THE CoRa Tensor Compiler: Compilation for Ragged Tensors with Minimal Padding

Pratik Fegade 1 Tianqi Chen 1,2 Phillip B. Gibbons 1 Todd C. Mowry 1

ABSTRACT

There is often variation in the shape and size of input data used for deep learning. In many cases, such data can be represented using tensors with non-uniform shapes, or ragged tensors. Due to limited and non-portable support for efficient execution on ragged tensors, current deep learning frameworks generally use techniques such as padding and masking to make the data shapes uniform and then offload the computations to optimized kernels for dense tensor algebra. Such techniques can, however, lead to a lot of wasted computation and therefore, a loss in performance. This paper presents CoRa, a tensor compiler that allows users to easily generate efficient code for ragged tensor operators targeting a wide range of CPUs and GPUs. Evaluating CoRa on a variety of operators on ragged tensors as well as on an encoder layer of the transformer model, we find that CoRa (i) performs competitively with hand-optimized implementations of the operators and the transformer encoder and (ii) achieves a $1.6 \times$ geomean speedup over PyTorch for the encoder on an Nvidia GPU and a $1.37 \times$ geomean speedup over TensorFlow for the multi-head attention module used in transformers on a 64-core ARM CPU.

1 INTRODUCTION

Deep learning (DL) is used for a variety of computational tasks on different kinds of data including sequential data like text (Tai et al., 2015; Vaswani et al., 2017), audio (van den Oord et al., 2016) and music (Briot et al., 2017; Huang et al., 2018) and spatial data like images (He et al., 2016). Simultaneously, DL models have become more and more computationally expensive. More efficient execution of these models is, therefore, a priority.

There is often variation in the sizes of the data that we process using DL. Images can be of different resolutions, textual sentences and documents can be of different lengths, and audio can be of different durations. Processing such data exhibiting variation in shape, or shape dynamism (Shen et al., 2020), using the same model and in the same minibatch is therefore important. An example elementwise operation on such data is shown in Fig. 1, where the slices of the inner dimension of tensor A have variable sizes. Such tensors and operators are referred to as ragged tensors and

![Figure 1: An example operation on ragged tensors.](image1)

![Figure 2: Wasted computation due to padding in a transformer encoder layer.](image2)

ragged operators respectively. Note how the shape dynamism translates to a variable bound for loop L2, which iterates over the variable-sized tensor slices.

Past work has developed hand-optimized kernels to accelerate some important ragged applications such as batched matrix multiplication with variable dimensions (Li et al., 2019; Nath et al., 2010), triangular matrix multiplication (Charara et al., 2016) and the widely-used transformer (Vaswani et al., 2017) models (ByteDance; Nvidia). Such hand-optimized kernels, however, require substantial development effort and, hence, are available only for a few operators. Further, they are not portable across different hardware substrates, which is problematic due to the rapid innovation in DL hardware.

While some DL frameworks have started providing support for ragged operators recently (TensorFlow Team, 2022; PyTorch Team, 2022), it is quite limited (TensorFlow Community; PyTorch Community; PyTorch Team) as discussed in §8. Therefore, frameworks usually rely on efficient dense tensor algebra kernels implemented in vendor libraries such as cuDNN (Chetlur et al., 2014) and oneDNN (Intel) or generated by tensor compilers such as TVM (Chen et al., 2018a).
to target parallel hardware. Padding (illustrated in the top right of Fig. 1) and masking\(^1\) are therefore commonly used to eliminate shape dynamism in ragged tensors and enable the use of vendor libraries or dense tensor compilers (HuggingFace, 2020).

Padding and masking, however, lead to wasted computation as the padding or the masked data points are discarded after execution. Fig. 2 plots the relative amount of computation (computed analytically in FLOPs) involved in the forward pass of an encoder layer of the transformer model\(^2\) with and without padding. We see that padding leads to a significant increase in the computational requirements of the layer, especially at larger batch sizes, increasing computation in an already computationally expensive model.

Thus, current solutions for efficient ragged operator execution are unsatisfactory. Hence, we propose a compiler-based solution enabling easy and more portable generation of performant code for ragged operators. While sparse (Tian et al., 2021; Kjolstad et al., 2017) and dense (Chen et al., 2018a; Vasilache et al., 2018; Ragan-Kelley et al., 2013; Baghdadi et al., 2019) tensor compilers have been well-studied, it is not straightforward to apply these techniques to ragged tensors, due to the following challenges:

C1 Irregularity in generated code: While the data in ragged tensors are densely packed, the variable loop bounds can lead to irregular code, often causing a loss of performance on hardware substrates such as GPUs.

C2 Insufficient compiler mechanisms: Representing transformations on loops with variable bounds and on tensor dimensions with variable-sized slices is not straightforward due to the dependencies that exist among loops and tensor dimensions respectively in ragged operators. Further, optimization decisions made by sparse tensor compilers may not always work for ragged tensors because sparse tensors are much sparser than ragged tensors.

C3 Ill-fitting computation abstractions: There is a mismatch between the interfaces and abstractions provided by current compilers and ragged operators. Such operators cannot be expressed in dense compilers, while sparse compilers do not adequately provide ways to express information relevant to efficient code generation.

With these challenges in mind, we present CoRA (Compiler for Ragged Tensors), a tensor compiler that allows one to express and optimize ragged operations to easily target a variety of substrates such as CPUs and GPUs. To overcome challenge C1, CoRA enables minimal padding of ragged tensor dimensions (§4.1) in order to generate efficient code for targets such as GPUs as well as to specify thread remapping strategies to lower load imbalance (§4.1). CoRA uses uninterpreted functions (Strout et al., 2018) to symbolically represent variable loop bounds and scheduling operations on the same (§5.1). CoRA’s mechanisms (such as its storage lowering scheme discussed in §5.3) and optimizations are specialized for ragged tensors thereby tackling C2. Further, CoRA provides simple abstractions to convey to the compiler information essential to efficient code generation, such as padding or thread remapping specifications and raggedness patterns of tensors (§4). This overcomes challenge C3. CoRA enables efficient code generation for ragged operators by significantly reducing padding (§7). As part of CoRA’s implementation, we reuse past work by extending a tensor compiler (Ragan-Kelley et al., 2013; Chen et al., 2018a; Baghdadi et al., 2019; Kjolstad et al., 2017) and thus, provide familiar interfaces to CoRA’s users. This also makes it easy in the future to use auto-scheduling (Mullapudi et al., 2016; Adams et al., 2019; Chen et al., 2018b; Zheng et al., 2020a; Singh et al., 2021) for optimizing ragged tensor operations. Table 1 compares CoRA with alternatives that are or could be used for ragged operators. Only CoRA achieves high performance and portability, with low operator implementation effort (and minimal padding).

In summary, this paper makes the following contributions:

1. We present CoRA, a tensor compiler for ragged tensors. To our knowledge, CoRA is the first tensor compiler that allows efficient computation on ragged tensors.

2. As part of the design, we generalize the API, abstractions and the mechanisms of tensor compilers and propose new scheduling primitives for ragged tensors.

3. We evaluate CoRA on a variety of ragged operators. For a transformer encoder layer, we perform 1.6× better than PyTorch (Paszke et al., 2019) and as well as Faster-Transformer (Nvidia), a highly optimized transformer implementation, on an Nvidia V100 GPU. On a 64-core ARM CPU, we are 1.37× faster than TensorFlow (Abadi et al., 2016), for the multi-head attention (MHA) module (Vaswani et al., 2017) used in transformers.

<table>
<thead>
<tr>
<th>Framework</th>
<th>Portability</th>
<th>Operator impl. effort</th>
<th>Padding</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense TC</td>
<td>High</td>
<td>Low</td>
<td>Full</td>
<td>Low</td>
</tr>
<tr>
<td>Sparse TC</td>
<td>High</td>
<td>Low</td>
<td>Minimal</td>
<td>Low</td>
</tr>
<tr>
<td>Dense vendor libs.</td>
<td>Low</td>
<td>High</td>
<td>Full</td>
<td>Low</td>
</tr>
<tr>
<td>Hand-optimized impl.</td>
<td>Low</td>
<td>High</td>
<td>Minimal</td>
<td>High</td>
</tr>
<tr>
<td>CoRA</td>
<td>High</td>
<td>Low</td>
<td>Minimal</td>
<td>High</td>
</tr>
</tbody>
</table>

\(^1\)Masking involves setting some tensor elements to a special value so that these elements are ignored in computations.

\(^2\)The hyperparameters used are the same as those in §7.2.

2 CoRA OVERVIEW

CoRA’s compiler-based approach enables the generation of performant code in a portable manner. This is reflected in Fig. 3, which compares CoRA’s implementation of a transformer encoder layer with FasterTransformer. The highly-
The CoRA Tensor Compiler

Figure 3: FasterTransformer (FT-Eff) and CoRA implementations of a transformer’s encoder layer. Note how CoRA’s fully compiler-based implementation uses only partial padding for SDPA as opposed to FasterTransformer’s fully padded implementation. CoRA also enables more operator fusion (including fusing all the padding change operations) as opposed to FasterTransformer, which cannot do so in all cases as it relies on vendor libraries.

CoRA’s optimizer relies heavily on kernels implemented in cuBLAS (Nvidia’s BLAS library), which are shown as blue outlines in the figure, and on manually implemented kernels, shown as red outlines. On the other hand, CoRA’s implementation exclusively employs compiler generated kernels (shown as green outlines), making it more portable. Further, CoRA’s compiler approach allows it to exploit more kernel fusion opportunities, evident from the fact that CoRA’s implementation launches nine kernels as opposed to FasterTransformer’s twelve. Both the implementations in the figure use minimal padding for all operators except for those in the scaled dot-product attention (SDPA) sub-module, where CoRA’s specialized approach enables it to get away with lower padding as compared to FasterTransformer. We further discuss these implementations in §7.

CoRA’s ability to generate performant code that employs minimal padding in a portable manner relies on the following two insights:

1. In ragged operations, the pattern of raggedness is usually known before the tensor is actually computed, and is the same across multiple tensors involved in the operation.

2. Ragged tensors, like dense tensors, allow \(O(1) \) accesses (§5.3). This is unlike sparse formats such as compressed sparse row (CSR), where accesses require a search over an array. The HASH (Chou et al., 2018) sparse format, while allowing \(O(1) \) accesses, is unsuitable for accelerators such as GPUs due to its highly irregular storage.

Insight 1 allows CoRA to precompute the auxiliary data structures needed to access ragged tensors without knowledge of the computation (or values of its input tensors) that produces the ragged tensor. This and insight 2 enable CoRA to generate efficient code for ragged operations.

Let us now look at CoRA’s overall compilation and execution pipeline, as illustrated in Fig. 4. The user first expresses \(\text{(1)} \) and schedules \(\text{(2)} \) their computation using an API similar to that of past tensor compilers (§4). This specification of the computation and the scheduling primitives are then lowered \(\text{(3)} \) to an SSA-based IR \(\text{(4)} \). As part of this lowering step, CoRA generates code \(\text{(5)} \) to initialize some auxiliary data structures generated by the prelude. Finally, CoRA generates \(\text{(6)} \) target-dependent code \(\text{(7)} \) such as C or CUDA C++. During execution, the formats of the input ragged tensors \(\text{(6)} \) are first processed by the generated prelude code \(\text{(7)} \) which creates the auxiliary data structures \(\text{(8)} \). This prelude code is not computationally expensive (§7.4) and hence is executed on the host CPU. These data structures and the ragged tensors are then passed to the generated target dependent code \(\text{(7)} \) which executes on devices such as CPUs or GPUs.

