
Practical Offloading for Fine-Tuning LLM on Commodity GPU
via Learned Sparse Projectors

Siyuan Chen1, Zhuofeng Wang2, Zelong Guan1, Yudong Liu1, Phillip B. Gibbons1

1 Carnegie Mellon University, 2 Peking University
siyuanc3@andrew.cmu.edu, 2200012827@stu.pku.edu.cn, zelongg@andrew.cmu.edu, yudongltech@gmail.com,

gibbons@cs.cmu.edu

Abstract

Fine-tuning large language models (LLMs) requires signifi-
cant memory, often exceeding the capacity of a single GPU.
A common solution to this memory challenge is offloading
compute and data from the GPU to the CPU. However, this
approach is hampered by the limited bandwidth of commodity
hardware, which constrains communication between the CPU
and GPU, and by slower matrix multiplications on the CPU.
In this paper, we present an offloading framework, LSP-
Offload, that enables near-native speed LLM fine-tuning on
commodity hardware through learned sparse projectors. Our
data-driven approach involves learning efficient sparse com-
pressors that minimize communication with minimal precision
loss. Additionally, we introduce a novel layer-wise communi-
cation schedule to maximize parallelism between communica-
tion and computation. As a result, our framework can fine-tune
a 1.3 billion parameter model on a 4GB laptop GPU and a
6.7 billion parameter model on an NVIDIA RTX 4090 GPU
with 24GB memory. Compared to state-of-the-art offloading
frameworks, our approach reduces end-to-end fine-tuning time
by 33.1%-62.5% when converging to the same accuracy.

Introduction
Recent years have highlighted the remarkable success of
billion scale LLMs. Hand-to-hand with task performance im-
provement are the ever-growing model sizes and the strong
demand for powerful computing resources that are available
only in high-end clusters. Fortunately, fine-tuning provides
common ML practitioners the accessibility to LLMs by al-
lowing them to adapt a pre-trained model to downstream
tasks using less onerous computational effort. However, fine-
tuning’s memory and compute demands are still daunting.
For example, under a default fine-tuning configuration that
uses the fp16 data type with the Adam optimizer (Kingma
and Ba 2014), the memory footprint is 8× #Parameters bytes,
which means top-notch commodity workstation GPUs (e.g.,
NVIDIA 4090 GPU and AMD 7900XTX with 24GB memory
each) are able to hold only smaller LLMs (3B parameters).
With commodity laptop GPUs (e.g., NVIDIA A1000 with
4GB memory), even 0.77B parameter LLMs do not fit.

A variety of techniques have been proposed to reduce
the memory demand during fine-tuning. A typical solution
from system researchers is to offload part of the compute
and memory from GPU to CPU, leveraging the fact that

S

𝑑𝑑

𝑃𝑃𝑡𝑡

𝑄𝑄𝑡𝑡
𝑊𝑊0

∈ 𝑅𝑅𝑚𝑚×𝑛𝑛

h

h

Frozen Parameter
Parameter & Optim. States
Learned Sparse Projector

GPU
CPU

M V∇𝑆𝑆
Δ𝑆𝑆

Optim. States

Figure 1: LSP-Offload

commodity laptop CPUs typically have 4x the memory of
laptop GPUs and commodity workstation CPUs can provide
4TBs of memory (per socket). Although offloading is able
to scale the trainable model size, large batch sizes are essen-
tial to remain efficient despite the limited PCIe bandwidth
between CPU and GPU (Rajbhandari et al. 2021). In fact, we
show that training with offloading is inherently bounded by
either the CPU-GPU communication or the compute on CPU,
especially on commodity hardware where the limited GPU
memory dictates small batch sizes. Therefore, offloading
itself can hardly save us from the scaling challenge.

Meanwhile, another promising method from ML re-
searchers for memory-reduction is parameter-efficient fine-
tuning (PEFT). The key idea of PEFT is to limit the trainable
parameters to a carefully designed subspace (e.g., a low rank
subspace (Hu et al. 2021; Zhao et al. 2024) or only part of the
model (Guo, Rush, and Kim 2020)), so the GPU can train the
model without offloading as long as it can hold the parame-
ters and minimal optimizer states for the trainable parameters.
However, though more memory-efficient, PEFT methods can
suffer from slow convergence or sub-optimal training results
due to their overly constrained space for parameter updates.

In this paper, we show how to mitigate the memory chal-
lenge by combining both types of approaches. We present
LSP-Offload (Fig. 1), a novel fine-tuning framework that (i)
mitigates the bottlenecks in prior offloading approaches via
a new approach for refactoring the offloading process and
(ii) trains efficiently via a new approach to constraining the
optimization space.

Specifically, to alleviate the compute pressure on the CPU
as well as the communication overhead back-and-forth be-
tween CPU and GPU, we constrain the updates to happen
on a periodically-changing subspace (S in Fig. 1). Because

the updates from different subspaces are projected back and
accumulate together in the original space, the model is able
to update in the full-rank optimization space. State-of-the-art
(SOTA) approaches (Hu et al. 2021; Zhao et al. 2024) for
constraining the parameter update space suffer from linear
memory and compute complexity that limits them from opti-
mizing in large subspaces. We solve this problem by the intro-
duction of d-sparse projectors (Pt and Qt in Fig. 1), sparse
embedding matrices that represent a subspace but whose size
is independent of the subspace’s size. In this way, given the
same memory budget as PEFT, we are able to optimize in
an arbitrary-size subspace. To further boost the compression
quality of the subspace, we adopt a data-driven approach
similar to (Liu et al. 2020) that adapts the subspace to the
gradient matrices, which is empirically proven necessary for
fast convergence.

Moreover, on the system level, we demonstrate that the
SOTA offloading framework Zero-Offload (Rajbhandari et al.
2020) suffers from limited parallelism between communi-
cation and compute when running on commodity hardware.
This is due to the limited GPU memory relative to model
size, which implies that only small batch sizes can be used
during training. We improve Zero’s schedule by performing
fine-grained communication on the granularity of layers and
communicating components of the gradient ahead of time.
The new schedule enables us to explore the full parallelism
between CPU compute, GPU compute, CPU-to-GPU com-
munication and GPU-to-CPU communication.

In summary, our paper makes the following contributions:
• We analyze LLM training on commodity hardware (both

laptop and workstation) to show that current offloading
workflows are fundamentally bounded by either the com-
munication or the CPU’s compute.

• We design LSP-Offload to enable near-native-speed fine-
tuning on commodity hardware. The system is built on
the key idea of learned sparse projectors, which allows us
to optimize on high-dimensional subspaces with constant
memory and compute overhead.

• We verify that LSP-Offload can converge to the same accu-
racy as native training on the GLUE dataset. Also, on the
instruction-tuning task, LSP-Offload reduces end-to-end
fine-tuning time by 33.1% to 62.5% over SOTA offload-
ing, when converging to the same accuracy. Moreover,
LSP-Offload improves accuracy by 27.8% to 30% over
SOTA PEFT approaches on the Alpaca and Humaneval
datasets.

Background and Related Work
Memory breakdown for training large language models.
Training a deep learning model requires memory for param-
eters, activations, and optimizer states. Activations include
the intermediate results used in backward propagation. The
optimizer states are used by the optimizer to update the pa-
rameters. Out of the three, memory for parameters (Mparam)
and for the optimizer state (Mopt) consume most of the mem-
ory. When trained with Adam optimizer and half precision,
Mparam + Mopt ≈ 8 × #Parameters bytes, which easily
exceeds the single GPU’s memory for billion-scale models.

Memory offloading. These techniques (Zhang et al. 2023;
Huang, Jin, and Li 2020; Rajbhandari et al. 2020, 2021; Ren
et al. 2021) enable training the full model with inadequate
GPU memory by utilizing non-GPU memory such as CPU
memory or SSDs. Among these, Zero series are the SOTA
approaches for fine-tuning large models. Zero-Offload (Ren
et al. 2021) offloads the optimizer states and the update step
onto the CPU. Compared to other approaches that offload
only the memory to CPU and do all computations on GPU,
Zero-Offload achieves the optimal communication volume
for full parameter training. Nevertheless, we found that Zero’s
training is severely bottlenecked by the communication (see
Fig. 2). Our work is built on top of the Zero series offloading
schedule to make it practical for single GPU training with
minimal communication overhead.

