
2641-8770 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2020.2983165, IEEE Journal
on Selected Areas in Information Theory

1

Learning-Based Coded Computation
Jack Kosaian, K.V. Rashmi, and Shivaram Venkataraman

Abstract—Recent advances have shown the potential for
coded computation to impart resilience against slowdowns
and failures that occur in distributed computing systems.
However, existing coded computation approaches are ei-
ther unable to support non-linear computations, or can
only support a limited subset of non-linear computations
while requiring high resource overhead. In this work, we
propose a learning-based coded computation framework to
overcome the challenges of performing coded computation
for general non-linear functions. We show that careful
use of machine learning within the coded computation
framework can extend the reach of coded computation
to imparting resilience to more general non-linear com-
putations. We showcase the applicability of learning-based
coded computation to neural network inference, a major
workload in production services. Our evaluation results
show that learning-based coded computation enables ac-
curate reconstruction of unavailable results from widely
deployed neural networks for a variety of inference tasks
such as image classification, speech recognition, and object
localization. We implement our proposed approach atop an
open-source prediction serving system and show its promise
in alleviating slowdowns that occur in neural network
inference. These results indicate the potential for learning-
based approaches to open new doors for the use of coded
computation for broader, non-linear computations.

I. INTRODUCTION

LARGE-scale production services increasingly de-
pend on distributed computation, in which execu-

tion is performed on many servers. It is well known
that common distributed computing environments are
prone to unavailabilities (e.g., slowdowns and failures)
that can inflate tail latency, extend job completion times,
and cause violations of latency agreements [1]. Coded
computation has recently been revitalized as a potential
approach to alleviate the effects of slowdowns and
failures in such systems while using fewer resources
than replication-based approaches [2], [3]. Under coded
computation, one encodes the inputs to computation and
performs computation over encoded inputs to impart
resilience against unavailabilities. There have been many
recent advances in coded computation that have shown
its applicability to distributed computations such as ma-

J. Kosaian and K.V. Rashmi are with the Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA, 15213 USA e-mail:
jkosaian@cs.cmu.edu, rvinayak@cs.cmu.edu.

S. Venkataraman is with the Computer Science Department,
University of Wisconsin, Madison, WI, 53715 USA e-mail: shiv-
aram@cs.wisc.edu

trix multiplication and convolution, among others [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].

Despite these recent advances in coded computation,
most existing work focuses on linear computations.
This significantly limits the applications to which coded
computation may be applied. For example, many popular
machine learning models, such as neural networks, are
complex non-linear functions. A recently proposed class
of codes [13] extends the use of coded computation to
multivariate polynomial functions, but requires as much
or more resource overhead than replication-based ap-
proaches. Thus, while coded computation is a promising
technique for mitigating slowdowns and failures, existing
approaches are insufficient for imparting resilience to
broader classes of non-linear computations.

Machine learning has recently led to significant ad-
vances in complex tasks, such as image classification and
natural language processing. This leads one to question:
can machine learning similarly help overcome the chal-
lenges of coded computation for non-linear functions?

In this work, we answer this question in the affir-
mative by proposing and evaluating a learning-based
coded computation framework. We describe two distinct
paradigms for leveraging machine learning for coded
computation: (1) Learning a code: using neural networks
as encoders and decoders to learn a code that enables
coded computation over non-linear functions. (2) Learn-
ing a parity computation:1 using simple encoders and
decoders (e.g., addition/subtraction), and instead learning
a new computation over parities that enables recon-
struction of unavailable outputs. These two methods are
fundamentally new approaches to coded computation.

The techniques that we develop have the potential
for applicability to a broad class of computations. For
concreteness, we focus on imparting resilience to ma-
chine learning models during inference, specifically,
neural networks. Inference is the process of using a
trained machine learning model to produce predictions in
response to input queries. Large-scale services typically
perform inference in so-called “prediction serving sys-
tems” in which multiple servers run a copy of the same
machine learning model and queries are load-balanced
across these servers. We focus on inference because
it is commonly deployed in latency-sensitive services
in which slowdowns and failures can jeopardize user-

1This approach appears in part in our ACM SOSP 2019 paper [15].

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

2641-8770 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2020.2983165, IEEE Journal
on Selected Areas in Information Theory

2

experience [16]. Neural network inference also repre-
sents a challenging non-linear computation for which
previous coded computation approaches are inapplicable.
While neural networks do contain linear components
(e.g., matrix multiplication), they also contain many
non-linear components (e.g., activation functions, max-
pooling), which make the overall function computed by
the neural network non-linear.

Using machine learning for coded computation leads
to the reconstruction of approximations of unavailable
results of computation. This is appropriate for imparting
resilience to inference, as the results of inference are
themselves approximate. Furthermore, any inaccuracy
incurred due to employing learning only comes into play
when a result from inference would otherwise be slow
or failed. In this case, many services prefer a slightly
less accurate result as compared to a late one [16].

We show that learning-based coded computation en-
ables accurate reconstruction of unavailable predictions
for a range of neural network architectures and inference
tasks, including image classification, speech recognition,
and object localization. For example, using half of the
additional resources of a replication-based approach,
learning-based coded computation reconstructs unavail-
able predictions from a ResNet-18 model to be within a
6.5% difference in accuracy compared to if the original
predictions were not slow or failed. We additionally
implement learning-based coded computation atop an
open-source prediction serving system, and show its
ability to reduce tail latency by up to 48%. These results
highlight the potential of learning-based approaches to
open new doors to the use of coded computation for
broader classes of non-linear computations.

Our implementations of the proposed approaches
and evaluation setup are made available on Github
at (1) https://github.com/Thesys-lab/learned-cc and (2)
https://github.com/Thesys-lab/parity-models.

II. RELATED WORK

Section I briefly discussed the large body of work
on coded computation for linear computations, and the
fact that current approaches to coded computation for
restricted classes of non-linear computations are resource
intensive. We now discuss other related work.

A recent approach [17] performs coded computation
over the linear operations of neural networks and de-
codes before each non-linearity. This requires splitting
the operations of a neural network onto multiple servers
and many decoding steps, which may increase latency
even in the absence of slowdown or failure. In contrast,
our approaches perform coded computation over a neural
network as a whole with a single decoding step.

