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Abstract

In large-scale distributed storage systems, erasure codes are used to achieve fault tolerance in the face of node failures. Tuning
code parameters to observed failure rates has been shown to significantly reduce storage cost. Such tuning of redundancy requires
code conversion, i.e., a change in code dimension and length on already encoded data. Convertible codes [1] are a new class of
codes designed to perform such conversions efficiently. The access cost of conversion is the number of nodes accessed during
conversion.

Existing literature has characterized the access cost of conversion of linear MDS convertible codes only for a specific and
small subset of parameters. In this paper, we present lower bounds on the access cost of conversion of linear MDS codes for all
valid parameters. Furthermore, we show that these lower bounds are tight by presenting an explicit construction for access-optimal
linear MDS convertible codes for all valid parameters. En route, we show that, one of the degrees-of-freedom in the design of
convertible codes that was inconsequential in the previously studied parameter regimes, turns out to be crucial when going beyond
these regimes and adds to the challenge in the analysis and code construction.

I. INTRODUCTION

Erasure codes are an essential tool for providing resilience against node failures in a distributed storage system [2]–[8]. When
using an [n, k] erasure code, k chunks of data are encoded into n chunks, called a stripe. These chunks are then distributed
among n different “nodes” in the system, where nodes correspond to distinct storage devices typically residing on distinct
servers. For the purposes of theoretical study, each stripe can be viewed as a codeword, by viewing each of the n chunks as
one of the n codeword symbols. The parameters n and k are usually chosen based on node failure rate, which might vary
over time. Redundancy tuning, i.e., changing n and k in response to fluctuations in the failure rate of storage devices can
achieve significant savings (11% to 44%) in storage space [9]. Due to practical system constraints, changing n alone is typically
insufficient and both n and k have to be changed simultaneously [9]. The resource cost of changing n and k on already encoded
data can be prohibitively high and is a key barrier in the practical adoption of redundancy tuning [1]. Other reasons to change
n and k on already encoded data might include variations in data popularity, failure rate uncertainty, or restrictions on the total
amount of used storage.

The code conversion problem defined in [1] involves converting multiple stripes of an [nI , kI ] code (denoted by CI ) into
(potentially multiple) stripes of an [nF , kF ] code (denoted by CF ), along with desired constraints on decodability such as both
codes being Maximum Distance Separable (MDS). Considering multiple stripes enables code conversions to allow for changes
in the code dimension (from kI to kF ). Convertible codes [1] are code pairs that enable code conversion, usually designed to
minimize the cost of conversion. A detailed description of the convertible codes framework is provided in Section II-A.

There are several ways in which one might measure the cost of conversion. We focus on the access cost of conversion, which
is measured in terms of the total number of nodes that need to be accessed during conversion. In [1], the authors focus on
the so-called merge regime, wherein multiple initial stripes are merged into one. Specifically, they consider the case where
kF = ςkI for some integer ς ≥ 2, and propose explicit constructions for converible codes that achieve optimal access cost for
the merge regime. We review these results for the merge regime in Section II-B.

The results presented in this work are two fold. (1) We present lower bounds on the access cost of conversion for linear
MDS codes for all valid parameters, that is, all nI , kI , nF , kF ∈ N+ such that nI > kI and nF > kF . (2) We show that the
proposed lower bounds are tight by presenting an explicit construction of linear MDS convertible codes that is access optimal
for all parameter regimes. To achieve this, we first define and study the split regime in Section III, where kI = ςkF for an
integer ς ≥ 2, that is, a single initial stripe is split into multiple final stripes. We prove a (tight) lower bound on the access
cost of conversion in the split regime, and describe a conversion procedure which has optimal access cost when used with
any systematic MDS code. We then present in Section IV a tight lower bound on the access cost of conversion for linear
MDS convertible codes for all valid parameters (termed general regime) by reducing conversion in the general regime to a
combination of generalizations of conversions in the split and merge regimes. While the split and the merge regimes might
seem somewhat restrictive, we show that, perhaps surprisingly, the proposed conversion procedure for the general regime that
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builds on top of the generalized split and merge regime is optimal. Interestingly, one of the degrees-of-freedom in the design of
convertible codes (called “partitions” described subsequently in Section II-A), which is inconsequential in the split and merge
regimes, turns out to be crucial in the general regime. The proposed construction for access-optimal convertible codes for
the general regime builds on the constructions for split and merge regimes, while separately optimizing along this additional
degree-of-freedom.