Parameter-efficient fine-tuning. PEFT enables pre-
trained models to rapidly adapt to downstream tasks with
minimal extra memory required. LoRA (Hu et al. 2021) is
among the most popular PEFT techniques by constraining the
optimization onto a decomposed low-rank subspace. How-
ever, recent works (Lialin et al. 2023; Valipour et al. 2022)
found LoRA is sensitive to hyperparameter tuning and can
struggle with tasks requiring significant change to the base
model. To break the low-dimensional constraint of LoRA,
GaLore (Zhao et al. 2024) recently explores a similar idea
to ours that periodically changes the subspace computed by
singular-value-decomposition (SVD). However, both LoRA
and GaLore have the limitation that their algorithms require
extra memory and compute linear with the subspace’s size
(rank), which inherently prevent them from tuning on a higher
dimensional subspace. Our work mitigates this problem via
novel subspace projectors whose compute and memory de-
mands are independent of the subspace size, enabling us to
achieve better model accuracy by tuning in a larger subspace.

Other methods for memory-efficient training. Various
approaches such as quantization (Dettmers et al. 2024) and
gradient checkpointing (Chen et al. 2016) have been pro-
posed to reduce the memory demand for training/fine-tuning
LLMs. The quantization approach uses data types with fewer
bits for training, and is fully compatible with our techniques
(we use fp16 in our evaluations). Meanwhile, the gradient
checkpointing technique trades computation for memory by
recomputing activations during the backward pass. We in-
clude this technique in our implementation.

Motivation
Numerical Analysis for Fine-tuning on a GPU
In this section, we motivate our work by analyzing the
fundamental limits of vanilla offloading on a single com-
modity GPU. We use the example setting of training/fine-
tuning a llama-7B model on an Nvidia RTX 4090 GPU
(a commodity workstation GPU), which can provide only
24/(14 + 42 + 8) = 37.5% of the required memory (Ta-
ble 1).1

1A similar analysis, with the same general conclusions, can be
done for the GPT2-1.3B model on a commodity laptop GPU, based
on Table 5 in the Appendix.

Table 1: Configurations and timings for training/fine-tuning the llama-7B Model (using fp16) on commodity workstation
hardware—the Nvidia RTX 4090 GPU and AMD Ryzen Threadripper 3970X CPU. For UPD, we measure the fused Adam
kernel with thread-level parallelism and SIMD optimizations. Bandwidth is the PCIe bandwidth with a pinned memory buffer.

Parameters Optimizer State Activations CPU-GPU Bandwidth #Layers GPU Memory
14GB 42GB 8GB 10–20GB/s 32 24GB
FWD on CPU BWD on CPU UPD on CPU FWD on GPU BWD on GPU UPD on GPU
1.61s/layer 3.30s/layer 0.06s/layer 1.7ms/layer 3.5ms/layer 1ms/layer

Current offloading techniques can be categorized into two
classes: (i) those that offload only memory to the CPU, and
(ii) those that offload both memory and compute to the CPU.
The first type is represented by (Huang, Jin, and Li 2020;
Zhang et al. 2023), which perform all compute on the GPU
while swapping in and out memory on the fly. An example
of this type of schedule is shown in Fig. 3.c. However, this
type of offloading schedule is inherently bounded by the
communication under the following observation:

Observation. Training a model demanding Mtot mem-
ory on a GPU with only Mgpu memory, such that the GPU
performs all the computation, requires ≥ Mtot −Mgpu of
communication per iteration.

For our setting, we need 5.33s communication per iteration,
which adds 3.2x overhead compared to the GPU compute
even if compute and communication are fully overlapped.

The second type of offloading schedule splits the work-
load across CPU and GPU. Among the forward pass (FWD),
backward pass (BWD), and parameter update step (UPD),
because of the CPU’s limited computing power relative to the
GPU, only UPD is suitable to run on the CPU. For example,
assigning the FWD+BWD pass of just one layer to the CPU
directly adds 4.9s overhead, which is already 3.21x the GPU
compute. Moreover, offloading UPD to the CPU2 means that
the 42GB optimizer state can reside on the CPU, enabling
larger models like llama-7B to fit in the GPU memory.

Offloading UPD to the CPU was first realized in Zero-
Offload (Ren et al. 2021), whose schedule is displayed in
Fig. 3.a (Alg. 2 in the Appendix). In their schedule, Mparam

communication happens every iteration (gradients to CPU,
deltas to GPU), which brings the communication overhead
to 0.93s. When there is no overlap between CPU compute
and GPU compute (Fig. 3.a), the training slowdown is 2.11x.
Moreover, the CPU compute can become the bottleneck for
Zero’s schedule. For the example setting, UPD on the CPU
takes 1.92s per iteration, slowing down training by 2.14x.

This analysis shows that training with offloading is com-
putationally inefficient on modern commodity hardware
due to fundamental bottlenecks in communication and/or
CPU compute. This motivates us to design a lossy (PEFT)
algorithm for reduced overheads when offloading.

Case Study on Zero’s Schedule
Moreover, prior offload schedules are suboptimal. Here we
profile Zero-Offload’s schedule for a more comprehensive
view of its performance. We study two settings for profiling:
(i) training a GPT2 model on a 4GB laptop GPU, and (ii)

2More specifically, the computation of ∆W to the CPU—
applying these deltas to the model parameters remains on the GPU.

2.43

4.28

1.93

3.38

0

1

2

3

4

5

GPT2-774M GPT2-1.3B llama-3B llama-7B

N
or

m
al

ize
d

Sl
ow

do
w

n

GPU Comm CPU Other

Laptop
4GB GPU

Workstation
24GB GPU

BS: 4 1 16 8

Figure 2: Normalized slowdown of Zero’s schedule on laptop
and workstation GPUs. The breakdown for communication
(Comm) depicts the additional slowdown due to communica-
tion that is not overlapped with GPU compute. Similarly, the
CPU compute and Other are additional non-overlapped over-
heads. The experiments are done using precision fp16, the
largest batch sizes (BS) that fit, and gradient checkpointing.

training a llama model on a 24GB workstation GPU. The
slowdown normalized by the GPU compute time is shown
in Fig. 2. Under both configurations, Zero’s schedule slows
training by 1.93x to 4.28x, for the following two reasons.

Communication and CPU compute overhead. The pri-
mary source of overhead comes from the unavoidable high
communication volume and slow CPU compute as demon-
strated in our previous analysis. Shown in Fig. 2, although
Zero is able to overlap part of the GPU/CPU compute with
communication, the non-overlapped communication brings
0.61x to 2.09x added slowdown compared to the GPU com-
pute time. For both the laptop and workstation GPUs, the
situation is worse for the larger model because the maximum
available batch size decreases. When training a 1.3B model
on a 4GB GPU, the non-overlapped communication and CPU
compute are 2.09x, 0.63x the GPU compute, respectively.