A related approach [18] builds on top of our initial
proposal of learning-based coded computation for infer-

Fig. 1: Example of coded computation with k = 2
original units and r = 1 parity units.

ence [19]. This related approach [18] focuses specifi-
cally on image classification and proposes concatenating
multiple images for inference. In contrast, we propose
a general framework for learning-based coded computa-
tion; we show that our proposed framework is applicable
to a variety of inference tasks, including image classifi-
cation, speech recognition, and object localization. The
technique described in this related approach [18], in fact,
fits within our proposed framework as an example of an
encoder specialized for image classification, similar to
the concatenation-based encoder that will be described
in Section V-A, and is evaluated in our prior work [15].

Several coded computation approaches have been pro-
posed for gradient computation in a straggler-resistant
manner when training a machine learning model [12],
[20], [21], [22]. In contrast to these works, our focus is
on the inference phase of machine learning.

Finally, a number of recent works have explored
learning error correcting codes for communication [23],
[24], [25]. The goal of these works is to recover data
units transmitted over a noisy channel. In contrast, our
goal is to recover the outputs of computation over data
units. To the best of our knowledge, we present the first
approach that leverages learning for coded computation.

III. SETTING, NOTATION, AND METRICS

This section describes the coded computation setting,
notation, and metrics used in this work.

A. Setting and Notation

We consider a setting in which k copies of a computa-
tion F are performed on separate servers. Each input Xi,
is sent to one of the copies of F to compute and return
F(Xi). Thus, given k inputs X1, X2, . . . , Xk, the goal
is to compute F(X1),F(X2), . . . ,F(Xk). As depicted
in Fig. 1, coded computation introduces to this system
an encoder E , a decoder D, and r additional copies of F .
The encoder E takes in k original inputs X1, X2, . . . , Xk

and produces r parities P1, P2, . . . , Pr. All original and
parity inputs are sent to copies of F . Given any k out of
the total (k + r) original and parity outputs from copies
of F , the decoder D reconstructs the original k outputs
F(X1),F(X2), . . . ,F(Xk). We denote a reconstructed
output for input Xi as ̂F(Xi). This setup can recover
from up to r slow or failed computations.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

2641-8770 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2020.2983165, IEEE Journal
on Selected Areas in Information Theory

3

Fig. 2: Example of coded computation using learned
encoders and decoders (darkly shaded boxes).

Throughout this paper, we focus on the scenario in
which r = 1. This represents the typical unavailability
faced by groups of (k+ r) servers (“stripes”) for typical
values of k and r in datacenters [26]. Section VI-B
describes how the approaches proposed in this paper can
be extended to support larger values of r.

Within the context of neural network inference, each
function F is a neural network. Inputs Xi are queries
issued from applications (e.g., images), and the output
of computation F(Xi) is a prediction resulting from
inference. When describing coded computation in the
setting of inference, we refer to F as the “base model.”

B. Metrics

As described in Section I, we consider two different
approaches to learning-based coded computation, which
will be described and evaluated separately. We now de-
scribe the accuracy metrics used throughout evaluation.

Analyzing erasure codes for traditional applications
such as storage and communication involves reasoning
about performance under normal operation (when un-
availability does not occur) and performance in “de-
graded mode” (when unavailability occurs and recon-
struction is required). These modes of operation are
similarly present for learning-based coded computation.

The overall accuracy of an inference system is based
on its accuracy when base model outputs are available
(Aa) and its accuracy when these outputs are unavailable
(Ad, “degraded mode”). If f fraction of base model
outputs are unavailable, the overall accuracy (Ao) is:

Ao = (1− f)Aa + fAd (1)

The goal in learning-based coded computation is to
achieve high Ad; the approaches proposed in this paper
do not change accuracy when the original function
outputs are available (Aa).

We focus our evaluation on recovering unavailable
predictions resulting from neural network inference. All
reported results use test datasets, which are not used in
training. Test samples are randomly placed into groups
of k and encoded to produce a parity. We then perform
decoding for each of the k different scenarios in which
one output is unavailable. Each result from decoding is
compared to the true label for its corresponding input.

IV. LEARNING ENCODERS AND DECODERS

In this section, we describe our first approach for
learning-based coded computation: learning erasure
codes. Recall that the coded computation setup described
in Section III-A and illustrated in Fig. 1 has three
components: the given function F , the encoder E , and
the decoder D. The goal in this section is to learn an
encoder E and a decoder D that accurately reconstruct
unavailable outputs from function F . We use neural
networks to learn encoders and decoders due to their
recent success in a number of tasks. Fig. 2 displays
the differences between this approach and the traditional
coded computation framework.

We next describe how encoders and decoders are
trained, and subsequently describe the neural network
architectures for learning encoders and decoders.

A. Training encoders and decoders

The goal of training is to learn neural network en-
coders and the decoders that accurately reconstruct un-
available function outputs. The given function F is not
modified during training.

When the given function F is a machine learning
model, the encoder and the decoder are trained using
the same training dataset that was used to train F .
When such a dataset is not available, which will be
the case for generic functions F outside the realm of
machine learning, one can instead generate a training
dataset comprising pairs (X,F(X)) for values of X in
the domain of F . Each sample for training the encoder
and decoder uses a set of k (randomly chosen) inputs
from the training dataset. A forward and backward pass
is performed for each of the

(
k+r
r

)
possible unavailability

scenarios, except for the case where all unavailable
outputs correspond to parity inputs. An iterative opti-
mization algorithm, such as gradient descent, updates the
encoder and decoder’s parameters during training.

A forward and a backward pass under this training
setup is illustrated in Fig. 3. During a forward pass,
the k data inputs X1, X2, . . . , Xk are fed through the
encoder to generate r parity inputs P1, P2, . . . , Pr. Each
of the (k + r) inputs (data and parity) are then fed
through the given function F . The resulting (k + r)
outputs F(X1), . . . ,F(Xk),F(P1), . . . ,F(Pr) are fed
through the decoder D, and up to r of these outputs
are made unavailable (detailed in Section IV-C1). The
decoder outputs (approximate) reconstructions for the
unavailable function outputs among F(X1), . . . ,F(Xk).
A backward pass involves using any chosen loss function
(detailed below) and backpropogating through D, F ,
and E . We train the encoder and decoder in tandem
by backpropagating through F , making this approach
applicable to any numerical differentiable function F .