II. BACKGROUND AND RELATED WORK

A. Convertible codes [1]

A conversion from an [nI , kI ] initial code CI to an [nF , kF ] final code CF is a procedure that takes as input a set of initial
stripes from CI and outputs a set of final stripes from CF , such that the final stripes together encode the same information as
the initial stripes. To avoid degeneracy, nF > kF and nI > kI is assumed. Let Fq be a finite field, and consider a message
m ∈ FMq , where M = lcm(kI , kF ). The number of initial stripes is λI = M/kI and the number of final stripes is λF = M/kF .
Let [n] = {1, . . . , n}, rI = nI − kI and rF = nF − kF . Let m[S] denote the projection of m onto the coordinates in the set
S, and let C(m) denote the encoding of m under code C. Consider an initial partition PI = {P I1 , . . . , P IλI} of [M ] such that
|P Ii | = kI (∀i ∈ [λI ]), and a final partition PF = {PF1 , . . . , PFλF } of [M ] such that |PFj | = kF (∀j ∈ [λF ]). These partitions
determine how message symbols are mapped to each of the initial and final stripes. For example, the i-th initial stripe will only
encode the symbols of m indexed by P Ii .

Definition 1 (Convertible code [1]). An (nI , kI ;nF , kF ) convertible code over Fq is defined by:
1) a pair of codes (CI , CF ) over Fq such that CI is [nI , kI ] and CF is [nF , kF ];
2) a pair of partitions (PI ,PF ) of [M = lcm(kI , kF )] such that |P Ii | = kI for all P Ii ∈ PI and |PFj | = kF for all PFj ∈ PF ;

and
3) a conversion procedure which, for any m ∈ FMq , takes the set of initial codewords {CI(m[P Ii ]) | P Ii ∈ PI} as input, and

outputs the corresponding set of final codewords {CF (m[PFj ]) | PFj ∈ PF }.

In this paper, we will restrict our focus to the case where CI and CF are both linear and MDS.
The access cost of a conversion procedure is the total number of nodes that are read or written during conversion. Recall that

each node in a stripe corresponds to a single symbol from the corresponding codeword, therefore access cost is equivalent to the
number of codeword symbols that are read or written during conversion. We distinguish three types of nodes during conversion:
unchanged nodes, which remain as is during the conversion process, and are present in both the initial and final configuration
(possibly in different stripes); retired nodes, which are present in the initial configuration and throughout the conversion, but
not in the final configuration; and new nodes, which are introduced during conversion, and are present in the final configuration,
but not in the initial configuration. Unchanged and retired nodes may be accessed for reading during conversion, and new
nodes are always accessed for writing during the conversion. A convertible code that maximizes the number of unchanged
nodes is said to be stable.

The read access set of an (nI , kI ;nF , kF ) convertible code is a set of tuples D ⊆ [λI ]× [nI ], where (i, j) ∈ D corresponds
to the j-th node in initial stripe i. After a conversion, each new node holds a fixed linear combination of the contents of
the nodes indexed by D. We denote the accessed nodes from initial stripe i as Di = {j | (i, j) ∈ D}. Thus, the access cost
of a conversion with read access set of size d = |D| and m new nodes is d+m. Clearly, there always exists a conversion
procedure with read access cost M , which reconstructs the original message m and re-encodes according to CF . We refer to
this procedure as the default approach.

An (nI , kI ;nF , kF ) convertible code is access-optimal if and only if it achieves the minimum access cost over all (nI , kI ;
nF , kF ) convertible codes.

B. Merge regime [1]

The merge regime is the subset of valid parameter values for convertible codes where kF = ςkI , for some integer ς ≥ 2.
Thus, in this regime we have λI = ς and λF = 1. This regime was the focus of [1], wherein the following lower bound on
access cost was shown.

Theorem 1 ([1]). For all linear MDS (nI , kI ;nF , kF ) convertible code, the access cost of conversion is at least rF +
ςmin{kI , rF }. Furthermore, if rI < rF , the access cost of conversion is at least rF + ςkI .

An explicit construction for access-optimal convertible codes for all values in the merge regime was also provided in [1].

C. Other related works

The closest related work [1] proposes the convertible codes framework considered in this work (discussed at length above).
Several other works in the literature [10]–[14] have considered variants of the code conversion problem, largely within the
context of so-called “regenerating codes” [15]. The study on regenerating codes, which are a class of codes that optimize for



3

recovery for a small subset of nodes within a stripe (as opposed to decoding all original data), was initiated by Dimakis et
al. [15]. Subsequently numerous works have studied and constructed optimal regenerating codes (e.g., [16]–[30]). Specific
instances of code conversion can be viewed as instances of the repair problem, for example, increasing n while keeping k fixed
as studied in [10], [14].

In a recent work [31], Su et al. study a related problem in the context of coded computation for distributed matrix multiplication.
In [31], Su et al. propose a coding scheme for coded matrix-multiplication with the property that certain changes to the code
parameters only require local re-encoding of the data stored in each server.

D. Notation

This subsection introduces notation that generalizes the notation used in [1] and is used throughout this paper. Let G♦ =
(g♦

1 · · ·g
♦
n♦) ∈ Fk♦×n♦

q be a generator matrix of MDS code C♦ for ♦ ∈ {I, F}. An encoding vector in relation to m ∈ FMq
is associated to each node in the initial or final stripes. The encoding vector g̃♦

i,j ∈ FMq of node j ∈ [n♦] in stripe i ∈ [λ♦]

with partition set P♦
i ∈ P♦ is defined such that g̃♦

i,j [P
♦
i ] = g♦

j , and 0 everywhere outside of P♦
i . The difference between g♦

j

and g̃♦
i,j is that the former describes the encoding of the j-th symbol relative to the information encoded in a single initial

(resp. final) stripe, while the latter describes the encoding of the j-th symbol of the i-th initial (resp. final) stripe relative to the
information jointly encoded by all initial (resp. final) stripes (i.e., the message m).

