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ABSTRACT
There is often variation in the shape and size of input data used for deep learning. In many cases, such data can be
represented using tensors with non-uniform shapes, or ragged tensors. Due to limited and non-portable support
for efficient execution on ragged tensors, current deep learning frameworks generally use techniques such as
padding and masking to make the data shapes uniform and then offload the computations to optimized kernels
for dense tensor algebra. Such techniques can, however, lead to a lot of wasted computation and therefore, a
loss in performance. This paper presents CORA, a tensor compiler that allows users to easily generate efficient
code for ragged tensor operators targeting a wide range of CPUs and GPUs. Evaluating CORA on a variety
of operators on ragged tensors as well as on an encoder layer of the transformer model, we find that CORA (i)
performs competitively with hand-optimized implementations of the operators and the transformer encoder and
(ii) achieves a 1.6× geomean speedup over PyTorch for the encoder on an Nvidia GPU and a 1.37× geomean
speedup over TensorFlow for the multi-head attention module used in transformers on a 64-core ARM CPU.

L1: for o in 0:M:
L2:   for i in 0:s(o):
        B[o,i] = 2*A[o,i]

Useful data Padding cuDNN/TVM/...
(Current approach
with full padding)
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Figure 1: An example operation on ragged tensors.

1 INTRODUCTION

Deep learning (DL) is used for a variety of computa-
tional tasks on different kinds of data including sequential
data like text (Tai et al., 2015; Vaswani et al., 2017), au-
dio (van den Oord et al., 2016) and music (Briot et al., 2017;
Huang et al., 2018) and spatial data like images (He et al.,
2016). Simultaneously, DL models have become more and
more computationally expensive. More efficient execution
of these models is, therefore, a priority.

There is often variation in the sizes of the data that we
process using DL. Images can be of different resolutions,
textual sentences and documents can be of different lengths,
and audio can be of different durations. Processing such
data exhibiting variation in shape, or shape dynamism (Shen
et al., 2020), using the same model and in the same mini-
batch is therefore important. An example elementwise op-
eration on such data is shown in Fig. 1, where the slices of
the inner dimension of tensor A have variable sizes. Such
tensors and operators are referred to as ragged tensors and
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Figure 2: Wasted computation due to padding in a trans-
former encoder layer.

ragged operators respectively. Note how the shape dy-
namism translates to a variable bound for loop L2, which
iterates over the variable-sized tensor slices.

Past work has developed hand-optimized kernels to acceler-
ate some important ragged applications such as batched ma-
trix multiplication with variable dimensions (Li et al., 2019;
Nath et al., 2010), triangular matrix multiplication (Charara
et al., 2016) and the widely-used transformer (Vaswani et al.,
2017) models (ByteDance; Nvidia). Such hand-optimized
kernels, however, require substantial development effort and,
hence, are available only for a few operators. Further, they
are not portable across different hardware substrates, which
is problematic due to the rapid innovation in DL hardware.

While some DL frameworks have started providing sup-
port for ragged operators recently (TensorFlow Team, 2022;
PyTorch Team, 2022), it is quite limited (TensorFlow Com-
munity; PyTorch Community; PyTorch Team) as discussed
in §8. Therefore, frameworks usually rely on efficient dense
tensor algebra kernels implemented in vendor libraries such
as cuDNN (Chetlur et al., 2014) and oneDNN (Intel) or gen-
erated by tensor compilers such as TVM (Chen et al., 2018a)
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to target parallel hardware. Padding (illustrated in the top
right of Fig. 1) and masking1 are therefore commonly used
to eliminate shape dynamism in ragged tensors and enable
the use of vendor libraries or dense tensor compilers (Hug-
gingFace, 2020).

Padding and masking, however, lead to wasted computation
as the padding or the masked data points are discarded after
execution. Fig. 2 plots the relative amount of computation
(computed analytically in FLOPs) involved in the forward
pass of an encoder layer of the transformer model2 with and
without padding. We see that padding leads to a significant
increase in the computational requirements of the layer,
especially at larger batch sizes, increasing computation in
an already computationally expensive model.

Thus, current solutions for efficient ragged operator execu-
tion are unsatisfactory. Hence, we propose a compiler-based
solution enabling easy and more portable generation of per-
formant code for ragged operators. While sparse (Tian et al.,
2021; Kjolstad et al., 2017) and dense (Chen et al., 2018a;
Vasilache et al., 2018; Ragan-Kelley et al., 2013; Baghdadi
et al., 2019) tensor compilers have been well-studied, it
is not straightforward to apply these techniques to ragged
tensors, due to the following challenges:

C1 Irregularity in generated code: While the data in
ragged tensors are densely packed, the variable loop
bounds can lead to irregular code, often causing a loss
of performance on hardware substrates such as GPUs.

C2 Insufficient compiler mechanisms: Representing trans-
formations on loops with variable bounds and on tensor
dimensions with variable-sized slices is not straightfor-
ward due to the dependences that exist among loops and
tensor dimensions respectively in ragged operators. Fur-
ther, optimization decisions made by sparse tensor com-
pilers may not always work for ragged tensors because
sparse tensors are much sparser than ragged tensors.

C3 Ill-fitting computation abstractions: There is a mis-
match between the interfaces and abstractions provided
by current compilers and ragged operators. Such op-
erators cannot be expressed in dense compilers, while
sparse compilers do not adequately provide ways to ex-
press information relevant to efficient code generation.

With these challenges in mind, we present CORA (Compiler
for Ragged Tensors), a tensor compiler that allows one to
express and optimize ragged operations to easily target a
variety of substrates such as CPUs and GPUs. To overcome
challenge C1, CORA enables minimal padding of ragged
tensor dimensions (§4.1) in order to generate efficient code
for targets such as GPUs as well as to specify thread remap-
ping strategies to lower load imbalance (§4.1). CORA uses

1Masking involves setting some tensor elements to a special
value so that these elements are ignored in computations.

2The hyperparameters used are the same as those in §7.2.

Table 1: Comparison between CORA and current solutions
for ragged operations. TC stands for tensor compilers.

Framework Portability Operator
impl. effort Padding Performance

Dense TC High Low Full Low
Sparse TC High Low Minimal Low

Dense vendor libs. Low High Full Low
Hand-optimized impl. Low High Minimal High

CORA High Low Minimal High

uninterpreted functions (Strout et al., 2018) to symbolically
represent variable loop bounds and scheduling operations on
the same (§5.1). CORA’s mechanisms (such as its storage
lowering scheme discussed in §5.3) and optimizations are
specialized for ragged tensors thereby tackling C2. Further,
CORA provides simple abstractions to convey to the com-
piler information essential to efficient code generation, such
as padding or thread remapping specifications and ragged-
ness patterns of tensors (§4). This overcomes challenge C3.

CORA enables efficient code generation for ragged oper-
ators by significantly reducing padding (§7). As part of
CORA’s implementation, we reuse past work by extending
a tensor compiler (Ragan-Kelley et al., 2013; Chen et al.,
2018a; Baghdadi et al., 2019; Kjolstad et al., 2017) and
thus, provide familiar interfaces to CORA’s users. This also
makes it easy in the future to use auto-scheduling (Mulla-
pudi et al., 2016; Adams et al., 2019; Chen et al., 2018b;
Zheng et al., 2020a; Singh et al., 2021) for optimizing
ragged tensor operations. Table 1 compares CORA with
alternatives that are or could be used for ragged operators.
Only CORA achieves high performance and portability, with
low operator implementation effort (and minimal padding).

In summary, this paper makes the following contributions:

1. We present CORA, a tensor compiler for ragged tensors.
To our knowledge, CORA is the first tensor compiler that
allows efficient computation on ragged tensors.

2. As part of the design, we generalize the API, abstractions
and the mechanisms of tensor compilers and propose new
scheduling primitives for ragged tensors.

3. We evaluate CORA on a variety of ragged operators. For
a transformer encoder layer, we perform 1.6× better
than PyTorch (Paszke et al., 2019) and as well as Faster-
Transformer (Nvidia), a highly optimized transformer
implementation, on an Nvidia V100 GPU. On a 64-core
ARM CPU, we are 1.37× faster than TensorFlow (Abadi
et al., 2016), for the multi-head attention (MHA) mod-
ule (Vaswani et al., 2017) used in transformers.

2 CORA OVERVIEW

CORA’s compiler-based approach enables the generation of
performant code in a portable manner. This is reflected in
Fig. 3, which compares CORA’s implementation of a trans-
former encoder layer with FasterTransformer. The highly-
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Figure 3: FasterTransformer (FT-Eff) and CORA imple-
mentations of a transformer’s encoder layer. Note how
CORA’s fully compiler-based implementation uses only par-
tial padding for SDPA as opposed to FasterTransformer’s
fully padded implementation. CORA also enables more
operator fusion (including fusing all the padding change
operations) as opposed to FasterTransformer, which cannot
do so in all cases as it relies on vendor libraries.

optimized FasterTransformer relies heavily on kernels im-
plemented in cuBLAS (Nvidia’s BLAS library), which are
shown as blue outlines in the figure, and on manually imple-
mented kernels, shown as red outlines. On the other hand,
CORA’s implementation exclusively employs compiler gen-
erated kernels (shown as green outlines), making it more
portable. Further, CORA’s compiler approach allows it to
exploit more kernel fusion opportunities, evident from the
fact that CORA’s implementation launches nine kernels as
opposed to FasterTransformer’s twelve. Both the implemen-
tations in the figure use minimal padding for all operators
except for those in the scaled dot-product attention (SDPA)
sub-module, where CORA’s specialized approach enables it
to get away with lower padding as compared to FasterTrans-
former. We further discuss these implementations in §7.

CORA’s ability to generate performant code that employs
minimal padding in a portable manner relies on the follow-
ing two insights:
I1 In ragged operations, the pattern of raggedness is usually

known before the tensor is actually computed, and is the
same across multiple tensors involved in the operation.

I2 Ragged tensors, like dense tensors, allow O(1) accesses
(§5.3). This is unlike sparse formats such as compressed
sparse row (CSR), where accesses require a search over
an array. The HASH (Chou et al., 2018) sparse format,

while allowing O(1) accesses, is unsuitable for acceler-
ators such as GPUs due to its highly irregular storage.

Insight I1 allows CORA to precompute the auxiliary data
structures needed to access ragged tensors without knowl-
edge of the computation (or values of its input tensors) that
produces the ragged tensor. This and insight I2 enable
CORA to generate efficient code for ragged operations.

Let us now look at CORA’s overall compilation and execu-
tion pipeline, as illustrated in Fig. 4. The user first expresses
1 and schedules 2 their computation using an API simi-

lar to that of past tensor compilers (§4). This specification
of the computation and the scheduling primitives are then
lowered 3 to an SSA-based IR 4 . As part of this lowering
step, CORA generates code 7 to initialize some auxiliary
data structures it needs to be able to lower accesses to ragged
tensors (§5.3) and to enable loop fusion in ragged loop nests
(§5.1). We refer to this code as the prelude code. Compi-
lation then continues with CORA lowering tensor accesses
to raw memory offsets by making use of the data struc-
tures generated by the prelude. Finally, CORA generates 5
target-dependent code 9 such as C or CUDA C++. During
execution, the formats of the input ragged tensors 6 are first
processed by the generated prelude code 7 which creates
the auxiliary data structures 8 . This prelude code is not
computationally expensive (§7.4) and hence is executed on
the host CPU. These data structures and the ragged tensors
are then passed to the generated target dependent code 9
which executes on devices such as CPUs or GPUs.

We will now look these stages in more detail below.

3 TERMINOLOGY

Ragged operators have one or more loops with bounds that
are functions of iteration variables of outer loops. We refer
to such loops as variable loops or vloops while loops with
constant bounds are referred to as constant loops, or cloops.
A loop nest with at least one vloop is referred to as a vloop
nest. Further, tensors can be stored in memory with or with-
out padding. When stored without full padding, the size of
some tensor dimensions depends on outer tensor dimensions.
Such dimensions are referred to as variable dimensions, or
vdims and those with constant sizes are constant dimensions
or cdims. A tensor stored such that it has no vdim (i.e., a
fully padded tensor) is referred to as a dense tensor, while a
tensor with at least one vdim is a ragged tensor. Note that
ragged tensors may still be padded to some extent.

