS opens a new direction for GPU operating sys-

tems. By coupling OS design with forthcoming hardware
extensions, future ML systems can deliver stronger isolation,
higher utilization, and significant energy savings.

10 Conclusion
This paper introduced LithOS, a first step towards an operat-
ing system for efficient machine learning on GPUs. LithOS
operates transparently to the entire ML stack; through mech-
anisms like TPC Scheduling, Kernel Atomization, hardware
right-sizing, and power management, LithOS significantly
improves GPU efficiency while laying the foundation for
future OS research on GPUs.

Acknowledgments
This work was funded in part by NSF grants CNS-2239311,
CCF-2217016, a Meta Faculty Award, and a Wilton E. Scott
Institute Faculty Award. We thank the anonymous reviewers
for all of their valuable feedback.

LithOS: An Operating System for Efficient Machine Learning on GPUs SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

References
[1] Georgios Alexopoulos and Dimitris Mitropoulos. 2024. nvshare: Prac-

tical GPU Sharing without Memory Size Constraints. In Proceedings of
the 2024 IEEE/ACM 46th International Conference on Software Engineer-
ing: Companion Proceedings. 16–20.

[2] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. PipeSwitch: Fast
Pipelined Context Switching for Deep Learning Applications. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). 499–514.

[3] Joshua Bakita and James H. Anderson. 2022. Enabling GPU Memory
Oversubscription via Transparent Paging to an NVMe SSD. In 2022
IEEE Real-Time Systems Symposium (RTSS). IEEE, 370–382.

[4] Joshua Bakita and James H. Anderson. 2023. Hardware Compute
Partitioning on NVIDIA GPUs. In Proceedings of the 29th IEEE Real-
Time and Embedded Technology and Applications Symposium. 54–66.

[5] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
2020. YOLOv4: Optimal Speed and Accuracy of Object Detection.
arXiv:2004.10934 [cs.CV] https://arxiv.org/abs/2004.10934

[6] Chia-Hao Chang, Jihoon Han, Anand Sivasubramaniam, Vikram
Sharma Mailthody, Zaid Qureshi, and Wen-Mei Hwu. 2024. GMT:
GPU Orchestrated Memory Tiering for the Big Data Era. In Proceed-
ings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (La Jolla,
CA, USA) (ASPLOS ’24). Association for Computing Machinery, New
York, NY, USA, 464–478. doi:10.1145/3620666.3651353

[7] Hung-Hsin Chen, En-Te Lin, Yu-Min Chou, and Jerry Chou. 2023.
Gemini: Enabling Multi-Tenant GPU Sharing Based on Kernel Burst
Estimation. IEEE Transactions on Cloud Computing 11, 1 (2023), 854–
867. doi:10.1109/TCC.2021.3119205

[8] Qichen Chen, Hyerin Chung, Yongseok Son, Yoonhee Kim, and
Heon Young Yeom. 2021. smCompactor: a workload-aware fine-
grained resource management framework for GPGPUs. In Proceedings
of the 36th Annual ACM Symposium on Applied Computing (Virtual
Event, Republic of Korea) (SAC ’21). Association for Computing Ma-
chinery, New York, NY, USA, 1147–1155. doi:10.1145/3412841.3441989

[9] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin
Kwon, and Jaehyuk Huh. 2022. Serving Heterogeneous Machine
Learning Models on Multi-GPU Servers with Spatio-Temporal Shar-
ing. In 2022 USENIX Annual Technical Conference (USENIX ATC 22).
USENIX Association, Carlsbad, CA, 199–216. https://www.usenix.org/
conference/atc22/presentation/choi-seungbeom

[10] Marcus Chow, Ali Jahanshahi, and DanielWong. 2023. KRISP: Enabling
Kernel-wise RIght-sizing for Spatial Partitioned GPU Inference Servers.
In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 624–637. doi:10.1109/HPCA56546.2023.10071121

[11] Marcus Chow and Daniel Wong. 2024. CoFRIS: Coordinated Frequency
and Resource Scaling for GPU Inference Servers. In Proceedings of
the 14th International Green and Sustainable Computing Conference
(Toronto, ON, Canada) (IGSC ’23). Association for Computing Machin-
ery, New York, NY, USA, 45–51. doi:10.1145/3634769.3634808

[12] NVIDIA Corporation. [n. d.]. Multi-Process Service. https://docs.
nvidia.com/deploy/mps/index.html. Accessed: April 14, 2025.