We will now look these stages in more detail below.

3 TERMINOLOGY

Ragged operators have one or more loops with bounds that are functions of iteration variables of outer loops. We refer to such loops as variable loops or vloops while loops with constant bounds are referred to as constant loops, or cloops. A loop nest with at least one vloop is referred to as a vloop nest. Further, tensors can be stored in memory with or without padding. When stored without full padding, the size of some tensor dimensions depends on outer tensor dimensions. Such dimensions are referred to as variable dimensions, or vdims and those with constant sizes are constant dimensions or cdims. A tensor stored such that it has no vdim (i.e., a fully padded tensor) is referred to as a dense tensor, while a tensor with at least one vdim is a ragged tensor. Note that ragged tensors may still be padded to some extent.

4 CoRA’s RAGGED API

CoRA provides a simple API similar to that of past tensor compilers, as seen in Listing 1, which expresses the example computation from Fig. 1 in CoRA. Apart from describing the computation as in a dense tensor compiler,
CoRA also requires the user to specify the raggedness dependences of the computation (highlighted in Listing 1). This involves specifying vloop bounds as functions of outer loop variables and vdim extents as functions of indices of outer tensor dimensions. Given this information, CoRA automatically computes any derived data structures required (S), making it easy for users to express their computations. CoRA uses identifiers called named dimensions (discussed further in §5.2) to name loops and corresponding tensor dimensions and to specify relationships between them. For example, the loop extent defined on line 7 in the listing states the dependence on the outer loop, referred to by the named dimension batch_dim.

Figure 4: Overview of CoRA’s compilation and runtime pipeline.

Listing 1: Operator in Fig. 1 expressed in a simplified version of CoRA’s API.

4.1 Scheduling Primitives

In order to optimize the expressed computation, CoRA provides all the scheduling primitives commonly found in tensor compilers. Below, we describe some salient features and points of departure from past tensor compilers.

Loop Scheduling: Both cloops and vloops can be scheduled in CoRA. We saw how a vloop, say L_v, has a loop bound that is a function of the iteration variables of one or more outer loops, say L_1 to L_k. CoRA currently does not allow reordering such a loop L_v beyond any of the loops L_1 to L_k. Although possible with the introduction of conditional statements, we have not found a use case for such reordering.

Operation Splitting: It can sometimes be beneficial to differently schedule different iterations of a loop in a vloop nest in order to more optimally handle the variation in loop bounds. CoRA allows one to split an operation into two or more operations by specifying split points for one or more of its loops, as Fig. 5 shows. In our evaluation (§7.3), we use this transformation in conjunction with horizontal fusion (described below) to better handle the last few iterations of a tiled loop without the need for additional padding in the QRT and AttnV operators in the transformer layer (Fig. 3).

Horizontal Fusion: Past work (Li et al., 2020) has proposed horizontal fusion, or $hfusion$ for short, as an optimization to better utilize massively parallel hardware devices such as GPUs by executing multiple operators concurrently as part of a single kernel. With CoRA, we implement this optimization in a tensor compiler for the outermost loop of two or more operators. HFusion enables the concurrent execution of the multiple operators that result from using the operation splitting transform described above.

Loop and Storage Padding: Despite the overheads of padding, a small amount of it is often useful in order to generate efficient vectorized and tiled code by eliding condi-
tional checks. Accordingly, CoRA allows the user to specify padding for vloops and vdims as multiples of a constant. For example, on line 18 of Listing 1, the vloop associated with the dimension len_dim is asked to be padded to a multiple of 2 while the corresponding dimension of the output tensor is specified to be padded to a multiple of 4 on line 19. Such independent padding specification for loops and the underlying storage is allowed as long as the storage padding is at least as much as the loop padding (this ensures that the padded loop nest never accesses non-existent storage). This ability allows CoRA to fuse padding change operators as is illustrated in Fig. 3. We show in §7.4 that this partial padding does not lead to much wasted computation.

Tensor Dimension Scheduling: CoRA allows users to split, fuse and reorder dimensions of dense and ragged tensors. This can enable more optimal memory accesses. Fusing tensor dimensions in a way that mirrors the surrounding loop nest can allow for simpler memory accesses (§5.1).

Load Balancing: The variable loop bounds in a vloop nest can lead to unbalanced load across execution units. As proposed by past work (Gale et al., 2020) on sparse tensor algebra, CoRA allows the user to redistribute work across different parallel processing elements by specifying a thread remapping policy. Given a parallel loop, this allows the user to specify a mapping between the loop iterations and the thread id (illustrated in Fig. 15 in the appendix). Depending on the hardware thread scheduling policy, this can influence the order in which iterations of the loop are scheduled and lead to non-trivial performance gains as shown in §7.1.

In conclusion, CoRA provides familiar and simple interfaces to users, extended with a few abstractions and scheduling primitives specific to ragged tensors, enabling their application to support (efficient) ragged operations.

5 **CoRA’s Ragged API Lowering**

We now discuss some aspects of CoRA’s Ragged API lowering that generates the SSA-based IR as shown in Fig 4.

5.1 Loop and Tensor Dimension Fusion

Consider the ragged loop nest shown on the top left corner of Fig 6. The loop bound of the inner loop L_1 is a function $s()$ of o, the iteration variable of the outer loop L_0. The loop L_f obtained by fusing L_0 and L_1 is shown on the right of the figure. The loop bound F of the fused loop would be equal to $\sum_{o=0}^{M-1} s(o)$. Further note that while we have fused the loops L_0 and L_1, the tensor access $T[o, i]$ in the body of the loop nest still uses variables o and i. Therefore, we need to compute the values of these two variables corresponding to the current value of f, the iteration variable of L_f. Because of the ragged nature of the loop nest, computing the loop bound F as well as the mapping between the iteration variables of the original and the fused loop nests is not straightforward. In CoRA, we generate code to compute these quantities and variable relationships (shown in the right pane of Fig. 6) as part of the prelude which executes before the main kernel computation. We use vloop fusion as described above to implement the linear transformation operators (Proj1, Proj, FF1 and FF2) in the transformer encoder (Fig. 3) with minimal padding.

Suppose now that the tensor T in Fig. 6 has a storage format that mirrors the loop nest consisting of L_0 and L_1. This means that the 2-dimensional tensor has an outer cdim and an inner vdim the size of the ith slice of which is $s(i)$. Fusing these dimensions then enables CoRA to simplify the tensor access as shown in the bottom left pane of the figure.

5.2 Bounds Inference

* $o \in [o_0, o_u] \land i \in [i_0, i_u] \rightarrow f \in [f_{o0}(o_0, i_0), f_{o0}(o_u, i_u)]$
* $f \in [f_0, f_d] \rightarrow o \in [f_0(o), f_0(f)]$
* $f \in [f_0, f_d] \land f_{o0}(f) \neq f_{o0}(f) \rightarrow i \in [0, s(o)]$
* $f \in [f_0, f_d] \land f_{o0}(f) = f_{o0}(f) \rightarrow i \in [f_{o0}(f), f_{o0}(f)]$

Variable Loop Fusion: During compilation, a tensor compiler infers loop bounds for all operators. In order to do so, the compiler usually proceeds from the outputs of the operator graph towards the inputs, inferring the region of a tensor t that needs to be computed and then using this information to infer the loop bounds for the operator that computes t. As we saw in §5.1, the application of scheduling transformations such as fusion can lead to a situation where the variables used in the tensor accesses in an operator’s body are not the same as the loop iteration variables present after the transformations have been applied. This means that during bounds inference, one has to repeatedly translate iteration variable ranges between the transformed and the original variables. This is straightforward in the case of cloops, but gets slightly harder in the case of vloop fusion. For the loop nest in Fig. 6, Fig 7 provides the rules to translate between the ranges of iteration variables o, i.
and \(\ell \) as well as a visualization of the ranges. Here, \(s() \)
represents the variable loop bound of the inner loop, while
\(f_{o_0}f \) and \(f_{f_1} \) represent the relationships between the
variables \(o \) and \(f \) such that \(f_{o_0}(f_0) \) and \(f_{f_1}(f_0) \) evaluate
to values of \(o \) and \(f \), respectively, corresponding to \(\ell = f_0 \).
Similarly, \(f_{o_1}(o_0, f_0) \) evaluates to \(f_0^3 \).

Named Dimensions: In §4, we described how the user uses
named dimensions to specify relationships between loops as
well as tensor dimensions. These dimensions play an
important part in bounds inference as well. Along with the
translation between fused and unfused loop iteration variables
described above, one also needs to translate ranges of
variables across producers and consumers during bounds
inference. In CoRA, we use named dimensions to easily
identify corresponding iteration variables across such pro-
ducers and consumers to allow this translation.

5.3 Storage Access Lowering

In this section, we briefly describe how CoRA lowers ac-
tesses to ragged tensors. Consider the 4-dimensional atten-
tion matrix \(X \) involved in a batched implementation
of MHA shown in the left pane of Fig. 8. Here, the first and
the third dimensions are cdims and correspond to the
batch size and the number of attention heads, respectively.
The other two dimensions, corresponding to sequence lengths,
are vdims.\(^4\) For \(X \), the size of a slice for both these vdims is
the same function \((s_{24}()) \) of the outermost batch dimension.

Due to the irregular nature of ragged tensor storage, we need
some auxiliary data structures to be able to lower memory
accesses to \(X \). The lowering scheme used by past work on
sparse tensors (Smith & Karypis, 2015; Chou et al., 2018)
assumes that the number of non-zeros in a slice of a sparse
dimension is, in general, a function of all outer dimensions.
However, recall that for our example tensor \(X \), the size of
a slice of either vdim depends only on the outermost batch
dimension. Being agnostic to such precise dependences
between tensor dimensions (as illustrated via the dimension
graphs, or dgraphs in Fig. 8), past work would compute and
store more auxiliary data as compared to CoRA.

CoRA’s lowering scheme allows for cheap \(O(1) \) accesses
to ragged tensors. To enable this, we need to compute a
memory offset within a constant number of operations.
The reason sparse tensor formats such as the CSR format
do not allow constant time tensor accesses is because they
explicitly store indices of one or more dimensions along
with every non-zero value. Thus, given a tensor index,
one needs to perform a search over these stored indices to
obtain the correct non-zero element. In the case of ragged
tensors, however, we note that within a vdim slice, the
data in densely packed with no intervening zero elements.
Therefore, we can get away without storing explicit indices
for any dimension. Accessing the precomputed memory
offsets is also a constant time operation as CoRA’s auxiliary
data structures store these offsets using simple arrays.

We describe these lowering schemes further in the appendix
in §B.1. In short, our storage access lowering scheme re-
duces the amount of auxiliary data that needs to be computed
thus reducing overheads of the prelude code (§7.4), while
allowing cheap tensor accesses.