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

4

E

F

X1

X2 0
D

F(X1)

F(X2)F(X2)

loss

forward pass
backward pass

Fig. 3: A forward and a backward pass in training the
encoder and decoder with k = 2 and r = 1.

Layer MLPEncoder ConvEncoder
1 FC: kn2 × kn2 Conv: 3× 3, dilation 1
2 FC: kn2 × rn2 Conv: 3× 3, dilation 1
3 Conv: 3× 3, dilation 2
4 Conv: 3× 3, dilation 4
5 Conv: 3× 3, dilation 8
6 Conv: 3× 3, dilation 1
7 Conv: 1× 1, dilation 1

TABLE I: Neural network architectures for encoders
using fully-connected (FC) and convolutional (Conv)
layers. All convolutional layers have stride of 1. In each
network, ReLUs follow all but the final layer.

Many loss functions can be used in training encoders
and decoders. For simplicity, we use as a loss function
the mean-squared error between the reconstructed output
F̂(X) and the output F(X) that would be returned if the
base model were not slow or failed. This loss function
is general enough to be applicable to many functions F .
A loss function that is specific to F may also be used,
such as cross-entropy loss for image classification tasks.

We next describe the encoder and decoder archi-
tectures used in this approach. For concreteness, we
describe the proposed architectures by setting the given
function F as a neural network image classifier over m
classes. For such an F , each data input X is an n × n
pixel image. Each output F(X) is an m-length vector
resulting from the last layer of the neural network F .

B. Encoder architectures
We consider two neural network architectures for

learning the encoder.
1) MLPEncoder: We first consider a simple 2-layer

multilayer perceptron (MLP) encoder architecture, which
we call MLPEncoder. Under this architecture, each n×n
data input is flattened into an n2-length vector, as illus-
trated in Fig. 4a. The k flattened vectors from inputs
X1, X2, . . . , Xk, are concatenated to form a single kn2-
length input vector to the MLP. The first fully-connected
layer of the MLP produces a kn2-length hidden vec-
tor. The second fully-connected layer produces an rn2-
length output vector, which represents the r parity inputs.
Each layer used in MLPEncoder is outlined in Table I.

Layer Decoder
1 FC: (k + r)m× km

2 FC: km× km

3 FC: km× km

TABLE II: Neural network architecture for decoder
employing fully-connected (FC) layers. ReLU activation
functions are used after all but the final layer.

The fully-connected nature of the MLP allows for
computation of arbitrary combinations of the kn2 input
features using few layers. While effective for many
scenarios (as will be shown in Section IV-D), the high
parameter count of the fully-connected layers can lead
to overfitting. We next describe an alternate encoder
architecture that is less susceptible to overfitting.

2) ConvEncoder: The ConvEncoder architecture
makes use of convolutional layers instead of fully-
connected layers. Unlike MLPEncoder, ConvEncoder
operates over data inputs in their original two-
dimensional n×n representation. As depicted in Fig. 4b,
the k inputs to the encoder are treated as k input channels
to the first convolution layer. This is similar to the
representations of RGB images for convolutional neural
networks in image classification. We explain how the
encoder handles multi-channel inputs in Section IV-B3.

Convolutional neural networks used for image classi-
fication repeatedly downsample an image to expand the
receptive field of convolutional filters. This works well
when the output of the network is much smaller than the
input, which is typically the case in image classification.
However, an encoder produces outputs that are the same
size as the inputs, as shown in Fig. 4b. Hence, using
convolutional layers with downsampling would neces-
sitate subsequent upsampling to bring the outputs back
to the input size. This has been shown to be inefficient
for image segmentation tasks [27]. We overcome this
issue by using dilated convolutions, which increase the
receptive field of convolutional filters exponentially with
linear increase in the number of layers [27].

Table I shows each layer of ConvEncoder. The first
layer has k input channels and the final layer has r
output channels, one for each parity to be produced. Each
intermediate layer has 20k input channels and 20k output
channels. We increase the receptive field of convolutions
by increasing the dilation factor, borrowing this architec-
ture from its successful use in image segmentation [27].

By employing convolutions in place of fully-
connected layers, ConvEncoder has less parameters than
MLPEncoder but requires more layers to enable combi-
nations of all input pixels. This lower parameter count
helps avoid overfitting, as will be shown in Section IV-D.

3) Multi-channel input: It is common to represent
color images as having multiple channels. For example,

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

2641-8770 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2020.2983165, IEEE Journal
on Selected Areas in Information Theory

5

k vectors r vectors

n2 n2

n2 n2

(a) MLPEncoder

r matricesk matrices

nn nn

nn nn

(b) ConvEncoder

(k+r) vectors k vectors

m
m

m

m

m

m
m

R0

(c) Decoder

Fig. 4: Inputs and outputs of each encoder and decoder. In this decoding example, the second input is unavailable.
The second output represents its reconstruction (marked with “R”). Parities are shaded in blue.

an RGB image consists of 3 channels representing the
pixel values of an image’s red, green, and blue com-
ponents. The encoders described above handle multi-
channel inputs by encoding across each channel inde-
pendently. An encoder with k RGB images as input
would encode across the k red channels to produce
r “red” parity channels, and similarly for green and
blue channels. The r “red,” “green,” and “blue” parity
channels are combined to create r parity “images.”

C. Decoder architecture

Fig. 4c shows a high-level overview of the decoder.
The two key design choices for the decoder architecture
are: (1) the representation of the unavailable base model
outputs at the input layer of the decoder, and (2) the
neural network architecture used for the decoder.

1) Representing unavailability: The decoder
takes as input the (k + r) vectors of length
m, F(X1), . . . ,F(Xk),F(P1), . . . ,F(Pr), where
X1, . . . , Xk are function inputs and P1, . . . , Pr are
parities generated by the encoder. Some of these inputs
to the decoder could be unavailable. In place of any
unavailable input, we insert a vector of all zeros. If a
vector of all zeros is a valid output for a given F , an
alternative value may be used to represent unavailability.