[13] NVIDIA Corporation. 2023. NVIDIAH100 Tensor Core GPUArchitecture.
Technical Report. NVIDIA Corporation, Santa Clara, CA.

[14] NVIDIA Corporation. 2024. Triton Inference Server. https://developer.
nvidia.com/triton-inference-server. Accessed: May 8, 2024.

[15] NVIDIA Corporation. 2025. NVIDIA Multi-Instance GPU User
Guide. https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
index.html. Accessed: April 14, 2025.

[16] NVIDIA Corporation. 2025. NVIDIA RTX Blackwell GPU Ar-
chitecture. https://images.nvidia.com/aem-dam/Solutions/geforce/
blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf.

[17] NVIDIA Corporation. 2025. Open GPU documentation.
https://github.com/NVIDIA/open-gpu-doc.

[18] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX As-
sociation, Boston, MA, 613–627. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/crankshaw

[19] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen Leng,
Jieru Zhao, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo.
2021. Enable simultaneous DNN services based on deterministic op-
erator overlap and precise latency prediction. In Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (St. Louis, Missouri) (SC ’21). Association
for Computing Machinery, New York, NY, USA, Article 15, 15 pages.
doi:10.1145/3458817.3476143

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805 [cs.CL] https://arxiv.org/
abs/1810.04805

[21] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020.
GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference
Platform. In Proceedings of the 11th ACM Symposium on Cloud Com-
puting (Virtual Event, USA) (SoCC ’20). Association for Computing
Machinery, New York, NY, USA, 492–506. doi:10.1145/3419111.3421284

[22] Benj Edwards. 2025. Nvidia announces “Rubin Ultra” and “Feynman”
AI chips for 2027 and 2028. https://arstechnica.com/ai/2025/03/nvidia-
announces-rubin-ultra-and-feynman-ai-chips-for-2027-and-2028/

[23] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.
Caladan: Mitigating Interference at Microsecond Timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 281–297. https://www.usenix.org/
conference/osdi20/presentation/fried

[24] Yanjie Gao, Yichen He, Xinze Li, Bo Zhao, Haoxiang Lin, Yoyo Liang,
Jing Zhong, Hongyu Zhang, JingzhouWang, Yonghua Zeng, et al. 2024.
An Empirical Study on Low GPU Utilization of Deep Learning Jobs. In
Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering. 1–13.

[25] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav
Pandey, Abhishek Kadian, and Ahmad Al-Dahle et al. 2024. The Llama
3 Herd of Models. arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.
21783

[26] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like
Clockwork: Performance Predictability from the Bottom Up. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 443–462. https://www.usenix.org/
conference/osdi20/presentation/gujarati

[27] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022.
Microsecond-scale Preemption for Concurrent GPU-accelerated DNN
Inferences. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIXAssociation, Carlsbad, CA, 539–
558. https://www.usenix.org/conference/osdi22/presentation/han

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep
Residual Learning for Image Recognition. arXiv:1512.03385 [cs.CV]
https://arxiv.org/abs/1512.03385

[29] Saksham Jain, Iljoo Baek, ShigeWang, and Ragunathan Rajkumar. 2019.
Fractional GPUs: Software-based compute and memory bandwidth
reservation for GPUs. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 29–41.

[30] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, unjie
Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training Workloads. In Proceed-
ings of the 2019 USENIX Conference on Usenix Annual Technical Confer-
ence (USENIX ATC ’19). USENIX Association, USA, 947–960.

