
SMPFRAME: A Distributed Framework for Scheduled
Model Parallel Machine Learning

Jin Kyu Kim?, Qirong Ho†, Seunghak Lee?

Xun Zheng?, Wei Dai?, Garth Gibson?, Eric Xing?
?Carnegie Mellon University, †Institute for Infocomm Research A*STAR

CMU-PDL-15-103

May 2015

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Acknowledgements: This research is supported in part by Intel as part of the Intel Science and Technology Center for Cloud Comput-
ing (ISTC-CC), the National Science Foundation under awards CNS-1042537, CNS-1042543 (PRObE, www.nmc-probe.org), IIS-1447676 (Big
Data), the National Institute of Health under contract GWAS R01GM087694, and DARPA under contracts FA87501220324 and FA87501220324
(XDATA). We thank the members and companies of the PDL Consortium (including Actifio, APC, EMC, Facebook, Google, Hewlett-Packard, Hi-
tachi, Huawei, Intel, Microsoft, NetApp, Oracle, Samsung, Seagate, Symantec, Western Digital) for their interest, insights, feedback, and support.

Keywords: Big Data infrastructure, Big Machine Learning systems, Model-Parallel Machine Learning

Abstract

Machine learning (ML) problems commonly applied to big data by existing distributed systems share and update all ML model
parameters at each machine using a partition of data — a strategy known as data-parallel. An alternative and complimentary strategy,
model-parallel, partitions model parameters for non-shared parallel access and update, periodically repartitioning to facilitate
communication. Model-parallelism is motivated by two challenges that data-parallelism does not usually address: (1) parameters
may be dependent, thus naive concurrent updates can introduce errors that slow convergence or even cause algorithm failure;
(2) model parameters converge at different rates, thus a small subset of parameters can bottleneck ML algorithm completion. We
propose scheduled model parallellism (SMP), a programming approach where selection of parameters to be updated (the schedule)
is explicitly separated from parameter update logic. The schedule can improve ML algorithm convergence speed by planning
for parameter dependencies and uneven convergence. To support SMP at scale, we develop an archetype software framework
SMPFRAME which optimizes the throughput of SMP programs, and benchmark four common ML applications written as SMP
programs: LDA topic modeling, matrix factorization, sparse least-squares (Lasso) regression and sparse logistic regression. By
improving ML progress per iteration through SMP programming whilst improving iteration throughput through SMPFRAME we
show that SMP programs running on SMPFRAME outperform non-model-parallel ML implementations: for example, SMP LDA and
SMP Lasso respectively achieve 10x and 5x faster convergence than recent, well-established baselines.

1 Introduction

Machine Learning (ML) algorithms are used to understand and summarize big data, which may be collected
from diverse sources such as the internet, industries like finance and banking, or experiments in the physical
sciences, to name a few. The demand for cluster ML implementations is driven by two trends: (1) big
data: a single machine’s computational power is inadequate with big datasets; (2) large models: with
ML applications striving for larger numbers of model parameters (at least hundreds of millions [18]),
computational power requirements must scale, even if datasets are not too big.

In particular, the trend towards richer, larger ML models with more parameters (up to trillions [20]) is
driven by the need for more “explanatory power”: it has been observed that big datasets contain “longer tails”,
rare-yet-unique events, than smaller datasets, and detection of such events can be crucial to downstream
tasks [33, 31]. Many of these big models are extremely slow to converge when trained with a sequential
algorithm, leading to model-parallelism [8, 19, 33, 21], which as the name suggests, splits ML model
parameters across machines, and makes each machine responsible for updating only its assigned parameters
(either using the full data, or a data subset). Even when the model is relatively small, model-parallel execution
can still mean the difference between hours or days of compute on a single machine, versus minutes on a
cluster [5, 30].

Model-parallelism can be contrasted with data-parallelism, where each machine gets one partition of
the data, and iteratively generates sub-updates that are applied to all ML model parameters, until convergence
is reached. This is possible because most ML algorithms assume data independence under the model —
independent and identically distributed data in statistical parlance — and as a result, all machines’ sub-updates
can be easily combined, provided every machine has access to the same global model parameters.

This convenient property does not apply to model-parallel algorithms, which introduce new subtleties:
(1) unlike data samples, the model parameters are not independent, and (2) model parameters may take
different numbers of iterations to converge (uneven convergence). Hence, the effectiveness of a model-parallel
algorithm is greatly affected by its schedule: which parameters are updated in parallel, and how they are
prioritized [21, 37].