Limited parallelism between CPU and GPU, communica-
tion and compute. The second source of overhead comes
from Zero’s limited parallelism between compute and com-
munication. Fig. 3.a shows Zero’s standard training pipeline,
which is sub-optimal for two reasons: (i) FWD and BWD on
the GPU are not overlapped with the CPU’s compute. This
results in significant slowdown when the CPU compute is
around the same scale as the GPU’s compute. (ii) No overlap
exists between the GPU-to-CPU communication and CPU-
to-GPU communication, which implies that the full duplex
PCIe channel is at least 50% underutilized. As a result, the
per-iteration time for Zero’s schedule is

T iterZero = TFWD +max{TBWD, T
GPU-to-CPU
Comm }+

max{TUPD, TCPU-to-GPU
Comm }. (1)

d) LSP-Offload

Step 𝐼𝐼

GPU
GPU  CPU
CPU  GPU

CPU

c) Layer-wise Schedule with all compute on GPU

F W D1 2 3 54 6

1 2 3 4
3 4 5 6

B W D 6 5 4 23 1
6 5 4 3
4 3 2 1

Step 𝐼𝐼 + 1…

GPU
GPU  CPU
CPU  GPU

CPUidle

�∇𝑊𝑊𝐼𝐼

�Δ𝑊𝑊𝐼𝐼

𝐹𝐹𝐹𝐹𝐷𝐷𝐼𝐼 𝐵𝐵𝐵𝐵𝐷𝐷𝐼𝐼

Step 𝐼𝐼

𝑈𝑈𝑈𝑈𝐷𝐷𝐼𝐼

𝐹𝐹𝐹𝐹𝐷𝐷𝐼𝐼 𝐵𝐵𝐵𝐵𝐷𝐷𝐼𝐼

Step 𝐼𝐼 + 1

𝑈𝑈𝑈𝑈𝐷𝐷𝐼𝐼+1

𝐹𝐹𝐹𝐹𝐷𝐷𝐼𝐼+1 𝐵𝐵𝐵𝐵𝐷𝐷𝐼𝐼+1

𝐹𝐹𝐹𝐹𝐷𝐷𝐼𝐼 𝐵𝐵𝐵𝐵𝐷𝐷𝐼𝐼
∇𝑊𝑊𝐼𝐼

Δ𝑊𝑊𝐼𝐼

Step 𝐼𝐼

GPU
GPU  CPU
CPU  GPU

CPU

a) Zero-Offload Schedule

𝐹𝐹𝐹𝐹𝐷𝐷𝐼𝐼+1 𝐵𝐵𝐵𝐵𝐷𝐷𝐼𝐼+1
∇𝑊𝑊𝐼𝐼+1

Step 𝐼𝐼 + 1

UPDI

𝐹𝐹𝐹𝐹𝐷𝐷𝐼𝐼 𝐵𝐵𝐵𝐵𝐷𝐷𝐼𝐼
∇𝑊𝑊𝐼𝐼

Δ𝑊𝑊𝐼𝐼

Stage 𝐼𝐼
GPU

GPU  CPU
CPU  GPU

CPU

b) Zero-Offload Schedule w/ Delayed Parameter Update

UPDI

𝐹𝐹𝐹𝐹𝐷𝐷𝐼𝐼+1 𝐵𝐵𝐵𝐵𝐷𝐷𝐼𝐼+1
∇𝑊𝑊𝐼𝐼

Δ𝑊𝑊𝐼𝐼+1
UPDI+1

𝐹𝐹𝐹𝐹𝐷𝐷𝐼𝐼+2 𝐵𝐵𝐵𝐵𝐷𝐷𝐼𝐼+2
∇𝑊𝑊𝐼𝐼+2

Δ𝑊𝑊𝐼𝐼−1

Stage 𝐼𝐼 + 1

�∇𝑊𝑊𝐼𝐼+1

�Δ𝑊𝑊𝐼𝐼+1

Compressed

Figure 3: Comparison between current offloading pipelines and LSP-Offload’s overlapped pipeline.

To mitigate the first issue, Zero proposed delayed param-
eter updates (Fig. 3.b), which use stale parameter values to
calculate current gradients, allowing the CPU to perform the
previous step’s update at the same time the GPU performs
the current step’s forward and backward passes. Although
increasing throughput, this method can hurt training accuracy.
Also, in order not to incur additional memory for buffer-
ing communication, the CPU-to-GPU communication and
GPU-to-CPU communication cannot be parallelized.

These limitations motivates our design for a layer-wise
schedule that enables maximal parallelism between CPU
compute, GPU compute, CPU-to-GPU communication and
GPU-to-CPU communication.

LSP-Offload’s Approach
In this section, we present LSP-Offload, a practical offload-
ing framework for fine-tuning high-quality models efficiently
under memory-constrained settings. We will introduce our
training algorithm for mitigating the compute and communi-
cation overhead, and then illustrate our new schedule design
for maximized parallelism in the offloading’s schedule.

Efficient and High-quality Offloading via Learned
Sparse Projectors
As discussed in the motivation section, on commodity hard-
ware, the large optimization space combined with limited
communication bandwidth causes offloading with a standard
training algorithm to result in significant communication and
compute overheads. To mitigate this problem, our key insight
is to assist the offloading algorithm by using PEFT to config-
ure the size of the optimization subspace, but to do so using
novel techniques that avoid the pitfalls of prior PEFT.

Fig. 1 illustrates our approach. Following previous
works (Hu et al. 2021; Zhao et al. 2024), we focus on matrix
multiplication operations. Similar to LoRA and GaLore, we
freeze the pre-trained weight matrix and optimize on a decom-
posed subspace. However, the rank of LoRA’s and GaLore’s
optimization space is linearly growing with the extra GPU
memory needed to store the projectors and the optimization
states, preventing them from optimizing in a sufficiently large
subspace. E.g., as shown in (Zhao et al. 2024), fine-tuning a
1B model with a hidden size of 2048 on a rank-512 subspace

Table 2: Comparison between different fine-tuning ap-
proaches, where n, d, r are tensor dimensions satisfying
n ≫ d ≫ r. W ∈ Rm×n is the frozen pre-trained weight
matrix. β ≥ 1 is the scale factor for storing the optimizer
state (β = 3 for Adam), τ is the number of updates on the
subspace, and γ1, γ2 ∈ (0, 1] are scaling factors that adjust
the rank based on how the individual subspaces interact when
added together. LSP-Offload both reduces GPU memory and
increases the optimization space rank.

LoRA GaLore LSP-Offload

Weight Matrix W +ABT W +AtB
T
t W + PTt StQt

Trainable Parameters A,B ∈ Rm×r,n×r Bt ∈ Rn×r St ∈ Rd×d

GPU Memory mn+ β(m+ n)r mn+ (m+ βn)r mn+ (m+ n)r
Rank(Optim. Space) r γ1rτ γ2dτ

in half precision requires 4.38GB for LoRA and 6.17GB for
GaLore, adding 119% and 208% GPU memory overhead
compared to storing only the pre-trained model.

To overcome this limitation, we made the key innovation
to design the projector as sparse matrices, decoupling the
dependence between the GPU memory overhead and the
rank of the optimization space. Specifically, we use (d, r)-
sparse projectors as the template projector (see the properties
of this projector in the Appendix).

Definition 1 ((d, r)-Sparse Projector). We define the projec-
tion bases P ∈ Rm×d, Q ∈ Rn×d as (d, r)-sparse projectors
if both P,Q have r non-zero values per row.

As shown in Fig. 1, by using (d, r)-sparse projectors to
replace the dense projectors, we project the weights on a d×d
dimensional subspace. Meanwhile, the sparsity allows us to
store only the O((m+n)r) non-zero values of the projectors
on the GPU. As a result, shown in Table 2, LSP-Offload
is able to optimize in a larger subspace while using less
GPU memory than SOTA PEFT. For our example setting,
LSP-Offload only 2.015GB GPU memory when using r = 4.

In all, for a matrix multiplication operation with pre-
trained matrixW0 ∈ Rm×n, we constrain its the optimization
space to

∆W = P1S1Q
T
1 + P2S2Q

T
2 + ...+ PτSτQ

T
τ , (2)

where Pt, Qt ∈ Rn×d are periodically updated (d, r)-sparse
projectors, and St ∈ Rd×d is a dense trainable matrix.

Algorithm 1: LSP-Offload’s fine-tuning with learned sparse
projectors [simplified version without layer-wise scheduling]

1: HyperParam: s: subspace size. d, r: d, r-sparse pro-
jectors. γ ∈ R+. CheckFreq, α: check frequency and
threshold for updating projectors.