4 CORA’S RAGGED API
CORA provides a simple API similar to that of past ten-
sor compilers, as seen in Listing 1, which expresses the
example computation from Fig. 1 in CORA. Apart from
describing the computation as in a dense tensor compiler,



The CORA Tensor Compiler

Compilation stagePipeline dataflow

5

6 9

325

IR
lowering

Generated
target code

Ragged API
lowering (§5)

Loop
Scheduling

(§5.1)

Storage Access
Lowering 

(§5.2)

Compilation

Runtime

Ragged Operator (§4)
# A:Input ragged 
#   tensor ([cdim,vdim])
B[o,i] = 2*A[o,i]
Scheduling (§4.1)
pad_dim(B.dims[1], 4)
pad_loop(i, 2)
fuse_loops(o, i)

Ragged API
Code generation

Input ragged tensors

Auxiliary
data
structures

1

2

3 Generated IR (§5)
for f in foif[M,s(M-1)]:
  o = ffo(f)
  i = ffi(f)
  B[row_idx_b[o] + i] =
    2 * A[row_idx_a[o] + i]

SSA-Based IR

4

7

Prelude
Loop Fusion (§5.1)
ffo, ffi, foif = ...
fctr = 0
for o in 0:M:
  bnd = 2*ceil(s(o),2)
  for i in 0:bnd:
    ffo[fctr] = o
    ffi[fctr] = i
    foif[o,i] = fctr++

Storage Access (§5.2)
row_idx_a = ...
row_idx_b = ...
ctr_a, ctr_b = 0, 0
for o in 0:M:
  row_idx_a[o] = ctr_a
  row_idx_b[o] = ctr_b
  ctr_a += s(o)
  ctr_b += 4*ceil(s(o),4)

ffo
ffi

0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 1 1 2 2 2

20 1 2 3 4 0 1 0 1

row_idx_a 0 5 7 10
row_idx_b 0 8 12 16

s

A

8

foif
0 1 2 3 4
5 6
7 8 9

0 1 2 3
0
1
2

4

Figure 4: Overview of CORA’s compilation and runtime pipeline.

CORA also requires the user to specify the raggedness de-
pendences of the computation (highlighted in Listing 1).
This involves specifying vloop bounds as functions of outer
loop variables and vdim extents as functions of indices of
outer tensor dimensions. Given this information, CORA au-
tomatically computes any derived data structures required
(§5), making it easy for users to express their computations.
CORA uses identifiers called named dimensions (discussed
further in §5.2) to name loops and corresponding tensor
dimensions and to specify relationships between them. For
example, the loop extent defined on line 7 in the listing
states the dependence on the outer loop, referred to by the
named dimension batch_dim.

1 ################ Operator Description ################
2 batch_size = var('M')
3 # Declare named dimensions
4 batch_dim, len_dim = Dim(), Dim()
5 # Loop: Specify vloop extents
6 lens = input_tensor((batch_size,))
7 l_ext = Extent([batch_dim], lambda b: lens[b])
8 loop_exts = [batch_size, l_ext]
9 # Storage: Specify vdim extents

10 s_ext = Extent([batch_dim], lambda b: lens[b])
11 storage_format = [batch_size, s_ext]
12 # Define input ragged tensor
13 dims = [batch_dim, len_dim]
14 A = input_tensor(dims, storage_format)
15 # Express computation
16 B = compute(dims, loop_exts, lambda i,j: 2*A[i,j])
17 ############### Scheduling primitives ###############
18 pad_loop(B.loops[1], 2)
19 pad_dimension(B.dimensions[1], 4)
20 fuse_loops(B.loops[0], B.loops[1])

Listing 1: Operator in Fig. 1 expressed in a simplified ver-
sion of CORA’s API.

4.1 Scheduling Primitives
In order to optimize the expressed computation, CORA pro-
vides all the scheduling primitives commonly found in ten-
sor compilers. Below, we describe some salient features and
points of departure from past tensor compilers.

Loop Scheduling: Both cloops and vloops can be scheduled
in CORA. We saw how a vloop, say Lv, has a loop bound
that is a function of the iteration variables of one or more
outer loops, say L1 to Lk. CORA currently does not allow

L1: for i in 0:32:
L2:   for j in 0:s(i):
        ...

L11o12: // blockIdx.x [0,40]
        if (blockIdx.x < 8):
L11i:      for ii in 0:4:
            i = blockIdx.x*4+ii
L21:        for j in 0:s1(i):
              ...
        else:
          i = blockIdx.x-8
L22:      for j in s1(i):s(i):
            ...

L11: for i in 0:32:
L21:   for j in 0:s1(i):
         ...
L12: for i in 0:32:
L22:   for j in s1(i):s(i):
         ...

2. More scheduling

1. Opsplit
(L2,s1())

3. hfuse
(L11o,L12)

L11o: // blockIdx.x [0,8]
L11i: for ii in 0:4:
        i = blockIdx.x*4+ii
L21:    for j in 0:s1(i):
          ...
L12:  // blockIdx.x [0,32]
      i = blockIdx.x
L22:  for j in s1(i):s(i):
        ...

Kernel boundary

Figure 5: Operation splitting and horizontal fusion. Loop L2
is first split in step 1 using operation splitting thus creating
two loop nests, which are then horizontally fused together
(step 3) so they execute concurrently as part of single kernel.

reordering such a loop Lv beyond any of the loops L1 to
Lk. Although possible with the introduction of conditional
statements, we have not found a use case for such reordering.

Operation Splitting: It can sometimes be beneficial to
differently schedule different iterations of a loop in a vloop
nest in order to more optimally handle the variation in loop
bounds. CORA allows one to split an operation into two or
more operations by specifying split points for one or more
of its loops, as Fig. 5 shows. In our evaluation (§7.3), we use
this transformation in conjunction with horizontal fusion
(described below) to better handle the last few iterations of
a tiled loop without the need for additional padding in the
QKT and AttnV operators in the transformer layer (Fig. 3).

Horizontal Fusion: Past work (Li et al., 2020) has proposed
horizontal fusion, or hfusion for short, as an optimization
to better utilize massively parallel hardware devices such
as GPUs by executing multiple operators concurrently as
part of a single kernel. With CORA, we implement this
optimization in a tensor compiler for the outermost loop
of two or more operators. HFusion enables the concurrent
execution of the multiple operators that result from using
the operation splitting transform described above.

Loop and Storage Padding: Despite the overheads of
padding, a small amount of it is often useful in order to
generate efficient vectorized and tiled code by eliding condi-
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tional checks. Accordingly, CORA allows the user to specify
padding for vloops and vdims as multiples of a constant. For
example, on line 18 of Listing 1, the vloop associated with
the dimension len_dim is asked to be padded to a multi-
ple of 2 while the corresponding dimension of the output
tensor is specified to be padded to a multiple of 4 on line 19.
Such independent padding specification for loops and the
underlying storage is allowed as long as the storage padding
is at least as much as the loop padding (this ensures that
the padded loop nest never accesses non-existent storage).
This ability allows CORA to fuse padding change operators
as is illustrated in Fig. 3. We show in §7.4 that this partial
padding does not lead to much wasted computation.

Tensor Dimension Scheduling: CORA allows users to split,
fuse and reorder dimensions of dense and ragged tensors.
This can enable more optimal memory accesses. Fusing
tensor dimensions in a way that mirrors the surrounding
loop nest can allow for simpler memory accesses (§5.1).

Load Balancing: The variable loop bounds in a vloop nest
can lead to unbalanced load across execution units. As
proposed by past work (Gale et al., 2020) on sparse tensor
algebra, CORA allows the user to redistribute work across
different parallel processing elements by specifying a thread
remapping policy. Given a parallel loop, this allows the user
to specify a mapping between the loop iterations and the
thread id (illustrated in Fig. 15 in the appendix). Depending
on the hardware thread scheduling policy, this can influence
the order in which iterations of the loop are scheduled and
lead to non-trivial performance gains as shown in §7.1.

In conclusion, CORA provides familiar and simple inter-
faces to users, extended with a few abstractions and schedul-
ing primitives specific to ragged tensors, enabling their ap-
plication to support (efficient) ragged operations.

5 CORA’S RAGGED API LOWERING
We now discuss some aspects of CORA’s Ragged API low-
ering that generates the SSA-based IR as shown in Fig 4.

5.1 Loop and Tensor Dimension Fusion
Consider the ragged loop nest shown on the top left corner
of Fig 6. The loop bound of the inner loop Li is a function
s() of o, the iteration variable of the outer loop Lo. The
loop Lf obtained by fusing Lo and Li is shown on the right
of the figure. The loop bound F of the fused loop would
be equal to

∑M−1
o=0 s(o). Further note that while we have

fused the loops Lo and Li, the tensor access T[o,i] in the
body of the loop nest still uses variables o and i. There-
fore, we need to compute the values of these two variables
corresponding to the current value of f, the iteration vari-
able of Lf. Because of the ragged nature of the loop nest,
computing the loop bound F as well as the mapping be-
tween the iteration variables of the original and the fused

    // Prelude Code
    ffo,ffi,foif = [],[],[]
    fctr = 0
    for o in 0:M:
      for i in 0:s(o):
        ffo[fctr] = o
        ffi[fctr] = i
        foif[o,i] = fctr++

    // Computation
    F = foif[M-1,s(M-1)]
Lf: for f in 0:F:
      o,i = ffo[f],ffi[f]
      T[o,i] = ...

Lo: for o in 0:M:
Li:   for i in 0:s(o):
        T[o,i] = ...

    // Prelude Code
    ffo,ffi,foif = [],[],[]
    fctr = 0
    for o in 0:M:
      for i in 0:s(o):
        ffo[fctr] = o
        ffi[fctr] = i
        foif[o,i] = fctr++

fuse(Lo,Li)

fuse_dims(T,0,1)

    // Computation
    F = foif[M-1,s(M-1)]
Lf: for f in 0:F:
      T[f] = ...

Figure 6: Fusing vloops and tensor dimensions

loop nests is not straightforward. In CORA, we generate
code to compute these quantities and variable relationships
(shown in the right pane of Fig. 6) as part of the prelude
which executes before the main kernel computation. We
use vloop fusion as described above to implement the linear
transformation operators (Proj1, Proj, FF1 and FF2) in the
transformer encoder (Fig. 3) with minimal padding.

Suppose now that the tensor T in Fig. 6 has a storage format
that mirrors the loop nest consisting of Lo and Li. This
means that the 2-dimensional tensor has an outer cdim and
an inner vdim the size of the ith slice of which is s(i).
Fusing these dimensions then enables CORA to simplify the
tensor access as shown in the bottom left pane of the figure.

5.2 Bounds Inference

Iteration variable range translation
Iteration variable

range visualization

∙ o ∈ [ol, ou] ∧ i ∈ [il, iu] →
            f ∈ [foif(ol, il), foif(ou, iu)]
∙ f ∈ [fl, fu] → o ∈ [ffo(fl), ffo(fu)]
∙ f ∈ [fl, fu] ∧ ffo(fl) ≠ ffo(fu) →
           i ∈ [0, s(o)]
∙ f ∈ [fl, fu] ∧ ffo(fl) = ffo(fu) →
           i ∈ [ffi(fl), ffi(fu)]

(ol,il)/fl

(ou,iu)/fu

Figure 7: Iteration variable ranges during vloop fusion.

Variable Loop Fusion: During compilation, a tensor com-
piler infers loop bounds for all operators. In order to do
so, the compiler usually proceeds from the outputs of the
operator graph towards the inputs, inferring the region of
a tensor t that needs to be computed and then using this
information to infer the loop bounds for the operator that
computes t. As we saw in §5.1, the application of schedul-
ing transformations such as fusion can lead to a situation
where the variables used in the tensor accesses in an oper-
ator’s body are not the same as the loop iteration variables
present after the transformations have been applied. This
means that during bounds inference, one has to repeatedly
translate iteration variable ranges between the transformed
and the original variables. This is straightforward in the
case of cloops, but gets slightly harder in the case of vloop
fusion. For the loop nest in Fig. 6, Fig 7 provides the rules
to translate between the ranges of iteration variables o, i
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and f as well as a visualization of the ranges. Here, s()
represents the variable loop bound of the inner loop, while
foif , ffo and ffi represent the relationships between the
variables o, i and f such that ffo(f0) and ffi(f0) evaluate
to values of o and i, respectively, corresponding to f= f0.
Similarly, foif (o0, i0) evaluates to f0

3.