Poorly-chosen schedules decrease the progress made by each ML algorithm iteration, or may even
cause the algorithm to fail. Note that progress per iteration is distinct from iteration throughput (number of
iterations executed per unit time); effective ML implementations combine high progress per iteration with
high iteration throughput, yielding high progress per unit time. Despite these challenges, model-parallel
algorithms have shown promising speedups over their data-parallel counterparts [33, 31].

In the ML literature, there is a strong focus on verifying the safety or correctness of parallel algorithms via
statistical theory [5, 23, 38], but this is often done under simple assumptions about distributed environments
— for example, network communication and synchronization costs are often ignored. On the other hand, the
systems literature is focused on developing distributed systems [9, 34, 20, 22], with high-level programming
interfaces that allow ML developers to focus on the ML algorithm’s core routines. Some of these systems
enjoy strong fault tolerance and synchronization guarantees that ensure correct ML execution [9, 34], while
others [16, 20] exploit the error-tolerance of data-parallel ML algorithms, and employ relaxed synchronization
guarantees in exchange for higher iterations-per-second throughput. In nearly all of these systems, the ML
algorithm is treated as a black box, with little opportunity to control the parallel schedule of updates (in the
sense that we defined earlier). As a result, these systems offer little support for model-parallel ML algorithms,
in which it is often vital to re-schedule updates in response to model parameter dependencies and uneven
convergence.

These factors paint an overall picture of model-parallel ML that is at once promising, yet under-supported
from the following angles: (1) limited understanding of model-parallel execution order, and how it can
improve the speed of model-parallel algorithms; (2) limited systems support to investigate and develop
better model-parallel algorithms; (3) limited understanding of the safety and correctness of model-parallel

1

algorithms under realistic systems conditions. To address these challenges, this paper proposes scheduled
model parallelism (SMP), where an ML application scheduler generates model-parallel schedules that
improve model-parallel algorithm progress per update, by considering dependency structures and prioritizing
parameters. Essentially, SMP allows model-parallel algorithms to be separated into a control component
responsible for dependency checking and priortization, and an update component that executes iterative ML
updates in the parallel schedule prescribed by the control component.

To realize SMP, we develop a prototype SMP framework called SMPFRAME that parallelizes SMP
ML applications over a cluster. While SMP maintains high progress per iteration, the SMPFRAME software
improves iterations executed per second, by (1) pipelining SMP iterations, (2) overlapping SMP computation
with parameter synchronization over the network, and (3) streaming computations over a ring topology.
Through SMP on top of SMPFRAME, we achieve high parallel ML performance through increased progress
per iteration, as well as increased iterations per second — the result is substantially increased progress per
second, and therefore faster ML algorithm completion. We benchmark various SMP algorithms implemented
on SMPFRAME — Gibbs sampling for topic modeling [4, 15], stochastic gradient descent for matrix
factorization [12], and coordinate descent for sparse linear (i.e., Lasso [28, 10]) and logistic [11] regressions
— and show that SMP programs on SMPFRAME outperform non-model parallel ML implementations.

2 Model Parallelism

Although machine learning problems exhibit a diverse spectrum of model forms, such as probabilistic topic
models, optimization-theoretic regression formulations, etc., their algorithmic solutions implemented by
a computer program typically take the form of an iterative convergent procedure, meaning that they are
optimization or Markov Chain Monte Carlo (MCMC [29]) algorithms that repeat some set of fixed-point
update routines until convergence (i.e. a stopping criterion has been reached):

A(t) = A(t−1) + ∆(D,A(t−1)), (1)

where index t refers to the current iteration, A are the model parameters, D is the input data, and ∆() is
the model update function 1. Such iterative-convergent algorithms have special properties that we shall
explore: tolerance to (non-recursive) errors in model state during iteration, dependency structures that must
be respected during parallelism, and uneven convergence across model parameters.

In model-parallel ML programs, parallel workers recursively update subsets of model parameters until
convergence — this is in contrast to data-parallel programs, which parallelize over subsets of data samples. A
model-parallel ML program extends Eq. (1) to the following form:

A(t) = A(t−1) +
∑P

p=1 ∆p(D,A
(t−1), Sp(D,A

(t−1))),

where ∆p() is the model update function executed at parallel worker p. The “schedule” Sp() outputs a subset
of parameters in A, which tells the p-th parallel worker which parameters it should work on sequentially
(i.e. workers may not further parallelize within Sp()). Since the data D is unchanging, we drop it from the
notation for clarity:

A(t) = A(t−1) +
∑P

p=1 ∆p(A
(t−1), Sp(A

(t−1))). (2)

Parallel coordinate descent solvers are a good example of model parallelism, and have been applied with
great success to the Lasso sparse regression problem [5]. In addition, MCMC or sampling algorithms can also

1The summation between ∆() and A(t−1) can be generalized to a general aggregation function F (A(t−1),∆()); for concreteness
we restrict our attention to the summation form, but the techniques proposed in this paper can be applied to F .

