
5208 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

MATCHA: A Matching-Based Link Scheduling
Strategy to Speed up Distributed Optimization

Jianyu Wang , Anit Kumar Sahu , Gauri Joshi , Member, IEEE, and Soummya Kar , Fellow, IEEE

Abstract—In this paper, we study the problem of distributed
optimization using an arbitrary network of lightweight comput-
ing nodes, where each node can only send/receive information
to/from its direct neighbors. Decentralized stochastic gradient de-
scent (SGD) has been shown to be an effective method to train
machine learning models in this setting. Although decentralized
SGD has been extensively studied, most prior works focus on the
error-versus-iterations convergence, without taking into account
how the topology affects the communication delay per iteration.
For example, a denser (sparser) network topology results in faster
(slower) error convergence in terms of iterations, but it incurs more
(less) communication time per iteration. We propose MATCHA, an
algorithm that can achieve a win-win in this error-runtime trade-off
for any arbitrary network topology. The main idea of MATCHA is
to communicate more frequently over connectivity-critical links in
order to ensure fast convergence, and at the same time minimize
the communication delay per iteration by using other links less
frequently. It strikes this balance by decomposing the topology
into matchings and then optimizing the set of matchings that are
activated in each iteration. Experiments on a suite of datasets
and deep neural networks validate the theoretical analyses and
demonstrate that MATCHA takes up to 5x less time than vanilla
decentralized SGD to reach the same training loss. The idea of
MATCHA can be applied to any decentralized algorithm that
involves a communication step with neighbors in a graph.

Index Terms—Decentralized SGD, Distributed Training,
Communication-efficient Methods.

I. INTRODUCTION

AMAJORITY of supervised machine learning problems
are solved using the empirical risk minimization frame-

work [1], [2], where the goal is to minimize the empirical risk
objective function F (x) =

∑
s∈D �(x, s)/|D|, where D is the

Manuscript received 24 February 2022; revised 22 July 2022 and 13 Septem-
ber 2022; accepted 21 September 2022. Date of current version 9 November
2022. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Ketan Rajawat. This work was supported
in part by NSF under Grants CCF-1850029, CCF-2045694, and CCF-2112471,
in part by 2018 IBM Faculty Research Award, and in part by the Qualcomm
Innovation Fellowship (Jianyu Wang). (Corresponding authors: Jianyu Wang;
Gauri Joshi.)

Jianyu Wang was with the Department of Electrical and Computer Engi-
neering, Carnegie Mellon University, Pittsburgh, PA 15213 USA. He is now
with Meta Platforms, Menlo Park, CA 94025 USA (e-mail: jianyuw1@andrew.
cmu.edu).

Gauri Joshi and Soummya Kar are with the Department of Electrical and
Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(e-mail: gaurij@andrew.cmu.edu; soummyak@andrew.cmu.edu).

Anit Kumar Sahu is with the Amazon Alexa AI, Pittsburgh, PA 15232 USA
(e-mail: anit.sahu@gmail.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSP.2022.3212536, provided by the authors.

Digital Object Identifier 10.1109/TSP.2022.3212536

training dataset, and �(x, s) is the composite loss function for
a sample s. The most common algorithm to optimize F (x)
is stochastic gradient descent (SGD), where we compute the
gradient of �(x, s) over small, randomly chosen subsets (called
mini-batches) of b samples each [3], [4] and update x according
to: x(k+1) = x(k) − η

∑
s∈B ∇�(x(k); s)/b, where η is referred

to as the learning rate or step size. Although designed for convex
objectives, mini-batch SGD has been shown to perform well
even on non-convex loss functions due to its ability to escape
saddle points and converge to minima which generalize well.
Therefore, it is the dominant training algorithm for state-of-the-
art machine learning models.

Distributed and Local-update SGD: Classical SGD was de-
signed to run on a single computing node, and its error-
convergence with respect to the number of iterations has been
extensively analyzed and further improved via accelerated SGD
methods. Due to the massive training datasets and neural net-
work architectures used today, it has became imperative to
design distributed SGD implementations where gradient com-
putation and aggregation are split across multiple worker nodes.
A standard way to parallelize gradient computation is the pa-
rameter server framework [5], consisting of a central server
and m worker nodes which store partitions D1, . . . ,Dm of the
training dataset D. In each iteration, the parameter waits for the
mworkers to return one mini-batch gradient each and aggregates
them to update the model x. However, in bandwidth-limited
computing environments the need for constant communication
between the parameter server and worker nodes can be pro-
hibitively expensive and slow [6]. A simple way to improve
communication-efficiency is to use local-update or periodic
averaging SGD [7], [8], which is the core of the emerging field
of federated learning [9], [10]. Local-update SGD divides the
training into communication rounds. In the t-th communica-
tion round, the m nodes read the current global model x and
make τ local SGD updates to optimize their local objective
Fi(x) =

∑
s∈Di

�(x; s)/|Di|. The resulting models are then
sent to the central server, which averages them and updates the
global model.

Decentralized SGD Training: Besides the temporal communi-
cation reduction achieved by local-update SGD, one can achieve
spatial communication reduction by eliminating the central ag-
gregating server, and instead perform training in a decentralized
sparse node topology where nodes can only communicate with
their neighbors [11]. Decentralized SGD, which is the focus
of this paper, is especially suitable for training outside a con-
trolled data-center setting, for example, multi-agent systems or

1053-587X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7075-9333
https://orcid.org/0000-0002-4083-0418
https://orcid.org/0000-0002-6372-9697
https://orcid.org/0000-0002-8060-5581
mailto:jianyuw1@andrew.cmu.edu
mailto:jianyuw1@andrew.cmu.edu
mailto:gaurij@andrew.cmu.edu
mailto:soummyak@andrew.cmu.edu
mailto:anit.sahu@gmail.com
https://doi.org/10.1109/TSP.2022.3212536

WANG et al.: MATCHA: A MATCHING-BASED LINK SCHEDULING STRATEGY TO SPEED UP DISTRIBUTED OPTIMIZATION 5209

Fig. 1. (a) Base network topology used to compare MATCHA with vanilla decentralized SGD (DecenSGD). (b) MATCHA reduces the communication time more
sharply for higher degree nodes (for instance node 1), which tend to have fewer connectivity-critical links. (c) Lower spectral norm yields better convergence rate.
Communication budget Cb represents the average frequency of communication over the links in the network. (d,e) Loss-versus-time and loss-versus-epoch curves
when training WideResNet on CIFAR-100.

federated learning [9], [10], [12] on edge devices. Not having a
central parameter server [5], [13], [14], [15] avoids bandwidth
bottleneck and makes the system scalable to a large number
of nodes. In vanilla decentralized SGD [11], [16], each node
makes only one local SGD update before exchanging model
updates with its neighbors. The case of τ > 1 local updates is
considered in only a few works such as [8], [17], which propose
and analyze the periodic decentralized SGD algorithm which
combines temporal and spatial communication reduction.

Need to Consider Error-versus-runtime Convergence: Al-
though decentralized SGD has been extensively studied in
distributed optimization community, most works analyzing its
convergence [8], [11], [16], [18], [19], [20], [21], [22], [23],
[24] only focus on the number of iterations or communication
rounds required to achieve a target error. They do not explicitly
consider or demonstrate how the topology affects the training
runtime, that is, wall-clock time required to complete each
iteration. However, there is a fundamental trade-off between the
runtime per iteration and the error-versus-iterations convergence
depending on the communication and aggregation mechanism
used by the algorithm. For instance, denser networks typically
give faster error convergence but they incur a higher com-
munication delay per iteration. Thus, in order to achieve the
fastest error-versus-wallclock time convergence, it is critical to
jointly optimize the iteration complexity as well as the runtime
per iteration by juxtaposing optimization and scheduling tech-
niques. Only a few previous works such [15], [25], [26] study
the error-versus-wallock time convergence from a theoretical
perspective, but only for the parameter server model. We adopt
this system-aware approach in the decentralized SGD setting and

seek to design inter-node communication strategies that achieve
the fastest error-versus-runtime convergence.