Let S♦i = {g̃♦
i,j | j ∈ [n♦]} be the encoding vectors for a particular stripe, and let S♦ =

⋃
i∈[λ♦] S

♦
i . Let U = SI ∩ SF

be the encoding vectors of unchanged nodes, and define Ui,j = SIi ∩ SFj , where the index i or j is dropped if λI = 1 or
λF = 1, respectively. Let Ai = {g̃Ii,j | j ∈ Di} be the encoding vectors of nodes that are read from initial stripe i, and define
A = {g̃Ii,j | (i, j) ∈ D} as the set of all encoding vectors of nodes that are read. Finally, let N = SF \ SI be the encoding
vectors of new nodes, and define Ni = SFi \ SI as the encoding vectors of new nodes of a particular stripe i. Notice that it
must hold that N ⊆ span(A). For simplicity, we sometimes refer to a node and its encoding vector interchangeably.

III. SPLIT REGIME

The split regime of convertible codes corresponds to the case where a single initial stripe is split into multiple final stripes.
This regime is, in some sense, the opposite of the merge regime, in which multiple initial stripes are combined into one final
stripe. Specifically, an (nI , kI ;nF , kF ) convertible code is in the split regime if kI = ςkF for an integer ς ≥ 2, with arbitrary
nI and nF . Notice that in this regime we have that M = lcm(kI , kF ) = kI and thus λI = 1 and λF = ς .

First, in Section III-A, we show a lower bound on access cost for the split regime. In Section III-B we show a matching
upper bound on access cost by showing that for every systematic [nI , ςkF ] MDS code C there exists an access-optimal (nI ,
kI = ςkF ;nF , kF ) convertible code having C as its initial code by presenting a conversion procedure whose cost matches the
lower bound.

A. Access cost lower bound for the split regime

In this subsection, we lower bound the access cost of conversion in the split regime. This is done by first showing a lower
bound on write access cost, and then showing a lower bound on the read access cost of conversion.

The following fact simplifies the analysis of the split regime.

Proposition 2. For a linear MDS (nI , kI = ςkF ;nF , kF ) convertible code, all possible pairs of initial and final partitions are
equivalent (up to relabeling).

Proof. There is only one possible initial partition PI = {[kI ]}, hence any two final partitions can be made equivalent by
relabeling nodes.

Therefore, we do not need to consider differences in partitions in our analysis of the split regime.

Proposition 3. In a linear MDS (nI , kI = ςkF ;nF , kF ) convertible code, there are at most kF unchanged nodes in each of
the final stripes (i.e., at least rF new nodes per stripe). Hence, there are at most kI unchanged nodes in total.

Proof. For any final stripe i ∈ [ς], any subset V ⊆ SFi of size at least kF + 1 is linearly dependent due to the MDS property.
Thus, V ⊆ SI contradicts the fact that CI is MDS. Hence, each final stripe i has at most kF unchanged nodes.

Therefore, the total write access cost in the split regime is at least ςrF .
Now we focus on bounding the read access cost. The general strategy we use to obtain bounds on read access cost is to

consider a specially chosen set W of kF nodes from a final stripe, which by the MDS property of the final code is enough to
decode all data in that stripe. We then use the fact that final stripes are the result of conversion to identify a set V of initial
nodes that contain all the information contained in W . The MDS property of the initial code constrains the information available
in V , which allows us to derive a lower bound on its size and thus a lower bound on the number of read nodes.
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Lemma 4. For all linear MDS (nI , kI = ςkF ;nF , kF ) convertible codes, the read access set D satisfies |D| ≥ (ς − 1)kF +
min{rF , kF }.

Proof. If rF ≥ kF , then all data should be decodable by accessing only new nodes in the final stripes, and the result follows
easily since all data must have been read to create the new nodes. Therefore, assume for the rest of this proof that rF < kF .

Suppose, for the sake of contradiction, that |D| < (ς − 1)kF + rF . Let u be a node in some final stripe i ∈ [ς] which is
neither read nor written. Such a stripe and node exist since otherwise every node in the final stripes would be accessed (for
either read or write) and thus SF would be in the span of A, which is a contradiction since rk(SF ) = kI .