2: Function MAYBEUPDATE(∇W : the gradient, Pprev,
Qprev: previous projectors, M , V : optimizer state)

3: if ∥bP,Q(∇W)∥F /∥∇W ∥F ≤ α then
4: Return Pprev, Qprev
5: P,Q← Initialize(d, r)

6: Minimize loss := ∥bP,Q(∇W)∥F + β · (∥P∥2F +

∥Q∥F) until ∥bP,Q(∇W)∥F /∥∇W ∥F ≤ α or Timeout.
7: {Project previous M and V tensors to new subspace:}
8: M ∈ Rs×s ← PTPprevMQTprevQ

9: V ∈ Rs×s ← (PTPprev)
2V (QTprevQ)2

10: Return P,Q
11: Function MAIN(M: Model, D: Dataset, W ∈ Rm×n:

Weights, M,V ∈ Rs×s : 1st, 2nd order optimizer state)
12: for t← 0 to τ − 1 do
13: Sample x ∼ D
14: ∇W ← forwardBackward(M, x){FWD+BWD

on GPU}
15: grad ← SendToCPU(PT∇WQ){Compress on

GPU and gradient offload}
16: ∆W ← SendToGPU(Update(grad)){UPD on

CPU and delta upload}
17: W ←W −ηtP∆WQ

T {Decompress, apply deltas on
GPU}

18: if t mod CheckFreq = 0 then
19: ∇W ← gradient on sampled subset D′ ⊂ D.
20: P,Q← MAYBEUPDATE(∇W , P , Q, M , V)
21: end if
22: end for

Training algorithm. The above design leads to the LSP-
Offload’s core training algorithm listed in Alg. 1. In every
iteration, the gradient is projected onto a subspace (line 15)
before transferred to the CPU. The weight delta is then com-
puted on CPU by optimizing on the subspace (line 16) before
transferred back to GPU and projected to the original space
(line 17). This way, both communication and compute com-
plexity for offloading is reduced from O(m · n) to O(d2),
which guarantees our algorithm’s efficiency. Moreover, we
optionally update the subspace (lines 18-21) by checking its
quality. In the next section, the steps are further pipelined
between layers to hide the latency. Next, we introduce several
techniques to boost the training quality.

Learned sparse projectors. First, we boost the perfor-
mance of the sparse projectors by a data-driven approach,
which is a key contribution. Specifically, we initialize (d, r)-
sparse projectors by randomly sampling the r non-zero po-
sitions for each row, and randomly sampling the non-zero
values from N (0, 1/

√
r). After that, we fit the projectors on

the calibrated dataset to minimize the following estimation
bias on the gradient:

Definition 2 (estimation bias). For a (d, r)-Sparse Projec-
tor P , Q and a matrix Σ ∈ Rm×n, the estimation bias is

bP,Q(Σ) := PPTΣQQT − Σ.

Denote the forward pass of the matrix multiplication oper-
ation as Wx = (W0 + PSQT)x. We optimize the following
problem for better projectors:

min
P,Q

∥bP,Q(∇W)∥F︸ ︷︷ ︸
estimation error of gradient

+β · (∥P∥F + ∥Q∥F)︸ ︷︷ ︸
regularization

(3)

Compared to GaLore, which uses SVD decomposition as
the projection matrix, we empirically find our data-driven
approach has lower generalization error when using the same
amount of extra GPU memory (Fig. 8 in the Appendix).

Updating the subspace. Secondly, we avoid the overhead
of frequently training the projectors by optionally updating
the subspace. Specifically, on a sub-sampled dataset, only
when the gradient estimation bias exceeds a certain threshold
α (line 3), do we switch to a new (learned) projector.

Convergence Analysis of Alg. 1. For dataset D, weight
matrix W ∈ Rm×n, we consider minimizing f(W) =
Σx∼Dfx(W)/|D| using Alg. 1 with CheckFreq = 1.
Namely, Wt+1 = Wt − ηPtP

T
t ∇fxt

(Wt)QtQ
T
t , t =

1, 2, ..., T , where Pt, Qt are (d, r)-sparse projectors. We
make following three assumptions.

Assumption 1 (Effectiveness of the subspace). The relative
error on the subspace is kept under α in Alg. 1.

Assumption 2 (Bounded Bias). There exists γ > 0, such
that for any weight W and x ∼ D, ∥bPt,Qt(∇fx(W))∥ <
γ, ∥∇fx(W)∥ < γ.

Assumption 3 (Sparse Bias). There exists constant
0 < c < 1√

2α
, such that ∥bPt,Qt(∇f(W))∥F <

c∥bPt,Qt(∇f(W))∥2 holds for any weight matrices W .

We show the following convergence rate of our algorithm—
please see the Appendix for the proof. The key idea is that
a small gradient estimation error on the full dataset, which
drives convergence, can be inferred from a bounded gradient
estimation error on the sub-sampled dataset.

Theorem 1. For any β > 0, 0 < δ < 1, suppose f is a
L-smooth function, Assumptions 1, 2, 3 hold, and that we
check every iteration in Alg. 1 with the sub-sampled dataset
D′ of size O(8γ

2

3β2 log
(m+n)T

δ), and stepsize η = 1
L . Denote

F := E[f(W0)]− f∗. Then with probability 1− δ,

τ = O(1
ϵ
) · LF

(1− 2c2α2)

iterations are sufficient to obtain mint∈[T] E∥∇f(Wt)∥2 =

O(ϵ+ 2c2β2(1+α)2

1−2c2α2).

Remark 1. Subspace quality, encoded in α, is critical for
both final accuracy and the time to convergence.

Remark 2. The optional update approach enjoys logarithmic
sample efficiency, meaning that the overhead of subsampling
D′ is low.

Layer-wise Schedule for Maximal Parallelism
At the system level, we propose a new scheduling approach
that addresses both issues in Zero’s schedule, based on the
observation that optimizer update steps for different layers
are independent. This allows us to overlap GPU computation,
CPU-GPU communication in both directions, and parameter
updates on the CPU across different layers. The key idea
and its benefits are illustrated in Fig. 3.d (Alg. 3 in the Ap-
pendix presents pseudo-code). We split the GPU-to-CPU,
CPU update, CPU-to-GPU communication into small blocks
to unlock the parallelism between layers without the accuracy
loss of Zero’s use of stale parameter values. We parallelize
the CPU’s and GPU’s compute by executing the deeper lay-
ers’ update step on CPU while doing the backward pass of
shallower layers on GPU. We also parallelize the double-
sided communication by executing deeper layer’s upload step
while doing the shallower layer’s offload step. Thus, in our
schedule, the critical path of the training is characterized by

T iterLSP = max{TFWD + TBWD + T layerComm + T layerUPD ,

TGPU to CPU
Comm , TCPU to GPU

Comm , TUPD}. (4)

Compared to Eqn. 1, LSP-Offload is able to reduce the CPU’s
involvement in the critical path from the entire parameter up-
date step to the update for only one layer, a 32x improvement
for the llama-7B model.

In the Appendix we show how to avoid a deeper layer’s
workload from blocking a shallower layer’s computation that
executes earlier in the next iteration, improving performance.

Evaluation
We first verify the convergence of LSP-Offload on the GLUE
dataset and then evaluate the end-to-end training performance
on the instruction-tuning task. Detailed configurations for the
experiments are described in the Appendix.

Accuracy validation of LSP-Offload on GLUE. Tab. 3
summarizes the accuracy of LSP-Offload for fine-tuning the
pre-trained RobertA-base (Liu et al. 2019) (117M) model on
the GLUE (Wang et al. 2018) dataset, which is a language
understanding task set that is widely adopted for evaluating
fine-tuning (Hu et al. 2021; Zhao et al. 2024). For hyper-
parameters, we set both the rank of GaLore’s projector and
the non-zero entries per row in LSP to be 16, so that they
use equal GPU memory. The projection space of LSP is set
to 512. As both GaLore and LSP need additional profiling
time, we make an end-to-end comparison that allows all can-
didates to train under an hour’s time budget. LSP-Offload
outperforms full parameter tuning, despite using only 253MB
GPU memory vs. 747MB. LSP-Offload also achieves 1%
higher average accuracy than GaLore. We attribute this to
LSP-Offload’s larger parameter update space (for the same
GPU memory), which is 10x for this experiment. Moreover,
Fig. 7 in the Appendix shows that LSP converges at the same
iteration rate as full parameter tuning.