All Links should Not be Treated Equally: Recent works have
proposed various methods to reduce the communication delay
when performing decentralized SGD. One such simple way is
to perform periodic decentralized SGD, also called Periodic
DecenSGD (P-DecenSGD) [8], [17]. In P-DecenSGD, each
node makes τ > 1 local model updates before synchronizing
with its neighbors. Thus, all links in the base topology are
activated simultaneously after every τ iterations. Other meth-
ods include gradient quantization [27], asynchronous model
aggregation [28], stochastic gradient push [29] and pairwise gos-
sip [18], [30], [31] (see Section VII for a detailed comparison).
All these methods to improve the communication-efficiency of
decentralized SGD method have one common drawback – they
are agnostic to the contribution of each inter-node link towards
the overall connectivity of the graph. However, each link affects
the error convergence and the wall-clock time per iteration
differently. For example, in the topology shown in Fig. 1(a),
the 0− 4 link is critical to maintaining the graph’s connectivity
and in turn ensuring fast error convergence, whereas removing or
infrequently using the 1− 3 link has little impact on the average
graph connectivity but can help reduce the communication delay.
This gives us the novel insight that connectivity-critical links
such as 0− 4 should be activated more frequently.

Main Contributions: MATCHA uses this novel insight to de-
velop a principled approach to optimize the communication
frequency of each link depending on how it affects the expected
connectivity of the topology and the delay per iteration. In con-
trast to existing communication-efficient SGD methods which

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

5210 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

have to compromise on error-versus-iterations convergence in
order to reduce the communication delay per iteration, MATCHA

can flexibly reduce the communication delay per iteration
while preserving (or even improving) the speed of error-versus-
iterations convergence. To the best of our knowledge, this is the
first work that attempts to strike the best error-runtime trade-off
in decentralized SGD for an arbitrary network topology. The
main contributions of this paper are summarized below.

1) Saving Communication Time by Using Bipartite Match-
ings: The communication delay of the model synchroniza-
tion step in decentralized SGD is an increasing function of
the maximal node degree, as we demonstrate in Section II
below. To reduce this delay without hurting convergence,
we decompose the graph into matchings. Each matching
has degree one and is a set of disjoint links that com-
municate in parallel, as illustrated by the colored links in
Fig. 1(a). The probability of activating each matching is
optimized so as to maximize the algebraic connectivity of
the expected topology (captured by the second smallest
eigenvalue λ2 of the graph Laplacian). This results in
more frequent communication over matchings that con-
tain connectivity-critical links (ensuring fast error-versus-
iterations convergence) and less frequent over others (sav-
ing the communication time per iteration).

2) Flexible Communication Budget: MATCHA allows the
system designer to set a flexible communication budget
Cb, which represents the relative communication time of
MATCHA compared to vanilla DecenSGD. When Cb = 1,
MATCHA reduces to vanilla decentralized SGD studied
in [16]. When we set Cb < 1, MATCHA carefully reduces
the communication frequency of each link, depending
upon its importance in maintaining the overall connec-
tivity of the graph. For example, observe in Fig. 1(b) that
by settingCb = 0.1, MATCHA achieves a 1/0.1 = 10× re-
duction in expected communication time per iteration. The
communication reduction is much larger for higher-degree
nodes, as shown in Fig. 1(b). This judicious asymmetry
in communication reduction is the key ingredient that
enables MATCHA to preserve fast error-versus-iterations
convergence.

3) Same or Faster Error Convergence than Vanilla Decen-
tralized SGD: In Section V we present a convergence anal-
ysis of MATCHA for non-convex objectives and illustrate
the dependence of the error on ρ, the spectral norm of
the mixing matrix (defined formally later). This analysis
shows that for a suitable communication budget, MATCHA

achieves the same or smaller ρ as vanilla decentralized
SGD — a smaller ρ implies faster error convergence. For
example, observe in Fig. 1(c) that MATCHA has the same
spectral norm as vanilla decentralized SGD (DecenSGD)
with a 2.2× less communication budget per iteration,
and if we set Cb = 0.6 then the spectral norm is even
lower. In this case, contrary to intuition, MATCHAnot only
reduces the per-iteration communication delay but also
gives faster error-versus-iterations convergence.

4) Experimental Results on Error-versus-wallclock Time
Convergence: In Section VI we evaluate the performance

of MATCHA on various deep learning tasks including image
classification and language modeling, and for several base
topologies including Erdős-Rényi and geometric graphs.
The empirical results consistently corroborate theoretical
analyses and show that MATCHA can get up to 5.2× reduc-
tion in wall-clock time (computation plus communication
time) to achieve the same training accuracy as vanilla
decentralized SGD, as illustrated in Fig. 1(d). Moreover,
MATCHA achieves test accuracy that is comparable or
better than vanilla decentralized SGD.

5) Extendable to Other Subgraphs and Computations: While
we currently decompose the topology into matchings, our
approach can be extended to other sub-graphs such as
edges or cliques. It is also complementary to and can
be combined with other methods such as gradient com-
pression or quantization [27], [32], asynchronous model
aggregation [28], and gradient tracking and variance re-
duction techniques [33], [34], [35], as we review in Sec-
tion VII. Furthermore, going beyond decentralized SGD,
the matching-based link scheduling strategy, which is the
core idea of MATCHA, is extendable to any distributed
computation or consensus algorithm that requires frequent
synchronization between neighboring nodes.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Node Topology and Graph Theory Preliminaries

Consider a network of m worker nodes, which correspond
to the vertex set V = {1, 2, . . . ,m}. The communication links
connecting the nodes (vertices) are represented by an arbitrary
undirected graphG with the edge setE ⊆ V × V . Each node i can
only communicate with its neighbors, that is, it can communicate
with node j if and only if (i, j) ∈ E . We use Ni = {j|(j, i) ∈
E , j ∈ V, j �= i} to denote the neighbor index set of node i. The
degree of node i is defined as di = |Ni|, and the maximal node
degree is denoted byΔG = maxi∈V di. We assume that the graph
G is connected, that is, for any pair of nodes, there exists a path
linking them.

The communication graph G(V, E) (i.e., network topology
connecting nodes) can also be represented using the adja-
cency matrix A ∈ Rm×m. In particular, Aij = 1 if (i, j) ∈ E ;
Aij = 0 otherwise. The graph Laplacian matrix L is defined as
L = diag(d1, . . . , dm)−A. The graph Laplacian is a positive
semi-definite matrix, hence its eigenvalues can be ordered and
represented as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λm(L). The graph
G is a connected graph if and only if the second smallest
eigenvalue λ2(L) is strictly greater than 0. In spectral graph
theory [36], [37], the algebraic connectivity of a graph is defined
as follows.

Definition 1 (Algebraic Connectivity λ2(L)): Given a con-
nected graph G and its corresponding Laplacian matrix L, the
algebraic connectivity of G is defined as the second smallest
eigenvalue of L. A larger value of λ2(L) implies a denser graph.

Next, we define the notions of a matching subgraph and
matching decomposition, which are central to this paper.

Definition 2 (Matching): A matching is a subgraph of G, in
which each vertex is incident with at most one edge.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MATCHA: A MATCHING-BASED LINK SCHEDULING STRATEGY TO SPEED UP DISTRIBUTED OPTIMIZATION 5211

Definition 3 (Matching Decomposition): A matching decom-
position is a setM disjoint matching sub-graphs {Gj(V, Ej)}Mj=1

of G such that E =
⋃M

j=1 Ej and Ei
⋂ Ej = ∅, ∀i �= j.

The matching decomposition is not necessarily unique, and
there are polynomial-time edge-coloring algorithms [38] to de-
compose a given graph into matchings. A nice property of match-
ing decomposition is that the number of matchings M is closely
related to the maximal degree ΔG of the graph. In particular,
the edge coloring algorithm in [38] provably guarantees that the
number of matchings M equals to either ΔG or ΔG + 1.

B. Decentralized Stochastic Optimization Preliminaries

We consider that each worker node only has access to its own
local datasetDi where i ∈ {1, 2, . . . ,m}. Our objective is to use
this network ofm nodes to train one common modelx) using the
joint dataset and the given network topology. In particular, we
seek to minimize the objective function F (x), which is defined
as follows:

F (x) � 1

m

m∑
i=1

Fi(x) =
1

m

m∑
i=1

1

|Di|
∑
s∈Di

�(x; s) (1)

wherex denotes the model parameters (for instance, the weights
and biases of a neural network), Fi(x) is the local objective
function, s denotes a single data sample, and �(x; s) is the loss
function for sample s, defined by the learning model.