Let W1 be a subset of nodes of the same final stripe i such that W1 ⊆ Ni and |W1| = rF . Such a subset exists by virtue of
Proposition 3. Further, let W2 ⊆ SFi \ (W1 ∪ {u}) be such that |W2| = kF − rF . Clearly W =W1 ∪W2 is of size |W| = kF

and can reconstruct the contents of u, by the MDS property of the final code. In other words, u ∈ span(W).
Let W ′2 = (W2 ∩Ui) be the unchanged nodes in W2. Since W1 and W2 \W ′2 only have new nodes, they are both contained

in span(A), therefore W ⊆ span(A ∪W ′2). Notice that the subset V = (A ∪W ′2) consists only of initial nodes. Furthermore,
it holds that rk(A) ≤ |D| and rk(W ′2) ≤ |W2| = kF − rF < kF . Thus:

rk(V) ≤ rk(A) + rk(W ′2) ≤ |D|+ (kF − rF ) < kI .

This implies that W is spanned by less than kI initial nodes (which do not include u). However, by the MDS property of the
initial code, any subset of less than kI initial nodes that does not contain node u, has no information about u. This causes a
contradiction with the fact that u ∈ span(W) ⊆ span(V). Thus, we must have |D| ≥ (ς − 1)kF + rF .

It is easy to show that if we only read unchanged nodes, it is not possible to do better than the default approach. This follows
from the fact that unchanged nodes are already present in the final stripes and hence using them to create the new nodes will
contradict with the MDS property. Retired nodes, on the other hand, do not have this drawback. Thus, intuitively, based on
Lemma 4, one might expect to achieve an efficient conversion by reading from the retired nodes. However, we next show that
it is not possible to achieve lower read access cost than the default approach when rI < rF .

Lemma 5. For all linear MDS (nI , kI = ςkF ;nF , kF ) convertible codes, if rI < rF then the read access set D satisfies
|D| ≥ ςkF .

Proof. Suppose, for the sake of contradiction, that |D| < ςkF . Let u be a node in some final stripe i ∈ [ς] which is neither
read nor written. Such a stripe and node always exist as described in the proof of Lemma 4. We will choose a subset of nodes
W ⊆ SFi of size |W| = kF . By the MDS property of the final code, node u is decodable from W , i.e., u ∈ span(W). There
are two cases for the choice of W depending on the total number of accessed nodes in stripe i:
Case 1: If |Ni|+ |Ui ∩ A| ≥ kF , then let W ⊆ Ni ∪ (Ui ∩ A). That is, W only contains nodes that are read or written. It is
easy to see that W ⊆ span(A).

Clearly, A contains only initial nodes, and the following holds:

rk(A) ≤ |D| < ςkF = kI .

However, this is a contradiction with the fact that u ∈ span(W), since by the MDS property of the initial code, A contains no
information about node u.
Case 2: If |Ni| + |Ui ∩ A| < kF , then choose W = (W1 ∪ W2), where W1 = (Ni ∪ (Ui ∩ A)) and W2 is any subset of
(SFi \ (W1 ∪ {u})) of size |W2| = kF − |W1|. That is, W contains all the nodes of final stripe i that are read or written
(in addition to other unchanged nodes distinct from u). It is easy to see that W1 ⊆ span(A) and thus W ⊆ span(A ∪W2).
Furthermore, the subset V = (A ∪W2) consists only of initial nodes.

Notice that there are at most (|SI |−|Ui|) = (kI+rI−|Ui|) read nodes outside of final stripe i (i.e., in SI \Ui). Therefore, we
can bound rk(A) by rk(A) ≤ kI+rI−|Ui|+ |Ui∩A|. On the other hand, it is clear that rk(W2) ≤ |W2| = kF −|Ni|−|Ui∩A|.
Combining these, we get:

rk(V) ≤ rk(A) + rk(W2)

≤ kI + rI + kF − |Ui| − |Ni|
≤ kI + rI − rF

< kI .

However, this is a contradiction with the fact that u ∈ span(W) ⊆ span(V), since by the MDS property of the initial codes, V
contains no information about node u.

By combining all the results in this subsection, we obtain the following lower bound on the access cost of conversion in the
split regime.

Theorem 6. The total access cost of any linear MDS (nI , kI = ςkF ;nF , kF ) convertible code is at least (ς − 1)kF +
min{rF , kF }+ ςrF if rI ≥ rF , and at least ςnF otherwise.
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Proof. Follows from Proposition 3 and Lemmas 4 and 5.

As we show in the next subsection, this lower bound is tight since it is achievable.

B. Access-optimal convertible codes for the split regime

In this subsection we present a construction of access-optimal convertible codes in the split regime. Under this construction,
any systematic MDS code can be used as the initial code. The final code corresponds to the projection of the initial code onto
the coordinates of any kF systematic nodes. Since our construction can be applied to existing codes and only specifies the
conversion procedure, we introduce the following definition capturing the property of codes that can be converted efficiently.

Definition 2. A code CI is (nF , kF )-optimally convertible if and only if there exists an [nF , kF ] code CF (along with partitions
and conversion procedure) that form an access-optimal (nI , kI ;nF , kF ) convertible code.