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1145/3620666.3651353
https://doi.org/10.1109/TCC.2021.3119205
https://doi.org/10.1145/3412841.3441989
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://doi.org/10.1109/HPCA56546.2023.10071121
https://doi.org/10.1145/3634769.3634808
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1145/3458817.3476143
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3419111.3421284
https://arstechnica.com/ai/2025/03/nvidia-announces-rubin-ultra-and-feynman-ai-chips-for-2027-and-2028/
https://arstechnica.com/ai/2025/03/nvidia-announces-rubin-ultra-and-feynman-ai-chips-for-2027-and-2028/
https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi22/presentation/han
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Coppock et al.

[31] Andreas Kosmas Kakolyris, Dimosthenis Masouros, Petros Vavarout-
sos, Sotirios Xydis, and Dimitrios Soudris. 2024. SLO-aware GPU
Frequency Scaling for Energy Efficient LLM Inference Serving.
arXiv:2408.05235 [cs.DC] https://arxiv.org/abs/2408.05235

[32] Woosung Kang, Jinkyu Lee, Youngmoon Lee, Sangeun Oh, Kilho Lee,
and Hoon Sung Chwa. 2024. RT-Swap: Addressing GPU Memory
Bottlenecks for Real-TimeMulti-DNN Inference. In 2024 IEEE 30th Real-
Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 373–385.

[33] Shinpei Kato, Karthik Lakshmanan, Aman Kumar, Mihir Kelkar, Yutaka
Ishikawa, and Ragunathan Rajkumar. 2011. RGEM: A responsive
GPGPU execution model for runtime engines. In 2011 IEEE 32nd Real-
Time Systems Symposium. IEEE, 57–66.

[34] Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajkumar, and Yutaka
Ishikawa. 2011. TimeGraph: GPU scheduling for real-time multi-
tasking environments. In Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference (Portland, OR) (USENIXATC’11).
USENIX Association, USA, 2.

[35] Yunseong Kim, Yujeong Choi, and Minsoo Rhu. 2022. PARIS and ELSA:
an elastic scheduling algorithm for reconfigurablemulti-GPU inference
servers. In Proceedings of the 59th ACM/IEEE Design Automation Confer-
ence (San Francisco, California) (DAC ’22). Association for Computing
Machinery, New York, NY, USA, 607–612. doi:10.1145/3489517.3530510

[36] Beth Kindig. 2024. AI power consumption: Rapidly becoming mission-
critical. https://www.forbes.com/sites/bethkindig/2024/06/20/ai-
power-consumption-rapidly-becoming-mission-critical/

[37] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh
Tiwari. 2022. MISO: Exploiting Multi-Instance GPU Capability on
Multi-Tenant GPU Clusters. In Proceedings of the 13th Symposium on
Cloud Computing (San Francisco, California) (SoCC ’22). Association
for Computing Machinery, New York, NY, USA, 173–189. doi:10.1145/
3542929.3563510

[38] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
2018. Focal Loss for Dense Object Detection. arXiv:1708.02002 [cs.CV]
https://arxiv.org/abs/1708.02002

[39] Xuanzhe Liu, Yihao Zhao, Shufan Liu, Xiang Li, Yibo Zhu, Xin Liu,
and Xin Jin. 2024. MuxFlow: efficient GPU sharing in production-
level clusters with more than 10000 GPUs. Science China Information
Sciences 67, 12 (2024), 222101. doi:10.1007/s11432-024-4227-2

[40] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. 2019. Deep Learning Recommendation Model for Per-
sonalization and Recommendation Systems. arXiv:1906.00091 [cs.IR]
https://arxiv.org/abs/1906.00091

[41] Microsoft Network. 2024. Dell exec reveals Nvidia has a 1,000watt GPU
in the works. https://www.msn.com/en-us/lifestyle/other/dell-exec-
reveals-nvidia-has-a-1-000-watt-gpu-in-the-works/ar-BB1jlE8f Ac-
cessed: June 24, 2024.