6 Implementation

We prototype CoRA by extending TVM (Chen et al., 2018a)
v0.6, a DL framework and a tensor compiler. Some details
regarding this implementation are discussed below.

Ragged API: Our prototype allows vdims to depend on at
most one outer tensor dimension. This is not a fundamental
limitation and can easily be overcome, though we have not
needed to for our evaluation. We implement the operator
splitting and fusion transforms for non-reduction loops.

Lowering: Our current prototype does not auto-schedule
the expressed computation. The evaluation therefore uses
implementations optimized using a combination of manual
scheduling and grid search. For some operators, we auto-
scheduled the corresponding dense tensor operator using
past work (Zheng et al., 2020a) and manually applied the
schedule to the ragged case. We find that this works well
in most cases and therefore believe that the prototype could
readily be extended with prior work on auto-scheduling.
Our implementation currently expects users to correctly
allocate memory (taking into account padding requirements
as specified in the schedule) for tensors. Checks to report
these problems could be easily implemented.

7 Evaluation

We evaluate CoRA against state-of-the-art baselines, first,
on two ragged variants of the gemm (general matrix multi-
lication) operation in §7.1 and then on an encoder layer of
the transformer model (Fig. 3) in §7.2. Our experimental
environment is described in Table 2. Below, we refer to the

\(^{3}\)In the generated code, as seen in the right pane of Fig. 6, these
functions take the form of arrays initialized by the prelude. Further,
the computation of the \(\ell \) array can, in most cases, be optimized
away to only compute the loop bound \(\ell \) of the fused loop.

\(^{4}\)We use the same layout in CoRA’s implementation in §7.2.
four platforms listed in the table as Nvidia GPU, Intel CPU, 8-core ARM CPU and 64-core ARM CPU. Our evaluation is performed with single-precision floating point numbers.

7.1 Matrix Multiplication

We start by evaluating CoRA’s performance on the variable-sized batched gemm (or vgemm) and the triangular matrix multiplication (or trmm) operators. As with all the implementations we compare against, the CoRA implementations of these operators use fully padded storage for all tensors.

Variable-Sized Batched Gemm: The vgemm operator consists of a batch of gemm operations, each with different dimensions. For this operator, we evaluate CoRA on the Nvidia GPU and Intel CPU backends and compare against hand-optimized implementations of vgemm and fully padded batched gemm in both cases. On the CPU, we compare against Intel MKL’s implementations while on the GPU, we compare against past work (Li et al., 2019) on vgemm and cuBLAS’s implementation of fully padded batched gemm. We use synthetically generated data where matrix dimensions are uniformly randomly chosen multiples of 128 in [512, 1408]. CoRA’s CPU implementation offloads the computation of inner gemm tiles to MKL, allowing us to obtain computational savings due to raggedness while also exploiting MKL’s highly optimized microkernels.

As Fig. 9 shows, CoRA is effectively able to exploit raggedness on both CPUs and GPUs, performing as well as or better than the hand-optimized implementation on the GPU and obtaining better than 73% of the performance of MKL’s vgemm for all batch sizes and performing better on a couple on the CPU. In all cases, CoRA is significantly better than the fully padded gemm operations, which perform worse at higher batch sizes as there is more wasted computation as batch size goes up for the batch sizes evaluated.

Triangular Matrix Multiplication: A triangular matrix, i.e. a matrix where all the elements above (or below) the diagonal are zero, can be thought of as a ragged tensor because all non-zero elements in a row are densely packed and their number per row is a function of the row index. Operations on triangular matrices can, thus, be effectively expressed and optimized using CoRA. In this section, we evaluate CoRA on the trmm operator wherein we multiply a square lower triangular matrix with a square dense matrix, on the Nvidia GPU. We compare against cuBLAS’s trmm and fully padded gemm implementations. In trmm, the reduction loop is a vloop. In order to efficiently handle the last few iterations of this loop after tiling, we use operation splitting\(^5\) (§4). Further, the raggedness in this loop leads to imbalanced load across the GPU thread blocks. We use thread remapping (§4.1) to schedule thread blocks with the most amount of work first, leading to more balanced load.

Fig. 10 shows the performance of the aforementioned cuBLAS implementations and three implementations in CoRA—CoRA-unsplit-unbalanced, CoRA-split-unbalanced and CoRA-split-balanced—which progressively employ operation splitting and thread remapping, starting with neither. We see the trmm implementations—both cuBLAS’s and CoRA’s—are beneficial as compared to cuBLAS’s dense gemm operator only for larger matrices. In all cases, however, the CoRA-split-balanced implementation performs within 81.3% of cuBLAS’s hand-optimized trmm implementation. Operation splitting leads to a significant increase in performance by allowing CoRA to elide conditional checks in the main body of the computation. Furthermore, a better load distribution with thread remapping also helps CoRA achieve performance close to cuBLAS.

7.2 The Transformer Model

We now move on to look at how CoRA performs on various modules of the transformer model. We mainly focus on the GPU backend as it is more commonly used for these models.

\(^5\)HFusion is not applicable here as the split loop is a reduction loop and executing the split operators concurrently would require atomic instructions, which our prototype does not yet support.
We use sequence lengths from some commonly used NLP models. We use a 6 layer model with a hidden dimension of 512 and 8 attention heads each of size 64. The encoder layer contains two feed-forward layers, the inner one of which has a dimension of 2048. These are the same hyperparameters used in the base model evaluated in (Vaswani et al., 2017). We use sequence lengths from some commonly used NLP datasets listed in Table 3.6 We focus on larger batch sizes (32, 64 and 128) because, as we saw in Fig. 2, there is lesser opportunity to exploit raggedness for smaller batch sizes and hence other factors such as the quality of the schedules used in CoRA’s implementations play a big role. In this section, CoRA’s implementations use ragged tensor storage.

Transformer Encoder Layer: We first evaluate the forward pass latency of an encoder layer of the transformer model (Fig. 3). We compare CoRA’s performance with that of FasterTransformer and an implementation in PyTorch, a popular DL framework, with TorchScript (PyTorch Team, 2020) enabled. All the operators in the encoder layer except the ones in the SDPA sub-module process the hidden vectors associated with each word independently. Therefore, with manual effort, they can be implemented without any padding. The linear transformation operators Proj1, Proj2, FF1 and FF2 reduce to gemm operations in this case. FasterTransformer provides an option to perform this optimization, first introduced in EffectiveTransformers (ByteDance). We compare against FasterTransformer both with and without this optimization. We refer to these two implementations as FT-Eff and FT, respectively. In the CoRA implementation, this optimization is applied simply by loop fusion, analogous to the illustration in Fig. 6. In CoRA’s implementation however, we pad this fused loop so that its bound is a multiple of 64. In other words, we add a padding sequence to the batch to ensure that the sum of the sequence lengths is a multiple of 64. We refer to this kind of padding as bulk padding (Fig. 3). The relative amount of bulk padding added is usually quite low as the sum of sequence lengths in a batch is much higher.

Table 4 shows the forward execution latencies for the encoder layer for the aforementioned frameworks and datasets. The auxiliary data structures computed by CoRA’s prelude are shared across multiple layers of the model as the raggedness pattern stays the same across layers, depending only on the sequence lengths in the mini-batch. The execution times shown for CoRA include per-layer prelude overheads assuming a 6 layer model. We further look at these overheads in §7.4. As we can see, the CoRA implementation is competitive with the manually-optimized FT-Eff implementation for all datasets, even performing better in a few cases, and performs significantly better as compared to the fully-padded PyTorch and FT implementations. Fig. 11, which plots the overall performance of all these implementations for the batch sizes evaluated, makes this clear.

We now take a closer look at the FasterTransformer and CoRA implementations which are sketched in Fig. 3.7 The FT implementation is similar to the FT-Eff implementation except it uses full padding for all operations. The CoRA and FasterTransformer implementations differ in their operator fusion strategies. Therefore, the figure breaks the implementations down to the smallest sub-graphs that correspond to each other. Fig. 13 shows a breakdown of the execution times for these implementations for the RACE dataset and batch size 128 at the level of these sub-graphs.8 As Fig. 3 shows, the FT-Eff and CoRA implementations differ significantly with respect to padding only in the SDPA sub-module where the FT-Eff implementation employs full padding while the CoRA employs partial padding. We see, in Fig 13, that the CoRA implementation performs better than FasterTransformer for all the SDPA operators (QK),

Table 4: Transformer encoder layer execution latencies (in ms) for CoRA, PyTorch and the two manually-optimized variants of FasterTransformer on the Nvidia GPU. CoRA’s execution latencies include prelude overheads assuming a 6 layer transformer encoder.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Batch Size</th>
<th>PyTorch</th>
<th>FT</th>
<th>CoRA</th>
<th>FT-Eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACE</td>
<td>32</td>
<td>12.22</td>
<td>11.0</td>
<td>8.22</td>
<td>8.61</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>24.46</td>
<td>21.88</td>
<td>15.91</td>
<td>16.75</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>48.73</td>
<td>42.26</td>
<td>31.45</td>
<td>33.61</td>
</tr>
<tr>
<td>Wiki512</td>
<td>32</td>
<td>12.26</td>
<td>11.0</td>
<td>9.1</td>
<td>9.32</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>24.52</td>
<td>22.12</td>
<td>17.4</td>
<td>17.85</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>48.72</td>
<td>42.43</td>
<td>32.17</td>
<td>33.66</td>
</tr>
<tr>
<td>SQuAD</td>
<td>32</td>
<td>8.17</td>
<td>7.56</td>
<td>4.15</td>
<td>4.69</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>16.9</td>
<td>15.63</td>
<td>7.78</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>34.18</td>
<td>30.62</td>
<td>15.36</td>
<td>17.91</td>
</tr>
<tr>
<td>Wiki128</td>
<td>32</td>
<td>2.79</td>
<td>2.35</td>
<td>2.59</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>5.12</td>
<td>4.61</td>
<td>4.72</td>
<td>4.35</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>10.1</td>
<td>9.29</td>
<td>8.86</td>
<td>8.54</td>
</tr>
<tr>
<td>MNLI</td>
<td>32</td>
<td>2.22</td>
<td>2.04</td>
<td>1.11</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>4.44</td>
<td>4.06</td>
<td>1.89</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>9.53</td>
<td>8.86</td>
<td>3.53</td>
<td>3.78</td>
</tr>
<tr>
<td>XNLI</td>
<td>32</td>
<td>2.76</td>
<td>2.45</td>
<td>1.36</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>5.13</td>
<td>4.62</td>
<td>2.94</td>
<td>2.86</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>10.03</td>
<td>9.3</td>
<td>5.62</td>
<td>5.49</td>
</tr>
<tr>
<td>MRPC</td>
<td>32</td>
<td>1.85</td>
<td>1.73</td>
<td>1.32</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>3.76</td>
<td>3.48</td>
<td>2.6</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>7.42</td>
<td>6.89</td>
<td>4.55</td>
<td>4.55</td>
</tr>
<tr>
<td>CoLA</td>
<td>32</td>
<td>0.67</td>
<td>0.57</td>
<td>0.59</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>1.02</td>
<td>0.93</td>
<td>0.77</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>2.37</td>
<td>2.18</td>
<td>1.26</td>
<td>1.17</td>
</tr>
</tbody>
</table>

6More details can be found in §D.1.