The conversion procedure that leads to optimal access cost (meeting the lower bound in Theorem 6) is as follows.
Conversion procedure: All the systematic nodes are used as unchanged nodes. When rI < rF or rF ≥ kF , the conversion is

trivial since one cannot do better than the default approach. The conversion procedure for the nontrivial case proceeds as follows.
For all but one final stripe, all unchanged nodes are read ((ς − 1)kF in total), and the new nodes are naively constructed from
them. For the remaining final stripe, rF retired nodes are read, and then the unchanged nodes from the other final stripes are
used to remove their interference from the retired nodes to obtain rF new nodes.

Theorem 7. Every systematic linear MDS [nI , kI = ςkF ] code CI is (nF , kF )-optimally convertible.

Proof. If rF > min{rI , kF }, then the default approach achieves the bound stated in Theorem 6. Thus, assume rF ≤ min{rI , kF }.
Let GI = [I | PI ] be the generator matrix of CI and assume nodes are numbered in the same order as the columns of
GI . Define CF as the code generated by the matrix formed by taking the first kF rows of GI , and columns 1, . . . , kF and
kI + 1, . . . , kI + rF . Let (i− 1)kF + 1, . . . , ikF be the columns of the unchanged nodes corresponding to final stripe i ∈ [ς].
Consider the following conversion procedure: read the the subset of unchanged nodes U = {kF + 1, . . . , ςkF } and the retired
nodes R = {kI + 1, . . . , kI + rF }. To construct the new nodes for stripe 1, simply project the nodes of R onto their first
kF coordinates by using nodes U . To construct the new nodes for stripe i 6= 1, simply use then nodes in U . This conversion
procedure reads a total of |U |+ |R| = (ς − 1)kF + rF nodes and writes a total of ςrF new nodes, which matches the bound
from Theorem 6.

Notice that convertible codes created using the construction above are stable. We show this property is, in fact, necessary.

Lemma 8. All access-optimal convertible codes for the split regime are stable.

Proof. Theorem 7 shows that there exist stable access-optimal codes for the split regime. Since any unstable convertible code
must incur higher write access cost and at least as much read access cost, it cannot be access-optimal.

IV. GENERAL REGIME

In this section, we will study the general regime of convertible codes with arbitrary valid parameter values (i.e. any nI > kI

and nF > kF ). Recall that the choice of partition functions was inconsequential in the split and merge regimes. In contrast, it
turns out that the choice of initial and final partitions play an important role in the general regime. This makes the general
regime significantly harder to analyze. We deal with this complexity by reducing conversion in the general regime to generalized
versions of the split and merge conversions, and by identifying the conditions on initial and final partitions to minimize total
access cost.

In Section IV-A, we explore a generalization of the split regime and of the merge regime. In Section IV-B, these generalizations
are used to lower bound the access cost of conversion in the general regime. In Section IV-C, we describe a conversion
procedure and construction for access-optimal conversion in the general regime which utilizes ideas from the constructions for
generalizations of split and merge regimes.

A. Generalized split and merge regimes

The generalized split and merge regimes are similar to the split and merge regimes, except that the generalized variants
allow for initial or final stripes of unequal sizes. This flexibility enables the generalized split and merge regimes to be used as
building blocks in the analysis of the general regime. In these generalized variants, the message length M is defined to be
max{kI , kF } (which coincides with the definition of M in the split and merge regime), but now the sets in the initial and final
partitions need not be all of the same size.

Since the initial (or final) stripes might be of different lengths, we define them as shortenings of a common code C.

Definition 3. An s-shortening of an [n, k] code C is the code C′ formed by all the codewords in C that have 0 in a fixed subset
of s positions, with those s positions deleted.
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Shortening a code has the effect of decreasing the length n and dimension k while keeping (n− k) fixed. It can be shown
that an s-shortening of an [n, k] MDS code is an [n− s, k − s] MDS code. Lengthening is the inverse operation of shortening,
and has the effect of increasing length n and dimension k while keeping (n− k) fixed. For linear codes, an s-lengthening of a
code can be defined as adding s additional columns to its parity check matrix. Similarly, it can be shown that for an [n, k]
MDS code, there exists an s-lengthening of it that is an [n+ s, k + s] MDS code (assuming a large enough field size).

1) Generalized split regime: In the generalized split regime, λI = 1 is fixed, λF > 1 is arbitrary, and the final partition
PF = {PF1 , . . . , PFλF } is such that |PFi | = kFi and

∑
i∈[λF ] k

F
i = kI . Let kF∗ = maxi∈[λF ] k

F
i . Then CF is a [nF , kF∗ ] MDS

code, and the code corresponding to each final stripe is some fixed shortening of CF . In this case, we define rF = nF − kF∗ .

Definition 4. A (nI , kI =
∑λF

i=1 k
F
i ;n

F , {kFi }λ
F

i=1) convertible code for the generalized split regime is a variant of a convertible
code defined by:

1) CI and CF as [nI , kI ] and [nF , kF∗ ] codes, where kF∗ = maxi∈[λF ] k
F
i ,

2) a partition PF = {PF1 , . . . , PFλF } where |PFi | = kFi , and
3) a conversion procedure such that each final stripe i, is an si-shortening of CF where si = kF∗ − kFi .