Named Dimensions: In §4, we described how the user uses
named dimensions to specify relationships between loops
as well as tensor dimensions. These dimensions play an
important part in bounds inference as well. Along with the
translation between fused and unfused loop iteration vari-
ables described above, one also needs to translate ranges of
variables across producers and consumers during bounds
inference. In CORA, we use named dimensions to easily
identify corresponding iteration variables across such pro-
ducers and consumers to allow this translation.

5.3 Storage Access Lowering
In this section, we briefly describe how CORA lowers ac-
cesses to ragged tensors. Consider the 4-dimensional at-
tention matrix X involved in a batched implementation of
MHA shown in the left pane of Fig. 8. Here, the first and
the third dimensions are cdims and correspond to the batch
size and the number of attention heads, respectively. The
other two dimensions, corresponding to sequence lengths,
are vdims.4 For X , the size of a slice for both these vdims is
the same function (s24()) of the outermost batch dimension.

Due to the irregular nature of ragged tensor storage, we need
some auxiliary data structures to be able to lower memory
accesses to X . The lowering scheme used by past work on
sparse tensors (Smith & Karypis, 2015; Chou et al., 2018)
assumes that the number of non-zeros in a slice of a sparse
dimension is, in general, a function of all outer dimensions.
However, recall that for our example tensor X , the size of
a slice of either vdim depends only on the outermost batch
dimension. Being agnostic to such precise dependences
between tensor dimensions (as illustrated via the dimension
graphs, or dgraphs in Fig. 8), past work would compute and
store more auxiliary data as compared to CORA.

CORA’s lowering scheme allows for cheap O(1) accesses
to ragged tensors. To enable this, we need to compute
a memory offset within a constant number of operations.
The reason sparse tensor formats such as the CSR format
do not allow constant time tensor accesses is because they
explicitly store indices of one or more dimensions along
with every non-zero value. Thus, given a tensor index,
one needs to perform a search over these stored indices to

3In the generated code, as seen in the right pane of Fig. 6, these
functions take the form of arrays initialized by the prelude. Further,
the computation of the foif array can, in most cases, be optimized
away to only compute the loop bound F of the fused loop.

4We use the same layout in CORA’s implementation in §7.2.

Dimensions Extents
1 (Batch Size) s1   :     2
2 (SeqLen1)    s24(): [1,2]
3 (#AttnHeads) s3   :     2
4 (SeqLen2)    s24(): [1,2]
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Figure 8: CORA precisely models dimension dependences
as compared to past schemes for sparse tensors.

obtain the correct non-zero element. In the case of ragged
tensors, however, we note that within a vdim slice, the
data in densely packed with no intervening zero elements.
Therefore, we can get away without storing explicit indices
for any dimension. Accessing the precomputed memory
offsets is also a constant time operation as CORA’s auxiliary
data structures store these offsets using simple arrays.

We describe these lowering schemes further in the appendix
in §B.1. In short, our storage access lowering scheme re-
duces the amount of auxiliary data that needs to be computed
thus reducing overheads of the prelude code (§7.4), while
allowing cheap tensor accesses.

6 IMPLEMENTATION

We prototype CORA by extending TVM (Chen et al., 2018a)
v0.6, a DL framework and a tensor compiler. Some details
regarding this implementation are discussed below.

Ragged API: Our prototype allows vdims to depend on at
most one outer tensor dimension. This is not a fundamental
limitation and can easily be overcome, though we have not
needed to for our evaluation. We implement the operator
splitting and hfusion transforms for non-reduction loops.

Lowering: Our current prototype does not auto-schedule
the expressed computation. The evaluation therefore uses
implementations optimized using a combination of manual
scheduling and grid search. For some operators, we auto-
scheduled the corresponding dense tensor operator using
past work (Zheng et al., 2020a) and manually applied the
schedule to the ragged case. We find that this works well
in most cases and therefore believe that the prototype could
readily be extended with prior work on auto-scheduling.
Our implementation currently expects users to correctly
allocate memory (taking into account padding requirements
as specified in the schedule) for tensors. Checks to report
these problems could be easily implemented.

7 EVALUATION

We evaluate CORA against state-of-the-art baselines, first,
on two ragged variants of the gemm (general matrix multi-
plication) operation in §7.1 and then on an encoder layer of
the transformer model (Fig. 3) in §7.2. Our experimental
environment is described in Table 2. Below, we refer to the
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Table 2: Our experimental environment
Hardware Software (All instances ran Ubuntu 20.04.)

Nvidia Tesla V100 GPU (Google
cloud n1-standard-8 instance)

CUDA 11.1, cuDNN 8.2.1, PyTorch 1.9.0,
FasterTransformer v4.0 (commit dd4c071)

8 core, 16 thread Intel
CascadeLake CPU (Google
cloud n2-standard-16 instance)

Intel MKL (v2021.3)

8 core ARM Graviton2 CPU
(AWS c6g.2xlarge instance) PyTorch 1.10.0a0+git36449ea (with oneDNN

2.4 and Arm compute library 21.11),
TensorFlow 2.6.0 (with oneDNN 2.3 and Arm
compute library 21.05), OpenBLAS 0.3.10

64 core ARM Graviton2 CPU
(AWS c6g.16xlarge instance)

four platforms listed in the table as Nvidia GPU, Intel CPU,
8-core ARM CPU and 64-core ARM CPU. Our evaluation
is performed with single-precision floating point numbers.

7.1 Matrix Multiplication
We start by evaluating CORA’s performance on the variable-
sized batched gemm (or vgemm) and the triangular matrix
multiplication (or trmm) operators. As with all the imple-
mentations we compare against, the CORA implementations
of these operators use fully padded storage for all tensors.

Variable-Sized Batched Gemm: The vgemm operator
consists of a batch of gemm operations, each with differ-
ent dimensions. For this operator, we evaluate CORA on
the Nvidia GPU and Intel CPU backends and compare
against hand-optimized implementations of vgemm and
fully padded batched gemm in both cases. On the CPU,
we compare against Intel MKL’s implementations while on
the GPU, we compare against past work (Li et al., 2019)
on vgemm and cuBLAS’s implementation of fully padded
batched gemm. We use synthetically generated data where
matrix dimensions are uniformly randomly chosen multi-
ples of 128 in [512, 1408]. CORA’s CPU implementation
offloads the computation of inner gemm tiles to MKL, al-
lowing us to obtain computational savings due to raggedness
while also exploiting MKL’s highly optimized microkernels.

As Fig. 9 shows, CORA is effectively able to exploit ragged-
ness on both CPUs and GPUs, performing as well as or
better than the hand-optimized implementation on the GPU
and obtaining better than 73% of the performance of MKL’s
vgemm for all batch sizes and performing better on a couple
on the CPU. In all cases, CORA is significantly better than
the fully padded gemm operations, which perform worse at
higher batch sizes as there is more wasted computation as
batch size goes up for the batch sizes evaluated.

Triangular Matrix Multiplication: A triangular matrix,
i.e. a matrix where all the elements above (or below) the
diagonal are zero, can be thought of as a ragged tensor
because all non-zero elements in a row are densely packed
and their number per row is a function of the row index.
Operations on triangular matrices can, thus, be effectively
expressed and optimized using CORA. In this section, we
evaluate CORA on the trmm operator wherein we multiply
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Figure 9: Performance comparison of CORA’s vgemm
and hand-optimized implementations of vgemm and fully
padded gemm.
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Figure 10: CORA’s trmm performance compared against
cuBLAS’s hand-optimized trmm and fully-padded gemm
implementations.

a square lower triangular matrix with a square dense matrix,
on the Nvidia GPU. We compare against cuBLAS’s trmm
and fully padded gemm implementations. In trmm, the
reduction loop is a vloop. In order to efficiently handle the
last few iterations of this loop after tiling, we use operation
splitting5 (§4). Further, the raggedness in this loop leads
to imbalanced load across the GPU thread blocks. We use
thread remapping (§4.1) to schedule thread blocks with the
most amount of work first, leading to more balanced load.

Fig. 10 shows the performance of the aforementioned
cuBLAS implementations and three implementations
in CORA—CORA-unsplit-unbalanced, CORA-split-
unbalanced and CORA-split-balanced—which progres-
sively employ operation splitting and thread remapping,
starting with neither. We see the trmm implementations—
both cuBLAS’s and CORA’s—are beneficial as compared
to cuBLAS’s dense sgemm operator only for larger matrices.
In all cases, however, the CORA-split-balanced implemen-
tation performs within 81.3% of cuBLAS’s hand-optimized
trmm implementation. Operation splitting leads to a signifi-
cant increase in performance by allowing CORA to elide
conditional checks in the main body of the computation.
Further, a better load distribution with thread remapping
also helps CORA achieve performance close to cuBLAS.

7.2 The Transformer Model
We now move on to look at how CORA performs on various
modules of the transformer model. We mainly focus on
the GPU backend as it is more commonly used for these

5HFusion is not applicable here as the split loop is a reduction
loop and executing the split operators concurrently would require
atomic instructions, which our prototype does not yet support.
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Table 3: Datasets used in our evaluation
Dataset (Short name, if any) Min. / Mean / Max. SeqLength

RACE (Lai et al., 2017) 80 / 364 / 512
English Wikipedia with SeqLen 512 (Wiki512) 12 / 371 / 512
SQuAD v2.0 (Rajpurkar et al., 2018) (SQuAD) 39 / 192 / 384
English Wikipedia with SeqLen 128 (Wiki128) 14 / 117 / 128
MNLI (Williams et al., 2018) 9 / 43 / 128
XNLI (Conneau et al., 2018) 9 / 70 / 128
MRPC (Dolan & Brockett, 2005) 21 / 59 / 102
CoLA (Warstadt et al., 2019) 6 / 13 / 37

Table 4: Transformer encoder layer execution latencies (in
ms) for CORA, PyTorch and the two manually-optimized
variants of FasterTransformer on the Nvidia GPU. CORA’s
execution latencies include prelude overheads assuming a 6
layer transformer encoder.

Dataset Batch Size PyTorch FT CORA FT-Eff

RACE
32 12.22 11.0 8.22 8.61
64 24.46 21.88 15.91 16.75

128 48.73 42.26 31.45 33.61

Wiki512
32 12.26 11.0 9.1 9.32
64 24.52 22.12 17.4 17.85

128 48.72 42.43 32.17 33.66

SQuAD
32 8.17 7.56 4.15 4.69
64 16.9 15.63 7.78 9.2

128 34.18 30.62 15.36 17.91

Wiki128
32 2.79 2.45 2.59 2.28
64 5.12 4.61 4.72 4.35

128 10.1 9.29 8.86 8.54

MNLI
32 2.22 2.04 1.11 1.03
64 4.44 4.06 1.89 1.93

128 9.53 8.86 3.53 3.78

XNLI
32 2.76 2.45 1.56 1.5
64 5.13 4.62 2.94 2.86

128 10.03 9.3 5.62 5.49

MRPC
32 1.85 1.73 1.32 1.27
64 3.76 3.48 2.6 2.36

128 7.42 6.89 4.55 4.55

CoLA
32 0.67 0.57 0.59 0.44
64 1.02 0.93 0.77 0.63

128 2.37 2.18 1.26 1.17

models. We use a 6 layer model with a hidden dimension of
512 and 8 attention heads each of size 64. The encoder layer
contains two feed-forward layers, the inner one of which has
a dimension of 2048. These are the same hyperparameters
used in the base model evaluated in (Vaswani et al., 2017).
We use sequence lengths from some commonly used NLP
datasets listed in Table 3.6 We focus on larger batch sizes
(32, 64 and 128) because, as we saw in Fig. 2, there is lesser
opportunity to exploit raggedness for smaller batch sizes and
hence other factors such as the quality of the schedules used
in CORA’s implementations play a big role. In this section,
CORA’s implementations use ragged tensor storage.