An alternative approach is to provide the decoder with
only the (concatenated) available inputs. We chose the
former as it allows the decoder to use the positions
of unavailable inputs as features when learning. Pro-
viding only the available inputs to the decoder would
hide this information. This choice is inspired by tradi-
tional (handcrafted) decoders, which typically leverage
positional information. Correspondingly, the output of
the decoder consists of k vectors ̂F(X1), . . . , ̂F(Xk),
each representing an approximate reconstruction of the
corresponding potentially unavailable function output.

2) Decoder architecture: We use a 3-layer MLP
architecture for the decoder, as shown in Table II. The
raw outputs of the base model F are inputs to the
decoder. These outputs are not converted to a probability
distribution, as is typically done for neural network

Base Model MNIST Fashion-MNIST CIFAR-10
ResNet-18 99.20 92.85 93.47
Base-MLP 97.93 89.47 -

TABLE III: Test accuracies for evaluated base models.

classifiers via a softmax operation, because the output for
a given function F may not necessarily be constrained
to be a probability distribution.

D. Evaluation

We evaluate the accuracy of learned encoders and
decoders by focusing on the scenario in which F is a
neural network used for image classification.

1) Setup: We implement all the encoder and decoder
architectures in PyTorch. We evaluate this approach
on the MNIST, Fashion-MNIST [28], and CIFAR-10
datasets. As this work represents the first use of learning
for coded computation, we use these datasets to establish
the potential of learned encoders and decoders.

a) Base models: We use two neural networks as
base models F : Base-MLP and ResNet-18. Base-MLP
is a 3-layer multilayer perceptron containing three fully-
connected layers with dimensions 784×200, 200×100,
and 100 × 10 and ReLUs following all but the final
layer. ResNet-18 [29] is a widely used neural network
consisting of many convolutional, pooling, and fully-
connected layers. We use ResNet-18 for two reasons:
(1) it achieves high accuracy on many tasks, and (2) it
is a significantly more complex model than Base-MLP
and thus provides an alternative evaluation point for our
proposed approach. Table III shows the “available” ac-
curacies of the base models, as described in Section III.
We do not use Base-MLP for CIFAR-10, as similar
architectures achieve low accuracy on this dataset [30].

b) Hyperparameters: We perform experiments for
all datasets and base models listed above for k = 2
with r = 1. Training ueses minibatches of 64 samples.
Each sample in the minibatch consists of k images drawn
randomly without replacement; no image is sampled
more than once per epoch. The encoder and decoder are

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

2641-8770 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2020.2983165, IEEE Journal
on Selected Areas in Information Theory

6

Dataset Base Model Encoder Degraded Acc.

MNIST
Base-MLP

MLP 97.76
Conv. 97.70

ResNet-18
MLP 98.06
Conv. 98.88

Fashion
Base-MLP

MLP 81.96
Conv. 82.53

ResNet-18
MLP 88.15
Conv. 88.92

CIFAR-10 ResNet-18
MLP 41.16
Conv. 82.04

TABLE IV: Degraded mode accuracy for each config-
uration considered, with k = 2 and r = 1.

trained in tandem using the Adam optimizer [31] with
learning rate of 0.001 and L2-regularization of 10−5. The
weights for the convolutional layers are initialized via
uniform Xavier initialization [32], weights for the fully-
connected layer are initialized according to N (0, 0.01),
and bias values are initialized to zero.

2) Results: Table IV presents evaluation results on
test datasets for all combinations of datasets and base
models with k = 2 and r = 1. Across all datasets and
configurations, the best of the proposed learned encoder
and decoder pair achieve a degraded mode accuracy of
no more than 11.5% lower than available accuracy. This
is a small drop in accuracy compared to the available
mode accuracies shown in Table III when considering
that reconstructions only come into play when a function
output would otherwise be slow or failed. This represents
a promising step forward in coded computation for neu-
ral networks, as existing coded computation approaches
are inapplicable even for simple neural networks.

a) Complexity of the base model: We find that the
complexity of the base model does not have an adverse
effect on the accuracy of the learned code. Despite the
higher complexity of ResNet-18 than Base-MLP, the
learned code achieves similar accuracies for both models.
This suggests that the proposed approach is effective
even for complex base models.

b) Encoder architectures: For the MNIST and
Fashion-MNIST datasets, there is little difference in
the accuracies attained by the two proposed neural
network encoding function architectures. The difference
between the two architectures comes to fore in the
more complex CIFAR-10 dataset, where ConvEncoder
greatly outperforms MLPEncoder. MLPEncoder’s high
parameter count causes it to overfit on CIFAR-10, while
ConvEncoder is able to reach higher accuracy.

E. Practical considerations

While the results presented above show the promise of
learning encoders and decoders for coded computation,

Fig. 5: Example of coded computation using a parity
model (darkly shaded box).

there are several practical challenges with deploying this
approach in prediction serving systems. Many prediction
serving systems contain a frontend node that receives
queries and load-balances them across backend nodes
that perform inference. Within this setup, the frontend
is the logical place to perform encoding and decoding
operations; the frontend encodes k queries to generate
a parity, and decodes slow or failed predictions after
receiving k outputs. As neural networks are often com-
putationally expensive, using neural network encoders
and decoders would increase the latency of recovering
from a slowdown or failure. This approach necessitates
using hardware acceleration for encoders and decoders,
which requires using a more expensive frontend node.

We next describe an alternate learning-based approach
aimed at alleviating these practical challenges.

V. LEARNING A PARITY COMPUTATION

To overcome the practical concerns of learned en-
coders and decoders, we propose a fundamentally new
approach to coded computation. Rather than designing
new encoders and decoders, we propose to use simple,
fast encoders and decoders (such as addition and subtrac-
tion) and instead design a new computation over parities.
Within the context of machine learning inference, this
new computation is a separate model, which we call a
“parity model.” As depicted in Fig. 5, instead of the
extra copy of F deployed by current coded computation
approaches (see Fig. 1), we introduce a parity model,
which we denote as FP . The challenge of this approach
is to design a parity model that enables accurate re-
construction of unavailable function outputs. We address
this by designing parity models as neural networks, and
learning a parity model that enables simple encoders and
decoders to reconstruct slow or failed function outputs.