Vanilla Decentralized SGD Update Rule: In order to minimize
the objective function (1), many decentralized optimization al-
gorithms have been developed starting from the seminal work
of [11], [39]. In a typical decentralized optimization algorithm,
each worker node alternates between local computation and
communication with its neighboring nodes. For example, in
vanilla decentralized SGD (DecenSGD) [16], [19], [24], all
nodes iteratively run the following:

1) Parallel Local Computation: Node i computes the
stochastic gradient with respect to its local version
of model parameters: gi(x

(k)
i) = 1

|B|
∑

s∈B ∇�(x
(k)
i ; s)

where B ⊆ Di is a randomly sampled mini-batch B from
the local dataset. Then, node i updates its local parameters

using the stochastic gradient: x
(k+ 1

2)
i = x

(k)
i − ηgi(x

(k)
i)

where η denotes the learning rate.
2) Communication with Neighbors: In order to achieve con-

sensus, worker nodes need to exchange model parameters
with neighbors. This procedure involves a two-way com-
munication.

� Node i sends its local model parameters x
(k+ 1

2)
i to its

neighboring nodes Ni;
� Node i receives model parameters from each of its neigh-

bors. After this step, node i should have all neighbors’

model parameters
{
x
(k+ 1

2)
j

}
j∈Ni

.

3) Mixing Local Model with Neighbors: Since the nodes
seek to jointly train a common model x, they perform a
consensus step by taking a weighted average of their model

x
(k+ 1

2)
i with neighboring models. Thus, node i updates its

model as: x(k+1)
i =

∑
j∈Ni∪{i} Wjix

(k+ 1
2)

j , where Wji is
the (j, i)-th element of the mixing matrix W ∈ Rm×m.
It represents the weight assigned to neighbor j when
updating node i’s model. Observe that Wij �= 0 if and
only if node i and node j are connected, i.e., (i, j) ∈ E .

Putting the above steps together, we can write the update rule
of vanilla DecenSGD as follows:

x
(k+1)
i =

∑m

j=1
Wij︸ ︷︷ ︸

consensus step

[
x
(k)
j − ηgj

(
x
(k)
j

)]
︸ ︷︷ ︸

parallel local computation

. (2)

In order to enforce consensus among the nodes in (2), it is
common practice to use a symmetric and doubly stochastic (i.e.,
the sum of each column/row is 1) mixing matrix W. A common
choice is equal weight matrix, defined as follows:

W = I− αL (3)

where α is a tunable parameter and L denotes the Laplacian
matrix of graph G. The definition (3) makes W symmetric and
doubly-stochastic by construction and is widely used in litera-
ture [18], [40]. A largerα assigns a higher weight to neighboring
models. For example, if node 1 is only connected to nodes 2 and
3, then the first row of graph LaplacianL is [2,−1,−1, 0, . . . , 0]
and the corresponding first row of W is [1− 2α, α, α, 0, . . . , 0].
Although we use a fixed W to describe decentralized SGD in
this section, it can also vary across iterations. For example, in
periodic decentralized SGD [8], [17] where each node performs
τ local SGD updates before communicating with neighbors,
W(k) = W when k mod τ = 0 andW(k) = I otherwise. Our
proposed MATCHA algorithm described in Section III also con-
structs a time-varying mixing matrix.

Convergence Analysis of Decentralized SGD: When the ob-
jective function (1) is a non-convex function, then the typical
metric for convergence is the gradient norm ‖∇F (x)‖. In par-
ticular, we have the following informal lemma.

Lemma 1 (Convergence guarantee of DecenSGD, [8], [16]):
Suppose x denote the averaged model across all worker nodes
and all local models at nodes are initialized from the same point
x(1). Then under standard assumptions on the stochastic gradi-
ents (formally stated in Section V), we have after K iterations:

1

K

K∑
k=1

E‖∇F
(
x(k)

)‖2 = O
(

1√
mK

)
+O

(
m

K

ρ

(1−√
ρ)2

)
(4)

where K is the total iterations and ρ denotes the spectral norm
(i.e., largest singular value) of matrix W2 − 11�/m.

Lemma 1 shows that the convergence rate of DecenSGD is
controlled by the spectral norm ρ = ‖W2 − 11�/m‖2 < 1. A
smaller ρ yields a better convergence error bound. In general,
the value of ρ relates to the connectivity of the network topology.
When worker nodes can communicate with any other nodes (i.e.,
the network topology is fully connected), then ρ = 0 and the
second term in (4) achieves its minimum. And when the network
topology is extremely sparse, then ρ will be close to 1, making
the second term in (4) approach to infinity.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

5212 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Remark 1 (Larger λ2(L) results in faster error convergence):
When the mixing matrix is of the form W = I− αL, then
(see [41] for the detailed derivation)

ρ = max{(1− αλm(L))2, (1− αλ2(L))
2}. (5)

≥
1− λ2(L)

λm(L)

1 + λ2(L)
λm(L)

(6)

where the equality is achieved by setting α = 2/(λ2(L) +
λm(L)). Thus, a graph with larger λ2(L)/λm(L)1 will have
smaller value of ρ and hence, a better convergence error bound.
The value of λ2(L)/λm(L) is more sensitive to λ2(L) because
λm(L) is always lower bounded by the average node degree,
which is away from zero [41]. Therefore, a larger λ2(L) will
result in a better error convergence bound.

We use the above observation in MATCHA, and design a
topology sequence that maximizes λ2(L) of the expected graph
(see Section III) and then optimize the value of α in order to
minimize the corresponding spectral norm ρ (see Section IV).
The resulting mixing matrix sequence reduces the communica-
tion delay per iteration while maintaining or improving the error
convergence bound.

C. Understanding How Network Topology Affects the Runtime
Per Iteration

Observe that Lemma 1 gives a convergence bound for de-
centralized SGD with respect to the number of iterations K
and the spectral norm ρ, without accounting for the time spent
per iteration. In this section, our goal is to understand how the
network topology affects the runtime per iteration. The runtime
includes the local computation time and the communication time
T comm
G required to perform the two-way exchange of models

with neighboring nodes (Step 2 of the vanilla DecenSGD update
rule described above). Since the communication time T comm

G
generally dominates over local computation time in bandwidth-
limited environments, we focus on understanding how T comm

G
is affected by the network topology. In particular, we have the
following proposition.

Proposition 1: The expected communication time per itera-
tion E[T comm

G] of decentralized optimization algorithms mono-
tonically increases with the maximal degree in the graph, that
is,

E[T comm
G] ≥ t(ΔG) (7)

where t(·) is a monotonically increasing function and ΔG =
maxi∈V di, the maximal node degree in graph G.

In the rest of this section, we justify why Proposition 1 is
true irrespective of the link delay distribution and the inter-node
communication protocol. If the reader believes Proposition 1,
they may skip ahead to Section III, which describes the proposed
MATCHA algorithm.

1The quantity λ2(L)/λm(L) is typically maximized by spectral expanders
such as Ramanujan graphs.

Node i’s per-iteration communication time Ti increases with
its degree di: Recall that the communication step of decen-
tralized SGD (see step 2 in Section 2.1) requires a two-way
communication of models – each node needs to send its model
parameters to its neighbors and then receive one model back
from each of the neighbors. Without loss of generality assume
that the fastest node finishes its local computation (step 1 in
Section 2.1) at time 0. Starting from this time, let random
variable T send

i→j denote the time for node i to complete sending
its model to node j respectively (including any idle time spent
waiting for other concurrent inter-node communication). As a
result, node i takes time

Ti = max

(
max
j∈Ni

T send
i→j ,max

j∈Ni

T send
j→i

)
(8)

to communicate with its neighbors in each iteration. Since the
slowest neighboring node is always the bottleneck, E[Ti] =
t(di), where t(·) is a monotonically increasing function.