Transformer Encoder Layer: We first evaluate the for-
ward pass latency of an encoder layer of the transformer
model (Fig. 3). We compare CORA’s performance with that
of FasterTransformer and an implementation in PyTorch, a
popular DL framework, with TorchScript (PyTorch Team,
2020) enabled. All the operators in the encoder layer except
the ones in the SDPA sub-module process the hidden vec-

6More details can be found in §D.1.

tors associated with each word independently. Therefore,
with manual effort, they can be implemented without any
padding. The linear transformation operators Proj1, Proj2,
FF1 and FF2 reduce to gemm operations in this case. Faster-
Transformer provides an option to perform this optimization,
first introduced in EffectiveTransformers (ByteDance). We
compare against FasterTransformer both with and without
this optimization. We refer to these two implementations as
FT-Eff and FT, respectively. In the CORA implementation,
this optimization is applied simply by loop fusion, analo-
gous to the illustration in Fig. 6. In CORA’s implementation
however, we pad this fused loop so that its bound is a mul-
tiple of 64. In other words, we add a padding sequence to
the batch to ensure that the sum of the sequence lengths
is a multiple of 64. We refer to this kind of padding as
bulk padding (Fig. 3). The relative amount of bulk padding
added is usually quite low as the sum of sequence lengths
in a batch is much higher.

Table 4 shows the forward execution latencies for the en-
coder layer for the aforementioned frameworks and datasets.
The auxiliary data structures computed by CORA’s prelude
are shared across multiple layers of the model as the ragged-
ness pattern stays the same across layers, depending only
on the sequence lengths in the mini-batch. The execution
times shown for CORA include per-layer prelude overheads
assuming a 6 layer model. We further look at these over-
heads in §7.4. As we can see, the CORA implementation is
competitive with the manually-optimized FT-Eff implemen-
tation for all datasets, even performing better in a few cases,
and performs significantly better as compared to the fully-
padded PyTorch and FT implementations. Fig. 11, which
plots the overall performance of all these implementations
for the batch sizes evaluated, makes this clear.

We now take a closer look at the FasterTransformer and
CORA implementations which are sketched in Fig. 3.7 The
FT implementation is similar to the FT-Eff implementation
except it uses full padding for all operations. The CORA and
FasterTransformer implementations differ in their operator
fusion strategies. Therefore, the figure breaks the imple-
mentations down to the smallest sub-graphs that correspond
to each other. Fig. 13 shows a breakdown of the execu-
tion times for these implementations for the RACE dataset
and batch size 128 at the level of these sub-graphs.8 As
Fig. 3 shows, the FT-Eff and CORA implementations dif-
fer significantly with respect to padding only in the SDPA
sub-module where the FT-Eff implementation employs full
padding while the CORA employs partial padding. We see,
in Fig 13, that the CORA implementation performs better
than FasterTransformer for all the SDPA operators (QKT,

7FasterTransformer uses specialized implementations for dif-
ferent GPUs. In this paper, we limit our discussion to its imple-
mentation for the Nvidia V100 GPU we use for evaluation.

8The raw data for this plot is listed in Table 10 in the appendix.
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Softmax and AttnV) despite the fact that the latter is heavily
hand optimized.9 This is because CORA’s ability to handle
raggedness enables it to perform less wasted computation.
For the remaining operators where both the CORA and FT-
Eff implementations employ little to no padding, we see
that the CORA implementation is usually slower, but often
close in performance to the FT-Eff implementation and sig-
nificantly faster than the fully padded FT implementation.
This is expected as FT-Eff calls into cuBLAS’s extensively
optimized gemm kernels for the linear transformation oper-
ators and into hand-optimized kernels for the rest. CORA’s
performance drops slightly for datasets with smaller se-
quence lengths as well as for smaller batch sizes. As we
discuss in §D.8, this performance difference can be reduced
by further optimizing the schedules used for the projection
and feed forward operators in CORA’s implementation for
smaller batch sizes and sequence lengths. Further, we also
note that the overheads associated with the prelude code
and partial padding (§7.4) play a larger role in these cases,
further contributing to increased execution latencies.

FasterTransformer’s reliance on vendor libraries prevents it
from fusing any of the gemm operations with surrounding
elementwise operators, which CORA can due to its compiler-
based approach. Specifically CORA can completely fuse
all operators which add or remove padding in its imple-
mentation (as shown in Fig. 3). This is as opposed to the
FT-Eff implementation, which cannot. Fusing these padding
change operators leads to a significant drop in CORA’s ex-
ecution latency as seen in Fig. 12, which shows the execu-
tion latencies of the MHA module for the RACE dataset in
CORA with and without this fusion enabled.

Masked Scaled Dot-Product Attention: The decoder layer
of a transformer uses a variant of MHA called masked MHA
wherein the upper half of the attention matrix is masked
for all attention heads during training. This masking only
affects the SDPA module, the operators in which can now
be seen as computing on a batch of lower triangular matri-
ces. We saw in §7.1 that CORA can effectively generate
code for operations on triangular matrices. For batch size

9The execution times of the three SDPA operators is quadrat-
ically proportional to the sequence length, unlike the remaining
operators which are linearly proportional. We discuss the perfor-
mance of SDPA further in §D.8 of the appendix.
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Figure 13: Breakdown of the encoder layer execution times
for the RACE dataset at batch size 128. This data is obtained
with profiling turned on and might deviate from Table 4.

Table 5: MHA execution latencies (in ms) on the 64-core
ARM CPU for TensorFlow and CORA.

Dataset Batch Size 32 Batch Size 64 Batch Size 128

TF TF-UB CORA TF TF-UB CORA TF TF-UB CORA

RACE 55 46 44 111 88 85 209 156 168
Wiki512 53 53 47 106 96 91 205 172 176
SQuAD 35 27 20 68 49 39 137 79 76
Wiki128 11 11 9 19 18 17 34 33 33
MNLI 9 9 4 16 14 7 30 23 14
XNLI 11 11 6 18 18 11 34 28 22
MRPC 9 8 5 14 14 10 26 23 18
CoLA 5 4 2 6 6 3 9 8 5

128, an implementation of masked SDPA in CORA which
exploits this masking performs 1.56× faster than an imple-
mentation which does not for the RACE dataset and 1.29×
for the MNLI dataset. The benefits are less pronounced for
the MNLI dataset, which has smaller sequence lengths, as
we pad vloops to be multiples of a constant regardless of
the dataset. We provide more data and discussion on the
implementation of masked SDPA in §D.3 in the appendix.

Memory Consumption: We find that the use of ragged
tensors leads to an overall 1.78× drop in the size of the
forward activations (computed analytically) of the encoder
layer across all datasets at batch size 64 (more details
in §D.5). The reduction, however, is not uniform across
the datasets and those with higher mean sequence lengths,
such as Wiki512 and Wiki128, see only small benefits. For-
ward activations often consume significant memory during
training and ragged tensors can help alleviate memory bot-
tlenecks along with other memory management techniques
for training (Kirisame et al., 2021; Jain et al., 2020).

MHA Evaluation on ARM CPU: Table 5 shows the exe-
cution latencies of MHA implementations in TensorFlow
and CORA on the 64-core ARM CPU. We evaluate against
two execution configurations of TensorFlow—TF, where the
entire mini-batch is executed at once and TF-UB, where the
mini-batch is executed as a series of smaller micro-batches,
which enables execution with lower padding. Across the
datasets and batch sizes evaluated, we see that CORA’s
implementation is overall 1.57× faster than TF and 1.37×
faster than TF-UB. In this case, too, CORA’s ability to save
on wasted computation due to padding leads to significant
performance gains over a popular DL framework. §D.8 of
the appendix more extensively compares the performance
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Figure 14: Benefits of operator splitting and hfusion. Note
that the y-axis does not start at 0.

of TensorFlow and PyTorch against CORA on both the 8-
and 64-core ARM CPUs.

7.3 Operation Splitting and Horizontal Fusion
We now evaluate operator splitting and hfusion on the AttnV
operator, which is an instance of the vgemm problem. At-
tnV has two vloops, one of which is a reduction loop. We
apply the optimizations to the non-reduction vloop allowing
us to use a larger tile size (we use 64) without padding the
vloop bound to be a multiple of this tile size. This especially
benefits datasets with sequence lengths comparable to the
tile size, such as MNLI. For this dataset, Fig. 14 shows the
relative execution times of three CORA implementations
of AttnV—NoSplit, Split and Split-HFused—in which we
progressively perform the two optimizations, on the Nvidia
GPU and 64-core ARM CPU backends. On the GPU, op-
eration splitting causes a slowdown despite lower wasted
computation as it reduces parallelism, which is restored by
hfusion. This is more apparent at lower batch sizes when the
amount of parallelism is lower. The effects of reduced par-
allelism due to operation splitting are less apparent on the
CPU as it exposes lower levels of hardware parallelism. The
lower levels of CPU parallelism also mean that hfusion has
no benefit in this case. We also evaluate these optimizations
on the QKT operator in §D.6 in the appendix.

7.4 Overheads in CORA

Let us now look at the sources of overheads in CORA—the
prelude code, the wasted computation due to partial padding
and auxiliary data structure accesses in the generated code.

Prelude Overheads: The prelude code constructs the re-
quired auxiliary data structures (§5) and copies them to the
accelerator’s memory if needed. The table below lists the ex-
ecution time (in ms) and memory (in kB) required for these
tasks for a 6-layer transformer encoder on the GPU back-
end. It also shows the overheads associated with the storage
lowering scheme used in past work we discussed in §5.3
(referred to as Sparse Storage in the table). As compared
to this scheme, we see that CORA’s specialized lowering
scheme significantly reduces the resources required to com-
pute the data structures associated with tensor storage. The
overheads associated with loop fusion are higher than those
associated with storage as we need to compute and store
the relationship between all values of the fused and unfused

loop iteration variables (§5.1). Copying the generated data
structures to the GPU’s memory is, however, the major
source of the overhead. Overall, the overheads range from
0.7% (RACE dataset at batch size 128) to about 7% (CoLA
dataset at batch size 32) of the total execution time of the
encoder layer on the GPU. On the CPU, the overheads are a
very small fraction of the execution times, because the exe-
cution times are much higher and because the memory copy
costs are absent. We discuss some simple optimizations to
reduce prelude overheads in §D.7 of the appendix.

Dataset /
Batch Size

Sparse Storage CORA Storage CORA Loop Fusion CORA-
Copy TimeTime / Mem. Time / Mem. Time / Mem.

CoLA / 32 0.09 / 267.97 3.80e-03 / 2.93 5.35e-03 / 32.15 0.24
CoLA / 128 0.35 / 1047.22 5.76e-03 / 11.18 0.02 / 104.22 0.27
RACE / 32 0.52 / 1607.97 4.15e-03 / 2.93 0.09 / 666.54 0.42

RACE / 128 2.02 / 6300.02 6.30e-03 / 11.18 0.34 / 2609.58 0.99

Partial Padding Overheads: We saw that in CORA, small
amounts of padding can be specified for vloops (both un-
fused vloops and fused ones with bulk padding) and tensor
storage to enable efficient code generation. While this leads
to some wasted computation, we find that it is generally
quite low. For the transformer encoder layer, we see a 3.5%
increase in the amount of computation (computed analyti-
cally) over the ideal case without padding for a batch size of
32 and a 2.3% increase for a batch size of 128 across all the
datasets evaluated. The overheads decrease with increasing
batch size as bulk padding ensures that the sum of the se-
quence lengths in a batch is a multiple of a constant (64, in
this case) irrespective of the batch size leading to a higher
relative amount of padding at lower batch sizes. We provide
further data and discussion in §D.7 of the appendix.

Ragged Tensor Overheads and Load Hoisting: CORA’s
generated code accesses the auxiliary data structures gen-
erated by the prelude leading to frequent indirect memory
accesses. We measure the overheads caused by these ac-
cesses for the operators used in MHA. While the data and
more discussion are provided in §D.7, we note here that the
indirect memory accesses do not cause any significant slow-
down for the Proj1, Softmax, AttnV and the Proj2 operators.
The accesses do lead to a higher slowdown in the QKT oper-
ator, which is the only operator where we fuse two vloops
leading to complex memory access expressions. For this
case, we find that hoisting data structures accesses outside
loops when possible helps recover the lost performance.

7.5 Evaluation Against Sparse Tensor Compilers
We saw that ragged tensors are similar to sparse tensors as
both involve irregular storage. In order to evaluate the suit-
ability of using sparse tensor compilers for ragged tensors,
we compared CORA’s performance with Taco, a state-of-
the-art sparse tensor compiler on a few triangular matrix
operators (implemented in Taco using the CSR and blocked
CSR formats). These implementations perform 1.33× to
95.37× slower than the corresponding CORA implementa-
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tions. While §D.4 of the appendix provides further details
and discussion, we note here that this is essentially due
to a mismatch between the use case of ragged tensors and
the general sparse tensor computations for which Taco is
designed. For example, ragged tensors are usually much
denser as compared to traditionally used sparse tensors and
the applications each is used in are quite different.