By learning a parity model and using simple, fast
encoders and decoders, this approach is able to impart re-
silience to non-linear computations, like neural networks,
while operating with low latency without requiring hard-
ware acceleration for encoding and decoding.

A. Encoders and decoders

Introducing and learning parity models enables the
use of many different encoder and decoder designs,

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

2641-8770 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2020.2983165, IEEE Journal
on Selected Areas in Information Theory

7

32

32

32

32

Input Images
Parity Image

Encoder

Fig. 6: Example of an image-specific encoder that down-
samples and concatenates images into a parity image.

opening up a rich design space. In this paper, we
illustrate the potential of parity models by using a simple
addition/subtraction erasure code. Even with this simple
encoder and decoder, we show that parity models can
still accurately reconstruct unavailable function outputs.
This simple encoder and decoder is applicable to a wide
range of inference tasks, including image classification,
speech recognition, and object localization. A system
that is specialized for one inference task may benefit
from designing task-specific encoders and decoders for
use within this framework, such as an encoder that down-
samples and concatenates images for image classification
as depicted in Fig. 6. Our prior work has shown the
efficacy of such task-specific encoders [15].

Under this simple addition/subtraction encoder and
decoder, the encoder produces a parity as the summation
of k inputs, i.e., P =

∑k
i=1 Xi. Inputs are normalized

to a common size prior to encoding, and summation
is performed across corresponding features of each in-
put (e.g., top-right pixel of each image). The decoder
subtracts (k − 1) available function outputs from the
output of the parity model FP (P) to reconstruct an
unavailable output. Thus, an unavailable output F(Xj)

is reconstructed as ̂F(Xj) = FP (P)−
∑k

i6=j F(Xi).

B. Parity model design

We use neural networks for parity models to learn a
model that transforms parities into a form that enables
decoding. For a parity model to help in mitigating slow-
downs, the average runtime of a parity model should be
similar to that of the base model. One way of enforcing
this is by using the same neural network architecture
for the parity model as is used for the base model (i.e.,
same number and size of layers). Thus, if the base model
is a ResNet-18 architecture, the parity model also uses
ResNet-18, but trained using the procedure that will be
described in Section V-C. As a neural network’s archi-
tecture determines its runtime, this approach ensures that
the parity model has the same average runtime as the
base model. We use this approach in our evaluation.

In general, a parity model is not required to use the
same architecture as the base model. In cases where it
is necessary or preferable to use a different architecture,

such as when F is not a neural network, a parity model
could potentially be designed via neural architecture
search [33]. However, we do not focus on this scenario.

We do not apply a softmax to the output of a parity
model, as the desired output of a parity model is not
necessarily a probability distribution.

C. Training a parity model

1) Training data: The training data for a parity model
are the parities generated by the encoder, and training
labels are the outputs expected by the decoder. For the
simple encoder and decoder described in Section V-A,
with k = 2, training data from inputs X1 and X2 are
(X1 + X2) and labels are (F(X1) + F(X2)).

Training data is generated using inputs that are repre-
sentative of those issued to the base model for inference.
A parity model is trained using the same dataset used
for training the base model, whenever available. Thus, if
the base model was trained using the CIFAR-10 dataset,
samples from CIFAR-10 are used as inputs X1, . . . , Xk

that are encoded together to generate training samples
for the parity model. The desired parity model output
is generated by performing inference with the base
model to obtain F(X1), . . . ,F(Xk) and summing these
outputs. For example, if the outputs of a base model
are vectors of n floating point numbers, as is the case
in classification with n classes, a label would be the
element-wise summation of these vectors. One can also
use as labels the summation of the true labels for inputs.

2) Loss function: Many loss functions can be used
in training. We use the mean-squared-error between the
output of the parity model and the desired output as the
loss function. We choose mean-squared-error rather than
a task-specific loss function (e.g., cross-entropy) to make
this approach applicable to many inference tasks.

3) Training procedure: A parity model is trained prior
to being deployed. Training a parity model involves the
same iterative optimization procedure commonly used
to train neural networks. In each iteration, k samples
are drawn at random from the base model’s training
dataset and encoded to form a parity sample. The
parity model performs a forward pass over this parity
sample to produce FP (P). A loss value is calculated
between FP (P) and the desired parity model output
(e.g., F(X1) +F(X2) for the addition/subtraction code
with k = 2). Parity model parameters are updated via the
standard backpropogation algorithm. This process con-
tinues until a parity model reaches a sufficient accuracy.

D. Example

Fig. 7 shows an example of how parity models mit-
igate the unavailability of any one of three instances
of a base model (i.e., k = 3). Inputs X1, X2, X3 are

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

2641-8770 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2020.2983165, IEEE Journal
on Selected Areas in Information Theory

8

F
0.19 0.71 0.10

approximate
reconstruction

unavailable
prediction

FP(P) - F(X3) - F(X2) =

X1

X2

X3

Σ

0.30 0.08 0.62

0.72 0.23 0.05

1.28 0.92 0.85

0.26 0.61 0.18

FP

Fig. 7: Example of using a parity model with k = 3.

dispatched to three model instances for inference on
base model F to return outputs F(X1),F(X2),F(X3).
As inputs are dispatched to model instances, they are
encoded (Σ) to generate a parity P = (X1 +X2 +X3).
The parity is dispatched to a parity model FP to produce
FP (P). In this example, the model instance processing
X1 is slow. The decoder reconstructs this output as
(FP (P)−F(X3)−F(X2)). The reconstruction in this
example provides a reasonable approximation of the
unavailable output (labeled “unavailable prediction”).

E. Evaluation of accuracy

We now evaluate the accuracy of reconstructing un-
available function outputs with parity models. We again
focus on neural network inference, that is, when each
F is a neural network and the goal is to reconstruct
unavailable predictions resulting from inference.

1) Setup: We use PyTorch to train parity models
for each parameter k, dataset, and base model. We
use popular image classification (CIFAR-10 and 100,
Cat v. Dog [34], Fashion-MNIST [28], and MNIST),
speech recognition (Google Commands [35]), and object
localization (CUB-200 [36]) tasks. For CIFAR-100, we
report top-5 accuracy, as is common (i.e., the fraction
for which the true class of Xi is in the top 5 of ̂F(Xi)).