The exact form of the function t depends on the distributions
of the random variablesT send

i→j , which in turn depend on many fac-
tors such as the inter-node communication and collision avoid-
ance protocols, link delays, background processes etc. For ex-
ample, if node i sequentially sends its models to its di neighbors
where each transfer takes time Si then maxj∈Ni

T send
i→j = diSi

andE[Ti] increases linearly with di. Instead, if node i broadcasts
its model to its neighbors in timeSi ∼ Exp(μ) that is i.i.d. across
nodes, then maxj∈Ni

T send
i→j = Si and E[Ti] = maxj∈Ni

Sj ≈
log(1+di)

μ , which is again monotonically increasing in di.
The communication time T comm

G increases with the maximal
node degree: Now let us express the communication time per
iteration T comm

G in terms of Ti. In an ideal network where all
nodes can simultaneously communicate with their respective
neighbors, T comm

G = maxi∈V Ti. However, in practice,

E[T comm
G] ≥ E[max

i∈V
Ti] (9)

≥ max
i∈V

E[Ti] (10)

= t(ΔG). (11)

The last equality (11) comes from the fact that t(·) is an in-
creasing function. Thus, we have justified that Proposition 1 is
true. Furthermore, the equality holds in (10) only when all nodes
can perform their send and receive communications in parallel.
However, achieving this in practice requires careful allocation
of time/frequency resources to the send/receive communications
on each link in order to avoid conflicts. Below, we show exam-
ples of how the inter-node communications can be orchestrated.
� Frequency Division Multiplexing model (FDM): To avoid

conflicting inter-node communication, each node can have
a dedicated frequency channel to send its model to neigh-
bors and di receive channels corresponding to its neigh-
bors’ send frequencies. In this case with a total of m
frequencies, all nodes can indeed communicate in parallel
and thus E[T comm

G] will achieve the lower bound in (10).
Alternately, we can decompose the topology intoM match-
ings and assign one send and one receive frequency to each
matching. This strategy again achieves the lower bound in

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MATCHA: A MATCHING-BASED LINK SCHEDULING STRATEGY TO SPEED UP DISTRIBUTED OPTIMIZATION 5213

(10) but 2ΔG (which is typically smaller thanm) frequency
channels.

� Time Division Multiplexing model (TDM): In time divi-
sion multiplexing, all nodes in the system use the same
frequency to send and receive messages. To avoid con-
flicts, each inter-node transmission needs to be assigned
a dedicated time slot. A naive approach is to assign one
time slot each node to broadcast its model to its neighbors.
This would result in E[T comm

G] to scale linearly with the
number of nodesm. Instead, our link-scheduling algorithm
MATCHA proposes a more efficient TDM implementation.
We decompose the graph into M = ΔG or M = ΔG + 1
matchings and then assign one time slot to each matching.
Since a matching contains non-conflicting links, all links
in a matching can be activated at the same timeslot. As
a result, E[T comm

G] ∝ ΔG , which also achieves the lower
bound in (10) with equality.

III. MATCHA: LINK SCHEDULING VIA MATCHING

DECOMPOSITION SAMPLING

In Section II, we showed that the communication delay per it-
eration increases with the maximal node degreeΔG . On the other
hand, we also showed that a better-connected graph (which often
has a higher ΔG) gives faster error-versus-iterations conver-
gence. Our proposed link-scheduling strategy MATCHA seeks the
best trade-off between these opposing forces. MATCHA generates
a time-varying communication topology that maximizes the
algebraic connectivity of the expected graph, while keeping the
expected maximal degree small. By doing so, we automatically
communicate more frequently over connectivity-critical links
(preserving fast error convergence) and less frequently other
links (reducing the communication delay per iteration).

In this section we describe a matching decomposition sam-
pling (illustrated in Fig. 2) procedure to generate a time-varying
topology sequence. Later, in section 4, we will discuss how
to optimize the mixing matrix weights Wji for this topology
sequence. All the steps described in Section III and Section IV
are pre-processing steps that can be performed before training
starts. Thus MATCHA does not add any per-iteration overhead to
the total training time.

A. Step 1: Matching Decomposition.

First, we decompose the base node topology into total
M disjoint sub-graphs i.e., {Gj(V, Ej)}Mj=1, E =

⋃M
j=1 Ej and

Ei
⋂ Ej = ∅, ∀i �= j, as defined in Section II. Only a subset of

these sub-graphs is activated in each training iteration. It has
been justified in Proposition 1 that the communication delay
is a monotonically increasing function of the maximal node
degree. Thus, in order to save the communication delay, it is
of particular interest for the activated topology to have smaller
maximal degree than the base node topology. As a consequence,
a key design question here is: which kind of decomposition {Gj}
of the base topology to use so that we can easily and flexibly
control the maximal degree of the activated topology?

In this paper, we choose to use matchings as the decompo-
sition basis. All nodes in a matching have at most degree one.

Fig. 2. Illustration of MATCHA. We decompose the base communication
graph into disjoint subgraphs (in particular, matchings, in order to parallelize
communication). At each communication round, we activate a subset of these
matchings to construct a sparse subgraph of the base topology. Worker nodes are
synchronized only through the activated topology. If one node is not involved in
the activated subgraphs, it just performs one local update.

The inter-node links are disjoint and can operate in parallel. As
shown in Section II, a nice property of matching decomposition
is that, using the edge-coloring algorithm [38], one can provably
guarantees that the number of matchings equals to either ΔG or
ΔG + 1, where ΔG is the maximal node degree. For almost all
graphs, it has been proved in [42] that there exists a decompos-
tion scheme such thatM = ΔG . That is, the node(s) with highest
degree appears in all M matchings. Therefore, if there are N
matchings are activated for communication at certain iteration,
then the maximal degree of the activated topology is exactly
N .

Another critical benefit of using matching decomposition is
that it automatically construct a link scheduling scheme that can
achieve the lower bound (7) of communication time per iteration.
As discussed in Section II-C, in TDM communication model,
one can assign one time slot for each matching and communicate
them sequentially. In FDM communication model, one can
assign one frequency to each matching and communicate them
in parallel. As a consequence, by using matching, one can easily
control the communication delayE[T comm

G] = t(ΔG) = t(N) by
adjusting N , the number of matchings to be activated at each
iteration.

B. Step 2: Computing Matching Activation Probabilities.

In order to activate a subset of the M matchings, in each
training iteration, we assign an independent Bernoulli random
variable Bj , which is 1 with probability pj and 0 otherwise,
to each matching Gj , ∀j ∈ {1, . . . ,M}. The links in matching
j will be used for information exchange in the consensus step
only when the realization ofBj is 1. Using this random sampling
scheme, one can write the expected communication time per

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

5214 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

iteration as

Expected Comm. Time = E [t(ΔG(k))] = E

⎡⎣t
⎛⎝ M∑

j=1

Bj

⎞⎠⎤⎦
(12)

where G(k) denotes the activated topology at the k-th iteration.
We further define E[Bj] = pj as the activation probability of
the j-th matching. When all pj’s equal to 1, the algorithm
reduces to vanilla DecenSGD and takes t(M) time to finish
one consensus step. To reduce the communication delay, we
define communication budgetCb > 0, and impose the constraint

E

[
t
(∑M

j=1 Bj

)]
≤ Cb · t(M). For example, Cb = 0.1 means

that the expected communication time per iteration of MATCHA

be 10% of the time per iteration of vanilla DecenSGD. Eqn. (12)
can be further simplified in the TDM model. When we ignore all

constants, it follows that E
[
t
(∑M

j=1 Bj

)]
= E

[∑M
j=1 Bj

]
=∑M

j=1 pj .
As mentioned before, the key idea of MATCHA is to give more

importance to critical links. This is achieved by choosing a set
of activation probabilities that maximize the connectivity of the
expected graph given a communication time constraint. That is,
we solve the optimization problem:

max
p1,...,pM

λ2

(
M∑
j=1

pjLj

)

subject to E

[
t

(
M∑
j=1

Bj

)]
≤ Cb · t(M),

0 ≤ pj ≤ 1, ∀j ∈ {1, 2, . . . ,M}, (13)

where Lj denotes the Laplacian matrix of the j-th subgraph
and

∑M
j=1 pjLj can be considered as the Laplacian of the

expected graph. Moreover, recall thatλ2 represents the algebraic
connectivity and is a concave function [36], [40]. The optimiza-
tion problem (13) can be solved via numerical methods. In the
TDM communication model, the constraint in (13) reduces to∑M

j=1 pj ≤ CbM . Thus, it follows that (13) is a convex problem
and can be solved efficiently. Typically, a larger value of λ2

implies a better-connected graph and leads to a better rate to
reach consensus in many decentralized applications [40].