8 RELATED WORK

Tensor Compilers: There has been extensive work on
tensor compilers such as (i) TVM (Chen et al., 2018a),
Halide (Ragan-Kelley et al., 2013), Tiramisu (Baghdadi
et al., 2019), Tensor Comprehensions (Vasilache et al.,
2018), Fireiron (Hagedorn et al., 2020), Stripe (Zerrell &
Bruestle, 2019), AKG (Zhao et al., 2021) and work by (Gysi
et al., 2021) and (Bhaskaracharya et al., 2020) for dense
tensors and (ii) Taco (Kjolstad et al., 2017), COMET (Tian
et al., 2021) and work by (Bik et al., 2022) and (Hsu et al.,
2021) for sparse tensors. This work has informed CORA’s
design. We generalize the abstractions provided by dense
tensor compilers to ragged tensors, while enabling efficient
code generation for the latter. We discuss in §7.5 and fur-
ther in §D.4, how despite the similarity between ragged
and sparse tensors, sparse tensor compilers are unable to
effectively exploit the properties of ragged tensors to enable
efficient execution.

Past work on DL compilers has also looked at handling
dynamism. Nimble (Shen et al., 2020) develops dynamism-
aware compiler abstractions from the ground up. Its han-
dling of shape dynamism is limited to variation across mini-
batches. CORA is therefore complementary to Nimble’s
techniques. Cortex (Fegade et al., 2021) handles recursive
models by essentially lowering the recursive control flow
into sequential control flow on ragged tensors. CORA can
therefore potentially be used as part of its pipeline. CORA’s
use of uninterpreted functions and named dimensions has
been inspired by their use in Cortex and past work on the
Sparse Polyhedral Framework (Strout et al., 2018; Moham-
madi et al., 2019; Nandy et al., 2018). Named dimensions
are also similar to the index labels in COMET. CORA im-
plements a limited form of the hfusion optimization, first
proposed in (Li et al., 2020), as part of a tensor compiler.

DL Frameworks and Graph Optimizations: DL frame-
works have recently begun adding support for ragged tensors
with the RaggedTensor (TensorFlow Team, 2022) class in
TensorFlow and the NestedTensor (PyTorch Team, 2022)
module for PyTorch. Very few operators are, however, sup-
ported for ragged tensors at this point (TensorFlow Com-
munity; PyTorch Community).10 CORA can be used to
expand the set of ragged operators supported in these frame-

10Tensor contraction and similar operators such as batched
gemm and convolution are generally not supported. PyTorch’s

works. CORA’s techniques are complementary to graph
optimizations for efficient DL execution such as data layout
optimizations (Ivanov et al., 2020), kernel fusion (Zheng
et al., 2020b) and operator scheduling (Ding et al., 2020),
and can be used in conjunction with them.

Hand Optimized Implementations: There has been work
on efficient implementations of certain important ragged
tensor operations. This includes the work on variable-sized
batched gemm operations (Li et al., 2019; Nath et al., 2010),
as well as the work on Effective Transformers and Faster-
Transformers, which we compared CORA’s performance
against in §7. This past work informs our work on CORA as
we saw with the operator splitting transform in §4.1.

Sparse Tensor Algebra: There have been decades of past
work on efficient execution of sparse tensor operators. This
work has been revisited recently in the context of DL by
work on exploiting block sparsity in model weights (Gray
et al.) as well as for tuning sparse kernels for the sparsity
patterns and distributions usually encountered in DL (Gale
et al., 2020). The thread remapping strategy discussed
in §4.1 was implemented first in (Gale et al., 2020).

9 CONCLUSION

This paper presented CORA, a tensor compiler for express-
ing and optimizing ragged operators to portably target CPUs
and GPUs using simple and familiar abstractions. CORA’s
approach, specialized for ragged tensors, reduces overheads
associated with techniques such as masking and padding.
With DL being applied to an ever-increasing set of fields
and the models getting more resource-intensive, we believe
that efficiently handling the shape dynamism that naturally
arises in many settings is important. CORA extends past
work on tensor compilers by supporting efficient operators
on ragged tensors. Our work can also be seen as a step
towards unifying past work on sparse and dense tensor com-
pilation. In the future, we plan to make CORA easier to use,
potentially with the help of auto-scheduling techniques.
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We now look at additional details regarding CORA’s mech-
anism in §A, §B and §C, and discuss further aspects of
the evaluation in §D. Notably, we look at how CORA can
exploit masking in masked MHA to obtain further savings
in §D.3, discuss how CORA’s overheads are quite low, al-
lowing it to effectively exploit raggedness (§D.7) and look
more closely at CORA’s performance on the transformer
model and where the benefits come from in §D.8.

A RAGGED API
A.1 Thread Remapping Policy
We discussed, in §4, that CORA allows users to specify a
thread remapping policy to influence how iterations of a
parallel loop are scheduled on the execution units in the
hardware substrate. This is illustrated in Fig 15.

B RAGGED API LOWERING

B.1 Tensor Storage Lowering
In §5.3, we briefly discussed the storage lowering schemes
used by past work on sparse tensor compilers and by CORA.
Both are illustrated in Fig. 16 and discussed more below.

Sparse Storage Access Lowering Scheme Used in Past
Work: Recall the 4-dimensional attention tensor X we
discussed in §5.3 and which is illustrated again in Fig. 16.
We saw that the first and the third dimensions of X are cdims
and correspond to the batch size (s1) and the number of
attention heads (s3) respectively. The other two dimensions,
which correspond to sequence lengths are vdims, the size
of a slice for which is the same function (s24())) of the
outermost batch dimension.

L1: parfor i in 0:M:
L2:   for j in 0:s(i):
        ...

L1: parfor i in 0:M:
      ir = remap_fun(i)
L2:   for j in 0:s(ir):
        ...

Remap
(L1, remap_fun())

Time

Core 1

i = 0

i = 1

i = 2

Core 2 Core 1

ir = 1
ir = 2

ir = 0

Core 2
If M  = 3 and remap_fun(i) = 2 - i

ar

Figure 15: Thread remapping allows users to influence the
scheduling of iterations to allow for better load balancing.

The sparse tensor compiler Taco (Kjolstad et al., 2017),
the performance of which look at in §D.4, uses a tree-
based modular scheme (first proposed in the work (Smith
& Karypis, 2015) on the Compressed Sparse Fiber tensor
format) to model sparse tensor storage. In this scheme, il-
lustrated in Fig. 16 for tensor X , tensor storage is modeled
as hierarchical tree structure, where each tensor dimension
corresponds to a tree level. Note that this tree abstraction ex-
ists only at compile time. As mentioned before, this scheme
assumes that the number of non-zeros in a slice of a sparse

tensor dimension can depend on the indices of all outer di-
mensions in general. We saw that this is not the case with
ragged tensors and that this is the source of sub-optimality
in this lowering scheme for the applications we look at. Be-
cause every slice may have a different number of non-zero
elements, when used to store a ragged tensor, this storage
scheme would store auxiliary data proportional to the num-
ber of slices for a given vdim. For our example tensor X in
Fig. 16, the outer of the two vdims (the second dimension)
has s1 slices while the number of slices in the inner vdim
(the fourth dimension) is s3

∑s1
i=0 s24(i). Therefore, the

amount of auxiliary data computed and stored would be
equal to s1 + s3

∑s1
i=0 s24(i), which as we saw in §7.4 can

be much larger than CORA’s specialized scheme.

Algorithm 1 Procedure to lower ragged tensor accesses
1: procedure LOWERACCESS([b1, ..., bn])
2: offset ← 0
3: relaxed ← [b1, ..., bn]

4: for i← n to 1 do ▷ Compute Di(
−−→
B≤i)

5: D ← 1
6: if OG(i) ̸= ∅ then
7: D ← Ai(relaxed [j])
8: else
9: D ← relaxed [i]

10: end if
11: for j in S(i)− {i} do
12: if OG(j) ̸= ∅ then
13: D ← D ∗Aj(relaxed [j ])
14: else
15: D ← D ∗ sj(relaxed [IG(j)])
16: end if
17: end for
18: relaxed [i]← si(relaxed [IG(i)])
19: offset ← offset +D
20: end for
21: return offset
22: end procedure

CORA’s Storage Access Lowering Scheme: We saw that
CORA’s storage access lowering scheme is specialized for
ragged tensors and enables us to reduce the amount of aux-
iliary data that needs to be computed as compared to the
scheme used by past work while allowing O(1) accesses to
ragged tensor storage. Such O(1) accesses are enabled by
the memory offsets that CORA precomputes as part of its
auxiliary data structures. Below, we describe exactly how
these data structures are computed and how they are used to
lower memory accesses.

Let T be an n-dimensional tensor with dimensions num-
bered 1 to n such that dimension 1 is the outermost di-
mension. Given a tensor access T (b1, .., bn), we need to
generate a flat memory access as part of lowering. In other
words, we need to generate a memory offset Off T (b1, .., bn)
to access the tensor.

Given a tensor and its corresponding storage layout, we
define what we refer to as the dimension graph or dgraph for
short (Fig. 16). The dgraph G of the n-dimensional tensor
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Figure 16: Comparing CORA’s storage lowering with the tree-based scheme used by past work on sparse tensors.

T is a pair (D,E) where D is the set of all dimensions
{1, ..., n} and E is a set of directed edges. An edge d1 → d2
belongs to E if the size of a slice of dimension d2 depends
on the index bd1

in the tensor access T (b1, .., bn). Thus, a
cdim will not have any incoming edge in the dgraph, while a
vdim would. It also follows, for example, that the outermost
dimension of the tensor, which is always a cdim, will not
have any incoming edges. More generally, we note that the
dgraph of a given tensor is always acyclic as the size of a
slice of a given vdim depends only on the indices of outer
dimensions. Further, given a dimension d, let OG(d) =
{d2|(d, d2) ∈ E} and IG(d) = {d1|(d1, d) ∈ E} be the
set of outgoing and incoming dimensions, respectively, for
d in the dimension graph. The size of a slice of a vdim d
can now be written as sd(IG(d)). For cdims, this quantity
is constant as IG for a cdim in the empty set. Let O∗

G(d)
denote the transitive closure of OG(d). Also, let Oex

G (d) =
OG(d)−

⋃
i∈OG(d) O

∗
G(i).

We present the procedure to compute Off T (b1, .., bn) in
Algorithm 1. For brevity, we refer to the index vector
[b1, .., bn] as

−→
B . Also, let

−−→
B≥i = [bi, ..., bn]. We can cor-

respondingly defined
−−→
B≤i. We abuse notation to represent

Off T (b1, ..., bi−1, bi, 0, ..., 0) as Off T (
−−→
B≤i). Then, we can

expand the offset Off T (
−−→
B≤n) as follows:

Off T (
−−→
B≤n) =

n∑
i=1

(Off T (
−−→
B≤i)−Off T (

−−→
B<i))

=

n∑
i=1

Di(
−−→
B≤i)

During compilation, the procedure in Algorithm 1 com-
putes the memory offset expression using two nested loops.
Each iteration of the outer loop (line 4) corresponds to one
dimension i and computes Di(

−−→
B≤i). For a dimension i,

Di(
−−→
B≤i), is further computed (in the inner loop on line 11)

as a product of contributions corresponding each of the in-
ner dimensions j such that j ≥ i (Fig. 16 shows the values
of Dis for the 4 dimensions in our example tensor X at
the bottom of the tree in green in the rightmost pane.). In
the case of a dense tensor, Di(

−−→
B≤i) = bi

∏n
j=i+1 sj . For

a ragged tensor, however, due to the dependences between
dimensions, the contribution of each dimension j to Di

cannot be computed independently. Specifically, we com-
pute the contribution of an inner dimension j along with
all the dimensions dependent on it, directly or indirectly
(i.e. O∗

G(j)) as a single quantity as a call to the function
Aj(). This function is similar to the row_index array in
the CSR matrix format which stores the start and ends of
variable-sized rows. Given a ragged tensor format (in the
form of the length functions sd for all dimensions d), we
need to precompute the values of the function Ad for all
dimensions such that OG(d) is non-empty. We perform this
computation as part of the prelude discussed in §2. The
function Ad() for the batch dimension (the first dimension)
of our example tensor X in Fig. 8 is shown as the array A1

where A1[i]=
∑i

j=1 s24(j) ∗ s24(j).
As discussed above, for a dimension d, because, Ad() in-
cludes the contributions from all dimensions in O∗

G(d), we
need to exclude those dimensions to avoid double counting
them during the inner loop. Therefore, the inner loop of
the procedure iterates over the set S(d) (defined recursively
as S(n) = {n} and S(d) = {d} ∪ (S(d + 1) − O∗

G(d)))
which excludes these dimensions. Given a dimension d, the
function Ad can be computed recursively as follows.