As described in Section V-B, a parity model uses the
same neural network architecture as the base model.
We consider five architectures: a multilayer perception
(MLP),2 LeNet-5 [37], VGG-11 [38], ResNet-18, and
ResNet-152 [29]. The former two are simpler neural net-
works while the others are widely-used neural networks.

a) Parameters: We consider values for parameter
k of 2, 3, and 4, with r = 1, corresponding to 33%,
25%, and 20% redundancy. We use Adam [31], learning
rate of 0.001, L2-regularization of 10−5, and batch sizes
between 32 and 64. Convolutional layers use Xavier
initialization [32], biases are initialized to zero, and
other weights are initialized from N (0, 0.01). We use
the generic addition encoder and subtraction decoder
described in Section V-A. Our prior work [15] evaluates
parity models using other encoders and decoders.

2The MLP has two hidden layers with 200 and 100 units and ReLUs.

MNIST Fashion Cat/Dog Speech Cifar10 Cifar100
0

20
40
60
80

100

Dataset

A
cc

ur
ac

y
(%

)

Available (Aa) Degraded (Ad)

Fig. 8: Comparison of accuracy when predictions from
the base model are available (Aa) and when reconstruc-
tions via a parity model with k = 2 are necessary (Ad).

0 0.025 0.05 0.075 0.1
80
85
90
95

100

Fraction Unavailable (f)

O
ve

ra
ll

A
cc

ur
ac

y
(%

) k = 2 k = 3 k = 4

Fig. 9: Overall accuracy (Ao) on CIFAR-10 with varying
unavailability. The horizontal orange line shows the
accuracy of the ResNet-18 base model (Aa).

2) Results: Fig. 8 shows the accuracy of the base
model (Aa) and the degraded mode accuracy (Ad) when
using parity models with k = 2 for image classification
and speech recognition tasks. VGG-11 is used for the
speech dataset, ResNet-152 for CIFAR-100, and ResNet-
18 for all others. The degraded mode accuracy when
using parity models is no more than 6.5% lower than that
when predictions from the base model are available. As
Fig. 9 illustrates, this enables parity models to maintain
high overall accuracy (Ao). For example, at expected
levels of unavailability (i.e., f less than 10%), the overall
accuracy when using parity models on the CIFAR-10
dataset is at most 0.4%, 1.9%, and 4.1% lower than when
all predictions are available at k values of 2, 3, and 4,
respectively. This indicates a tradeoff between parameter
k, which controls resource-efficiency and resilience, and
the accuracy of reconstructions, which we discuss below.

a) Neural network architectures: We observe high
degrade mode accuracy when using a variety of neural
network architectures. For example, on the Fashion-
MNIST dataset, degraded mode accuracy for the MLP,
LeNet-5, and ResNet-18 models are only 1.7–9.8% lower
than when slowdown or failure does not occur.

b) Object localization: We next evaluate parity
models on object localization, which is a regression
task. The goal in this task is to predict the coordinates
of a bounding box surrounding an object of interest
in an image. We evaluate the applicability of parity
models to this task using the Caltech-UCSD Birds

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

2641-8770 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2020.2983165, IEEE Journal
on Selected Areas in Information Theory

9

Ground Truth
Available
Degraded

Fig. 10: Example reconstruc-
tion for object localization.

MNIST Fashion Cat/Dog Speech Cifar10 Cifar100
0

20
40
60
80

100

Dataset

A
cc

ur
ac

y
(P

er
ce

nt
)

Available (Aa) k = 2 (Ad) k = 3 (Ad)
k = 4 (Ad) Default (Ad)

Fig. 11: Accuracies of predictions reconstructed using parity models compared to
returning a default response when base model predictions are unavailable (Ad).

dataset [36] with ResNet-18. The performance metric for
localization tasks is the intersection over union (IoU):
the IoU between two bounding boxes is computed as
the area of their intersection divided by the area of
their union. IoU values fall between 0 and 1, with an
IoU of 1 corresponding to identical boxes, and an IoU
of 0 corresponding to boxes with no overlap. Fig. 10
shows an example of the bounding boxes returned by
the base model and a reconstruction obtained using a
parity model. For this example, the base model has an
IoU of 0.88 and the reconstruction has an IoU of 0.61.
This reconstruction captures the gist of the localization
and would serve as a reasonable approximation in the
face of unavailability. On the entire dataset, the base
model achieves an average IoU of 0.95 with ground-
truth bounding boxes. In degraded mode, using parity
models with k = 2 achieves an average IoU of 0.67.

c) Varying parameter k: Fig. 11 shows that the
degraded mode accuracy of parity models decreases as k
increases from 2 to 4. As k increases, features from more
queries are packed into a single parity query, making
the parity query noisier and making it difficult to learn a
parity model. This indicates a tradeoff between the value
of parameter k and degraded mode accuracy.

To put these accuracies in perspective, consider a
scenario in which no redundancy is used to mitigate
unavailability. In this case, when the output from any
base model is unavailable, the best one can do is to return
a random “default” prediction. The option to provide
such a default prediction is available in Clipper [39],
an open-source prediction serving system. The degraded
mode accuracy when returning default predictions de-
pends on the number of possible outputs of an inference
task. For example, a classification task with ten classes
would have an expected degraded mode accuracy of 10%
with this technique. Default predictions provide a lower
bound on degraded mode accuracy and an indicator of
the difficulty of a task. Fig. 11 shows that the degraded
mode accuracy with parity models is significantly above
this lower bound, indicating that parity models make sig-
nificant progress in the task of reconstructing predictions.

F. Evaluation of tail latency reduction

We next briefly report on the the ability of parity mod-
els to reduce tail latency in machine learning inference.
A more detailed evaluation of the latency reduction using
parity models may be found in our prior work [15].

1) Evaluation setup: We have implemented parity
models atop Clipper [39], a popular open-source pre-
diction serving system. We call our system ParM. We
implement the encoder and decoder on the Clipper fron-
tend. Inference runs in Docker containers on backend
“model instances,” as is standard in Clipper. We use the
addition/subtraction code described in Section V-A.