C. Step 3: Generating Random Topology Sequence.

Given the activation probabilities obtained by solving (13), in
each iteration k, we generate an independent Bernoulli random
variable B

(k)
j for each matching j = 1, . . .M . Thus, in the

k-th iteration, the activated topology G(k)(V, E(k)), in which
E(k) =

⋃M
j=1 B

(k)
j Ej , is sparse or even disconnected. Note that if

a node has no activated links, then it still continues to make local
updates to the current local models. Besides the topology se-
quence, one can also obtain the corresponding Laplacian matrix
sequence: L(k) =

∑M
j=1 B

(k)
j Lj , ∀k ∈ {1, 2, . . . }. All of these

information can be obtained and assigned apriori to worker
nodes before starting the training procedure. In practice, the

server does not need to send the entire Laplacian matrix sequence
{L(1),L(2), . . .L(K)} to worker nodes, the size of which can be
up toMMK. Instead, the server can first broadcast the matching
decomposition {L1,L2, . . .,LM} and then send the activated
index sequence to all nodes, the size of which is only up to
MK. Also, this additional communication cost before training
is negligible compared to the that of transferring neural network
parameters during training (size of neural network times number
of iterations). Besides, there is another simple way to eliminate
the communication of the network topologies – we can assign
the same random seed to all clients and let them generate the
sequence of activated graphs by themselves. By doing this, we
can avoid sending the whole sequence of activated graphs.

D. Extension to Other Design Choices.

Combining all the previous steps together, we provide a
pseudo code of MATCHA in Algorithm 1. One can observe
that the proposed MATCHA framework of activating different
subgraphs in each iteration is very general – it can be extended
to various other delay models, graph decomposition methods and
algorithms involving decentralized averaging. For example, in-
stead of activating all matchings independently, one can choose
to activate only one matching at each iteration. Also, instead of
using matchings as the decomposition basis, one can also use
other sub-graphs, such as edges, trees or cliques.

Finally, although this paper focuses on using mini-batch
stochastic gradients, the local computation step can take
many other forms, such as updating local models using com-
pressed/quantized gradient, variance-reduced or stale asyn-
chronous gradient. The core idea of MATCHA can still apply
as long as the decentralized optimization algorithm involves
a consensus step (communication then mixing) as marked in
(2). Later in Section VI, we provide an example of combining
MATCHA with gradient compression methods.

IV. OPTIMIZING THE MIXING MATRIX WEIGHTS OF THE

TOPOLOGY SEQUENCE

In order to make the best use of the sequence of activated
subgraphs generated by MATCHA when running decentralized
SGD with a time-varying topology, we need to optimize the
proportions in which the local models are averaged together in
the consensus step of (2). As mentioned in Section II, a common
practice is to use an equal weight mixing matrix as [18], [40],
[43]:

W(k) = I− αL(k) = I− α
M∑
j=1

B
(k)
j Lj , (14)

where L(k) =
∑M

j=1 B
(k)
j Lj denotes the graph Laplacian at

the k-th iteration. Each matrix W(k) is symmetric and doubly
stochastic by construction, and the parameter α represents the
weight of neighbor’s information in the consensus step. To
guarantee sufficient decrease after every iteration of decen-
tralized SGD for smooth and non-convex losses, the spectral
norm ρ = ‖E[W(k)�W(k)]− 1

m11�‖2 must be less than 1. In

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MATCHA: A MATCHING-BASED LINK SCHEDULING STRATEGY TO SPEED UP DISTRIBUTED OPTIMIZATION 5215

general, a smaller value of ρ leads to a smaller error bound
(formally stated in Theorem 2 of Section V).

In the following theorem, we optimize α by formulating a
semi-definite programming problem and show that for MATCHA

with arbitrary communication budget Cb > 0, one can always
find a value of α for which the resulting spectral norm ρ < 1.

Theorem 1: Let {L(k)} denote the sequence of Laplacian
matrices generated by MATCHA with arbitrary communication
budget Cb > 0 for a connected base graph G. If the mixing
matrix is defined asW(k) = I− αL(k), then there exists a range
of α such that ρ = ‖E[W(k)�W(k)]− 1

m11�‖2 < 1, which
guarantees the convergence of MATCHA to a stationary point.

The value ofα can be obtained by solving the following semi-
definite programming problem:

min
ρ,α,β

ρ,

subject to α2 − β ≤ 0,

I− 2αL+ β
[
L
2
+ 2L̃

]
− 1

m
11� � ρI (15)

where β is an auxiliary variable, L =
∑M

j=1 pjLj and L̃ =∑M
j=1 pj(1− pj)Lj .
Similar to the optimization problem (13), the semi-definite

programming problem (15) needs to be solved only once at the
beginning of training, and this additional computation time (few
seconds or even less) is negligible compared to the total training
time (hours).

Note that the activation probabilities in MATCHA implicitly
influence the spectral norm as well. Ideally, given a commu-
nication budget, one should jointly optimize pi’s and α via a

Fig. 3. Examples on how the spectral norm ρ varies over communication
budget in MATCHA. In both (a) and (b), there are 16 worker nodes. MATCHA

typically costs 2− 3× less communication time than vanilla DecenSGD (black
crosses) while maintaining the exactly same or even lower value of ρ (i.e., same
or better error upper bound).

formulation like (15). However, the resulting optimization prob-
lem is non-convex and cannot be solved efficiently. Therefore,
in MATCHA, we separately optimize the pi’s and the parameter
α. Optimizing pi’s via (13) can be thought of as minimizing an
upper bound of the spectral norm ρ.

Dependence on Communication Budget Cb: While it is dif-
ficult to get the analytical form of ρ in terms of the communi-
cation budget Cb, in Fig. 3, we present some numerical results
obtained by solving the optimization problems (13) and (15) in
the TDM communication model. Recall that a lower spectral
norm ρ means better error-convergence in terms of iterations.
Observe that one can always find a value of Cb that preserves
the same spectral norm as vanilla DecenSGD but only takes
2− 3× less communication time. By setting a proper budget
(for instance Cb ≈ 0.5 in Fig. 5(b)), MATCHAcan have even
lower spectral norm than vanilla DecenSGD. In other words,
MATCHAachieves a win-win in the error-runtime trade-off – it
gives a 2− 3× communication delay reduction as compared to
vanilla DecenSGD but with the same or even better convergence
guarantee! The numerical results Fig. 3 can serve as a guideline
when selecting Cb in practice. These theoretical findings are
corroborated by extensive experiments in Section VI.

V. ERROR CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis of how the
error convergence of MATCHA depends on the spectral norm and
how it compares to the convergence of vanilla DecenSGD.

To facilitate the analysis, we define the averaged iterate
as x(k) = 1

m

∑m
i=1 x

(k)
i and the lower bound of the objective

function as Finf. Since, we focus on general non-convex loss
functions, the quantity of interest is the averaged gradient norm:
1
K

∑K
k=1 E[‖∇F (x(k))‖2]. When it approaches zero, the algo-

rithm converges to a stationary point. The analysis is centered
around the following common assumptions.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

5216 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Assumption 1: Each local objective function Fi(x) is differ-
entiable and its gradient isL-Lipschitz: ‖∇Fi(x)−∇Fi(y)‖ ≤
L‖x− y‖, ∀i ∈ {1, 2, . . . ,m}.

Assumption 2: Stochastic gradients at each worker node are
unbiased estimates of the true gradient of the local objectives:
E[g(x

(k)
i)|F (k)] = ∇Fi(x

(k)
i), ∀i ∈ {1, 2, . . . ,m}, whereF (k)

denotes the sigma algebra generated by noise in the stochastic
gradients and the graph activation probabilities until iteration k.

Assumption 3: The variance of stochastic gradients at
each worker node is uniformly bounded: E[‖gi(x(k)

i)−
∇Fi(x

(k)
i)‖2|F (k)] ≤ σ2, ∀i ∈ {1, 2, . . . ,m}.