End-to-end evaluation. Next, we evaluate the end-to-end
performance of LSP-Offload for instruction-tuning. We per-
form our evaluation using four settings: (1) fine-tuning the

Table 3: Accuracy validation of LSP after 1 hour fine-tuning
the pre-trained RoBertA-base model on GLUE.

MNLI SST2 MRPC CoLA QNLI QQP SST2 STS-B Avg

Full Parameter 0.8111 0.934 0.866 0.55 0.904 0.808 0.933 0.884 0.8362625
GaLore (Rank=16) 0.83 0.92 0.88 0.567 0.881 0.852 0.92 0.9 0.84375
LSP (d=512, r=16) 0.814 0.917 0.911 0.6165 0.9178 0.8339 0.922 0.91 0.855275

Table 4: Evaluation accuracy on the Humaneval dataset in-
struction after fine-tuning Deepseek-Coder-1.3B (top) and
Deepseek-Coder-6.7b (bottom) with bfloat16 on the laptop
GPU (top) and workstation GPU (bottom).

GPU Mem Time python java cpp js ts php Avg.

Zero-Offload 3.3GB 120h 57.93 37.97 39.75 52.80 47.17 40.99 45.5
LoRa (Rank=8) 3.6GB 120h 43.29 41.77 35.40 41.61 43.40 31.68 39.3
GaLore (Rank=256) 7.9GB 120h 39.63 36.08 31.68 34.78 40.88 36.02 36.4
LSP (d=1280, r=4) 3.6GB 120h 55.49 42.41 40.99 50.31 48.43 38.51 45.6
Zero-Offload 16.8GB 15h 73.78 61.39 64.60 66.46 64.15 58.39 64.8
Zero-Offload 16.8GB 30h 75.00 64.56 61.49 70.81 65.41 62.73 66.7
LSP (d=2048, r=8) 17.0GB 15h 74.39 62.66 61.49 66.46 67.30 65.84 66.4

GPT2-774M model on the Alpaca dataset (Taori et al. 2023)
on a laptop with Nvidia A1000 Laptop GPU (4GB) and
Intel Core-i7 12800H CPU (32GB), (2) fine-tuning the
Llama-3B model on Alpaca on a workstation with Nvidia
RTX 4090 GPU (24 GB) and AMD Ryzen Threadripper
3970X CPU (252GB), and (3,4) fine-tuning the Deepseek-
Coder-1.3B model (Deepseek-Coder-6.7B model) on an
open-source code instruction dataset generated using Wiz-
ardCoder’s (Luo et al. 2023) method on the laptop GPU
(workstation GPU).We choose rank in LoRA, Galore, and r
in LSP-Offload such that they use similar amount of memory
below the GPU memory capacity. Detailed configurations are
listed in the Appendix.

Compared to Zero-Offload, LSP-Offload achieves faster
convergence on Alpaca. As shown in Fig. 4a and 4b, LSP-
Offload uses around 62.5% and 33.1% less time when con-
verging to the same accuracy. E.g., when training on the
Laptop GPU, LSP-Offload achieves the evaluation perplexity
of 1.82 after 2 hours of training, while reaching the same per-
plexity takes 4.5 hours with Zero-Offload. Also, LSP-Offload
converges to the perplexity of 1.63 after 12 hours, which is
achieved by Zero-Offload after 20 hours. Moreover, as shown
in Fig. 4c and Tab. 4, within the 120 hour training budget,
LSP-Offload trains 1.97x more epochs than Zero-Offload,
resulting in lower training losses. Similarly, for the Deepseek-
Coder-6.7B model, LSP-Offload completes the fine-tuning
for one epoch 2x faster than Zero-Offload while achieving
close accuracy. When trained for 15 hours, LSP-Offload out-
performs Zero-Offload on average accuracy by 2.4%.

In addition, LSP-Offload achieves 30% lower evaluation
perplexity than LoRa on Alpaca (Fig. 4a), and outperforms
GaLore across all coding tasks with 27.8% higher average
accuracy on the Humaneval (Chen et al. 2021; Cassano
et al. 2023) dataset (Tab. 4), even if GaLore trains 60% more
epochs than LSP-Offload. As shown in the Appendix, this is
due to its lower relative estimation bias.

Training throughput comparison. Fig. 5 compares train-
ing throughput for different configurations. When trained on
a subspace of size d = 512, LSP-Offload achieves 2.03, 3.09,
2.04, 3.33 times higher training throughput than Zero-Offload
for the 4 test cases listed Fig. 5. Compared to an idealized
training that accounts for FWD+BWD+UPD on the GPU but
with free communication and CPU compute, LSP-Offload

0 2 4 6 8 10 12 14
Time (h)

1.8

2.0

2.2

2.4

Pe
rp

le
xi

ty
LSP-Offload (d=512, r = 16)

LSP-Offload (d=512, r =8)
LSP-Offload (d=512, r = 32)
Zero-Offload
LoRA (Rank=16)

(a) Evaluation perplexity of fine-
tuning GPT2-774M w/ the laptop
GPU.

0 1 2 3 4 5 6
Time (h)

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Pe
rp

le
xi

ty

LSP-Offload (d=256, r=16)
LSP-Offload (d=512, r=16)
LSP-Offload (d=1024, r=16)
LoR A (Rank=16)
Zero-Offload

(b) Evaluation perplexity of fine-
tuning Llama-3B w/ the worksta-
tion GPU.

0 20 40 60 80 100 120
Time (h)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Tr
ai

n
Lo

ss

LSP-Offload (d=1280 r=4)
Lora (Rank=8)
GaLore (Rank=256)
Zero Offload

(c) Simulated training loss of fine-
tuning Deepseek-Coder-1.3B w/
the laptop GPU.

0 5 10 15 20 25 30
Time (h)

0.80

0.85

0.90

0.95

1.00

Tr
ai

n
Lo

ss

0.824 0.820

LSP-Offload (d=2048 r=8)
Zero Offload

(d) Simulated training loss of fine-
tuning Deepseek-Coder-6.7B w/
workstation GPU for one epoch.

Figure 4: End-to-end evaluation of LSP-Offload. Rolling average is applied for drawing each curve. The shaded area around the
line shows the standard deviation.

0

1

2

3

4

5

GPT2-774M GPT2-1.3B llama-3B llama-7B

N
or

m
al

iz
ed

Th

ro
ug

hp
ut

Zero-Offload

Zero w/ Layerwise Schedule

LSP-Offload (d=2048, r = 16)

LSP-Offload (d=1024, r = 16)

LSP-Offload (d=512, r = 16)

LSP-Offload (d=256, r = 16)

FWD + BWD + UPD

Laptop
4GB GPU

Workstation
24GB GPU

Figure 5: Training throughput comparison.

0

1

2

3

4

5

Zero-Offload LSP-Offload
(d=1280, r = 4)

Zero-Offload LSP-Offload
(d=2048, r = 8)

La
te

nc
y

(s
)

GPU Compute Comm CPU Other

DeepSeek-1.3B
w/ Laptop GPU

DeepSeek-6.7B
w/ WorkStation
GPU

Figure 6: Breakdown for training 1 iteration of DeepSeek-
Coder-1.3B (6.7B) with token batch size 384 = 1×384 (4096
= 4× 1024) on the laptop GPU (workstation GPU). Only the
non-overlapped part for Comm. and CPU are plotted.

only slows down on average 10.6%, 16.7%, 38.3% with the
subspace of size 256, 512, 1024. Specifically, when trained on
the workstation GPU with d ≤ 512, LSP-Offload obtains 2%
higher throughput as compared to idealized training due to
its fully paralleled optimizer update step on the CPU. Lastly,
applying our layer-wise schedule to Zero’s schedule yields
on average 18% increase in the throughput.