The generalized split regime has an access cost lower bound similar to the split regime presented in Section III. We show
this by showing that a more efficient conversion procedure for the generalized split regime would imply the existence of a
conversion procedure for split regime violating Theorem 6.

Theorem 9. For all linear MDS (nI , kI =
∑λF

i=1 k
F
i ;n

F , {kFi }λ
F

i=1) convertible codes, the read access set D satisfies:

|D| ≥ kI −max{kF∗ − rF , 0}, where kF∗ = max
i∈[λF ]

kFi .

Proof. Suppose, for the sake of contradiction, that there exists a conversion procedure with read access cost |D| < kI −
max{kF∗ − rF , 0} for some convertible code in the generalized split regime with codes CI and CF . We modify the initial
code CI by lengthening it to an [nIs, k

I
s ] MDS code Cs, such that kIs = λF kF∗ and rI = nI − kI = nIs − kIs . This adds∑λF

i=1(k
F
∗ − kFi ) = (kIs − kI) extra “pseudo-nodes” to the initial code, which we denote with W .

We then define a new conversion procedure from code Cs to code CF which uses the conversion procedure for the generalized
split regime convertible code as a subroutine, and then simply reads all the added pseudo-nodes to construct the new nodes.
This procedure only reads the read access set D from Cs along with the (kIs − kI) pseudo-nodes.

Hence, the total read access is,

|D ∪W| < (kI −max{kF∗ − rF , 0}) + (kIs − kI)
≤ (λF − 1)kF∗ +min{rF , kF∗ }.

However, the codes Cs and CF with the new conversion procedure clearly form an MDS (nIs, k
I
s = λF kF∗ ;n

F , kF∗ ) convertible
code. Therefore, this is in contradiction to Theorem 6. Then, it must hold that |D| ≥ kI −max{kF∗ − rF , 0}.

This lower bound is achievable for all pairs of initial and final parameters. Similar to the case of the split regime, shown in
Section III-B, we can use any systematic MDS codes as initial and final codes, and access all but a set of nodes of size kF∗
(forming the largest final stripe) to perform this conversion, as described below.

Conversion procedure: All the systematic nodes are used as unchanged nodes. When rI < rF or rF ≥ kF∗ , the conversion
is trivial since one cannot do better than the default approach. The conversion procedure for the nontrivial case proceeds as
follows. For all but the largest final stripe, all unchanged nodes are read (ςkF − kF∗ in total), and the new nodes are naively
constructed from them. For the largest final stripe, the rF retired nodes are read, and then the unchanged nodes from the other
final stripes are used to remove their interference from the retired nodes to obtain rF new nodes.

2) Generalized merge regime: In the generalized merge regime, the sets in the initial partition need not be all of the same
size. In this case, we fix M = kF and λF = 1, while λI > 1 is arbitrary. The initial partition PI = {P I1 , . . . , P IλI} is such
that |P Ii | = kIi and

∑
i∈[λI ] k

I
i = kF . Let kI∗ = maxi∈[λI ] k

I
i . Then CI is a [nI , kI∗] MDS code, rI = nI − kI∗ , and the code

corresponding to each initial stripe is some fixed shortening of CI .

Definition 5. A (nI , {kIi }λ
I

i=1;n
F , kF =

∑λI

i=1 k
I
i ) convertible code for the generalized merge regime is a variant of a convertible

code defined by:
1) CI , CF as [nI , kI∗] and [nF , kF ] codes, where kI∗ = maxi∈[λI ] k

I
i

2) partition PI = {P I1 , . . . , P IλI} where |P Ii | = kIi , and
3) a conversion procedure such that each initial stripe i, is an si-shortening of CI where si = kI∗ − kIi .

The next theorem gives a lower bound on the read access cost of a (nI , {kIi }λ
I

i=1;n
F , kF =

∑λI

i=1 k
I
i ) convertible code.

Theorem 10. For all (nI , {kIi }λ
I

i=1;n
F , kF =

∑λI

i=1 k
I
i ) convertible code, |Di| ≥ min{kIi , rF } for all i ∈ [λI ]. Furthermore,

if rI < rF , then |Di| ≥ kIi for all i ∈ [λI ].
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Proof. Follows from the proofs of Lemmas 10, 11, and 13 in [1], with some straightforward modifications to account for the
difference in the number of nodes of each initial stripe.

We can achieve this lower bound by shortening an access-optimal (nI , kI∗;n
F
m, k

F
m) convertible code, where kFm = λIkI∗ and

nFm = kFm + rF .

B. Access cost lower bound for the general regime

In this subsection, we study the access cost lower bound for conversions in the general regime (i.e., for all valid parameter
values, nI > kI and nF > kF ). As in the merge and split regime, we show that when rI ≥ rF , significant reduction in access
cost can be achieved. However when rI < rF , one cannot do better than the default approach.

For an (nI , kI ;nF , kF ) convertible code with kI 6= kF and partitions (PI ,PF ), let ki,j = |P Ii ∩PFj | for (i, j) ∈ [λI ]× [λF ]
and let ki,∗ = maxj∈[λF ] ki,j .