Assumption 4: The deviation of local objectives’ gradients
are bounded by a non-negative constant: 1

m

∑m
i=1 ‖∇Fi(x)−

∇F (x)‖2 ≤ ζ2.
Assumptions 1 to 3 are common assumptions used for SGD

analysis [4]. Assumption 4 is a standard assumption in dis-
tributed optimization to measure the dissimilarity among local
gradients. It has been widely used in most related works, such
as [16], [44] and many others. There is recent trend to relax
Assumption 4 to let it hold only for the optimum point [45].
Although this relaxation can offer us a less restrictive assump-
tion, it does not change the convergence rate at all and will not
provide new insights. Therefore, we choose to conduct analysis
under Assumption 4, which is enough to provide a reasonable
convergence guarantee for MATCHA.

We first provide a non-asymptotic convergence guarantee for
MATCHA, the proof of which is provided in the Appendix.

Theorem 2 (Non-asymptotic Convergence of MATCHA): Sup-
pose that all local models are initialized with x(1) and
{W(k)}Kk=1 is an i.i.d. mixing matrix sequence generated by
MATCHA. Under Assumptions 1 to 4, and if the learning rate
satisfies ηL ≤ min{1, (

√
ρ−1 − 1)/4}, where ρ is the spectral

norm (i.e., largest singular value) of matrix E[W(k)�W(k)]−
1
m11�, then after K iterations, the expected gradient norm
1
K

∑K
k=1 E[‖∇F (x(k))‖2 will be upper bounded by(

2[F (x(1))− Finf]

ηK
+

ηLσ2

m

)
1

1− 2D

+
2η2L2ρ

1−√
ρ

(
σ2

1 +
√
ρ
+

3ζ2

1−√
ρ

)
1

1− 2D
(16)

where D = 6η2L2ρ/(1−√
ρ)2 < 1/2. It is guaranteed that

ρ < 1 for arbitrary communication budget Cb > 0.
Note that if W(k) = 11�/m, then ρ = 0 and the error bound

in Theorem 2 reduces to that for fully synchronous SGD derived
in [4]. When W(k) is fixed across iterations, then Theorem 2
reduces to the case of vanilla DecenSGD and recovers the bound
in [8], [16]. Theorem 2 reveals that the only difference in the
optimization error upper bound between MATCHA and vanilla
DecenSGD is the value of spectral norm ρ. A smaller value of
ρ yields a lower optimization error bound.

Furthermore, if the learning rate is configured properly,
MATCHA can achieve a linear speedup in terms of number of
worker nodes.

Corollary 1 (Linear speedup): Under the same conditions as
Theorem 2, if the learning rate is set as η =

√
m
K , then after total

K iterations, we have

1

K

K∑
k=1

E

[∥∥∥∇F
(
x(k)

)∥∥∥2] = O
(

1√
mK

)
+O

(m
K

)
(17)

where all the other constants are subsumed in O.
It is worth noting that when the total iterationK is sufficiently

large (K ≥ m3), the convergence of MATCHA will be dominated
by the first term 1/

√
mK, matching the same rate as vanilla De-

cenSGD and fully synchronous SGD. Using the same technique
as in Corollary 1 and existing literature [29], one can also obtain
the convergence rate of the consensus error E‖x− xi‖2 from
the intermediate steps in the proof of Theorem 2. Due to space
limitations, we omit this result here.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of MATCHA

in multiple deep learning tasks: (1) image classification on
CIFAR-10 and CIFAR-100 [46]; (2) Language modeling on
Penn Treebank corpus (PTB) dataset [47]. More specifically,
� CIFAR-10 and CIFAR-100 consist of 60,000 color images

in 10 and 100 classes, respectively. We set the initial
learning rate as 0.8 and it decays by 10 after 100 and 150
epochs.2 The mini-batch size per worker node is 64. We
train vanilla DecenSGD for 200 epochs and all other algo-
rithms for the same wall-clock time as vanilla DecenSGD.

� The PTB dataset contains 923,000 training words. A two-
layer LSTM with 1500 hidden nodes in each layer [48] is
adopted. We set the initial learning rate as 40 and it decays
by 4 when the training procedure saturates. The mini-batch
size per worker node is 10. The embedding size is 1500.
All algorithms are trained for 40 epochs.

All training datasets are evenly partitioned over a network of
workers. The learning rate is fine-tuned for vanilla DecenSGD
and then used for all other algorithms, since we treat MATCHA

as an in-place replacement of vanilla DecenSGD. Note that this
will in fact disadvantage MATCHA in the comparison with vanilla
DecenSGD. Moreover, each node is equipped with one NVIDIA
TitanX Maxwell GPU and has a 40 Gbps (5000 MB/s) Ethernet
interface. MATCHA is implemented with PyTorch and MPI4Py
and uses the TDM communication model. Our code is made
public here: github.com/JYWa/MATCHA.

Error-versus-wallclock time Speed-up Achieved by MATCHA:
In Fig. 4, we evaluate the performance of MATCHA with various
communication budgets (2%, 10%, 50% of vanilla DecenSGD).
The base communication topology is shown in Fig. 2. From
Figs. 1(e), 4(e) and 4(f), one can observe that when the commu-
nication budget is set to 0.5 (reducing expected communication
time per iteration by 50%), MATCHA has nearly identical training
losses as vanilla DecenSGD at every epoch. This empirical
finding reinforces the claim in Section 5 regarding the similarity
of the algorithms’ performance in terms of iterations. When we
continue to reduce the communication budget, MATCHA attains
significantly faster convergence with respect to wall-clock time
in communication-intensive tasks. In particular, on CIFAR-100

2One epoch means one traverse over the whole dataset

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

github.com/JYWa/MATCHA

WANG et al.: MATCHA: A MATCHING-BASED LINK SCHEDULING STRATEGY TO SPEED UP DISTRIBUTED OPTIMIZATION 5217

Fig. 4. Varying communication budgets Cb in MATCHA. The base communication topology is the 8-node topology in Fig. 1(a). As predicted by the theoretical
result in Fig. 1(c), when the communication budget is 0.5, MATCHA has nearly the same loss-versus-iteration curves as vanilla DecenSGD (see (e) and (f)) but
requires only half communication time per iteration.

(see Fig. 1(d)), MATCHA withCb = 0.02 exhibits a 5× reduction
in wall-clock time than vanilla DecenSGD to reach a training
loss of 0.1.

Effect of the Base Communication Topology: To further
demonstrate the applicability of MATCHA to arbitrary graphs,
we evaluate it on different topologies with varying levels of con-
nectivity. In Fig. 5, we present experimental results on random
geometric graph topologies that have different maximal degrees.
In particular, in each experiment, we tune the communication
budget Cb according to the numerical results like Fig. 3 so that
it yields the lowest spectral norm. When the maximal degree is
10 (see Figs. 5(e), 5(h) and 5(k)), MATCHA with communication
budgetCb = 0.4 not only reduces the mean communication time
per iteration by 1/0.4 = 2.5× but also has lower error than
vanilla DecenSGD. This result corroborates the corresponding
spectral norm versus communication budget curve in Fig. 3.

Moreover, note that for denser graphs (see Figs. 5(f), 5(i) and
5(l)), one can set a much smallerCb and obtain a greater commu-
nication reduction. MATCHA takes less and less time to achieve
a training loss of 0.1 when the base topology becomes denser,

in contrast to vanilla DecenSGD. This is because denser graphs
tend to have more redundant links and allow more flexibility in
scheduling.

Comparison to Periodic DecenSGD: A naive way to reduce
the communication time per iteration is to use the whole base
graph for synchronization after every few iterations [8], [17].
Instead, in MATCHA, we allow different matchings to have
different communication frequencies. In Fig. 5, we evaluate the
performance of these two algorithms on three random geometric
graphs with 16 nodes. Similar to the theoretical simulations in
Fig. 3, the results in Fig. 5 show that given a fixed communication
budget Cb, MATCHA consistently achieves better convergence
rate than periodic DecenSGD (see Figs. 5(g) to 5(i)) while
preserving the same runtime per iteration (see Figs. 5(d) to 5(f)).
Moreover, the same phenomenon also appears on the other two
training tasks (PTB and CIFAR-100). The results are presented
in Fig. 6.