7FasterTransformer uses specialized implementations for different GPUs. In this paper, we limit our discussion to its implementation for the Nvidia V100 GPU we use for evaluation.

8The raw data for this plot is listed in Table 10 in the appendix.
Softmax and AttnV) despite the fact that the latter is heavily hand optimized.7 This is because CoRA’s ability to handle raggedness enables it to perform less wasted computation. For the remaining operators where both the CoRA and FT-Eff implementations employ little to no padding, we see that the CoRA implementation is usually slower, but often close in performance to the FT-Eff implementation and significantly faster than the fully padded FT implementation. This is expected as FT-Eff calls into cuBLAS’s extensively optimized dense operators which are linearly proportional. We discuss the performance trade-offs of these two implementations (as shown in Fig. 3). This is as opposed to the FT-Eff implementation, which cannot. Fusing these padding change operators leads to a significant drop in CRA’s performance.8 This is because CRA’s ability to save padding change operators leads to a significant drop in CRA’s performance.

FasterTransformer’s reliance on vendor libraries prevents it from fusing any of the gemm operations with surrounding elementwise operators, which CRA can due to its compiler-based approach. Specifically CRA can completely fuse all operators which add or remove padding in its implementation (as shown in Fig. 3). This is as opposed to the FT-Eff implementation, which cannot. Fusing these padding change operators leads to a significant drop in CRA’s execution latency as seen in Fig. 12, which shows the execution latencies of the MHA module for the RACE dataset in CoRa with and without this fusion enabled.

Masked Scaled Dot-Product Attention: The decoder layer of a transformer uses a variant of MHA called masked MHA wherein the upper half of the attention matrix is masked for all attention heads during training. This masking only affects the SDPA module, the operators in which can now be seen as computing on a batch of lower triangular matrices. We saw in §7.1 that CoRA can effectively generate code for operations on triangular matrices. For batch size 128, an implementation of masked SDPA in CoRA which exploits this masking performs $1.56 \times$ faster than an implementation which does not for the RACE dataset and $1.29 \times$ for the MNLI dataset. The benefits are less pronounced for the MNLI dataset, which has smaller sequence lengths, as we pad vloops to be multiples of a constant regardless of the dataset. We provide more data and discussion on the implementation of masked SDPA in §D.3 in the appendix.

Memory Consumption: We find that the use of ragged tensors leads to an overall $1.78 \times$ drop in the size of the forward activations (computed analytically) of the encoder layer across all datasets at batch size 64 (more details in §D.5). The reduction, however, is not uniform across the datasets and those with higher mean sequence lengths, such as Wiki512 and Wiki128, see only small benefits. Forward activations often consume significant memory during training and ragged tensors can help alleviate memory bottlenecks along with other memory management techniques for training (Kirisame et al., 2021; Jain et al., 2020).

MHA Evaluation on ARM CPU: Table 5 shows the execution latencies of MHA implementations in TensorFlow and CoRa on the 64-core ARM CPU. We evaluate against two execution configurations of TensorFlow—TF, where the entire mini-batch is executed at once and TF-UB, where the mini-batch is executed as a series of smaller micro-batches, which enables execution with lower padding. Across the datasets and batch sizes evaluated, we see that CoRA’s implementation is overall $1.57 \times$ faster than TF and $1.37 \times$ faster than TF-UB. In this case, too, CoRA’s ability to save on wasted computation due to padding leads to significant performance gains over a popular DL framework. §D.8 of the appendix more extensively compares the performance

7The execution times of the three SDPA operators is quadratically proportional to the sequence length, unlike the remaining operators which are linearly proportional. We discuss the performance of SDPA further in §D.8 of the appendix.

Table 5: MHA execution latencies (in ms) on the 64-core ARM CPU for TensorFlow and CoRa.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Batch Size 32</th>
<th>Batch Size 64</th>
<th>Batch Size 128</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TF</td>
<td>TF-UB</td>
<td>CoRa</td>
</tr>
<tr>
<td>RACE</td>
<td>55</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>Wiki512</td>
<td>53</td>
<td>53</td>
<td>47</td>
</tr>
<tr>
<td>SQuAD</td>
<td>35</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Wiki128</td>
<td>11</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>MNLI</td>
<td>9</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>XNLI</td>
<td>11</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>MRPC</td>
<td>9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>CoRA</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 11: Relative execution times of the transformer encoder layer on the GPU.

Figure 12: Benefits of padding change operator fusion for the MHA module.

Figure 13: Breakdown of the encoder layer execution times for the RACE dataset at batch size 128. This data is obtained with profiling turned on and might deviate from Table 4.

Table 5: MHA execution latencies (in ms) on the 64-core ARM CPU for TensorFlow and CoRa.
We now evaluate operator splitting and hfusion on the AttnV operator, which is an instance of the vgemm problem. AttnV has two vloops, one of which is a reduction loop. We apply the optimizations to the non-reduction vloop allowing us to use a larger tile size (we use 64) without padding the vloop bound to be a multiple of this tile size. This especially benefits datasets with sequence lengths comparable to the tile size, such as MNLI. For this dataset, Fig. 14 shows the relative execution times of three CoRA implementations of AttnV—NoSplit, Split and Split-HFused—in which we progressively perform the two optimizations, on the Nvidia GPU and 64-core ARM CPU backends. On the GPU, operation splitting causes a slowdown despite lower wasted computation as it reduces parallelism, which is restored by hfusion. This is more apparent at lower batch sizes when the amount of parallelism is lower. The effects of reduced parallelism due to operation splitting are less apparent on the CPU as it exposes lower levels of hardware parallelism. The lower levels of CPU parallelism also mean that hfusion has no benefit in this case. We also evaluate these optimizations on the QKT operator in §D.6 in the appendix.

7.4 Overheads in CoRA

Let us now look at the sources of overheads in CoRA—the prelude code, the wasted computation due to partial padding and auxiliary data structures in the generated code.

Prelude Overheads: The prelude code constructs the required auxiliary data structures (§5) and copies them to the accelerator’s memory if needed. The table below lists the execution time (in ms) and memory (in kB) required for these tasks for a 6-layer transformer encoder on the GPU backend. It also shows the overheads associated with the storage lowering scheme used in past work discussed in §5.3 (referred to as Sparse Storage in the table). As compared to this scheme, we see that CoRA’s specialized lowering scheme significantly reduces the resources required to compute the data structures associated with tensor storage. The overheads associated with loop fusion are higher than those associated with storage as we need to compute and store the relationship between all values of the fused and unfused loop iteration variables (§5.1). Copying the generated data structures to the GPU’s memory is, however, the major source of the overhead. Overall, the overheads range from 0.7% (RACE dataset at batch size 128) to about 7% (CoLA dataset at batch size 32) of the total execution time of the encoder layer on the GPU. On the CPU, the overheads are a very small fraction of the execution times, because the execution times are much higher and because the memory copy costs are absent. We discuss some simple optimizations to reduce prelude overheads in §D.7 of the appendix.

Partial Padding Overheads: We saw that in CoRA, small amounts of padding can be specified for vloops (both unfused vloops and fused ones with bulk padding) and tensor storage to enable efficient code generation. While this leads to some wasted computation, we find that it is generally quite low. For the transformer encoder layer, we see a 3.5% increase in the amount of computation (computed analytically) over the ideal case without padding for a batch size of 32 and a 2.3% increase for a batch size of 128 across all the datasets evaluated. The overheads decrease with increasing batch size as bulk padding ensures that the sum of the sequence lengths in a batch is a multiple of a constant (64, in this case) irrespective of the batch size leading to a higher relative amount of padding at lower batch sizes. We provide further data and discussion in §D.7 of the appendix.

Ragged Tensor Overheads and Load Hoisting: CoRA’s generated code accesses the auxiliary data structures generated by the prelude leading to frequent indirect memory accesses. We measure the overheads caused by these accesses for the operators used in MHA. While the data and more discussion are provided in §D.7, we note here that the indirect memory accesses do not cause any significant slowdown for the Proj1, Softmax, AttnV and the Proj2 operators. The accesses do lead to a higher slowdown in the QKT operator, which is the only operator where we fuse two vloops leading to complex memory access expressions. For this case, we find that hoisting data structures accesses outside loops when possible helps recover the lost performance.

7.5 Evaluation Against Sparse Tensor Compilers

We saw that ragged tensors are similar to sparse tensors as both involve irregular storage. In order to evaluate the suitability of using sparse tensor compilers for ragged tensors, we compared CoRA’s performance with Taco, a state-of-the-art sparse tensor compiler on a few triangular matrix operators (implemented in Taco using the CSR and blocked CSR formats). These implementations perform $1.33 \times$ to $95.37 \times$ slower than the corresponding CoRA implementa-
tions. While §D.4 of the appendix provides further details and discussion, we note here that this is essentially due to a mismatch between the use case of ragged tensors and the general sparse tensor computations for which Taco is designed. For example, ragged tensors are usually much denser as compared to traditionally used sparse tensors and the applications each is used in are quite different.

8 RELATED WORK

Tensor Compilers: There has been extensive work on tensor compilers such as (i) TVM (Chen et al., 2018a), Halide (Ragan-Kelley et al., 2013), Tiramisu (Baghdadi et al., 2019), Tensor Comprehensions (Vasilache et al., 2018), Fireiron (Hagedorn et al., 2020), Stripe (Zerrell & Bruestle, 2019), AKG (Zhao et al., 2021) and work by (Gysi et al., 2021) and (Bhaskaracharya et al., 2020) for dense tensors and (ii) Taco (Kjolstad et al., 2017), COMET (Tian et al., 2021) and work by (Bik et al., 2022) and (Hsu et al., 2021) for sparse tensors. This work has informed CoRA’s design. We generalize the abstractions provided by dense tensor compilers to ragged tensors, while enabling efficient code generation for the latter. We discuss in §7.5 and further in §D.4, how despite the similarity between ragged and sparse tensors, sparse tensor compilers are unable to effectively exploit the properties of ragged tensors to enable efficient execution.

Past work on DL compilers has also looked at handling dynamism. Nimble (Shen et al., 2020) develops dynamism-aware compiler abstractions from the ground up. Its handling of shape dynamism is limited to variation across minibatches. CoRA is therefore complementary to Nimble’s techniques. Cortex (Fegade et al., 2021) handles recursive models by essentially lowering the recursive control flow into sequential control flow on ragged tensors. CoRA can therefore potentially be used as part of its pipeline. CoRA’s use of uninterpreted functions and named dimensions has been inspired by their use in Cortex and past work on the Sparse Polyhedral Framework (Strout et al., 2018; Mohammadi et al., 2019; Nandy et al., 2018). Named dimensions are also similar to the index labels in COMET. CoRA implements a limited form of the tfusion optimization, first proposed in (Li et al., 2020), as part of a tensor compiler.