We consider as a baseline a system with the same
number of instances as ParM but using all additional
instances for deploying extra copies of the base model.
We call this baseline “Equal-Resources.” For a setting
of parameter k on a cluster with m model instances for
base models, both ParM and Equal-Resources use m

k ad-
ditional model instances. ParM uses these extra instances
for parity models, whereas this baseline hosts extra base
models on these instances. These extra instances enable
the baseline to reduce load, which reduces tail latency.

Experiments are run on AWS EC2 on p2.xlarge nodes,
which have one NVIDIA K80 GPU each. We use 12
instances for base models and 12

k additional instances for
redundancy. We use one frontend of type c5.9xlarge and
a single-queue load-balancing strategy for dispatching
queries to model instances, as is standard in Clipper.

We evaluate latency using ResNet-18. We use ResNet-
18 rather than a more computationally expensive model
like ResNet-152 to provide a challenging scenario in
which ParM must reconstruct predictions with low la-
tency. Queries are images from the Cat v. Dog dataset.
These higher-resolution images test the ability of ParM’s
encoder to operate with low latency. We modify base
models and parity models to return 1000 values as
predictions to create a computationally challenging de-
coding scenario in which there are 1000 classes.

We evaluate ParM’s ability to mitigate slowdowns by
inducing background load on the cluster running ParM.
We emulate network traffic typical of data analytics

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

2641-8770 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2020.2983165, IEEE Journal
on Selected Areas in Information Theory

10

Median Mean 99th 99.5th 99.9th
0

10
20
30
40
50

L
at

en
cy

(m
s)

ParM k=2 (33%) ParM k=3 (25%)
ParM k=4 (20%) Equal-Resources (33%)

Fig. 12: Latencies of ParM at varying k compared to
the strongest baseline. The portion of resources used for
redundancy in each configuration is listed in parentheses.

workloads by choosing four pairs of model instances
at random to transfer data between one another of size
drawn randomly between 128-256 MB.

Clients send 100K queries to the frontend at a Poisson
arrival rate with a mean of 270 queries per second. We
measure the time between when the frontend receives a
query and when the corresponding prediction is returned
to the frontend (from a base model or reconstructed). We
report the median of three runs. We use batch size of
one, which is preferred for low-latency inference [40].
An evaluation of the latency of encoding and decoding
in ParM may be found in our prior work [15].

2) Results: With k = 2, ParM reduces 99.9th per-
centile latency by up to 48% compared to Equal-
Resources, bringing tail latency up to 3.5× closer to
median latency, while maintaining the same median.

Fig. 12 shows that ParM’s tail latency increases as k
increases. At higher values of k, ParM is more vulnerable
to multiple predictions being unavailable, as the decoder
requires k predictions to be available. Furthermore, in-
creasing k increases the amount of time ParM needs to
wait for k queries to arrive before encoding into a parity
query. This increases the latency of the end-to-end path
of reconstructing an unavailable prediction.

Despite these factors, ParM still reduces tail latency,
even when using less resources than the baseline. With
25% and 20% redundancy, ParM reduces the gap be-
tween tail and median latency by up to 2.5× compared
to when Equal-Resources has 33% redundancy.

VI. DISCUSSION

A. Differences from traditional, handcrafted codes

While this work shows the potential of taking a
learning-based approach to coded computation, leverag-
ing machine learning loses some of the benefits of tra-
ditional, handcrafted approaches to coded computation.

First, taking a learning-based approach results in the
reconstruction of approximations of unavailable function
outputs. In contrast, traditional coding techniques typi-
cally focus on exact recovery.

Second, our proposed learning-based approaches to
coded computation require that learned components (i.e.,
encoder and decoder, or parity model) be retrained
for every new computation F that is encountered. In
contrast, traditional approaches to coded computation
focus on the design of codes that are applicable to entire
classes of computation (e.g., any linear computation).

We expect that further research may reduce the effects
of these differences. For example, improvements in the
training procedures presented in this work may reduce
the accuracy loss incurred by learned components. Sim-
ilarly, techniques like transfer learning may reduce the
extent to which learned components must be retrained
for each new computation F .

B. Handling multiple unavailabilities

The evaluation in this work focuses on the scenario in
which one out of (k+r) servers is unavailable (i.e., r =
1). However, the proposed approaches can be extended
to handle multiple unavailabilities (i.e., r > 1).

The first approach of learning encoders and decoders
naturally accommodates multiple unavailabilities, as the
setup is described for any value r in Section IV-A.

The second approach of learning parity models can
tolerate multiple unavailabilities by training r separate
parity models. For example, consider having k = 2,
r = 2 , and queries X1 and X2. One parity model
can be trained to transform P1 = (X1 + X2) into
F(X1)+F(X2), while the second is trained to transform
P2 = (X1+2X2) into F(X1)+2F(X2). A decoder can
reconstruct the initial k predictions using any k out of the
(k+r) predictions from base models and parity models.

C. Joint learning of encoder, decoder, and parity model

As depicted in Fig. 2 and Fig. 5, the two learning-
based approaches proposed in this work learn disjoint
sets of operations among the encoder, decoder, and
computation over parities. In general, learning-based
coded computation can be extended to jointly learn all
of these components. Such joint optimization may help
improve the accuracy of reconstructions while potentially
reducing the computational overhead of the learned
encoders and decoders described in Section IV-E.

VII. CONCLUSION

We proposed a learning-based approach to coded
computation to overcome the challenge of applying
coded computation to general non-linear functions. We
present two paradigms in which learning can be used
within the coded computation framework: (1) learning
encoders and decoders, and (2) taking a fundamentally
new approach to coded computation by learning a com-
putation over parity units. We show that learning-based

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

2641-8770 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2020.2983165, IEEE Journal
on Selected Areas in Information Theory

11

coded computation enables accurate reconstruction of
unavailable results from widely deployed neural net-
works for a variety of inference tasks such as image
classification, speech recognition, and object localiza-
tion. Our implementation and evaluation of learning-
based coded computation on top of an open-source pre-
diction serving system significantly reduces tail latency.
These results highlight the potential of learning-based
approaches to enable the benefits of coded computation
for broader classes of non-linear computations.

VIII. ACKNOWLEDGMENTS

This work was funded in part by an NSF Graduate Re-
search Fellowship (DGE-1745016 and DGE-1252522),
by NSF grants CNS-1850483 and CNS-1838733, by
Amazon Web Services, and by the Office of the Vice
Chancellor for Research and Graduate Education at the
University of Wisconsin, Madison with funding from the
Wisconsin Alumni Research Foundation.