Hyperparameter sensitivity. We empirically compare the
performance for different values of d (subspace size) and r
(non-zeros per row). While smaller d limits the optimization
space, we found too large d can lead to low accuracy because
of over-fitting. Shown in Fig. 4b, d = 512 outperforms both
256 and 1024. But the training loss is 0.61 for d = 1024 and
0.72 for d = 512. In the Appendix, we further find that larger
d and small r (e.g., r = 4) lead to lower estimation bias.

Training time breakdown. Fig. 6 shows the time break-
down of LSP-Offload for training a single iteration. Com-

pared to Zero-Offload, LSP-Offload cuts 50% the per-
iteration latency by reducing the wall-clock time of CPU
compute and communication. Because of the layer-wise par-
allel schedule, the communication and compute on both
CPU and GPU are fully paralleled, resulting in minimal non-
overlapped overhead for communication and CPU compute.

Limitation
While efficient, LSP-Offload introduces a few hyperparame-
ters that may need careful selection for the best performance
(Fig. 4a, 4b). These include the selection of the (d, r)-sparse
projector, the frequency of subspace updates, the threshold for
these updates, and others. Additionally, the current prototype
of LSP-Offload does not yet support quantization with 8-bit or
lower data types, which is fully compatible with our approach
and is planned for future work. Finally, while compression
and decompression may introduce compute overhead on the
GPU, this can be effectively mitigated by implementing spe-
cialized sparse-matrix multiplication kernels, which we also
intend to address in future work.

Conclusion
In this paper, we observed that in the commodity setting, cur-
rent offloading frameworks are fundamentally bottlenecked
by the expensive communication and/or the CPU compute.
Motivated by the PEFT method, we designed LSP-Offload
to enable near-native speed fine-tuning by constraining the
parameter update onto a subspace. Technically, we projected
the gradient onto a subspace using a sparse projector, and
boosted its performance by minimizing the empirical bias.
Compared to the prior PEFT approaches (GaLore, LoRa),
with the same amount of additional memory on GPU, we
are able to optimize in much larger optimization spaces. In
evaluation, we verified that LSP training can converge at the
same rate with native training on the GLUE dataset. Also, in
the end-to-end comparison with SOTA offloading framework
Zero-Offload on the instruction-tuning task, LSP-Offload re-
duces fine-tuning time by 33.1% to 62.5% when converging
to the same accuracy. Moreover, LSP-Offload improves accu-
racy by 27.8% to 30% over GaLore and LoRa on the Alpaca
and Humaneval datasets.

References
Cassano, F.; Gouwar, J.; Nguyen, D.; Nguyen, S.; Phipps-
Costin, L.; Pinckney, D.; Yee, M.-H.; Zi, Y.; Anderson, C. J.;
Feldman, M. Q.; Guha, A.; Greenberg, M.; and Jangda, A.
2023. MultiPL-E: A Scalable and Polyglot Approach to
Benchmarking Neural Code Generation. IEEE Transactions
on Software Engineering, 49(7): 3675–3691.
Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; de Oliveira Pinto,
H. P.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brock-
man, G.; Ray, A.; Puri, R.; Krueger, G.; Petrov, M.; Khlaaf,
H.; Sastry, G.; Mishkin, P.; Chan, B.; Gray, S.; Ryder, N.;
Pavlov, M.; Power, A.; Kaiser, L.; Bavarian, M.; Winter, C.;
Tillet, P.; Such, F. P.; Cummings, D.; Plappert, M.; Chantzis,
F.; Barnes, E.; Herbert-Voss, A.; Guss, W. H.; Nichol, A.;
Paino, A.; Tezak, N.; Tang, J.; Babuschkin, I.; Balaji, S.;
Jain, S.; Saunders, W.; Hesse, C.; Carr, A. N.; Leike, J.;
Achiam, J.; Misra, V.; Morikawa, E.; Radford, A.; Knight,
M.; Brundage, M.; Murati, M.; Mayer, K.; Welinder, P.; Mc-
Grew, B.; Amodei, D.; McCandlish, S.; Sutskever, I.; and
Zaremba, W. 2021. Evaluating Large Language Models
Trained on Code. arXiv:2107.03374.
Chen, T.; Xu, B.; Zhang, C.; and Guestrin, C. 2016. Train-
ing deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174.
Dettmers, T.; Pagnoni, A.; Holtzman, A.; and Zettlemoyer, L.
2024. Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 36.
Guo, D.; Rush, A. M.; and Kim, Y. 2020. Parameter-
efficient transfer learning with diff pruning. arXiv preprint
arXiv:2012.07463.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.
Huang, C.-C.; Jin, G.; and Li, J. 2020. Swapadvisor: Push-
ing deep learning beyond the gpu memory limit via smart
swapping. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 1341–1355.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.
Lialin, V.; Muckatira, S.; Shivagunde, N.; and Rumshisky, A.
2023. ReLoRA: High-Rank Training Through Low-Rank Up-
dates. In Workshop on Advancing Neural Network Training:
Computational Efficiency, Scalability, and Resource Opti-
mization (WANT@ NeurIPS 2023).
Liu, S.; Liu, T.; Vakilian, A.; Wan, Y.; and Woodruff, D. 2020.
A framework for learned CountSketch.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692.
Luo, Z.; Xu, C.; Zhao, P.; Sun, Q.; Geng, X.; Hu, W.; Tao,
C.; Ma, J.; Lin, Q.; and Jiang, D. 2023. WizardCoder: Em-
powering Code Large Language Models with Evol-Instruct.
arXiv preprint arXiv:2306.08568.

Rajbhandari, S.; Rasley, J.; Ruwase, O.; and He, Y. 2020.
Zero: Memory optimizations toward training trillion param-
eter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis,
1–16. IEEE.
Rajbhandari, S.; Ruwase, O.; Rasley, J.; Smith, S.; and He, Y.
2021. Zero-infinity: Breaking the gpu memory wall for ex-
treme scale deep learning. In Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, 1–14.
Ren, J.; Rajbhandari, S.; Aminabadi, R. Y.; Ruwase, O.; Yang,
S.; Zhang, M.; Li, D.; and He, Y. 2021. {ZeRO-Offload}: De-
mocratizing {Billion-Scale}model training. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 551–564.
Stich, A. A. S. U. 2020. Analysis of SGD with biased gradient
estimators. arXiv preprint arXiv:2008.00051.
Taori, R.; Gulrajani, I.; Zhang, T.; Dubois, Y.; Li, X.;
Guestrin, C.; Liang, P.; and Hashimoto, T. B. 2023. Stan-
ford Alpaca: An Instruction-following LLaMA model. https:
//github.com/tatsu-lab/stanford_alpaca.
Valipour, M.; Rezagholizadeh, M.; Kobyzev, I.; and Ghodsi,
A. 2022. Dylora: Parameter efficient tuning of pre-trained
models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2018. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461.
Zhang, H.; Zhou, Y. E.; Xue, Y.; Liu, Y.; and Huang, J.
2023. G10: Enabling An Efficient Unified GPU Memory and
Storage Architecture with Smart Tensor Migrations. arXiv
preprint arXiv:2310.09443.
Zhao, J.; Zhang, Z.; Chen, B.; Wang, Z.; Anandkumar,
A.; and Tian, Y. 2024. Galore: Memory-efficient llm
training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507.

Appendix
Zero’s Schedule

Algorithm 2: Zero-Offload’s Pseudo-code

1: Input:M: GPU model, D: Dataset, S: Optimizer state
on CPU, W : Weights

2: for t← 1 to τ do
3: Sample x ∼ D
4: l←M.forward(x){FWD on GPU}
5: ∇W l← SendToCPU(M.backward(l)){Paralleled

BWD on GPU and Gradient Offload}
6: ∆W ← SendToGPU(Update(∇W l, S)){Paralleled

Update on CPU and Delta Upload}
7: W ←W + ηt ·∆W{on GPU, learning rate ηt}
8: end for

Properties of (d, r)-Sparse Projectors
Property 1 (commutativity). For a distribution D on Rm×n

matrices, P, Q the sparse projector,

EΣ∼D[P
T (Σ)Q] = PT (E[Σ])Q (5)

EΣ∼D[bP,Q(Σ)] = bP,Q(E[Σ]) (6)

Proof of Theorem 1
Our proof adapts the analysis in (Stich 2020).