DL Frameworks and Graph Optimizations: DL frameworks have recently begun adding support for ragged tensors with the RaggedTensor (TensorFlow Team, 2022) class in TensorFlow and the NestedTensor (PyTorch Team, 2022) module for PyTorch. Very few operators are, however, supported for ragged tensors at this point (TensorFlow Community; PyTorch Community).10 CoRA can be used to expand the set of ragged operators supported in these frameworks. CoRA’s techniques are complementary to graph optimizations for efficient DL execution such as data layout optimizations (Ivanov et al., 2020), kernel fusion (Zheng et al., 2020b) and operator scheduling (Ding et al., 2020), and can be used in conjunction with them.

Hand Optimized Implementations: There has been work on efficient implementations of certain important ragged tensor operations. This includes the work on variable-sized batched gemm operations (Li et al., 2019; Nath et al., 2010), as well as the work on Effective Transformers and Faster-Transformers, which we compared CoRA’s performance against in §7. This past work informs our work on CoRA as we saw with the operator splitting transform in §4.1.

Sparse Tensor Algebra: There have been decades of past work on efficient execution of sparse tensor operators. This work has been revisited recently in the context of DL by work on exploiting block sparsity in model weights (Gray et al.) as well as for tuning sparse kernels for the sparsity patterns and distributions usually encountered in DL (Gale et al., 2020). The thread remapping strategy discussed in §4.1 was implemented first in (Gale et al., 2020).

9 CONCLUSION

This paper presented CoRA, a tensor compiler for expressing and optimizing ragged operators to portably target CPUs and GPUs using simple and familiar abstractions. CoRA’s approach, specialized for ragged tensors, reduces overheads associated with techniques such as masking and padding. With DL being applied to an ever-increasing set of fields and the models getting more resource-intensive, we believe that efficiently handling the shape dynamism that naturally arises in many settings is important. CoRA extends past work on tensor compilers by supporting efficient operators on ragged tensors. Our work can also be seen as a step towards unifying past work on sparse and dense tensor compilation. In the future, we plan to make CoRA easier to use, potentially with the help of auto-scheduling techniques.

ACKNOWLEDGMENTS

This work was supported in part by grants from the National Science Foundation, Oracle and IBM, and by the Parallel Data Lab (PDL) Consortium (Amazon, Facebook, Google, Hewlett-Packard Enterprise, Hitachi, IBM, Intel, Microsoft, NetApp, Oracle, Pure Storage, Salesforce, Samsung, Seagate, TwoSigma and Western Digital). We would like to thank Saman Amarasinghe, Dominic Chen, Stephen Chou, Chris Fallin, Graham Neubig, Olatunji Ruwase, the Catalyst Research Group at Carnegie Mellon University and the anonymous reviewers at MLSys for their valuable suggestions and feedback on our work.

NestedTensor further supports only a few elementwise and reduction operators (PyTorch Team) at this point.

10 Tensor contraction and similar operators such as batched gemm and convolution are generally not supported. PyTorch's
References

The CoRA Tensor Compiler

We now look at additional details regarding CoRA’s mechanism in §A, §B and §C, and discuss further aspects of the evaluation in §D. Notably, we look at how CoRA can exploit masking in masked MHA to obtain further savings in §D3, discuss how CoRA’s overheads are quite low, allowing it to effectively exploit raggedness (§D.7) and look more closely at CoRA’s performance on the transformer model and where the benefits come from in §D.8.

A RAGGED API

A.1 Thread Remapping Policy

We discussed, in §4, that CoRA allows users to specify a thread remapping policy to influence how iterations of a parallel loop are scheduled on the execution units in the hardware substrate. This is illustrated in Fig. 15.

B RAGGED API LOWERING

B.1 Tensor Storage Lowering

In §5.3, we briefly discussed the storage lowering schemes used by past work on sparse tensor compilers and by CoRA. Both are illustrated in Fig. 16 and discussed more below.

Sparse Storage Access Lowering Scheme Used in Past Work: Recall the 4-dimensional attention tensor X we discussed in §5.3 and which is illustrated again in Fig. 16. We saw that the first and the third dimensions of X are cdims and correspond to the batch size (s_1) and the number of attention heads (s_3) respectively. The other two dimensions, which correspond to sequence lengths are vdims, the size of a slice for which is the same function ($s_{24}(i)$) of the outermost batch dimension.

![Figure 15: Thread remapping allows users to influence the scheduling of iterations to allow for better load balancing.](image)

CoRA’s Storage Access Lowering Scheme: We saw that CoRA’s storage access lowering scheme is specialized for ragged tensors and enables us to reduce the amount of auxiliary data that needs to be computed as compared to the scheme used by past work while allowing $O(1)$ accesses to ragged tensor storage. Such $O(1)$ accesses are enabled by the memory offsets that CoRA precomputes as part of its auxiliary data structures. Below, we describe exactly how these data structures are computed and how they are used to lower memory accesses.

Let T be an n-dimensional tensor with dimensions numbered 1 to n such that dimension 1 is the outermost dimension. Given a tensor access $T(b_1, \ldots, b_n)$, we need to generate a flat memory access as part of lowering. In other words, we need to generate a memory offset $Off_T(b_1, \ldots, b_n)$ to access the tensor.

Given a tensor and its corresponding storage layout, we define what we refer to as the dimension graph or dgraph for short (Fig. 16). The dgraph G of the n-dimensional tensor...
The CoRA Tensor Compiler

Figure 16: Comparing CoRA’s storage lowering with the tree-based scheme used by past work on sparse tensors.

T is a pair (D, E) where D is the set of all dimensions $\{1, \ldots, n\}$ and E is a set of directed edges. An edge $d_1 \rightarrow d_2$ belongs to E if the size of a slice of dimension d_2 depends on the index b_{d_1} in the tensor access $T(b_1, \ldots, b_n)$. Thus, a dimension will not have any incoming edges in the dgraph, while a vdim would. It also follows, for example, that the outermost dimension of the tensor, which is always a cdim, will not have any incoming edges. More generally, we note that the dgraph of a given tensor is always acyclic as the size of a slice of a given vdim depends only on the indices of outer dimensions.

Further, given a dimension d, let $O_G(d) = \{ \{d_2 | (d_2, d_1) \in E\}$ and $I_G(d) = \{ d_1 | (d_1, d) \in E \}$ be the set of outgoing and incoming dimensions, respectively, for d in the dimension graph. The size of a slice of a vdim can now be written as $s_d(I_G(d))$. For cdims, this quantity is constant as I_G for a cdim in the empty set. Let $O_G(d)$ denote the transitive closure of $O_G(d)$. Also, let $O_G^*(d) = O_G(d) \cup \bigcup_{i \in O_G(d)} O_G^*(i)$.

We present the procedure to compute $Off_T(b_1, \ldots, b_n)$ in Algorithm 1. For brevity, we refer to the index vector $[b_1, \ldots, b_n]$ as \vec{B}. Also, let $\vec{B}_{\geq i} = [b_i, \ldots, b_n]$. We can correspondingly define $\vec{B}_{<i}$. We abuse notation to represent $Off_T(b_1, \ldots, b_{n-1}, b_i, 0, \ldots, 0)$ as $Off_T(\vec{B}_{\leq i})$. Then, we can expand the offset $Off_T(\vec{B}_{\leq n})$ as follows:

$$
Off_T(\vec{B}_{\leq n}) = \sum_{i=1}^{n} (Off_T(\vec{B}_{\leq i-1}) - Off_T(\vec{B}_{<i}))
$$

During compilation, the procedure in Algorithm 1 computes the memory offset expression using two nested loops. Each iteration of the outer loop (line 4) corresponds to one dimension i and computes $D_i(\vec{B}_{<i})$. For a dimension i, $D_i(\vec{B}_{<i})$, is further computed (in the inner loop on line 11) as a product of contributions corresponding each of the inner dimensions j such that $j \geq i$ (Fig. 16 shows the values of D_is for the 4 dimensions in our example tensor X at the bottom of the tree in green in the rightmost pane). In the case of a dense tensor, $D_i(\vec{B}_{<i}) = b_i \prod_{j=i+1}^{n} s_j$. For a ragged tensor, however, due to the dependencies between dimensions, the contribution of each dimension j to D_i cannot be computed independently. Specifically, we compute the contribution of an inner dimension j along with all the dimensions dependent on it, directly or indirectly (i.e. $O_G^*(j)$) as a single quantity as a call to the function $A_j()$. This function is similar to the row_index array in the CSR matrix format which stores the start and ends of variable-sized rows. Given a ragged tensor format (in the form of the length functions s_d for all dimensions d), we need to precompute the values of the function A_d for all dimensions such that $O_G^*(d)$ is non-empty. We perform this computation as part of the prelude discussed in §2. The function $A_d()$ for the batch dimension (the first dimension) of our example tensor X in Fig. 8 is shown as the array λ_1 where $\lambda_1[i] = \sum_{j=1}^{n} s_24(j) * s_24(j)$.

As discussed above, for a dimension d, because, $A_d()$ includes the contributions from all dimensions in $O_G^*(d)$, we need to exclude those dimensions to avoid double counting them during the inner loop. Therefore, the inner loop of the procedure iterates over the set $S(d)$ (defined recursively as $S(n) = \{n\}$ and $S(d) = \{d\} \cup (S(d+1) - O_G^*(d))$) which excludes these dimensions. Given a dimension d, the function A_d can be computed recursively as follows:

$$A_d(\vec{B}_{\leq d}) = \begin{cases} s_d(\vec{B}_{\leq d}) & \text{if } O_G(d) = \emptyset \\ \sum_{i=b_j}^{n} \prod_{d \in O_G^*(d)} A_d(\text{relaxed}_d(I_G(d))) & \text{otherwise} \end{cases}$$

where relaxed_d is the value of the vector relaxed in Algorithm 1 in the iteration of the outer loop corresponding to the dimension d.

B.2 Variable Loop Fusion

In §§5.1, we discussed how we need to precompute certain quantities as part of the prelude to support vloop fusion. During lowering, we represent these quantities as opaque or uninterpreted functions. For example, §§5.2 describes how the functions f_{lo}, f_{li} and f_{oA} represent the relationships between the iteration variables o, i and f in Fig. 6. In the generated code, as we can see in Fig. 4, these functions take the form of arrays that are initialized by the prelude. During compilation, in order to perform simplification over expressions containing calls to these functions as well as for proving if certain bound checks are redundant, we use the Z3 SMT solver (De Moura & Björner, 2008). In order to
enable Z3 process these uninterpreted functions, we provide it with the following relationships between these functions:

\[
\begin{align*}
\forall f, f_\text{off}(f_\text{off}(f)) &= f \\
\forall o, i, f_\text{off}(f_\text{off}(o, i)) &= o \\
\forall o, i, f_\text{off}(f_\text{off}(o, i)) &= i
\end{align*}
\]

C Additional Implementation Details

As we mentioned in §6, we have prototyped CoRA for the common cases encountered when expressing and optimizing ragged operations. In our evaluation, we implement and compare the performance of an encoder layer of the transformer model in CoRA. Our prototype currently allows us to generate code for individual (potentially fused) ragged operators at a time as opposed to entire model graphs. Therefore, for our implementation of the transformer layer, we individually optimized and generated code for each operator and then invoked it as part of a separate program that ties the operators together to form the layer. CoRA’s implementation of the fusion optimization currently is limited to the outermost loops of the operators one would like to fuse. On a GPU, this means that our prototype implementation allows one to execute multiple operators concurrently as part of the same GPU grid, but not the same GPU thread block. Implementing the general transform is not fundamentally difficult, however.