Ad(B≤d) =


sd(B≤d), if OG(d) = ∅
i=bd∑
i=0

(
∏

di∈Oex
G (di)

Adi
(relaxedd[IG(di)])) otherwise

where relaxedd is the value of the vector relaxed in Algo-
rithm 1 in the iteration of the outer loop corresponding to
the dimension d.

B.2 Variable Loop Fusion
In §5.1, we discussed how we need to precompute certain
quantities as part of the prelude to support vloop fusion.
During lowering, we represent these quantities as opaque or
uninterpreted functions. For example, §5.2 describes how
the functions ffo, ffi and foif represent the relationships
between the iteration variables o, i and f in Fig. 6. In the
generated code, as we can see in Fig. 4, these functions
take the form of arrays that are initialized by the prelude.
During compilation, in order to perform simplification over
expressions containing calls to these functions as well as for
proving if certain bound checks are redundant, we use the
Z3 SMT solver (De Moura & Bjørner, 2008). In order to
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enable Z3 process these uninterpreted functions, we provide
it with the following relationships between these functions:

∀f, foif (ffo(f), ffi(f)) = f

∀o, i, ffo(foif (o, i)) = o

∀o, i, ffi(foif (o, i)) = i

C ADDITIONAL IMPLEMENTATION
DETAILS

As we mentioned in §6, we have prototyped CORA for the
common cases encountered when expressing and optimiz-
ing ragged operations. In our evaluation, we implement and
compare the performance of an encoder layer of the trans-
former model in CORA. Our prototype currently allows us
to generate code for individual (potentially fused) ragged
operators at a time as opposed to entire model graphs. There-
fore, for our implementation of the transformer layer, we
individually optimized and generated code for each operator
and then invoked it as part of a separate program that ties
the operators together to form the layer. CORA’s implemen-
tation of the hfusion optimization currently is limited to the
outermost loops of the operators one would like to fuse. On
a GPU, this means that our prototype implementation allows
one to execute multiple operators concurrently as part of
the same GPU grid, but not the same GPU thread block.
Implementing the general transform is not fundamentally
difficult, however.

D SUPPLEMENTARY EVALUATION AND
ADDITIONAL DETAILS

D.1 Datasets
We use the datasets listed in Table 3 for the evaluation on the
transformer model. For each dataset, we use the sequence
lengths corresponding to the text obtained after preprocess-
ing as performed in the implementations corresponding to
past work on various transformer models (Vaswani et al.,
2017; Devlin et al., 2018; Yang et al., 2019). The Wiki512
and Wiki128 datasets, usually used for pre-training (Devlin
et al., 2018), are generated from a dump of the English
Wikipedia website (Wikipedia). Each sequence in these
two datasets was created by accumulating consecutive sen-
tences from the dump until a sentence could no longer be
added without exceeding the maximum sequence length
used for training (which is a hyperparameter). This was
done, in the transformer implementation, to reduce wasted
computation due to padding as much as possible. As a re-
sult, these datasets do not provide as much opportunity for
CORA to exploit as do some of the other datasets. We saw
this reflected in Fig. 2 as well as in the evaluation in §7.

D.2 Load Balancing
We briefly discussed the challenge of ensuring a balanced
workload across multiple execution units in the main text.
On a CPU, these execution units take the form of CPU cores,
while a GPU has a hierarchy composed of thread blocks,
warps and threads. In all the kernels we evaluate on (except
the Softmax kernel in the transformer layer), dense inner
cloops or partial padding allow us to prevent imbalance
across GPU warps in the same thread block. Imbalance
across multiple thread blocks exists, most commonly in
gemm-like operations where the reduction loop is a vloop
such as the AttnV operator in the SDPA module. We handle
this imbalance using either thread remapping (§4 and §A.1)
or, in the case of kernels that are part of the transformer layer,
by sorting the sequences in the mini-batch in descending
order of sequence lengths so that thread blocks with the
most amount of work are scheduled first.

D.3 Masked Scaled Dot-Product Attention
As we briefly mentioned in §7.2, the decoder layer of a
transformer uses a variant of MHA called masked MHA
wherein the upper triangular half of the attention matrix is
masked for all attention heads during training. This is done
to prevent the model from attending to words that would
not be known during inference at a given time step. In this
section, we provide further details and data regarding how
CORA can exploit this masking and further save on wasted
computation in the SDPA sub-module, which is the only
portion affected by the masking.

Batch dimension

CoRa-Pad

PyTorch

CoRa-NoPad

x

yy Padding
Useful data

Figure 17: The attention matrices of the masked MHA
module as implemented in the implementations discussed
in §7.2 and compared in Fig. 18. In the figure, for simplicity,
the number of attention heads is assumed to be 1, partial
padding is not shown and the batch size is assumed to be 3.
The x and y directions denote increasing matrix indices.
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Figure 18: Execution time of masked SDPA in PyTorch and
CORA, with and without padding for the attention matrix.

We also mentioned in the main text that with masking, the
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SDPA computation is essentially composed of batched lower
triangular matrix operations. Implemented this way, these
operations have one vloop corresponding to the variable
sequence lengths and another inner vloop corresponding to
the triangular matrix rows. Fig. 18 shows the performance
of three implementations of masked SDPA—CORA-NoPad,
where both the vloops are only partially padded, CORA-Pad,
where the outer vloop is partially padded while the inner
one is fully padded and a PyTorch implementation, where
both the vloops are fully padded. The padding in the three
implementations is illustrated in Fig. 17. As Fig. 18 shows,
CORA-NoPad can effectively exploit the reduction in com-
putation in the masked case by avoiding full padding. This
leads to 1.34× and 2.46× faster execution as compared to
CORA-Pad and PyTorch respectively across the datasets
and batch sizes evaluated in Fig. 18. As we saw, the perfor-
mance of MNLI dataset improves to a smaller degree due to
the padding employed in CORA-NoPad.

D.4 Evaluation Against Sparse Tensor Compilers
We saw in the main text of the paper that there are some
similarities between ragged and sparse tensors. In this sec-
tion, we explore using sparse tensor compilers in order to
express ragged tensor operations. Specifically, we look
at using Taco in order to implement three operations on
triangular matrices—the triangular matrix multiplication
(trmm) operation we saw in §7.1, elementwise addition of
two square triangular matrices (we refer to this operation as
tradd, for short) and a similar elementwise multiplication
of two square triangular matrices (referred to as trmul, for
short). Taco does not natively support the storage of ragged
tensors. Therefore for this study, we use the compressed
sparse row (CSR) and the blocked compressed sparse row
(BCSR) matrix formats to store the triangular matrices. We
use a block size of 32 for the BCSR format. Table 6 lists the
execution times (in ms) for the aforementioned operations
and formats. As the table shows, CORA performs better
than Taco for all the cases evaluated. We discuss the reasons
for this below.

Storage Layouts: A part of the slowdown in Taco stems
from the sub-optimal storage format (CSR or BCSR) used
for the triangular matrices. The overheads of traversing the
auxiliary data structures to access the sparse tensor storage
therefore decrease when we go from the CSR format to the
BCSR format, thereby leading to increased performance, de-
spite the additional padding in the latter. For the operations
evaluated, the output matrices are stored in a dense manner
because using the compressed formats prevents paralleliza-
tion in some cases in the Taco implementations.

Degree of Sparsity: The optimizations, scheduling primi-
tives and code generation techniques used in Taco have been
designed for tensors with a high degree of sparsity. We have
seen, however, that ragged tensors are much closer to their

Table 6: Execution times (in ms) for the trmm, tradd and
trmul operations implemented in Taco using the CSR and
the BCSR matrix formats and in CORA. The table also
shows Taco’s slowdowns with respect to CORA.

Op Matrix Dim. CORA
Taco-CSR Taco-BCSR

Time Slowdown Time Slowdown

trmm

128 0.043 0.062 1.44 0.467 10.92
512 0.082 1.347 16.43 1.112 13.56

2048 0.893 75.12 84.19 47.497 53.24
8192 50.905 4854.31 95.37 4252.33 83.54

tradd

128 0.004 0.057 15.61 - -
512 0.004 0.223 61.68 - -

2048 0.033 1.538 46.94 - -
8192 0.476 7.883 16.58 - -

trmul

128 0.004 0.057 15.89 0.008 2.08
512 0.004 0.225 57.21 0.016 3.87

2048 0.033 1.544 47.26 0.077 2.34
8192 0.476 7.92 16.67 0.632 1.33

dense counterparts with respect to the amount of useful data
they store. Therefore, optimization decisions that work well
for sparse tensors do not always work for ragged tensors.

Properties of Ragged Tensors: Finally, due to its design as
a tensor compiler for general sparse tensors, Taco is unable
to exploit certain properties specific to ragged tensors and
the applications they are used for, such as the insight I1
we discussed in §2. Therefore, Taco assumes that the two
triangular input matrices in the tradd and trmul operations
have differing sparsity patterns. Taco, therefore, has to gen-
erate code to iterate over all the coordinates representing the
union of the non-zeroes in the input matrices for the tradd
operator. This is unlike an intersection that is performed in
trmul. This prevented us from scheduling the tradd operator
using the BCSR format in a way similar to the trmul opera-
tor. Further, Taco currently does not allow users to specify
padding for loops and tensor dimensions which would help
elide conditional checks in the generated code.

Therefore, while Taco achieves performance comparable
to CORA’s in some cases (such as the trmul operator), we
conclude that Taco’s programming model and optimizations
are designed for highly sparse tensors which can lead to
poor performance in a lot of cases involving ragged tensors.

D.5 Memory Consumption
We mentioned in §7.2 that the use of ragged tensors leads
to a significant drop in the memory required to store the
forward activations of the encoder layer. Fig. 19 shows this
for the datasets in Table 3 for batch size 64. It plots the
relative total memory consumption (computed analytically)
of the forward activations of a transformer encoder layer
for CORA’s implementation with and without the use of
ragged tensors. We take into account any partial padding
that the ragged implementation requires. The relative mem-
ory consumption for the other batch sizes is also similar. We
also saw how only small improvements are observed for the
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Wiki512 and Wiki128 datasets which have higher sequence
lengths and hence low opportunity for CORA to exploit.

D.6 Operation Splitting and Horizontal Fusion
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Figure 19: Relative sizes of the forward activations of a
transformer encoder layer with and without ragged tensors.
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Figure 20: Operation splitting and hfusion for QKT.

In §7.3 of the main text, we looked at the benefits of opera-
tion splitting and hfusion on the AttnV operator. We now
look at the QKT operator, which is also an instance of the
vgemm problem. Each gemm instance in this case has two
non-reduction vloops. We first look at the case where the op-
timizations are applied to the outer one of these two vloops
in Fig. 20. The figure shows the normalized execution
times, for the QKT operator, of the three implementations
described in §7.3. We see that on the CPU backend, similar
to the AttnV operator, operation splitting has a significant
benefit but hfusion does not, due to low parallelism exposed
by the CPU. On the GPU backend, however, we see that
the combination of the optimizations gives slightly better
performance for lower batch sizes but performs worse as the
batch size increases. Profiling data shows that applying the
optimization in this case leads to an increase in the number
of integer instructions executed as well as an increase in the
number of memory load requests. One possible explanation
for this is that the CUDA compiler does not effectively hoist
memory access expressions in order to avoid high register
pressure (the compiled code does not contain any spilled
registers). While the optimizations generally lead to more
complicated code, the fact that QKT has two vloops that we
fuse when scheduling further exacerbates this problem.