[42] Kelvin K. W. Ng, Henri Maxime Demoulin, and Vincent Liu. 2023.
Paella: Low-latency Model Serving with Software-defined GPU Sched-
uling. In Proceedings of the 29th Symposium on Operating Systems
Principles (Koblenz, Germany) (SOSP ’23). Association for Computing
Machinery, New York, NY, USA, 595–610. doi:10.1145/3600006.3613163

[43] NVIDIA Corporation. [n. d.]. NVIDIA CUDADriver API Documentation:
Occupancy. NVIDIA Corporation. https://docs.nvidia.com/cuda/cuda-
driver-api/group__CUDA__OCCUPANCY.html

[44] NVIDIA Corporation. 2024. Virtual GPU Software User Guide (v13.0).
NVIDIA Corporation. https://docs.nvidia.com/vgpu/13.0/grid-vgpu-
user-guide/index.html Version 13.0, Accessed: 2025-08-28.

[45] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li
Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
2017. TensorFlow-Serving: Flexible, High-Performance ML Serving.
arXiv:1712.06139 [cs.DC]

[46] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-sensitive Datacenter Workloads. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
USENIX Association, Boston, MA, 361–378. https://www.usenix.org/
conference/nsdi19/presentation/ousterhout

[47] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, BrijeshWar-
rier, Nithish Mahalingam, and Ricardo Bianchini. 2024. Characterizing
Power Management Opportunities for LLMs in the Cloud. In Proceed-
ings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (La Jolla,
CA, USA) (ASPLOS ’24). Association for Computing Machinery, New
York, NY, USA, 207–222. doi:10.1145/3620666.3651329

[48] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha,
Chen Wang, Hubertus Franke, Zbigniew Kalbarczyk, Tamer Başar,
and Ravishankar K. Iyer. 2024. Power-aware Deep Learning Model
Serving with 𝜇-Serve. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24). USENIX Association, Santa Clara, CA, 75–93. https:
//www.usenix.org/conference/atc24/presentation/qiu

[49] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon
Min, Amna Masood, Jeongmin Park, Jinjun Xiong, C. J. Newburn,
Dmitri Vainbrand, I-Hsin Chung, Michael Garland, William Dally, and
Wen-mei Hwu. 2023. GPU-Initiated On-Demand High-Throughput
Storage Access in the BaM System Architecture. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 325–339. doi:10.1145/3575693.3575748

[50] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody
Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,
J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff
Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton
Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin
Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George
Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. 2019. MLPerf
Inference Benchmark. arXiv:1911.02549 [cs.LG]

[51] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. INFaaS: Automated Model-less Inference Serv-
ing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, 397–411. https://www.usenix.org/conference/
atc21/presentation/romero

[52] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray,
and Emmett Witchel. 2011. PTask: operating system abstractions to
manage GPUs as compute devices. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (Cascais, Portugal)
(SOSP ’11). Association for Computing Machinery, New York, NY, USA,
233–248. doi:10.1145/2043556.2043579

[53] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 4510–4520.

[54] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video
Analysis. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association

https://arxiv.org/abs/2408.05235
https://arxiv.org/abs/2408.05235
https://doi.org/10.1145/3489517.3530510
https://www.forbes.com/sites/bethkindig/2024/06/20/ai-power-consumption-rapidly-becoming-mission-critical/
https://www.forbes.com/sites/bethkindig/2024/06/20/ai-power-consumption-rapidly-becoming-mission-critical/
https://doi.org/10.1145/3542929.3563510
https://doi.org/10.1145/3542929.3563510
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://doi.org/10.1007/s11432-024-4227-2
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://www.msn.com/en-us/lifestyle/other/dell-exec-reveals-nvidia-has-a-1-000-watt-gpu-in-the-works/ar-BB1jlE8f
https://www.msn.com/en-us/lifestyle/other/dell-exec-reveals-nvidia-has-a-1-000-watt-gpu-in-the-works/ar-BB1jlE8f
https://doi.org/10.1145/3600006.3613163
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__OCCUPANCY.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__OCCUPANCY.html
https://docs.nvidia.com/vgpu/13.0/grid-vgpu-user-guide/index.html
https://docs.nvidia.com/vgpu/13.0/grid-vgpu-user-guide/index.html
https://arxiv.org/abs/1712.06139
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.1145/3620666.3651329
https://www.usenix.org/conference/atc24/presentation/qiu
https://www.usenix.org/conference/atc24/presentation/qiu
https://doi.org/10.1145/3575693.3575748
https://arxiv.org/abs/1911.02549
https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero
https://doi.org/10.1145/2043556.2043579