D Supplementary Evaluation and Additional Details

D.1 Datasets

We use the datasets listed in Table 3 for the evaluation on the transformer model. For each dataset, we use the sequence lengths corresponding to the text obtained after preprocessing as performed in the implementations corresponding to past work on various transformer models (Vaswani et al., 2017; Devlin et al., 2018; Yang et al., 2019). The Wiki512 and Wiki128 datasets, usually used for pre-training (Devlin et al., 2018), are generated from a dump of the English Wikipedia website (Wikipedia). Each sequence in these two datasets was created by accumulating consecutive sentences from the dump until a sentence could no longer be added without exceeding the maximum sequence length used for training (which is a hyperparameter). This was done, in the transformer implementation, to reduce wasted computation due to padding as much as possible. As a result, these datasets do not provide as much opportunity for CoRA to exploit as do some of the other datasets. We saw this reflected in Fig. 2 as well as in the evaluation in §7.

D.2 Load Balancing

We briefly discussed the challenge of ensuring a balanced workload across multiple execution units in the main text. On a CPU, these execution units take the form of CPU cores, while a GPU has a hierarchy composed of thread blocks, warps and threads. In all the kernels we evaluate on (except the Softmax kernel in the transformer layer), dense inner loops or partial padding allow us to prevent imbalance across GPU warps in the same thread block. Imbalance across multiple thread blocks exists, most commonly in gemm-like operations where the reduction loop is a vloop such as the AttnV operator in the SDPA module. We handle this imbalance using either thread remapping (§4 and §A.1) or, in the case of kernels that are part of the transformer layer, by sorting the sequences in the mini-batch in descending order of sequence lengths so that thread blocks with the most amount of work are scheduled first.

D.3 Masked Scaled Dot-Product Attention

As we briefly mentioned in §7.2, the decoder layer of a transformer uses a variant of MHA called masked MHA wherein the upper triangular half of the attention matrix is masked for all attention heads during training. This is done to prevent the model from attending to words that would not be known during inference at a given time step. In this section, we provide further details and data regarding how CoRA can exploit this masking and further save on wasted computation in the SDPA sub-module, which is the only portion affected by the masking.

![Figure 17: The attention matrices of the masked MHA module as implemented in the implementations discussed in §7.2 and compared in Fig. 18. In the figure, for simplicity, the number of attention heads is assumed to be 1, partial padding is not shown and the batch size is assumed to be 3. The x and y directions denote increasing matrix indices.](image-url)

![Figure 18: Execution time of masked SDPA in PyTorch and CoRA, with and without padding for the attention matrix.](image-url)

We also mentioned in the main text that with masking, the
SDPA computation is essentially composed of batched lower triangular matrix operations. Implemented this way, these operations have one vloop corresponding to the variable sequence lengths and another inner vloop corresponding to the triangular matrix rows. Fig. 18 shows the performance of three implementations of masked SDPA—CoRA-NoPad, where both the vloops are only partially padded, CoRA-Pad, where the outer vloop is partially padded while the inner one is fully padded and a PyTorch implementation, where both the vloops are fully padded. The padding in the three implementations is illustrated in Fig. 17. As Fig. 18 shows, CoRA-NoPad can effectively exploit the reduction in computation in the masked case by avoiding full padding. This leads to 1.34× and 2.46× faster execution as compared to CoRA-Pad and PyTorch respectively across the datasets and batch sizes evaluated in Fig. 18. As we saw, the performance of MNLI dataset improves to a smaller degree due to the padding employed in CoRA-NoPad.

D.4 Evaluation Against Sparse Tensor Compilers

We saw in the main text of the paper that there are some similarities between ragged and sparse tensors. In this section, we explore using sparse tensor compilers in order to express ragged tensor operations. Specifically, we look at using Taco in order to implement three operations on triangular matrices—the triangular matrix multiplication (trmm) operation we saw in §7.1, elementwise addition of two square triangular matrices (we refer to this operation as tradd, for short) and a similar elementwise multiplication of two square triangular matrices (referred to as trmul, for short). Taco does not natively support the storage of ragged tensors. Therefore for this study, we use the compressed sparse row (CSR) and the blocked compressed sparse row (BCSR) matrix formats to store the triangular matrices. We use a block size of 32 for the BCSR format. Table 6 lists the execution times (in ms) for the aforementioned operations and formats. As the table shows, CoRA performs better than Taco for all the cases evaluated. We discuss the reasons for this below.

Storage Layouts: A part of the slowdown in Taco stems from the sub-optimal storage format (CSR or BCSR) used for the triangular matrices. The overheads of traversing the auxiliary data structures to access the sparse tensor storage therefore decrease when we go from the CSR format to the BCSR format, thereby leading to increased performance, despite the additional padding in the latter. For the operations evaluated, the output matrices are stored in a dense manner because using the compressed formats prevents parallelization in some cases in the Taco implementations.

Degree of Sparsity: The optimizations, scheduling primitives and code generation techniques used in Taco have been designed for tensors with a high degree of sparsity. We have seen, however, that ragged tensors are much closer to their dense counterparts with respect to the amount of useful data they store. Therefore, optimization decisions that work well for sparse tensors do not always work for ragged tensors.

Properties of Ragged Tensors: Finally, due to its design as a tensor compiler for general sparse tensors, Taco is unable to exploit certain properties specific to ragged tensors and the applications they are used for, such as the insight we discussed in §2. Therefore, Taco assumes that the two triangular input matrices in the tradd and trmul operations have differing sparsity patterns. Taco, therefore, has to generate code to iterate over all the coordinates representing the union of the non-zeroes in the input matrices for the tradd operator. This is unlike an intersection that is performed in trmul. This prevented us from scheduling the tradd operator using the BCSR format in a way similar to the trmul operator. Further, Taco currently does not allow users to specify padding for loops and tensor dimensions which would help elide conditional checks in the generated code.

Therefore, while Taco achieves performance comparable to CoRA’s in some cases (such as the trmul operator), we conclude that Taco’s programming model and optimizations are designed for highly sparse tensors which can lead to poor performance in a lot of cases involving ragged tensors.

D.5 Memory Consumption

We mentioned in §7.2 that the use of ragged tensors leads to a significant drop in the memory required to store the forward activations of the encoder layer. Fig. 19 shows this for the datasets in Table 3 for batch size 64. It plots the relative total memory consumption (computed analytically) of the forward activations of a transformer encoder layer for CoRA’s implementation with and without the use of ragged tensors. We take into account any partial padding that the ragged implementation requires. The relative memory consumption for the other batch sizes is also similar. We also saw how only small improvements are observed for the
Wiki512 and Wiki128 datasets which have higher sequence lengths and hence low opportunity for CoRA to exploit.

D.6 Operation Splitting and Horizontal Fusion

In §7.3 of the main text, we looked at the benefits of operation splitting and hfusion on the AttnV operator. We now look at the QKT operator, which is also an instance of the vgemm problem. Each gemm instance in this case has two non-reduction vloops. We first look at the case where the optimizations are applied to the outer one of these two vloops in Fig. 20. The figure shows the normalized execution times, for the QKT operator, of the three implementations described in §7.3. We see that on the CPU backend, similar to the AttnV operator, operation splitting has a significant benefit but hfusion does not, due to low parallelism exposed by the CPU. On the GPU backend, however, we see that the combination of the optimizations gives slightly better performance for lower batch sizes but performs worse as the batch size increases. Profiling data shows that applying the optimization in this case leads to an increase in the number of integer instructions executed as well as an increase in the number of memory load requests. One possible explanation for this is that the CUDA compiler does not effectively hoist memory access expressions in order to avoid high register pressure (the compiled code does not contain any spilled registers). While the optimizations generally lead to more complicated code, the fact that QKT has two vloops that we fuse when scheduling further exacerbates this problem.

When applied to both the vloops, the optimizations slow the execution down as seen in Fig. 21. In that figure, we compare the performance of three CoRA implementations—NoSplit, which does not use either of the optimizations on either vloop, Split1-HFused, which employs both the optimizations for the outer vloop and Split2-HFused, which employs the optimizations for both vloops—on the Nvidia GPU and the 64-core ARM CPU backends. We see that on both backends, optimizing both vloops is no better than optimizing just one vloop and is, in fact, quite slower on the GPU. On the GPU, we find that despite the decrease in the computation performed and hence the number of floating point instructions executed, the total number of executed instructions is higher in the case Split2-HFused case as compared to the NoSplit case. We therefore believe, that in this case too, the overheads of performing the optimizations are much higher than their benefits (the reduced wasted computation).

D.7 CoRA Overheads

Prelude Overheads: As we discussed in §C, CoRA’s prototype allows us to generate code for operator kernels one at a time. For each kernel, CoRA generates all the prelude code required for its execution. Therefore, when these generated kernels are invoked to form a larger model graph, as in our implementation of the transformer encoder layer, there is a lot of redundant computation in the prelude code. This is because (i) each operator computes the auxiliary data structures needed for all of its input and output tensors, which leads to these data structures being generated twice for every tensor in the graph, and (ii) the vloops in the schedules for all operators except the QKT and the AttnV operators in CoRA’s implementation of the layer are fused similarly and can reuse the same auxiliary data structures, which are also currently computed separately for every operator. Tables 7 and 8 compare, for a 6-layer transformer encoder, the execution time and memory consumption of the prelude code respectively, as present in CoRA’s current implementation (referred to as CoRA-Redundant in the table) with an optimized implementation (referred to as CoRA-Optimized) which has all of this redundant computation removed. We see that when appropriately reused, the time and memory resources required to compute the auxiliary data structures in the prelude are quite low as compared to the those required for the execution of the kernel computation.