REFERENCES

[1] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications
of the ACM, vol. 56, no. 2, pp. 74–80, 2013.

[2] K.-H. Huang and J. A. Abraham, “Algorithm-Based Fault Toler-
ance for Matrix Operations,” IEEE Transactions on Computers,
vol. 100, no. 6, pp. 518–528, 1984.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ram-
chandran, “Speeding Up Distributed Machine Learning Using
Codes,” IEEE Transactions on Information Theory, July 2018.

[4] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing
Large Linear Transforms Distributedly Using Coded Short Dot
Products,” in NIPS, 2016.

[5] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A Unified
Coding Framework for Distributed Computing With Straggling
Servers,” in IEEE Globecom Workshops, 2016.

[6] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial Codes:
An Optimal Design for High-Dimensional Coded Matrix Multi-
plication,” in NIPS, 2017.

[7] S. Wang, J. Liu, and N. Shroff, “Coded Sparse Matrix Multipli-
cation,” in ICML, 2018.

[8] S. Dutta, V. Cadambe, and P. Grover, “Coded Convolution for
Parallel and Distributed Computing Within a Deadline,” in IEEE
ISIT, 2017.

[9] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr,
“Coded Computation Over Heterogeneous Clusters,” in IEEE
ISIT, 2017.

[10] A. Mallick, M. Chaudhari, G. Palanikumar, U. Sheth, and
G. Joshi, “Rateless Codes for Near-Perfect Load Balancing in
Distributed Matrix-vector Multiplication,” in ACM SIGMETRICS,
2020.

[11] R. K. Maity, A. S. Rawat, and A. Mazumdar, “Robust Gradient
Descent via Moment Encoding with LDPC Codes,” in IEEE ISIT,
2019.

[12] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler Mitigation
in Distributed Optimization Through Data Encoding,” in NIPS,
2017.

[13] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange
Coded Computing: Optimal Design for Resiliency, Security and
Privacy,” in AISTATS, 2019.

[14] K. Konstantinidis and A. Ramamoorthy, “CAMR: Coded Aggre-
gated MapReduce,” in IEEE ISIT, 2019.

[15] J. Kosaian, K. V. Rashmi, and S. Venkataraman, “Parity Models:
Erasure-Coded Resilience for Prediction Serving Systems,” in
ACM SOSP, 2019.

[16] D. Agarwal, B. Long, J. Traupman, D. Xin, and L. Zhang,
“LASER: A Scalable Response Prediction Platform for Online
Advertising,” in WSDM, 2014.

[17] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A
Unified Coded Deep Neural Network Training Strategy Based on
Generalized Polydot Codes for Matrix Multiplication,” in IEEE
ISIT, 2018.

[18] K. G. Narra, Z. Lin, G. Ananthanarayanan, S. Avestimehr,
and M. Annavaram, “Collage Inference: Tolerating Strag-
glers in Distributed Neural Network Inference using Coding,”
arXiv:1904.12222, 2019.

[19] J. Kosaian, K. V. Rashmi, and S. Venkataraman, “Learning a
Code: Machine Learning for Approximate Non-Linear Coded
Computation,” arXiv preprint arXiv:1806.01259, 2018.

[20] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis,
“Gradient Coding: Avoiding Stragglers in Distributed Learning,”
in ICML, 2017.

[21] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving
Distributed Gradient Descent Using Reed-Solomon Codes,” in
IEEE ISIT, 2018.

[22] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi,
“Near-optimal Straggler Mitigation for Distributed Gradient
Methods,” in IEEE IPDPSW, 2018.

[23] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Bur-
shtein, and Y. Be’ery, “Deep Learning Methods for Improved
Decoding of Linear Codes,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 119–131, 2018.

[24] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath,
“Communication Algorithms via Deep Learning,” in ICLR, 2018.

[25] F. A. Aoudia and J. Hoydis, “End-to-End Learning of Communi-
cations Systems Without a Channel Model,” arXiv:1804.02276,
2018.

[26] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A Hitchhiker’s Guide to Fast and Efficient
Data Reconstruction in Erasure-Coded Data Centers,” in ACM
SIGCOMM, 2014.

[27] Fisher Yu and Vladlen Koltun, “Multi-Scale Context Aggregation
by Dilated Convolutions,” in ICLR, 2016.

[28] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A Novel
Image Dataset for Benchmarking Machine Learning Algorithms,”
arXiv:1708.07747, 2017.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in IEEE CVPR, 2016.

[30] Z. Lin, R. Memisevic, and K. Konda, “How Far Can We Go
Without Convolution: Improving Fully-Connected Networks,”
arXiv:1511.02580, 2015.

[31] Diederik P. Kingma and Jimmy Ba, “Adam: A Method for
Stochastic Optimization,” in ICLR, 2015.

[32] X. Glorot and Y. Bengio, “Understanding the Difficulty of
Training Deep Feedforward Neural Networks,” in AISTATS, 2010.

[33] B. Zoph and Q. V. Le, “Neural Architecture Search with Rein-
forcement Learning,” arXiv:1611.01578, 2016.

[34] J. Elson, J. R. Douceur, J. Howell, and J. Saul, “Asirra: A
CAPTCHA That Exploits Interest-aligned Manual Image Cat-
egorization,” in ACM CCS, 2007.

[35] P. Warden, “Speech commands: A Dataset for Limited-
Vocabulary Speech Recognition,” arXiv:1804.03209, 2018.

[36] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie,
and P. Perona, “Caltech-UCSD Birds 200,” Tech. Rep. CNS-TR-
2010-001, California Institute of Technology, 2010.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
Learning Applied to Document Recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[38] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” in ICLR, 2015.

[39] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonza-
lez, and I. Stoica, “Clipper: A Low-Latency Online Prediction
Serving System,” in USENIX NSDI, 2017.

[40] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “DeepCPU:
Serving RNN-based Deep Learning Models 10x Faster,” in
USENIX ATC, 2018.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 15,2020 at 12:36:07 UTC from IEEE Xplore. Restrictions apply.