LithOS: An Operating System for Efficient Machine Learning on GPUs SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

for Computing Machinery, New York, NY, USA, 322–337. doi:10.1145/
3341301.3359658

[55] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2014.
GPUfs: Integrating a file system with GPUs. ACM Trans. Comput. Syst.
32, 1, Article 1 (Feb. 2014), 31 pages. doi:10.1145/2553081

[56] Karen Simonyan and Andrew Zisserman. 2015. Very Deep
Convolutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs.CV] https://arxiv.org/abs/1409.1556

[57] Athinagoras Skiadopoulos, Zhiqiang Xie, Mark Zhao, Qizhe Cai, Sak-
sham Agarwal, Jacob Adelmann, David Ahern, Carlo Contavalli,
Michael Goldflam, Vitaly Mayatskikh, Raghu Raja, Daniel Walton,
Rachit Agarwal, Shrijeet Mukherjee, and Christos Kozyrakis. 2024.
High-throughput and Flexible Host Networking for Accelerated Com-
puting. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24). USENIX Association, Santa Clara, CA,
405–423. https://www.usenix.org/conference/osdi24/presentation/
skiadopoulos

[58] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha
Choukse. 2024. DynamoLLM: Designing LLM Inference Clusters for
Performance and Energy Efficiency. arXiv:2408.00741 [cs.AI] https:
//arxiv.org/abs/2408.00741

[59] Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion:
Interference-aware, Fine-grained GPU Sharing for ML Applications. In
Proceedings of the Nineteenth European Conference on Computer Systems
(Athens, Greece) (EuroSys ’24). Association for Computing Machinery,
New York, NY, USA, 1075–1092. doi:10.1145/3627703.3629578

[60] Cheng Tan, Zhichao Li, Jian Zhang, Yu Cao, Sikai Qi, Zherui Liu, Yibo
Zhu, and Chuanxiong Guo. 2021. Serving DNN Models with Multi-
Instance GPUs: A Case of the Reconfigurable Machine Scheduling
Problem. arXiv:2109.11067 [cs.DC]

[61] VMware. 2020. SHARING GPUS IN MACHINE LEARNING ENVIRON-
MENTS. VMware. https://www.vmware.com/docs/vmware-ai-ml-ra-
ma

[62] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Param-
eter Autoregressive Language Model. https://github.com/kingoflolz/
mesh-transformer-jax.

[63] Tianyu Wang, Sheng Li, Bingyao Li, Yue Dai, Ao Li, Geng Yuan,
Yufei Ding, Youtao Zhang, and Xulong Tang. 2024. Improving GPU
Multi-Tenancy Through Dynamic Multi-Instance GPU Reconfigura-
tion. arXiv preprint arXiv:2407.13126 (2024).

[64] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. 2023.
Transparent GPU Sharing in Container Clouds for Deep Learning
Workloads. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). USENIX Association, Boston, MA, 69–
85. https://www.usenix.org/conference/nsdi23/presentation/wu

[65] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi
Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: Dynamic
Scaling on GPU Clusters for Deep Learning. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’20). USENIX Association, USA, Article 30, 16 pages.

[66] Fei Xu, Jianian Xu, Jiabin Chen, Li Chen, Ruitao Shang, Zhi Zhou,
and Fangming Liu. 2023. iGniter: Interference-Aware GPU Resource
Provisioning for Predictable DNN Inference in the Cloud. IEEE
Transactions on Parallel and Distributed Systems 34, 3 (2023), 812–827.
doi:10.1109/TPDS.2022.3232715

[67] Ting-An Yeh, Hung-Hsin Chen, and Jerry Chou. 2020. KubeShare: A
Framework to Manage GPUs as First-Class and Shared Resources in
Container Cloud. In Proceedings of the 29th International Symposium
on High-Performance Parallel and Distributed Computing (Stockholm,
Sweden) (HPDC ’20). Association for Computing Machinery, New York,
NY, USA, 173–184. doi:10.1145/3369583.3392679

[68] Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and
Christopher J Rossbach. 2020. AvA: Accelerated virtualization of ac-
celerators. In Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating
Systems. 807–825.