Overheads Due to Partial Padding: In Fig. 22, we show the relative amount of computation (computed analytically as in Fig. 2) for the transformer encoder layer for all datasets at batch sizes 32 and 128 for three cases—the fully padded dense case, the actual computation as evaluated in §7 with partial padding, and the ideal case with no padding. We see that partial padding leads to a very small increase in the amount of computation (3.5% across datasets for batch
Table 7: Prelude execution times (in ms) for a 6-layer transformer encoder with and without redundant computation.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Batch Size</th>
<th>CoRA-Reducant</th>
<th>CoRA-Loop Fusion</th>
<th>CoRA-Copy Time</th>
<th>CoRA-Optimized</th>
<th>CoRA-Loop Fusion</th>
<th>CoRA-Copy Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoLA</td>
<td>32</td>
<td>0.004</td>
<td>0.006</td>
<td>0.212</td>
<td>0.002</td>
<td>0.002</td>
<td>0.088</td>
</tr>
<tr>
<td>CoLA</td>
<td>128</td>
<td>0.006</td>
<td>0.015</td>
<td>0.261</td>
<td>0.003</td>
<td>0.004</td>
<td>0.094</td>
</tr>
<tr>
<td>RACE</td>
<td>32</td>
<td>0.005</td>
<td>0.085</td>
<td>0.419</td>
<td>0.002</td>
<td>0.015</td>
<td>0.121</td>
</tr>
<tr>
<td>RACE</td>
<td>128</td>
<td>0.007</td>
<td>0.339</td>
<td>0.985</td>
<td>0.003</td>
<td>0.053</td>
<td>0.209</td>
</tr>
</tbody>
</table>

Table 8: Prelude memory usage (in kB) for a 6-layer transformer encoder with and without redundant computation.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Batch Size</th>
<th>CoRA-Reducant</th>
<th>CoRA-Loop Fusion</th>
<th>CoRA-Copy Time</th>
<th>CoRA-Optimized</th>
<th>CoRA-Loop Fusion</th>
<th>CoRA-Copy Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoLA</td>
<td>32</td>
<td>2.93</td>
<td>32.15</td>
<td>1.2</td>
<td>5.27</td>
<td>1.2</td>
<td>5.27</td>
</tr>
<tr>
<td>CoLA</td>
<td>128</td>
<td>11.18</td>
<td>104.22</td>
<td>4.58</td>
<td>17.5</td>
<td>106.87</td>
<td>17.5</td>
</tr>
<tr>
<td>RACE</td>
<td>32</td>
<td>2.93</td>
<td>666.54</td>
<td>1.2</td>
<td>106.87</td>
<td>106.87</td>
<td>106.87</td>
</tr>
<tr>
<td>RACE</td>
<td>128</td>
<td>11.18</td>
<td>2609.58</td>
<td>4.58</td>
<td>418.06</td>
<td>2609.58</td>
<td>418.06</td>
</tr>
</tbody>
</table>

size 32 and 2.3% for batch size 128). Because we generally pad individual sequence lengths or their sum (as part of bulk padding) so that the quantity is a constant multiple of a small quantity (such as 32, or 64), the relative amount of padding added is higher for smaller batch sizes and datasets with smaller sequence lengths. Even in these cases, however, the added padding is much lower as compared to the benefits obtained with the use of ragged tensors. Further we note that the amount of padding added is a scheduling and optimization decision and can be changed if needed.

Ragged Tensor Overheads and Load Hoisting: We now take a closer look at the effects of auxiliary data structure accesses on the performance of CoRA-generated code. These data structure accesses arise in the generated code, as we have seen, due to the use of vloop fusion and ragged tensor storage. We focus on the five operators that make up the MHA module here. We measure the execution times of four implementations of each operator. The Dense implementation does not use ragged tensor storage or ragged computations. The +vloops implementation uses uses ragged computations, but the tensors are stored with full padding in a dense fashion. The +vdims implementation uses both ragged computations as well as ragged tensor storage. The +LoadHoist implementation is same as +vdims but hoists accesses to the auxiliary data structures out of loops as much as possible. In order to ensure that we perform the same amount of computation in all cases, we use a synthetic dataset where all sequences have the same length (512). The relative performance of these implementations for the operators on the Nvidia GPU is shown in Fig. 23. Apart from the overheads due to indirect memory accesses, the use of vloops and/or vdims also lead to overheads associated with the Prelude code. In order to focus on the former overheads, however, we exclude Prelude costs in the figure.

As the figure shows, the use of vloops and vdims leads to a slight slowdown for the Proj1, Softmax, AttnV and Proj2 operators. The slowdown is significant, however, for the QK^T operator, which has two vloops in its loop nest. As part of scheduling, we fuse both these vloops as well as the loop that the vloop bounds depend on (i.e. the loop that iterates over the mini-batch), leading to complex auxiliary data structure accesses. We believe that the CUDA compiler is unable to effectively hoist these accesses in this case. CoRA however has more knowledge about these accesses and can hoist them to recover the lost performance.

D.8 Discussion on Transformer Layer Evaluation

In this section, we provide further analysis of our evaluation of the transformer encoder layer on the Nvidia GPU and ARM CPU backends. We break down the execution times of the encoder layer for a few cases. As in Fig. 13, these per-operator execution times are obtained under profiling and might deviate slightly from the data in Tables 4 and 5.

Nvidia GPU Backend: Table 10 provides the raw data for the breakdown of the execution times for the RACE dataset at batch size 128 of the transformer encoder layer shown in Fig. 13 in the main text. Apart from improvements in the QK^T and AttnV operators discussed in §7.2, we note
that CoRA’s implementation is significantly faster for the Softmax operator as compared to the FasterTransformer implementations. While we perform less computation on this operator as compared to the fully padded implementation in FasterTransformer, part of CoRA’s performance benefits also stem from a better schedule. Specifically, the FasterTransformer implementation performs parallel reductions across GPU thread blocks. This leads to a significant number of barriers at the thread block-level which have execution overheads. Further, the FasterTransformer implementation uses conditional checks to ensure that it never accesses attention scores for the added padding. In CoRA we use warp-wide parallel reductions which are much cheaper due to their lower synchronization costs but also provide a lower amount of parallelism. We, therefore, only partially parallelize the reductions and compensate with the high parallelism available in the other loops of the operator. Further, this means that we do not have to additionally employ conditional checks to avoid accessing invalid data (that is part of the partial padding we add).

Figure 24: Breakdown of execution times of the encoder layer for the CoLA dataset at batch size 32 on the GPU.

We now look at the execution time breakdown for the CoLA dataset at batch size 32 on the Nvidia GPU shown in Fig. 24. We see that CoRA performs slightly worse than FT-Eff for this case. Most of CoRA’s slowdown stems from worse performance on the linear transformation operators Proj2, FF1 and FF2. CoRA performs slightly better than FT-Eff for the Proj1 operator, which is also a linear transformation operator. From this data, we conclude that CoRA’s schedules for the Proj2, FF1 and FF2 operators can be improved to close this performance gap. We note that, even in this case, CoRA performs much better on the SDPA module (the QK^T, Softmax and AttnV operators) as compared to FasterTransformer.

ARM CPU Backends: In §7.2, we saw how CoRA performs better than TensorFlow for the MHA module on the 8- and 64-core ARM CPUs. In this section, we discuss these implementations in more detail and provide more extensive evaluation.

Micro-Batching for PyTorch and TensorFlow: We saw, in Fig 2, that the amount of padding and wasted computation increases with the batch size. On devices that expose low levels of parallelism such as CPUs, it is therefore possible to trade-off batch parallelism for reduced padding, and therefore reduced wasted computation, for frameworks such as PyTorch and TensorFlow. In effect, this amounts to executing a mini-batch sorted by sequence lengths as a series of smaller micro-batches. Overall, this reduces the amount of padding needed as each micro-batch is only padded to the length of the longest sequence in that micro-batch, rather than the entire mini-batch as illustrated in Fig. 26. We search over micro-batch sizes that are powers of 2 starting from the lowest micro-batch size of 2. In Table 9, we provide the execution latencies as well as the optimal micro-batch sizes for PyTorch and TensorFlow (these configurations is referred to as PT-UB and TF-UB respectively) for an 8-core as well as a 64-core ARM CPU. For reference, we also provide the latencies corresponding to naive executions of PyTorch and TensorFlow (referred to as PT and TF respectively) where the micro-batch size is equal to the mini-batch size.

CoRA’s MHA Implementation: As in CoRA’s vgemm implementation on the Intel CPU backend, we offload the computation of the dense inner tiles of the Proj1 and Proj2 operators in CoRA’s MHA implementation on the ARM backends to gemm calls in the OpenBLAS (OpenBLAS Community) library. Due to limitations of our prototype implementation, however, offloading the computation this way means that we cannot fuse the padding change operators with other computational operators in this case. We
The CoRA Tensor Compiler

Table 9: MHA execution latencies (in ms) on 8- and 64-core ARM CPUs. uBS stands for the optimal micro-batch size.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Batch Size</th>
<th>8-core ARM CPU</th>
<th>64-core ARM CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PT</td>
<td>TF-UB / uBS</td>
<td>TF-UB / uBS</td>
</tr>
<tr>
<td>RACE</td>
<td>32</td>
<td>627 / 560 / 2</td>
<td>300 / 141 / 16</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>1267 / 101 / 4</td>
<td>596 / 110 / 16</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>2563 / 192 / 4</td>
<td>1184 / 20</td>
</tr>
<tr>
<td>Wiki512</td>
<td>32</td>
<td>620 / 53 / 2</td>
<td>294 / 111 / 16</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>1267 / 273 / 2</td>
<td>597 / 273 / 16</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>2563 / 153 / 2</td>
<td>1184 / 20</td>
</tr>
<tr>
<td>SQuAD</td>
<td>32</td>
<td>325 / 153 / 2</td>
<td>189 / 153 / 16</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>770 / 364 / 4</td>
<td>383 / 364 / 16</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>1580 / 364 / 4</td>
<td>780 / 364 / 16</td>
</tr>
<tr>
<td>Wiki128</td>
<td>32</td>
<td>53 / 20</td>
<td>52 / 20</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>133 / 103 / 16</td>
<td>101 / 103 / 16</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>353 / 196 / 16</td>
<td>199 / 196 / 16</td>
</tr>
<tr>
<td>MNLI</td>
<td>32</td>
<td>41 / 14</td>
<td>26 / 14</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>100 / 64</td>
<td>47 / 64</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>260 / 128</td>
<td>90 / 128</td>
</tr>
<tr>
<td>XNLI</td>
<td>32</td>
<td>53 / 13</td>
<td>56 / 13</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>133 / 64</td>
<td>68 / 64</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>351 / 128</td>
<td>131 / 128</td>
</tr>
<tr>
<td>MRPC</td>
<td>32</td>
<td>38 / 11</td>
<td>37 / 11</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>86 / 64</td>
<td>59 / 64</td>
</tr>
<tr>
<td>CoLA</td>
<td>32</td>
<td>10 / 32</td>
<td>9 / 32</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>21 / 64</td>
<td>16 / 64</td>
</tr>
</tbody>
</table>

Figure 26: Comparison of vanilla and micro-batched execution for PyTorch and TensorFlow.

See Fig. 25, however, that these pad fusion operators are relatively cheap to perform on the CPU backend.

Overall Performance Comparison: Table 9 shows the inference latencies for PyTorch, TensorFlow and CoRA implementations of the MHA module on the 8- and 64-core ARM CPUs. We saw that TF-UB trades-off parallelism for reduced wasted computation. It, therefore, performs the best when there is high parallelism in the workload (i.e. for datasets with longer sequence lengths at higher batch sizes) and it performs the worst when the workload has low parallelism (i.e. for datasets with shorter sequences at lower batch sizes). This is because in the presence of high parallelism in the workload, TF-UB can reduce the micro-batch size much more (leading to much lower wasted padding) as compared to the case of a workload with low parallelism. This is seen reflected in the optimal micro-batch sizes shown in Table 9. TF-UB also performs better on the 8-core CPU which exposes lower parallelism as compared to the 64-core CPUs. This is again reflected in the optimal micro-batch sizes which are generally higher (leading to higher padding).