When applied to both the vloops, the optimizations slow
the execution down as seen in Fig. 21. In that figure, we
compare the performance of three CORA implementations—
NoSplit, which does not use either of the optimizations
on either vloop, Split1-HFused, which employs both the
optimizations for the outer vloop and Split2-HFused, which
employs the optimizations for both vloops—on the Nvidia
GPU and the 64-core ARM CPU backends. We see that
on both backends, optimizing both vloops is no better than

optimizing just one vloop and is, in fact, quite slower on the
GPU. On the GPU, we find that despite the decrease in the
computation performed and hence the number of floating
point instructions executed, the total number of executed
instructions is higher in the case Split2-HFused case as
compared to the NoSplit case. We therefore believe, that in
this case too, the overheads of performing the optimizations
are much higher than their benefits (the reduced wasted
computation).
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Figure 21: Efficacy of operation splitting and hfusion when
applied to one or both vloops of the QKT operator.

D.7 CORA Overheads
Prelude Overheads: As we discussed in §C, CORA’s proto-
type allows us to generate code for operator kernels one at a
time. For each kernel, CORA generates all the prelude code
required for its execution. Therefore, when these generated
kernels are invoked to form a larger model graph, as in our
implementation of the transformer encoder layer, there is a
lot of redundant computation in the prelude code. This is
because (i) each operator computes the auxiliary data struc-
tures needed for all of its input and output tensors, which
leads to these data structures being generated twice for every
tensor in the graph, and (ii) the vloops in the schedules for
all operators except the QKT and the AttnV operators in
CORA’s implementation of the layer are fused similarly and
can reuse the same auxiliary data structures, which are also
currently computed separately for every operator. Tables 7
and 8 compare, for a 6-layer transformer encoder, the exe-
cution time and memory consumption of the prelude code
respectively, as present in CORA’s current implementation
(referred to as CORA-Redundant in the table) with an op-
timized implementation (referred to as CORA-Optimized)
which has all of this redundant computation removed. We
see that when appropriately reused, the time and memory re-
sources required to compute the auxiliary data structures in
the prelude are quite low as compared to the those required
for the execution of the kernel computation.

Overheads Due to Partial Padding: In Fig. 22, we show
the relative amount of computation (computed analytically
as in Fig. 2) for the transformer encoder layer for all datasets
at batch sizes 32 and 128 for three cases—the fully padded
dense case, the actual computation as evaluated in §7 with
partial padding, and the ideal case with no padding. We
see that partial padding leads to a very small increase in
the amount of computation (3.5% across datasets for batch
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Table 7: Prelude execution times (in ms) for a 6-layer transformer encoder with and without redundant computation.

Dataset Batch Size CORA-Redundant CORA-Optimized
CORA Storage CORA Loop Fusion CORA-Copy Time CORA Storage CORA Loop Fusion CORA-Copy Time

CoLA 32 0.004 0.006 0.232 0.002 0.002 0.088
CoLA 128 0.006 0.015 0.261 0.003 0.004 0.094
RACE 32 0.005 0.085 0.419 0.002 0.015 0.121
RACE 128 0.007 0.339 0.985 0.003 0.053 0.209

Table 8: Prelude memory usage (in kB) for a 6-layer trans-
former encoder with and without redundant computation.

Dataset Batch
Size

CORA-Redundant CORA-Optimized
CORA
Storage

CORA Loop
Fusion

CORA
Storage

CORA Loop
Fusion

CoLA 32 2.93 32.15 1.2 5.27
CoLA 128 11.18 104.22 4.58 17.5
RACE 32 2.93 666.54 1.2 106.87
RACE 128 11.18 2609.58 4.58 418.06

size 32 and 2.3% for batch size 128). Because we generally
pad individual sequence lengths or their sum (as part of
bulk padding) so that the quantity is a constant multiple of
a small quantity (such as 32, or 64), the relative amount of
padding added is higher for smaller batch sizes and datasets
with smaller sequence lengths. Even in these cases, how-
ever, the added padding is much lower as compared to the
benefits obtained with the use of ragged tensors. Further we
note that the amount of padding added is a scheduling and
optimization decision and can be changed if needed.

0

1

2

Re
la

tiv
e

Ov
er

he
ad

s

Batch Size = 32
Dense Computation Actual Computation Ideal Computation

RACE Wiki512 SQuAD Wiki128 MNLI XNLI MRPC CoLA
Dataset

0

1

2

Re
la

tiv
e

Ov
er

he
ad

s

Batch Size = 128

Figure 22: Overheads due to partial padding.

Ragged Tensor Overheads and Load Hoisting: We now
take a closer look at the effects of auxiliary data structure ac-
cesses on the performance of CORA-generated code. These
data structure accesses arise in the generated code, as we
have seen, due to the use of vloop fusion and ragged ten-
sor storage. We focus on the five operators that make up
the MHA module here. We measure the execution times
of four implementations of each operator. The Dense im-
plementation does not use ragged tensor storage or ragged
computations. The +vloops implementation uses ragged
computations, but the tensors are stored with full padding
in a dense fashion. The +vdims implementation uses both
ragged computations as well as ragged tensor storage. The
+LoadHoist implementation is same as +vdims but hoists

accesses to the auxiliary data structures out of loops as
much as possible. In order to ensure that we perform the
same amount of computation in all cases, we use a synthetic
dataset where all sequences have the same length (512). The
relative performance of these implementations for the oper-
ators on the Nvidia GPU is shown in Fig. 23. Apart from
the overheads due to indirect memory accesses, the use of
vloops and/or vdims also lead to overheads associated with
the prelude code. In order to focus on the former overheads,
however, we exclude prelude costs in the figure.
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Figure 23: Overheads of using ragged computations and
ragged tensor storage, and the benefits of load hoisting,
measured for a synthetic dataset where all sequence lengths
are 512. The batch size used is 64.

As the figure shows, the use of vloops and vdims leads to
a slight slowdown for the Proj1, Softmax, Attnv and Proj2
operators. The slowdown is significant, however, for the
QKT operator, which has two vloops in its loop nest. As
part of scheduling, we fuse both these vloops as well as the
loop that the vloop bounds depend on (i.e. the loop that
iterates over the mini-batch), leading to complex auxiliary
data structure accesses. We believe that the CUDA compiler
is unable to effectively hoist these accesses in this case.
CORA however has more knowledge about these accesses
and can hoist them to recover the lost performance.

D.8 Discussion on Transformer Layer Evaluation
In this section, we provide further analysis of our evaluation
of the transformer encoder layer on the Nvidia GPU and
ARM CPU backends. We break down the execution time
of the encoder layer for a few cases. As in Fig. 13, these
per-operator execution times are obtained under profiling
and might deviate slightly from the data in Tables 4 and 5.

Nvidia GPU Backend: Table 10 provides the raw data for
the breakdown of the execution times for the RACE dataset
at batch size 128 of the transformer encoder layer shown
in Fig. 13 in the main text. Apart from improvements in
the QKT and AttnV operators discussed in §7.2, we note



The CORA Tensor Compiler

that CORA’s implementation is significantly faster for the
Softmax operator as compared to the FasterTransformer
implementations. While we perform less computation on
this operator as compared to the fully padded implemen-
tation in FasterTransformer, part of CORA’s performance
benefits also stem from a better schedule. Specifically, the
FasterTransformer implementation performs parallel reduc-
tions across GPU thread blocks. This leads to a significant
number of barriers at the thread block-level which have
execution overheads. Further, the FasterTransformer imple-
mentation uses conditional checks to ensure that it never ac-
cesses attention scores for the added padding. In CORA we
use warp-wide parallel reductions which are much cheaper
due to their lower synchronization costs but also provide a
lower amount of parallelism. We, therefore, only partially
parallelize the reductions and compensate with the high par-
allelism available in the other loops of the operator. Further,
this means that we do not have to additionally employ con-
ditional checks to avoid accessing invalid data (that is part
of the partial padding we add).
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Figure 24: Breakdown of execution times of the encoder
layer for the CoLA dataset at batch size 32 on the GPU.

We now look at the execution time breakdown for the CoLA
dataset at batch size 32 on the Nvidia GPU shown in Fig. 24.
We see that CORA performs slightly worse than FT-Eff for
this case. Most of CORA’s slowdown stems from worse
performance on the linear transformation operators Proj2,
FF1 and FF2. CORA performs slightly better than FT-Eff
for the Proj1 operator, which is also a linear transformation
operator. From this data, we conclude that CORA’s sched-
ules for the Proj2, FF1 and FF2 operators can be improved
to close this performance gap. We note that, even in this
case, CORA performs much better on the SDPA module
(the QKT, Softmax and AttnV operators) as compared to
FasterTransformer.

ARM CPU Backends: In §7.2, we saw how CORA per-
forms better than TensorFlow for the MHA module on the 8-
and 64-core ARM CPUs. In this section, we discuss these
implementations in more detail and provide more extensive
evaluation.

Micro-Batching for PyTorch and TensorFlow: We saw, in
Fig 2, that the amount of padding and wasted computation
increases with the batch size. On devices that expose low
levels of parallelism such as CPUs, it is therefore possible to
trade-off batch parallelism for reduced padding, and there-
fore reduced wasted computation, for frameworks such as
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Figure 25: Breakdown of execution times of the MHA
module for four cases on the 64-core ARM CPU backend.

PyTorch and TensorFlow. In effect, this amounts to execut-
ing a mini-batch sorted by sequence lengths as a series of
smaller micro-batches. Overall, this reduces the amount of
padding needed as each micro-batch is only padded to the
length of the longest sequence in that micro-batch, rather
than the entire mini-batch as illustrated in Fig. 26. We search
over micro-batch sizes that are powers of 2 starting from the
lowest micro-batch size of 2. In Table 9, we provide the exe-
cution latencies as well as the optimal micro-batch sizes for
PyTorch and TensorFlow (these configurations is referred
to as PT-UB and TF-UB respectively) for an 8-core as well
as a 64-core ARM CPU. For reference, we also provide the
latencies corresponding to naive executions of PyTorch and
TensorFlow (referred to as PT and TF respectively) where
the micro-batch size is equal to the mini-batch size.

CORA’s MHA Implementation: As in CORA’s vgemm im-
plementation on the Intel CPU backend, we offload the
computation of the dense inner tiles of the Proj1 and Proj2
operators in CORA’s MHA implementation on the ARM
backends to gemm calls in the OpenBLAS (OpenBLAS
Community) library. Due to limitations of our prototype
implementation, however, offloading the computation this
way means that we cannot fuse the padding change oper-
ators with other computational operators in this case. We
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Table 9: MHA execution latencies (in ms) on 8- and 64-core ARM CPUs. uBS stands for the optimal micro-batch size.

Dataset Batch Size 8-core ARM CPU 64-core ARM CPU

PT PT-UB / uBS TF TF-UB / uBS CORA PT PT-UB / uBS TF TF-UB / uBS CORA

RACE
32 627 209 / 2 300 228 / 8 263 4373 127 / 2 55 46 / 16 44
64 1267 411 / 2 596 432 / 8 515 8724 253 / 2 111 88 / 32 85

128 2558 810 / 2 1189 835 / 8 1009 17431 511 / 2 209 156 / 32 168

Wiki512
32 620 227 / 2 294 246 / 8 285 4294 123 / 2 53 53 / 32 47
64 1267 443 / 2 597 466 / 8 561 8727 239 / 2 106 96 / 32 91

128 2563 875 / 2 1184 904 / 16 1094 17427 660 / 2 205 172 / 32 176

SQuAD
32 324 101 / 4 189 117 / 8 113 1904 94 / 4 35 27 / 16 20
64 770 192 / 4 383 210 / 8 219 4953 181 / 4 68 49 / 32 39

128 1580 364 / 4 780 390 / 8 424 10236 357 / 4 137 79 / 32 76

Wiki128
32 53 52 / 16 53 52 / 32 54 76 76 / 32 11 11 / 32 9
64 133 101 / 16 101 100 / 64 102 330 141 / 16 19 18 / 64 17

128 353 196 / 16 199 190 / 64 200 1544 273 / 16 34 33 / 128 33

MNLI
32 41 26 / 8 39 29 / 8 20 69 30 / 4 9 9 / 32 4
64 100 47 / 8 82 52 / 16 38 204 51 / 8 16 14 / 32 7

128 260 90 / 16 177 93 / 16 76 399 87 / 16 30 23 / 64 14

XNLI
32 53 36 / 8 52 42 / 16 33 76 58 / 2 11 11 / 32 6
64 133 68 / 8 101 73 / 16 65 324 95 / 8 18 18 / 64 11

128 351 131 / 16 199 134 / 32 128 1549 179 / 16 34 28 / 64 22

MRPC
32 38 31 / 8 37 33 / 16 27 71 46 / 4 9 8 / 32 5
64 86 59 / 8 75 61 / 16 52 172 80 / 8 14 14 / 64 10

128 187 110 / 16 151 111 / 32 103 351 153 / 8 26 23 / 64 18

CoLA
32 10 9 / 16 12 11 / 32 8 7 7 / 16 5 4 / 32 2
64 21 16 / 16 21 18 / 32 14 11 13 / 16 6 6 / 64 3

128 46 29 / 32 37 29 / 32 25 23 18 / 32 9 8 / 128 5

Useful data Padding

Sort

Vanilla execution (TF and PT)
Micro-batched execution with

micro-batch size 2 (TF-UB and PT-UB)

Pad Pad micro-batches

Figure 26: Comparison of vanilla and micro-batched execu-
tion for PyTorch and TensorFlow.

see in Fig. 25, however, that these pad fusion operators are
relatively cheap to perform on the CPU backend.