[69] Yijia Zhang, Qiang Wang, Zhe Lin, Pengxiang Xu, and Bingqiang
Wang. 2024. Improving GPU Energy Efficiency through anApplication-
transparent Frequency Scaling Policy with Performance Assurance. In
Proceedings of the Nineteenth European Conference on Computer Systems
(Athens, Greece) (EuroSys ’24). Association for Computing Machinery,
New York, NY, USA, 769–785. doi:10.1145/3627703.3629584

[70] Yongkang Zhang, Haoxuan Yu, Chenxia Han, Cheng Wang, Baotong
Lu, Yang Li, Xiaowen Chu, and Huaicheng Li. 2024. Missile: Fine-
Grained, Hardware-Level GPU Resource Isolation for Multi-Tenant
DNN Inference. arXiv preprint arXiv:2407.13996 (2024).

[71] Yongkang Zhang, Haoxuan Yu, Chenxia Han, Cheng Wang, Baotong
Lu, Yunzhe Li, Zhifeng Jiang, Yang Li, Xiaowen Chu, and Huaicheng
Li. 2025. SGDRC: Software-Defined Dynamic Resource Control for
Concurrent DNN Inference on NVIDIA GPUs. In Proceedings of the
30th ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming (Las Vegas, NV, USA) (PPoPP ’25). Association
for Computing Machinery, New York, NY, USA, 267–281. doi:10.1145/
3710848.3710863

[72] Xia Zhao, Magnus Jahre, and Lieven Eeckhout. 2020. HSM: A Hy-
brid Slowdown Model for Multitasking GPUs. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland)
(ASPLOS ’20). Association for Computing Machinery, New York, NY,
USA, 1371–1385. doi:10.1145/3373376.3378457

Patrick H. Coppock, Brian Zhang, Eliot H. Solomon, Vasilis Kypriotis, Leon YangâĂă, Bikash SharmaâĂă,Dan SchatzbergâĂă, Todd C. Mowry, and Dimitrios Skarlatos Carnegie Mellon University âĂăMeta„

https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/2553081
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://www.usenix.org/conference/osdi24/presentation/skiadopoulos
https://www.usenix.org/conference/osdi24/presentation/skiadopoulos
https://arxiv.org/abs/2408.00741
https://arxiv.org/abs/2408.00741
https://arxiv.org/abs/2408.00741
https://doi.org/10.1145/3627703.3629578
https://arxiv.org/abs/2109.11067
https://www.vmware.com/docs/vmware-ai-ml-ra-ma
https://www.vmware.com/docs/vmware-ai-ml-ra-ma
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://www.usenix.org/conference/nsdi23/presentation/wu
https://doi.org/10.1109/TPDS.2022.3232715
https://doi.org/10.1145/3369583.3392679
https://doi.org/10.1145/3627703.3629584
https://doi.org/10.1145/3710848.3710863
https://doi.org/10.1145/3710848.3710863
https://doi.org/10.1145/3373376.3378457

	Abstract
	1 Introduction
	1.1 Our Approach: An Operating System for GPUs

	2 Background and Related Work
	2.1 A Brief Background on GPUs
	2.2 Related Work

	3 Motivation
	3.1 Understanding GPU Utilization in Datacenters

	4 blackAbstractions, Interfaces, and Principles for a GPU Operating System
	4.1 Resources and Isolation
	4.2 Closing the Gap

	5 LithOS Design
	5.1 Architecture Overview
	5.2 Interface with Userspace
	5.3 TPC Scheduler
	5.4 Kernel Atomizer
	5.5 Right-Sizing Hardware Resources
	5.6 Transparent Power Management
	5.7 Online Latency Prediction

	6 Implementation
	7 Experimental Setup and Methodology
	8 Evaluation
	8.1 Performance in Multitenant Environments
	8.2 Kernel-SM Right-Sizing
	8.3 Kernel-Dependent DVFS
	8.4 Ablation and Case Studies

	9 Discussion
	10 Conclusion
	Acknowledgments
	References