Extension to Other Decentralized Tasks: It is worth high-
lighting that MATCHA not only speeds up vanilla DecenSGD
but also can be viewed as a generic tool to improve the

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

5218 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Fig. 5. Performance comparison on three random-generated geometric graphs with 16 nodes and different levels of connectivity. We train a ResNet-50 on
CIFAR-10 dataset and decay the learning rate by 10 when training saturates. Each column corresponds to the results on one graph. In particular, the base topology
used in (d) and (e) is the same as Fig. 5(b), which suggests that MATCHA can achieve lower spectral norm than vanilla DecenSGD whenCb ≥ 0.3. As a consequence,
(g) and (h) show that MATCHA can reach a much lower training loss than vanilla DecenSGD.

communication efficiency of any other decentralized compu-
tation task over an arbitrary network. As an example, we imple-
ment MATCHA on the top of CHOCO-SGD [27], [45], which is
the state-of-the-art method to compress inter node transmissions
in decentralized SGD. While CHOCO-SGD already compresses
the transmitted data size to 1%, MATCHA can further achieve
about 2× speedup in wall-clock time over CHOCO-SGD without
hurting the iteration-wise convergence (see Fig. 7).

VII. RELATED PRIOR WORK

Sparsifying the Base Topology via Gossip: The idea of saving
communication delay per iteration by using sparse sub-graphs of
the base network topology is not new. It has been studied in the
context of gossip algorithms for distributed optimization [18],

[30], [31], where a subset of links are activated at random in
each iteration. But the selection of these links is agnostic to its
effect on the network connectivity and communication time. In
contrast, to the best of our knowledge, MATCHA is the first work
to tune the communication frequency of each link separately
by accounting for its effect on the graph connectivity and the
communication delay per iteration.

Hand-designed Network Topology Sequence: Some recent
works on communication-efficient decentralized SGD use a
hand-designed sequence of sub-graphs assuming that any pair of
nodes can communicate with each other in the base topology. For
example, [16] shows that decentralized SGD with a ring topol-
ogy can sharply reduce the time spent per iteration as compared
to centralized SGD (via a parameter server or usign AllReduce).
Building on this idea, [29] proposes stochastic gradient push,

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MATCHA: A MATCHING-BASED LINK SCHEDULING STRATEGY TO SPEED UP DISTRIBUTED OPTIMIZATION 5219

Fig. 6. Comparison of MATCHA and P-DecenSGD. The base communication
topology is given in Fig. 1(a). While MATCHA has nearly identical error-
convergence to vanilla DecenSGD, P-DecenSGD performs consistently worse
in all tasks. Note that MATCHA and P-DecenSGD have the same average
communication time per iteration.

Fig. 7. MATCHA can be directly applied to other decentralized algorithms,
such as CHOCO-SGD [27], which uses gradient compression techniques to
save communication delay in decentralized training. Here, we use the Top-1%
compressor in CHOCO-SGD and train a WideResNet on CIFAR-100 dataset. The
base node topology is the same as Fig. 1(a).

which uses a sequence of dynamic directed exponential graphs to
reduce the communication delay. Having a fully-connected base
topology gives them the flexibility to hand-design this sequence
and ensure fast consensus. It is unclear how to generalize this
idea to an arbitrary network topology where certain inter-node
links may not exist due to practical constraints. MATCHA pro-
vides a general, principled method to identify communication-
efficient subgraphs for an arbitrary given base topology.

Asynchronous Decentralized SGD: [28] develops an asyn-
chronous version of decentralized SGD [16] called AD-PSGD,
where workers asynchronously average their updated local
model with a randomly selected neighbor. In order to avoid
deadlocks, the asynchronous communication has to be con-
ducted over a hand-designed sequence of bipartite sub-graphs
of a fully-connected base topology. Moreover, asynchronous
aggregation results in gradient staleness, which can lead to
worse error-versus-iterations convergence. Although we focus
on synchronous aggregation in this paper, MATCHA is a general
link scheduling technique that is independent of the gradient
aggregation mechanism (asynchronous or synchronous) and
thus it is complementary to AD-PSGD.

Gradient Compression or Quantization Techniques: By re-
ducing the frequency of inter-node communication, MATCHA

effectively performs more local SGD updates at each node
between model synchronization steps. Thus, MATCHA belongs
to the class of local-update SGD methods recently studied
in [7], [8], [25], [44]. An orthogonal way of reducing inter-node

communication is to compress or quantize inter-node model
updates [27], [32], [49], [50], [51]. These gradient compression
techniques reduce the amount of data that is transmitted per
round rather than the communication frequency. MATCHA can be
easily combined with these complementary compression tech-
niques to give a further reduction in the overall communication
time, as shown in Section VI. As a sidenote, compression tech-
niques incur an encoding/decoding overhead at each iteration.
MATCHA does not incur such overhead at runtime – the sequence
of subgraphs is pre-determined before the training starts.

Gradient Tracking Methods: There are extensive literature
studying gradient tracking methods to accelerate the conver-
gence of vanilla DecenSGD with respect to iterations [34],
[52], [53]. However, this line of works is orthogonal to our
paper. The goal of MATCHA is to reduce the communication
delay per iteration in vanilla DecenSGD while maintaining its
convergence rate. In terms of update rules, the gradient tracking
methods changes how worker nodes perform model updates. But
our method MATCHA changes how different local models (more
generally, local information) are synchronized together.

VIII. CONCLUDING REMARKS

In this paper, we consider the problem of speeding-up de-
centralized SGD, where nodes connected by an arbitrary net-
work topology seek to train a machine learning model by
only exchanging updates with neighboring nodes. Although
decentralized SGD has been extensively studied in distributed
optimization literature, most previous works focus on analyzing
and improving the error convergence with respect to the number
of iterations. The key novelty of this work is that we take
the system-aware approach of accounting for how the network
topology affects the communication delay per iteration and
improving the true convergence speed measured in terms of error
versus wallclock runtime.

The idea of more frequent activation connectivity-critical
sub-graphs, which is at the core of MATCHA, is a nascent concept
with plenty of room for future work. MATCHA currently finds
matching decomposition and the activation probabilities cen-
trally before training begins. In order to use MATCHA in large and
dynamic network topologies, we plan to design decentralized
algorithms to find matchings and activation probabilities. Also,
instead of activating the matchings independently, we could
identify correlated subsets that should be activated together and
consider heterogeneous and/or random communication link de-
lays. Finally, so far we consider an undirected topology because
each link represents a two-way transfer of information (sending
and receiving the local models) between neighbors. Considering
a directed graph can give more flexibility in scheduling the
inter-node model transfers and enable overlapping communi-
cation and computation, as done successfully in [29] for a
fully-connected base topology.

ACKNOWLEDGMENT

The experiments were conducted on the ORCA cluster pro-
vided by the Parallel Data Lab at CMU.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

5220 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[2] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge, U.K.: Cambridge Univ. Press,
2014.

[3] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., vol. 22, no. 3, pp. 400–407, Sep. 1951.

[4] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311,
2018.

[5] J. Dean et al., “Large scale distributed deep networks,” Adv. Neural Inf.
Process. Syst., vol. 25, pp. 1223–1231, 2012.

[6] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “Firecaffe:
Near-linear acceleration of deep neural network training on compute
clusters,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 2592–2600.

[7] S. U. Stich, “Local SGD converges fast and communicates little,” in Proc.
Int. Conf. Learn. Representations, 2019.

[8] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for the
design and analysis of communication-efficient SGD algorithms,” J. Mach.
Learn. Res., vol. 22, no. 213, pp. 1–50, 2021.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist. 2017, pp. 1273–1282.

[10] P. Kairouz et al., “Advances and open problems in federated learning,”
Foundations Trends Mach. Learn., vol. 14, no. 12, pp. 1–210, 2021.

[11] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61,
Jan. 2009.

[12] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[13] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Proc. 28th Int. Conf. Neural Inf.
Process. Syst., 2015, pp. 2737–2745.

[14] J. Zhang, I. Mitliagkas, and C. Re, “YellowFin and the art of momentum
tuning,” in Proc. 2nd MLSys Conf., 2019.

[15] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and stale
gradients can win the race: Error-runtime trade-offs in distributed SGD,”
in Proc. 21st Int. Conf. Artif. Intell. Statist., 2018, pp. 803–812.

[16] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? A case study
for decentralized parallel stochastic gradient descent,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, vol. 30, pp. 5336–5346.

[17] K. Tsianos, S. Lawlor, and M. G. Rabbat, “Communication/computation
tradeoffs in consensus-based distributed optimization,” in Proc. Adv. Neu-
ral Inf. Process. Syst., vol. 25, pp. 1943–1951, 2012.