Lemma 11. For all linear MDS (nI , kI ;nF , kF ) convertible codes with kI 6= kF :

|Di| ≥ kI −max{ki,∗ − rF , 0} for all i ∈ [λI ].

Moreover, if rI < rF then |Di| ≥ kI for all i ∈ [λI ].

Proof. Let i ∈ [λI ] be an initial stripe. There are two cases.
Case ki,∗ < kI : In this case, we can reduce this conversion to a conversion in the generalized split regime by focusing on
initial stripe i, and considering messages which are zero everywhere outside of P Ii . This is equivalent to a (nI , kI ; ki,∗ + rF ,

{ki,j}λ
F

j=1) convertible code. Then, the result follows from Theorem 9.
Case ki,∗ = kI : Let j = argmaxj′∈[λF ] ki,j′ . In this case, we can reduce this conversion to conversion in the generalized merge
regime by focusing on final stripe j, and considering messages which are zero everywhere outside of PFj . This is equivalent to
a (nI , {ki,j}λ

I

i=1;n
F , kF ) convertible code. Then, the result follows from Theorem 10.

We prove a lower bound on the total access cost of conversion in the general regime by using Lemma 11 on all initial stripes
and finding a partition that minimizes the value of the sum.

Theorem 12. For every linear MDS (nI , kI ;nF , kF ) convertible code such that kI 6= kF , it holds that:

|D| ≥ λIrF + (λI mod λF )(kI −max{kF mod kI , rF })

if rF < min{kI , kF }. Furthermore, if rI < rF or rF ≥ min{kI , kF }, then |D| ≥M .

Proof. Clearly, it holds that |D| =
∑λI

i=1 |Di|. Then, the case rI < rF follows directly from Lemma 11. Otherwise, by the
same lemma we have:

|D| =
λI∑
i=1

|Di| ≥
λI∑
i=1

kI −max{ki,∗ − rF , 0}. (1)

First, we consider the case kI > kF . Notice that in this case (λI mod λF ) = λI and (kF mod kI) = kF . If rF ≥ kF , then
the result is trivial, so assume rF < kF . Since ki,∗ ≤ kF for all i ∈ [λI ], we have:

|D| ≥
λI∑
i=1

kI −max{ki,∗ − rF , 0} ≥ λI(kI + rF − kF ),

which proves the result.
Now, we consider the case kI < kF . Assume, for now, that the right hand side of inequality 1 is minimized when:

ki,∗ =

{
kI , for 1 ≤ i ≤ (λI − (λI mod λF ))

(kF mod kI), otherwise.
(2)

Then, from inequality 1 we have:

|D| ≥ λIkI − (λI − (λI mod λF ))max{kI − rF , 0} − (λI mod λF )max{(kF mod kI)− rF , 0} (3)

If rF ≥ kI , then the result is trivial, so assume rF < kI . Then, by manipulating the terms of inequality 3, the result is obtained.
It only remains to prove that the right hand side of inequality 1 is minimized when Eq. (2) holds.
Notice that this is equivalent to showing that s =

∑λI

i=1 max{ki,∗ − rF , 0} is maximized by the proposed assignment. To
prove this, we will show that any optimal assignment to the variables ki,j can be modified to be of the proposed form, without
decreasing the value of the objective s. Firstly, it is straightforward to check that there exists a feasible assignment to the
variables ki,j that satisfies the statement.
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split procedure merge procedure read node

Initial stripes Intermediate stripes Final stripes

Fig. 1. Conversion procedure from [6, 5] to [13, 12] (λI = 12 and λF = 5). Read access cost is 18 compared to 60 in the default approach (70% savings).

merge procedure split procedure read node

Initial stripes Intermediate stripes Final stripes

Fig. 2. Conversion procedure from [13, 12] to [6, 5] (λI = 5 and λF = 12). Read access cost is 40, compared to 60 in the default approach (33.3% savings
in read access cost).

Suppose we have an optimal assignment for variable ki,j that is not of the proposed form and assume, without loss of generality,
that k1,∗ ≥ · · · ≥ kλI ,∗. Let 1 ≤ i ≤ (λI − (λI mod λF )) be the least such that ki,∗ < kI , and let j = argmaxj′∈[λF ] ki,j′ . It
must hold that ki,∗ > max{rF , kF mod kI}, otherwise this assignment could not be optimal. Notice that ki′,∗ = kI for all
i′ < i and since kI - (kF − ki,∗), there exists at least one i′ > i such that ki′,j > 0. Furthermore, there exists j′ 6= j such that
ki,j′ > 0, since ki,∗ < kI . Then, we can “swap” elements from ki,j′ with ki′,j . This increases ki,∗ and decreases ki′,∗ by at
most the same amount. Since ki,∗ > rF , this cannot decrease the value of the objective s. We can repeat this procedure until
ki,∗ = kI for all 1 ≤ i ≤ (λI − (λI mod λF )).