Figure 27: Execution latencies of PT, TF and CoRA as the number of threads is increased for the MNLI dataset at a batch size of 64. These measurements were performed on the 64-core CPU by changing the number of threads launched by OpenMP. Due to this, the measurements may not exactly be equal to the ones in Table 9.

On the 64-core CPU as compared the 8-core CPU. Overall, we see that TF-UB and CoRA perform similarly on the 8-core ARM CPU, while CoRA outperforms TF-UB by about 1.37x as the hardware parallelism increases on the 64-core CPU. In both the cases, CoRA performs significantly better than the TF configuration of executing TensorFlow.

On the 8-core CPU, PyTorch in the PT-UB configuration performs better than both TF-UB and CoRA for datasets with higher sequence lengths. Similar to TF-UB, PT-UB can more effectively trade-off batch parallelism in these cases due to the high parallelism. Overall, across all the datasets and batch sizes evaluated, CoRA and PT-UB perform similarly, while TF-UB is about 6% slower than both on the 8-core CPU. We find that on the 64-core CPU, however, PyTorch’s performance does not scale well with the number of cores (this is apparent in Fig. 27) as compared to Tensor-
The CoRA Tensor Compiler

Therefore, below, we only consider TensorFlow for further analysis.

Per-Operator Execution Time Breakdown: Let us now look more closely at the execution times of the TensorFlow and CoRA implementations. Fig. 25 provides a breakdown of the execution times for four cases: (1) the MNLI dataset at a batch size of 128 and the Wiki128 dataset at a batch size of 32, which have the most and the least potential for savings on wasted computation due to padding as Fig. 2 shows, and (2) the RACE dataset at a batch size of 128 and the CoLA dataset at a batch size of 32, which represent the best and worst cases for the TF-UB configuration.

TF-UB and TF perform similarly for the CoLA dataset at batch size 32, as that represents the worst case for TF-UB, and on the Wiki128 dataset at batch size 128 as there is little potential for computational savings due to reduction in padding for that case. In the remaining two cases, TF-UB performs better than TF as expected. For the RACE dataset at batch size 128, which represents the best case for TF-UB, TF-UB performs slightly better than CoRA. In cases where CoRA performs better than TensorFlow, we find that a lot of the reduction in CoRA’s absolute execution time stems from computational savings in the Proj1 and Proj2 two operators, which consume a significant portion of the execution time. The QKT and AttnV operators, however, show a higher relative reduction in execution time as they are quadratically proportional to the sequence lengths as opposed to Proj1 and Proj2 which are linearly proportional to sequence lengths. This difference in proportionality is also reflected in the data for the Wiki128 dataset. TensorFlow generally does well on the Softmax operator, performing better than CoRA for the RACE and Wiki128 datasets. We believe this is due to better optimized implementations and that this gap can be reduced with more time spent optimizing CoRA’s implementation of the operator.
Table 10: Breakdown of the encoder layer execution time for FasterTransformer and CoRA on the Nvidia GPU backend for the RACE dataset at batch size 128. Per-layer prelude code overheads are included in these latencies for CoRA. Both FasterTransformer and CoRA implementations normally execute CUDA kernels asynchronously. For the purposes of profiling (i.e., this table only), these calls were made synchronous, which can lead to slower execution. We also show the end-to-end execution times under profiling for reference.

<table>
<thead>
<tr>
<th>Op sub-graphs</th>
<th>FT Ops</th>
<th>FT</th>
<th>FT-Eff</th>
<th>CoRA</th>
<th>CoRA Ops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proj1</td>
<td>QKV Proj. MM</td>
<td>7.16</td>
<td>5.4</td>
<td>6.2</td>
<td>QKV Proj.</td>
</tr>
<tr>
<td></td>
<td>QKV Bias + AddPad</td>
<td>1.39</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QK^T</td>
<td>QK^T</td>
<td>2.65</td>
<td>2.64</td>
<td>2.12</td>
<td>AddPad + QK^T</td>
</tr>
<tr>
<td>Softmax</td>
<td>Softmax</td>
<td>4.08</td>
<td>4.08</td>
<td>1.93</td>
<td>ChangePad + Softmax + ChangePad</td>
</tr>
<tr>
<td>AttnV</td>
<td>AttnV</td>
<td>2.78</td>
<td>2.79</td>
<td>2.44</td>
<td>AttnV</td>
</tr>
<tr>
<td>Proj2</td>
<td>Transpose + RemovePad</td>
<td>0.78</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear Proj. MM</td>
<td>2.42</td>
<td>1.82</td>
<td>2.31</td>
<td>RemovePad + Linear Proj. MM + Bias + ResidualAdd</td>
</tr>
<tr>
<td></td>
<td>Linear Proj. Bias + ResidualAdd + LayerNorm</td>
<td>0.52</td>
<td>0.38</td>
<td>0.31</td>
<td>LayerNorm</td>
</tr>
<tr>
<td>FF1</td>
<td>FF1 MM</td>
<td>9.52</td>
<td>6.92</td>
<td>8.06</td>
<td>FF1 MM + Bias + Activation</td>
</tr>
<tr>
<td></td>
<td>FF1 Bias + Activation</td>
<td>1.38</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FF2</td>
<td>FF2 MM</td>
<td>9.47</td>
<td>7.1</td>
<td>8.33</td>
<td>FF2 MM + Bias + ResidualAdd</td>
</tr>
<tr>
<td></td>
<td>FF2 Bias + ResidualAdd + LayerNorm</td>
<td>0.53</td>
<td>0.38</td>
<td>0.31</td>
<td>LayerNorm</td>
</tr>
<tr>
<td>Total Execution Time</td>
<td>42.82</td>
<td>34.12</td>
<td>31.99</td>
<td>Total Execution Time</td>
<td></td>
</tr>
</tbody>
</table>
The CoRA Tensor Compiler

A ARTIFACT APPENDIX

A.1 Abstract

This appendix describes how to reproduce the results described above in §7 and §D. The experiments in the paper evaluate CoRA on an Nvidia V100 GPU, an 8-core, 16-thread Intel CascadeLake CPU, an 8-core ARM Neoverse N1 CPU and a 64-core ARM Neoverse N1 CPU. Below, we provide instructions to set up and execute CoRA as well as other frameworks used in the evaluation on each of these platforms. As we start with publicly available Docker containers in all cases, only a few GPU-related dependencies (such as cuDNN) as well as CoRA’s dependencies (such as the Z3 SMT solver, LLVM and OpenBLAS) need to be installed. We provide instructions for each of these. In each case, 100 GB of disk space should be more than enough for the evaluation.

A.2 Artifact check-list (meta-information)

- **Compilation:** We reply on the publicly available compilers nvcc (the CUDA compiler to compile CUDA code generated by CoRA), g++ (to build CoRA and other dependencies) and LLVM (to facilitate CoRA’s code generation for CPUs).
- **Data set:** We use sequence lengths for 8 different commonly used NLP datasets, all of which are included in the repositories described below.
- **Run-time environment:** The artifact has been tested on Ubuntu 20.04 and with the following versions of different dependencies.
- **Hardware:** We use an Nvidia V100 GPU, an 8-core, 16-thread Intel CascadeLake CPU, an 8-core ARM Neoverse N1 CPU and a 64-core ARM Neoverse N1 CPU for our evaluation.
- **Metrics:** We use execution time as the primary execution metric of evaluation.
- **Output:** We generate CSV files, and also provide Python scripts to generate plots from this raw data.
- **Experiments:** Python/bash scripts are provided to replicate the results.
- **Disk space required:** 100 GB on each backend.
- **Time needed to prepare workflow:** A few hours on each backend.
- **Time needed to complete experiments:** Running all experiments on a backend takes several hours. The experiments on the ARM CPUs are particularly slow, taking 2-3 days to complete.
- **Public availability:** Yes, in the form of GitHub repositories and archived on Zenodo.

A.3 Description

A.3.1 How delivered

Source code in the form of Github repositories and archived on Zenodo.

A.3.2 Hardware dependencies

We use an Nvidia V100 GPU, an 8-core, 16-thread Intel CascadeLake CPU, an 8-core ARM Neoverse N1 CPU and a 64-core ARM Neoverse N1 CPU for our evaluation.

A.3.3 Software dependencies

GPU: Below, we describe the environment we use across the different hardware backends we evaluate CoRA on. On all of the backends, we use Ubuntu 20.04. Some of the frameworks below are already installed as part of the Docker images we start with (described below), while some need to be manually or installed. This is described below in §A.4.

Dependencies Common across Backends: CoRA requires the following frameworks on all platforms: Z3 4.8.8, LLVM 9.0.0, cmake ≥ 3.5 and g++ ≥ 5.0.

Nvidia GPU: CUDA 11.1 (V11.1.105), cuDNN 8.2.1, PyTorch 1.9.0+cu111, FasterTransformer (modified on top of FasterTransformer v4.0 (commit dd4c071) and provided as part of the cora_benchmarks repository). Make sure that nvcc is on the PATH.

ARM CPUs: OpenBLAS 0.3.10, PyTorch 1.10.0 with ARM Compute Library 21.12, TensorFlow 2.6.0 with ARM Compute Library 21.09.

Intel CPU: Intel oneAPI MKL v2021.3.

A.3.4 Data sets

All datasets are included in the cora_benchmarks repository.

A.4 Installation

Refer to the file ae_appendix_supplement.pdf at the root of the cora repository.

A.5 Experiment workflow

As we saw above, CoRA is a tensor compiler. It takes as input a description of a tensor operator and generates LLVM or CUDA code for the kernel depending on whether the target is a CPU or a GPU. For evaluating individual kernels, such as trmm, vgemm or any of the nine kernels that make up the transformer layer (illustrated in Figure 3 of the paper), merely executing the python script implementing the kernel will compile the kernel, generate the code and execute it. For evaluating the entire transformer layer, or parts of it (such the self-attention or the MHA modules), we
separate the steps of code generation and execution (\SC). We first generate compiled code for each of the operators in the form of shared libraries, which are then loaded and executed to form the layer to benchmark layer performance. The scripts provided automate all of these steps.

A.6 Evaluation Notes and Instructions

Refer to the file ae_appendix_supplement.pdf at the root of the cora repository for instructions on how to perform the evaluation on the platforms referred to in the paper.

A.7 Experiment customization

1. **GPU Evaluation:** The GPU evaluation has been tested on Nvidia GPUs with compute capability 70. While the evaluation may run on other Nvidia GPUs as well, we have not yet tested it thoroughly. CoRA can currently only support Nvidia GPUs as it only supports the generation of CUDA code.

2. **CPU Evaluation:** The Intel and the ARM CPU evaluation should work for other CPUs beyond the CascadeLake and the Neoverse N1 CPUs we have tested it on. However, given that our schedules have been tuned for these CPUs, the performance might not be optimal. Further, when running on other CPUs, the LLVM target triple would need to be changed (in the file cora_benchmarks/scripts/common.py on line 10). The number of threads would also need to be changed for PyTorch evaluation in the files cora_benchmarks/bert_layer/pytorch/layer_cpu_micro_batch.py and cora_benchmarks/bert_layer/pytorch/layer_cpu.py on the appropriate branch of the cora_benchmarks repository.