Overall Performance Comparison: Table 9 shows the infer-
ence latencies for the PyTorch, TensorFlow and CORA im-
plementations of the MHA module on the 8- and 64-core
ARM CPUs. We saw that TF-UB trades-off parallelism
for reduced wasted computation. It, therefore, performs
the best when there is high parallelism in the workload (i.e.
for datasets with longer sequence lengths at higher batch
sizes) and it performs the worst when the workload has low
parallelism (i.e. for datasets with shorter sequences at lower
batch sizes). This is because in the presence of high paral-
lelism in the workload, TF-UB can reduce the micro-batch
size much more (leading to much lower wasted padding) as
compared to the case of a workload with low parallelism.
This is seen reflected in the optimal micro-batch sizes shown
in Table 9. TF-UB also performs better on the 8-core CPU
which exposes lower parallelism as compared to the 64-core
CPUs. This is again reflected in the optimal micro-batch
sizes which are generally higher (leading to higher padding)
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Figure 27: Execution latencies of PT, TF and CORA as
the number of threads is increased for the MNLI dataset at
a batch size of 64. These measurements were performed
on the 64-core CPU by changing the number of threads
launched by OpenMP. Due to this, the measurements may
not exactly be equal to the ones in Table 9.

on the 64-core CPU as compared the 8-core CPU. Overall,
we see that TF-UB and CORA perform similarly on the 8-
core ARM CPU, while CORA outperforms TF-UB by about
1.37× as the hardware parallelism increases on the 64-core
CPU. In both the cases, CORA performs significantly better
than the TF configuration of executing TensorFlow.

On the 8-core CPU, PyTorch in the PT-UB configuration
performs better than both TF-UB and CORA for datasets
with higher sequence lengths. Similar to TF-UB, PT-UB can
more effectively trade-off batch parallelism in these cases
due to the high parallelism. Overall, across all the datasets
and batch sizes evaluated, CORA and PT-UB perform sim-
ilarly, while TF-UB is about 6% slower than both on the
8-core CPU. We find that on the 64-core CPU, however,
PyTorch’s performance does not scale well with the number
of cores (this is apparent in Fig. 27) as compared to Ten-
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sorFlow and CORA. Therefore, below, we only consider
TensorFlow for further analysis.

Per-Operator Execution Time Breakdown: Let us now look
more closely at the execution times of the TensorFlow and
CORA implementations. Fig. 25 provides a breakdown of
the execution times for four cases: (1) the MNLI dataset at a
batch size of 128 and the Wiki128 dataset at a batch size of
32, which have the most and the least potential for savings
on wasted computation due to padding as Fig. 2 shows, and
(2) the RACE dataset at a batch size of 128 and the CoLA
dataset at a batch size of 32, which represent the best and
worst cases for the TF-UB configuration.

TF-UB and TF perform similarly for the CoLA dataset at
batch size 32, as that represents the worst case for TF-UB,
and on the Wiki128 dataset at batch size 128 as there is
little potential for computational savings due to reduction in
padding for that case. In the remaining two cases, TF-UB
performs better than TF as expected. For the RACE dataset
at batch size 128, which represents the best case for TF-UB,
TF-UB performs slightly better than CORA. In cases where
CORA performs better than TensorFlow, we find that a lot of
the reduction in CORA’s absolute execution time stems from
computational savings in the Proj1 and Proj2 two operators,
which consume a significant portion of the execution time.
The QKT and AttnV operators, however, show a higher
relative reduction in execution time as they are quadratically
proportional to the sequence lengths as opposed to Proj1 and
Proj2 which are linearly proportional to sequence lengths.
This difference in proportionality is also reflected in the data
for the Wiki128 dataset. TensorFlow generally does well on
the Softmax operator, performing better than CORA for the
RACE and Wiki128 datasets. We believe this is due to better
optimized implementations and that this gap can be reduced
with more time spent optimizing CORA’s implementation
of the operator.
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Table 10: Breakdown of the encoder layer execution time for FasterTransformer and CORA on the Nvidia GPU backend
for the RACE dataset at batch size 128. Per-layer prelude code overheads are included in these latencies for CORA. Both
FasterTransformer and CORA implementations normally execute CUDA kernels asynchronously. For the purposes of
profiling (i.e., this table only), these calls were made synchronous, which can lead to slower execution. We also show the
end-to-end execution times under profiling for reference.

Op sub-graphs FT Ops FT FT-Eff CORA CORA Ops

Proj1 QKV Proj. MM 7.16 5.4 6.2 QKV Proj.QKV Bias + AddPad 1.39 1.21

QKT QKT 2.65 2.64 2.12 AddPad + QKT

Softmax Softmax 4.08 4.08 1.93 ChangePad + Softmax + ChangePad

AttnV AttnV 2.78 2.79 2.44 AttnV

Proj2
Transpose + RemovePad 0.78 0.29

Linear Proj. MM 2.42 1.82 2.31 RemovePad + Linear Proj. MM + Bias + ResidualAdd
Linear Proj. Bias + ResidualAdd + LayerNorm 0.52 0.38 0.31 LayerNorm

FF1 FF1 MM 9.52 6.92 8.06 FF1 MM + Bias +
ActivationFF1 Bias + Activation 1.38 0.98

FF2 FF2 MM 9.47 7.1 8.33 FF2 MM + Bias + ResidualAdd
FF2 Bias + ResidualAdd + LayerNorm 0.53 0.38 0.31 LayerNorm

Total Execution Time 42.82 34.12 31.99 Total Execution Time
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A ARTIFACT APPENDIX

A.1 Abstract
This appendix describes how to reproduce the results de-
scribed above in §7 and §D. The experiments in the paper
evaluate CORA on an Nvidia V100 GPU, an 8-core, 16-
thread Intel CascadeLake CPU, an 8-core ARM Neoverse
N1 CPU and a 64-core ARM Neoverse N1 CPU. Below, we
provide instructions to set up and execute CORA as well as
other frameworks used in the evaluation on each of these
platforms. As we start with publicly available Docker con-
tainers in all cases, only a few GPU-related dependencies
(such as cuDNN) as well as CORA’s dependencies (such
as the Z3 SMT solver, LLVM and OpenBLAS) need to be
installed. We provide instructions for each of these. In each
case, 100 GB of disk space should be more than enough for
the evaluation.

A.2 Artifact check-list (meta-information)
• Compilation: We reply on the publicly available com-

pilers nvcc (the CUDA compiler to compile CUDA
code generated by CORA), gcc (to build CORA and
other dependencies) and LLVM (to facilitate CORA’s
code generation for CPUs).

• Data set: We use sequence lengths for 8 different
commonly used NLP datasets, all of which are included
in the repositories described below.

• Run-time environment: The artifact has been tested
on Ubuntu 20.04 and with the following versions of
different dependencies.

• Hardware: We use an Nvidia V100 GPU, an 8-core,
16-thread Intel CascadeLake CPU, an 8-core ARM
Neoverse N1 CPU and a 64-core ARM Neoverse N1
CPU for our evaluation.

• Metrics: We use execution time as the primary execu-
tion metric of evaluation.

• Output: We generate CSV files, and also provide
Python scripts to generate plots from this raw data.

• Experiments: Python/bash scripts are provided to
replicate the results.

• Disk space required: 100 GB on each backend.
• Time needed to prepare workflow: A few hours on

each backend.
• Time needed to complete experiments: Running all

experiments on a backend takes several hours. The
experiments on the ARM CPUs are particularly slow,
taking 2-3 days to complete.

• Public availability: Yes, in the form of GitHub repos-
itories (linked later) as well as on Zenodo (https:
//doi.org/10.5281/zenodo.6326455).

A.3 Description
A.3.1 How delivered

Source code in the form of Github repositories and archived
on Zenodo.

A.3.2 Hardware dependencies

We use an Nvidia V100 GPU, an 8-core, 16-thread Intel
CascadeLake CPU, an 8-core ARM Neoverse N1 CPU and
a 64-core ARM Neoverse N1 CPU for our evaluation.

A.3.3 Software dependencies

GPU: Below, we describe the environment we use across
the different hardware backends we evaluate CORA on. On
all of the backends, we use Ubuntu 20.04. Some of the
frameworks below are already installed as part of the Docker
images we start with (described below), while some need to
be manually or installed. This is described below in §A.4.

Dependencies Common across Backends: CORA requires
the following frameworks on all platforms: Z3 4.8.8, LLVM
9.0.0, cmake ≥ 3.5 and g++ ≥ 5.0.

Nvidia GPU: CUDA 11.1 (V11.1.105), cuDNN 8.2.1, Py-
Torch 1.9.0+cu111, FasterTransformer (modified on top of
FasterTransformer v4.0 (commit dd4c071) and provided
as part of the cora_benchmarks repository). Make sure
that nvcc is on the PATH.

ARM CPUs: OpenBLAS 0.3.10, PyTorch 1.10.0 with
ARM Compute Library 21.12, TensorFlow 2.6.0 with ARM
Compute Library 21.09.

Intel CPU: Intel oneAPI MKL v2021.3.

A.3.4 Data sets

All datasets are included in the cora_benchmarks repos-
itory.

A.4 Installation
Refer to the file ae_appendix_supplement.pdf at
the root of the cora repository.

A.5 Experiment workflow
As we saw above, CORA is a tensor compiler. It takes
as input a description of a tensor operator and generates
LLVM or CUDA code for the kernel depending on whether
the target is a CPU or a GPU. For evaluating individual
kernels, such as trmm, vgemm or any of the nine kernels
that make up the transformer layer (illustrated in Figure 3 of
the paper), merely executing the python script implementing
the kernel will compile the kernel, generate the code and
execute it. For evaluating the entire transformer layer, or
parts of it (such the self-attention or the MHA modules), we

https://doi.org/10.5281/zenodo.6326455
https://doi.org/10.5281/zenodo.6326455
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separate the steps of code generation and execution (§C).
We first generate compiled code for each of the operators
in the form of shared libraries, which are then loaded and
executed to form the layer to benchmark layer performance.
The scripts provided automate all of these steps.

A.6 Evaluation Notes and Instructions
Refer to the file ae_appendix_supplement.pdf at
the root of the cora repository for instructions on how to
perform the evaluation on the platforms referred to in the
paper.

A.7 Experiment customization
1. GPU Evaluation: The GPU evaluation has been tested

on Nvidia GPUs with compute capability 70. While
the evaluation may run on other Nvidia GPUs as well,
we have not yet tested it thoroughly. CORA can cur-
rently only support Nvidia GPUs as it only supports
the generation of CUDA code.

2. CPU Evaluation: The Intel and the ARM CPU
evaluation should work for other CPUs beyond the
CascadeLake and the Neoverse N1 CPUs we have
tested it on. However, given that our schedules have
been tuned for these CPUs, the performance might not
be optimal. Further, when running on other CPUs, the
LLVM target triple would need to be changed (in the
file cora_benchmarks/scripts/common.py
on line 10). The number of threads would also
be need to be changed for PyTorch evaluation in
the files cora_benchmarks/bert_layer/
pytorch/layer_cpu_micro_batch.py and
cora_benchmarks/bert_layer/pytorch/
layer_cpu.py on the appropriate branch of the
cora_benchmarks repository.