Notice now that for every (λI − (λI mod λF )) ≤ i ≤ λI it holds that:

ki,∗ ≤ kF mod kI (4)

otherwise, there must exist some j ∈ [λF ] such that
∑λI

i=1 ki,j > kF . If rF < (kF mod kI), then inequality 4 must hold with
equality. Otherwise, each such ki,∗ will contribute exactly rF to the objective s, so they can be modified to be of the desired
form without decreasing s.

C. Access-optimal convertible codes for the general regime

In this subsection we prove that the lower bound from Theorem 12 is achievable by presenting convertible code constructions
that are access-optimal in the general regime. We first present the conversion procedure for our construction and then describe
the construction of the initial and final codes that are compatible with this conversion procedure.

1) Conversion procedure: Conversion in the general regime can be achieved by combining the conversion procedures of
codes in the generalized split and merge regimes. In the case where rI < rF , we access kI nodes from each initial stripe
and use the default approach. For the case where rI ≥ rF , we present the conversion procedure by considering three cases:
kI = kF , kI < kF , and kI > kF .
Case kI = kF : Notice that nI ≥ nF since rI ≥ rF . This is a degenerate case where any nF nodes from the initial stripe can
be kept unchanged.
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Case kI < kF : We will separate the nodes of initial stripes into λF disjoint groups with the same amount of information. This
requires splitting some initial stripes into what we call intermediate stripes, which are then assigned to different groups. We
will finally merge each group to form the λF final stripes. Specifically (see Fig. 1):

1) Assign bkF/kIc initial stripes to each group (dashed boxes in Fig. 1).
2) Use an (nI , kI ;nF , {kFi }λ̂

F

i=1) conversion procedure to (generalized) split the (λI mod λF ) remaining initial stripes to
obtain λ̂F intermediate stripes, where λ̂F = dkI/(kF mod kI)e, kFi = (kF mod kI ) for i ∈ [λ̂F−1], and kF

λ̂F
= (kF mod kI)

if (kF mod kI) | kI and kF
λ̂F

= (kI mod (kF mod kI)) otherwise. Each intermediate stripe is assigned to a different
group.

3) The conversion procedure for generalized merge is used to turn each stripe group into a single final stripe.
The total number of nodes read during conversion is λIrF + (λI mod λF )(kI −max{kF mod kI , rF }), which matches

Theorem 12.
Case kI > kF : Conversion occurs in two steps (see Fig. 2):

1) First, use an (nI , kI ;nF , {kFi }λ̂
F

i=1) conversion procedure to (generalized) split each initial stripe, where λ̂F = (dkI/kF e),
kFi = kF for i ∈ [λ̂F − 1] (corresponding to final stripes), and kF

λ̂F
= kF if kF | kI (corresponding to another final stripe)

and kF
λ̂F

= (kF mod kI) otherwise (corresponding to an intermediate stripe).
2) Assemble the λI(kF mod kI) remaining nodes from the intermediate stripes into (λF mod λI) final stripes. This is done

using the default approach, since all the remaining nodes would have been already accessed in the first step.
The total number of nodes read in this case during conversion is λI(rF + kI − kF ), which matches Theorem 12.
Therefore, the total access cost of conversion when rI ≥ rF and kI 6= kF is (λI+λF )rF +(λI mod λF )(kI−max{kF mod

kI , rF }), while the access cost of the default approach is λFnF .
2) Access-optimal construction: Since the conversion procedure in Section IV-C1 is based on the generalized split and merge

regimes, we only need to ensure that the constructed codes can perform those conversions with optimal access cost.

Theorem 13. For all kF ≤ kI , every systematic linear MDS [nI , kI ] code CI is (nF , kF )-optimally convertible. For all
kF ≤ ςkI with integer ς > 2, every access-optimal systematic linear MDS (nI , kI ;nF , kF = ςkI) convertible code is
(nF , kF )-optimally convertible.

Proof. Recall, from Section IV-A1 that any systematic [nI , kI ] code CI can be used as the initial code of an access-optimal
convertible code in the generalized split regime (i.e., an (nI , kI =

∑λF

i=1 k
F
i ;n

F , {kFi }λ
F

i=1) convertible code). Since the conversion
procedure for the general regime in the case where kI > kF only uses conversions from the generalized split regime and
conversions from the generalized merge regime that can be carried out using the default approach, it is clear that any systematic
code CI can be used. Similarly, from Section IV-A2 we know that any [nI , kI ] code CI that is (nF , ςkI)-optimally convertible
for an integer ς ≥ 2 can achieve conversion with optimal access cost in a (nI , {kIi }λ

I

i=1;n
F , kF =

∑λI

i=1 k
I
i ) convertible code,

where λI ≤ ς . Since the conversion procedure for the general regime in the case where kI < kF only uses conversions from
the generalized split and merge regimes, it is clear that any (nF , ςkI)-optimally convertible code CI such that ς ≥ dkF/kIe can
be used.

Therefore, the constructions for the merge regime presented in [1] can be used to construct access-optimal convertible codes
in the general regime.
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