Before proving Theorem 1, we list the lemmas used in the
proof.
Lemma 1 (Matrix Chernoff). LetM1, ...,Mt be independent
matrix valued random variables such that Mi ∈ Rd1×d2
and E[Mi] = 0. If ∥Mi∥2 ≤ γ holds almost surely for all
i ∈ {1, ..., t}, then for every ϵ > 0, 0 < δ < 1, when
t > 8γ2

3ϵ2 log(d1+d2δ),

Pr(∥1
t
ΣiMi∥2 > ϵ) ≤ δ

Lemma 2. For sparse projector P,Q, under Assumption 2,
we can bound the bias by the empirical bias on a random sub-
sampled dataset S of size O(8γ

2

3ϵ2 log m+n
δ) with probability

at least 1− δ,

∥bP,Q(∇f(W))∥2 ≤ ∥bP,Q(∇fS(W))∥2 + ϵ,

where fS(W) := Σx∼Sfx(W)/|S|.

Proof. For data x ∈ S, let Mx = bP,Q(∇fx(W)) −
bP,Q(∇f(W)). By the commutativity of the bias (eqn. 6),
E[Mx] = 0. Under Assumption 2, ∥Mx∥ < γ. Also,

1

|S|
Σx∈SMx =

1

|S|
Σx∈S(bP,Q(∇fx(W))− bP,Q(∇f(W)))

=
1

|S|
Σx∈S(bP,Q(∇fx(W)))− bP,Q(∇f(W))

= bP,Q(
1

|S|
Σx∈S(∇fx(W)))− bP,Q(∇f(W))

= bP,Q(∇fS(W))− bP,Q(∇f(W)).

By Matrix Chernoff (lemma 1), we have that for |S| >
8γ2

3ϵ2 log m+n
δ ,

Pr(∥bP,Q(∇fS(W))− bP,Q(∇f(W))∥2 > ϵ) ≤ δ.
Therefore, with probability 1− δ,

∥b(∇f(W))∥2 ≤ ∥bP,Q(∇fS(W))∥2+
∥bP,Q(∇fS(W))− bP,Q(∇f(W))∥2
≤ ∥bP,Q(∇fS(W))∥2 + ϵ

Theorem 2. (Stich 2020) For any ϵ > 0, 0 < δ < 1, suppose
f is an L-smooth function3, and for any weight matrices W ,
∥bP,Q(∇f(W))∥ ≤ m∇f(W)+ψ, where 0 < m < 1, ψ >
0, and stepsize η = 1

L . Denote F := E[f(W0)]− f∗, Then
with probability 1− δ,

τ = O(1
ϵ
) · LF

(1−m)

iterations are sufficient to obtain mint∈[T] E∥∇f(Wt)∥2 =

O(ϵ+ ψ
1−m).

Now, we prove Theorem 1.

Proof. We analyze with some δ0 > 0 and β > 0. From
lemma 2, under the Assumption 2, we know that for |S| >
8γ2

3β2 log
m+n
δ0

, with probability 1− δ0,

∥bP,Q(∇f(W))∥2 ≤ ∥bP,Q(∇fS(W))∥2 + β.

Also, because E[∇fS(W)] = ∇f(W) (lemma 1), under
the Assumption 2, we have for |S| > 8γ2

3β2 log(
d1+d2
δ0

), with
probability 1− δ0,

∥∇fS(W)−∇f(W)∥2 ≤ β
We bound the bias for every parameter update step,

∥bP,Q(∇f(W))∥F
by Assumption 3 ≤ c∥bP,Q(∇f(W))∥2
with prob 1− δ0 ≤ c∥bP,Q(∇fS(W))∥2 + cβ

by Assumption 1 ≤ cα∥∇fS(W)∥2 + cβ

with prob 1− δ0 ≤ cα∥∇f(W)∥2 + cβ + cαβ

≤ cα∥∇f(W)∥F + cβ + cαβ

Thus, with probability 1− 2δ0,

∥bP,Q(∇f(W))∥2F ≤ 2c2α2∥∇f(W)∥2F + 2c2β2(1 + α)2.

By plugging this into Theorem 2 for all steps from 1 to τ ,
we have that for |S| > 8γ2

3β2 log(
d1+d2
δ0

), with probability
1− 2τδ0,

τ = O(1
ϵ
) · LF

(1− 2c2α2)

iterations are sufficient to obtain mint∈[τ] E∥∇f(Wt)∥2 =

O(ϵ + 2c2β2(1+α)2

1−2c2α2). Setting δ0 = δ
2τ concludes the proof.

3A function f: Rd → R is an L-smooth function if it is dif-
ferentiable and there exists a constant L > 0 such that f(y) ≤
f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2.

Table 5: Configurations and timings for training/fine-tuning the GPT2-1.3B Model (using fp16) on commodity laptop hardware—
the Nvidia A1000 GPU (4GB) and Intel Core-i7 12800H CPU (32GB). For UPD, we measure the fused Adam kernel with
thread-level parallelism and SIMD optimizations. Bandwidth is the PCIe bandwidth with a pinned memory buffer.

Parameters Optimizer State Activations CPU-GPU Bandwidth #Layers GPU Memory
2.6GB 7.8GB 0.5GB 10–15GB/s 40 4GB
FWD on CPU BWD on CPU UPD on CPU FWD on GPU BWD on GPU UPD on GPU
0.16s/layer 0.27s/layer 0.08s/layer 4.5ms/layer 8.7ms/layer 7.9ms/layer

Iterations
LSP Full Param

Figure 7: Convergence Validation of LSP by finetuning pre-trained RoBertA-base model on GLUE.

Layer-wise Scheduling

Algorithm 3: Layer-wise Scheduling

1: Hyperparameter: TransitionLayer : prevlayer to
change the schedule mode from FirstComeFirstServe to
LastComeFirstServe. Others are same as Alg. 1.

2: for t← 0 to τ − 1 do
3: Sample (x0, y) ∼ D
4: for l in layers do
5: Wait for event el {prevforward pass happens after

the parameter gets updated}
6: xl ← forward(xl−1, l,Wl)
7: end for
8: grad = loss(xl, y)
9: mode← FCFS

10: for l in reversed(layers) do
11: if l is TransitionLayer then
12: mode← LCFS
13: end if
14: grad,∇Wl

← backward(grad, xl, l,Wl)

15: ∇̂Wl
← PTl ∇Wl

Ql
16: AsyncMemcpy(mode, ∇̂Wl

, GPU2CPU)
17: AsyncExecOnCPU(mode,∆Wl

←
Update(∇̂Wl

))
18: AsyncMemcpy(mode,∆Wl

, CPU2GPU)
19: AsyncExecOnGPU(mode,Wl ← Wl −

ηtPl∆Wl
QTl , CPU2GPU)

20: end for
21: end for

Avoiding blocking. To avoid the deeper layer’s workload
from blocking the shallower layer’s computation that exe-
cutes earlier in the next iteration, we use a heuristic to switch
between two schedule mode: FirstComeFirstServe
(FCFS) and LastComeFirstServe (LCFS). When the

backward pass begins, FCFS is used first for paralleliz-
ing GPU compute and offloading. As the backward pass
proceeds, we change the Schedule to LCFS which helps
shallower layers get ready for the next pass. We set
the switch point to be TransitionLayer = #Layer −
TBWD−(T layer

Offload+T
layer
Upload+T

layer
UPD)

max{T layer
Offload,T

layer
Upload,T

layer
UPD }

, which is the deepest layer

that may block the computation of the first layer.

Implementation
We prototyped LSP-Offload as a Python library built on top
of Pytorch. LSP-Offload can automatically detect each ma-
trix multiplication module and replace it with the offloaded
version. To achieve best performance, we implemented the
fused Adam kernel in Zero-Offload to accelerate the param-
eter update on the CPU. Also, we used a pinned memory
buffer on the CPU to enable fast communication, and used
CUDA streams for paralleled communication and computa-
tion. Moreover, gradient checkpoint is enabled to reduce the
activation memory.