[18] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averag-
ing for distributed optimization: Convergence analysis and network
scaling,” IEEE Trans. Autom. Control, vol. 57, no. 3, pp. 592–606,
Mar. 2012.

[19] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM J. Optim., vol. 26, no. 3, pp. 1835–1854, 2016.

[20] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” IEEE
Trans. Signal Process., vol. 66, no. 11, pp. 2834–2848, Jun. 2018.

[21] Z. J. Towfic, J. Chen, and A. H. Sayed, “Excess-risk of distributed stochas-
tic learners,” IEEE Trans. Inf. Theory, vol. 62, no. 10, pp. 5753–5785,
Oct. 2016.

[22] D. Jakovetic, D. Bajovic, A. K. Sahu, and S. Kar, “Convergence rates for
distributed stochastic optimization over random networks,” in Proc. IEEE
Conf. Decis. Control, 2018, pp. 4238–4245.

[23] K. Scaman, F. Bach, S. Bubeck, L. Massoulié, and Y. T. Lee, “Optimal
algorithms for non-smooth distributed optimization in networks,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 2740–2749.

[24] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning in
fixed topology networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30,
2017, pp. 5906–5916.

[25] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in Proc. 2nd Conf.
Mach. Learn. Syst., 2019, pp. 212–229.

[26] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime tradeoff
in distributed deep learning: A systematic study,” in Proc. IEEE 16th Int.
Conf. Data Mining, 2016, pp. 171–180.

[27] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic optimiza-
tion and gossip algorithms with compressed communication,” in Proc.
36th Int. Conf. Mach. Learn., 2019, pp. 3478–3487.

[28] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 3043–3052.

[29] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient
push for distributed deep learning,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 344–353.

[30] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE/ACM Trans. Netw., vol. 52, no. 6, pp. 2508–2530,
Jun. 2006.

[31] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex
optimization over random networks,” IEEE Trans. Autom. Control, vol. 56,
no. 6, pp. 1291–1306, Jun. 2011.

[32] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication
compression for decentralized training,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, vol. 31, pp. 7652–7662.

[33] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm
for decentralized consensus optimization,” SIAM J. Optim., vol. 25, no. 2,
pp. 944–966, 2015.

[34] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized training
over decentralized data,” in Proc. 35th Int. Conf. Mach. Learn., 2018,
pp. 4848–4856.

[35] R. Xin, U. A. Khan, and S. Kar, “Variance-reduced decentralized stochastic
optimization with accelerated convergence,” 2019, arXiv:1912.04230.

[36] B. Bollobás, Modern Graph Theory, vol. 184. Berlin, Germany: Springer,
2013.

[37] M. Fiedler, “Eigenvalues of nonnegative symmetric matrices,” Linear
Algebra Appl., vol. 9, pp. 119–142, 1974.

[38] J. Misra and D. Gries, “A constructive proof of Vizing’s theorem,” Inf.
Process. Letters. Citeseer, vol. 41, pp. 131–133, 1992.

[39] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms,” IEEE Trans.
Autom. Control, vol. AC-31, no. 9, pp. 803–812, Sep. 1986.

[40] S. Kar and J. M. Moura, “Sensor networks with random links: Topology
design for distributed consensus,” IEEE Trans. Signal Process., vol. 56,
no. 7, pp. 3315–3326, Jul. 2008.

[41] S. Kar, S. Aldosari, and J. M. Moura, “Topology for distributed inference
on graphs,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2609–2613,
Jun. 2008.

[42] P. Erdõs and R. J. Wilson, “On the chromatic index of almost all graphs,”
J. Combinatorial Theory, Ser. B, vol. 23, no. 2-3, pp. 255–257, 1977.

[43] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, 2004.

[44] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD for non-convex
optimization with faster convergence and less communication,” in Proc.
AAAI Conf. Artif. Intell., vol. 33, no. 1, 2019.

[45] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, “Decentralized deep
learning with arbitrary communication compression,” in Proc. Int. Conf.
Learn. Representations, 2020. [Online]. Available: https://openreview.net/
forum?id=SkgGCkrKvH

[46] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Master’s thesis, Univ. Toronto, Toronto, ON, Canada, 2009.

[47] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of English: The Penn Treebank,” Computat. Linguistics-
Assoc. Comput. Linguistics vol. 19, no. 2, pp. 313–330, 1993.

[48] O. Press and L. Wolf, “Using the output embedding to improve language
models,” in Proc. 15th Conf. Eur. Chapter Assoc. Computat. Linguistics,
vol. 2, pp. 157–163, 2017.

[49] H. Tang et al., “Deepsqueeze: Parallel stochastic gradient descent with
double-pass error-compensated compression,” in Proc. Int. Conf. Mach.
Learn., 2019.

[50] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright,
“Atomo: Communication-efficient learning via atomic sparsification,” in
Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 9850–9861.

[51] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 30, pp. 1709–1720, 2017.

[52] A. Mokhtari and A. Ribeiro, “DSA: Decentralized double stochastic
averaging gradient algorithm,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 2165–2199, 2016.

[53] H. Li, L. Zheng, Z. Wang, Y. Yan, L. Feng, and J. Guo, “S-DIGing: A
stochastic gradient tracking algorithm for distributed optimization,” IEEE
Trans. Emerg. Topics Comput. Intell., vol. 6, no. 1, pp. 53–65, Feb. 2022.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

https://openreview.net/forum{?}id=SkgGCkrKvH
https://openreview.net/forum{?}id=SkgGCkrKvH

WANG et al.: MATCHA: A MATCHING-BASED LINK SCHEDULING STRATEGY TO SPEED UP DISTRIBUTED OPTIMIZATION 5221

Jianyu Wang received the B.E. degree in elec-
tronic engineering from Tsinghua University, Beijing,
China, in 2017, and the Ph.D. degree in electrical and
computer engineering from Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, in 2022. He is currently
a Research Scientist with Meta. He was a Research
Interns with Google Research (2020, 2021) and Face-
book AI research in 2019. His research interests
include federated learning, distributed optimization,
and systems for large-scale machine learning. His
research has been supported by Qualcomm Ph.D.
Fellowship in 2019.

Anit Kumar Sahu received the B.Tech. degree in
electronics and electrical communication engineering
and the M.Tech. degree in telecommunication sys-
tems engineering from the Indian Institute of Tech-
nology, Kharagpur, Kharagpur, India, in May 2013,
and the Ph.D. degree in electrical and computer engi-
neering from Carnegie Mellon University, Pittsburgh,
PA, USA, in 2018. He is currently a Senior Applied
Scientist with Amazon Alexa AI. His research in-
terests include federated learning, self-learning, and
stochastic optimization. He was the recipient of the

2019 A.G. Jordan Award from the Department of Electrical and Computer
Engineering at CMU.

Gauri Joshi (Member, IEEE) received the B.Tech.
and M.Tech. degrees in electrical engineering from
the Indian Institute of Technology (IIT) Bombay,
Mumbai, India, in 2010, and the Ph.D. degree from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2016. She is currently an Associate
Professor with ECE Department, Carnegie Mellon
University, Pittsburgh, PA, USA. She was a Research
Staff Member with IBM T. J. Watson Research Center
during 2016–2017. Her research interests include fed-
erated learning, distributed optimization, and coding

theory. She was the recipient of the NSF CAREER Award in 2021, ACM
Sigmetrics Best Paper Award in 2020, and the Institute Gold Medal of IIT
Bombay in 2010.

Soummya Kar (Fellow, IEEE) received the B.Tech.
degree in electronics and electrical communication
engineering from the Indian Institute of Technology,
Kharagpur, Kharagpur, India, in May 2005, and the
Ph.D. degree in electrical and computer engineering
from Carnegie Mellon University, Pittsburgh, PA,
USA, in 2010. He is currently a Professor of electri-
cal and computer engineering with Carnegie Mellon
University. From June 2010 to May 2011, he was
with the Electrical Engineering Department, Prince-
ton University, Princeton, NJ, USA, as a Postdoctoral

Research Associate. He has authored or coauthored more than 250 articles in
journals and conference proceedings and holds multiple patents in his research
field which include decision-making in large-scale networked systems, stochas-
tic systems, and machine learning.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 02,2023 at 23:39:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