Experiment Configurations and Further Results
As noted in the Evaluation section, our laptop GPU setup is
an Intel Core-i7 12800H CPU (32GB) laptop with an Nvidia
A1000 Laptop GPU (4GB), and our workstation GPU setup
is an AMD Ryzen Threadripper 3970X CPU (252GB) with
an Nvidia RTX 4090 GPU (24 GB).

For all experiments, the random seed is set to a fixed value
shown in the code.

GLUE Experiment For the GLUE experiment, we use a
batch size of 16 and a learning rate of 5e-5 for LSP-Offload
and Full Parameter fine-tuning. For LSP-Offload, we update
the subspace at the beginning of each epoch or every 1000
iterations (CheckFreq = 1000) and set α, the threshold for
updating projectors, to 0.3. All experiments are limited to
train for 1 hour.

21 22 23 24 25 26 27 28 29

r

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
la

ti
ve

es
ti

m
at

io
n

er
ro

r
(α

)

(512, r) - sparse projector

(768, r) - sparse projector

(1024, r) - sparse projector

(1280, r) - sparse projector

Galore

(a) Relative estimation train error on ∇W

21 22 23 24 25 26 27 28 29

r

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

re
la

ti
ve

es
ti

m
at

io
n

er
ro

r
(α

)

(512, r) - sparse projector

(768, r) - sparse projector

(1024, r) - sparse projector

(1280, r) - sparse projector

Galore

(b) Relative estimation test error on ∇Wt

Figure 8: Relative estimation train/test error of different projectors. ∇W and ∇Wt are sampled from different inputs with batch
size of 128. (d, r)-sparse projectors are learned on the∇W , and the SVD of GaLore is also performed on it.

As shown in Fig. 7, for all cases in GLUE, Alg. 1 is able
to converge at a comparable rate per iteration as full parame-
ter fine-tuning, despite its use of lossy compression (learned
sparse projectors). Since full parameter fine-tuning suffers
from significantly slower iteration times than LSP, the conver-
gence rate per hour is slower than LSP. As Tab. 3 showed, this
results in LSP achieving 0.855 average accuracy compared
to Full Parameter’s 0.836 after 1 hour.

Instruction Fine-tuning on Alpaca For the instruction
fine-tuning experiments on the Alpaca data set, we use a
batch size of 4 for the GPT2-774M model and 16 for the
Llama-3B model, which are the largest without exceeding
the laptop GPU and workstation GPU memory, respectively.
We set the learning rate to be the best among {1e-4, 1e-5, 1e-
6}, which is 1e-4 for LSP-Offload and 1e-5 for both LoRA
and Zero-Offload. For LSP-Offload, CheckFreq = 1000
and α = 0.5.

Instruction Fine-tuning with DeepSeek-Coder For the
code instruction fine-tuning experiments, we use the gradient
accumulate technique to simulate large batch sizes by aver-
aging gradients from multiple small batches before updating
the weights.

For the DeepSeek-Coder-1.3B model, we chose a simu-
lated batch size of 128, max sequence length of 1024, the
AdamW optimizer, max epoch number of 5, and the Cosine
learning rate scheduler. The rank of LoRa is selected as the
maximum value that the GPU memory can accommodate.
The LoRa alpha (α) for LoRa (Rank=8) is 32. Because Ga-
Lore does not perform well with ranks that are small enough
to fit into the GPU memory, we chose GaLore’s rank to be
256, which uses 7.9GB memory. The alpha (α) for GaLore
(Rank=256) is the default value of 0.25 in their library. We
tried different learning rate from 1e-5 to 2e-4 and the learning
rate is set to be the optimal value across multiple experiments.
We found that the learning rate of 1e-4 performed well across
different settings and used it in our final experiments. The
evaluation accuracy of fine-tuning DeepSeek-Coder-1.3B on

the Humaneval dataset shown in Tab. 4(top) are the scores
corresponding to the checkpoint after approximately 120
hours of training on the laptop GPU.

For the DeepSeek-Coder-6.7B model, we chose a simu-
lated batch size of 64, max sequence length of 1024, the
AdamW optimizer, max epoch number of 1, and the Cosine
learning rate scheduler with minimal learning rate. We found
that the learning rate of 1e-4 and minimal learning rate of 5e-
5 performs well across different learning rate settings. The
evaluation accuracy of fine-tuning DeepSeek-Coder-6.7B
shown in Tab. 4(bottom) are the scores corresponding to
the checkpoint after approximately 15 hours of training on
the workstation GPU. The table also shows the accuracy of
Zero-Offload after 30 hours of training.

For the DeepSeek-Coder experiments, due to the extended
training time required with offloading, we simulate the train-
ing process by:

1. Training on a GPU with sufficient memory: This allows
us to obtain the training performance (e.g., training loss,
evaluation score, etc.) as a function of training steps.

2. Profiling the average time per training step with offloading
under maximum supported token batch size under the
memory limit.

3. Combining the results: We merge the performance data
from step 1 and scale the token batch size in step 2 to
match the accumulated token batch size per update step in
step 1, to map training performance against training time.

This approach enables us to simulate the training perfor-
mance over time as if offloading were being used, without
needing to actually train with offloading. Specifically, for
both LSP-Offload and Zero-Offload, on the DeepSeek-Coder-
1.3B (6.7B) experiment, we chose the token batch size as
384 = 1 × 384 (4096 = 4 × 1024) respectively. The per-
iteration profile result is shown in Fig. 6.

LSP-Offload’s Hyperparameters
LSP-Offload introduces some new hyperparameters: includ-
ing the number of non-zero values r in each row of the (d, r)-
sparse projector, the size d of the subspace, and the frequency
CheckFreq and α threshold of the projector update. Among
them, d and r have a great influence on the effect of the
projector.

We tested the estimated bias with our learned sparse pro-
jectors and with the orthogonal projectors used in GaLore on
the DeepSeek-Coder-1.3B fine-tuning task. The orthogonal
projectors are the spectrum of ∇W calculated via Singular
Value Decomposition (SVD):

∇W = USV T ≈
r∑
i=1

siuiv
T
i

P = [u1, u2, . . . , ur], Q = [v1, v2, . . . , vr]
T

(7)

where r is also called the rank of the orthogonal projectors.
We will use GaLore(r) to indicate GaLore run with rank=r.
Recall from Tab. 2 that for the same r, GaLore(r) uses more
GPU memory than LSP-Offload with (d, r)-sparse projectors.
The results are shown in Fig. 8.

Although Fig. 8a shows that GaLore(r) has a lower train-
ing error than (d, r)-sparse projectors for the same r when
r ≥ 16, (d, r)-sparse projectors generalize much better:
their test errors are much lower than GaLore’s. For example,
Fig. 8b shows that (1280, r)-sparse projectors achieve lower
test error than GaLore(r) for the same r for all r ≤ 256.
We attribute this to (d, r)-sparse projectors’ decoupling of
the subspace size d and the non-zero values r (compared to
GaLore’s sole use of a rank r), such that we can optimize in
a large subspace with minimal extra GPU memory.

Secondly, we found the performance of the learned (d, r)-
sparse projectors does not necessarily improve as r increases.
On the contrary, selecting a relatively small r, such as 4 or
8, tends to result in better generalization for this fine-tuning
task (while also reducing GPU memory usage and shortening
iteration times).

At the same time, the effectiveness of the projector im-
proves as the subspace size d increases. Therefore, it is ad-
visable to select the largest possible subspace size that does
not cause an unacceptable decrease in training performance
or exceed the GPU memory capacity.

Reproducibility Checklist
This paper does not use any novel datasets. Thus the novel
dataset related answers are all NA.

All datasets used in this paper are public, thus the answer
to the question regarding un-public datasets is NA.

Given the long-experiment times and corresponding re-
source costs, we run experiments for the best-found config-
uration once. Thus, we did not apply statistical tests to the
result.