2

be model-parallel: for example, the Gibbs sampling algorithm normally processes one model parameter at a
time, but it can be run in parallel over many variables at once, as seen in topic model implementations [13, 33].
Unlike data-parallel algorithms which parallelize over independent data samples, model-parallel algorithms
parallelize over model parameters that are, in general, not independent; this can cause poor performance (or
sometimes even algorithm failure) if not handled with care [5, 25], and usually necessitate approaches and
theories very different from that of data parallelism, which is our main focus in this paper.

2.1 Properties of ML Algorithms
Some intrinsic properties of ML algorithms (i.e., Eq. (1)) can provide new opportunities for effective
parallelism when correctly explored: (1) Model Dependencies, which refers to the phenomenon that different
elements in A are coupled, meaning that an update to one element will strongly influence the next update to
another parameter. If such dependencies are violated, which is typical during random parallelization, they will
incur errors to the ML algorithm’s progress, leading to reduced convergence speed (or even algorithm failure)
when we increase the degree of parallelism [5]. Furthermore, not all model dependencies are explicitly
specified in an ML program, meaning that they have to be computed from data, such as in Lasso [5]. (2)
Uneven Convergence, which means different model parameters may converge at different rates, leading to
new speedup opportunities via parameter prioritization [21, 37]. Finally, (3) Error-Tolerant — a limited
amount of stochastic error during computation of ∆(D,At−1) in each iteration does not lead to algorithm
failure (though it might slow down convergence speed).

Sometimes, it is not practical or possible to find a “perfect” parallel execution scheme for an ML
algorithm, which means that some dependencies will be violated, leading to incorrect update operations.
But, unlike classical computer science algorithms where incorrect operations always lead to failure, iterative-
convergent ML programs (also known as “fixed-point iteration” algorithms) can be thought of as having a
buffer to absorb inaccurate updates or other errors, and will not fail as long as the buffer is not overrun. Even
so, there is a strong incentive to minimize errors: the more dependencies the system finds and avoids, the
more progress the ML algorithm will make each iteration — unfortunately, finding those dependencies may
incur non-trivial computational costs, leading to reduced iteration throughput. Because an ML program’s
convergence speed is essentially progress per iteration multiplied by iteration throughput, it is important to
balance these two considerations. Below, we explore this idea by explicitly discussing some variations within
model parallelism, in order to expose possible ways by which model parallelization can be made efficient.

2.2 Variations of Model-Parallelism
We restrict our attention to model-parallel programs that partition M model parameters across P worker
threads in an approximately load-balanced manner; highly unbalanced partitions are inefficient and un-
desirable. Here, we introduce variations on model-parallelism, which differ on their partitioning quality.
Concretely, partitioning involves constructing a size-M2 dependency graph, with weighted edges eij that
measure the dependency between parameters Ai and Aj . This measure of dependency differs from algorithm
to algorithm: e.g., in Lasso regression eij is the correlation between the i-th and j-th data dimensions. The
total violation of a partitioning is the sum of weights of edges that cross between the P partitions, and we
wish to minimize this.

Ideal Model-Parallel: Theoretically, there exists an “ideal” load-balanced parallelization over P
workers which gives the highest possible progress per iteration; this is indicated by an ideal (but not
necessarily computable) schedule Sidealp () that replaces the generic Sp() in Eq. (2). There are two points
to note: (1) even this “ideal” model parallelization can still violate model dependencies and incur errors,
compared to sequential execution because of residue cross-worker coupling; (2) computing Sidealp () is
expensive in general because graph-partitioning is NP-hard. Ideal model parallelization achieves the highest
progress per iteration amongst load-balanced model-parallel programs, but may incur a large one-time or
even every-iteration partitioning cost, which can greatly reduce iteration throughput.

3

Random Model-Parallel: At the other extreme is random model-parallelization, in which a schedule
Srandp () simply chooses one parameter at random for each worker p [5]. As the number of workers P
increases, the expected number of violated dependencies will also increase, leading to poor progress per
iteration (or even algorithm failures). However, there is practically no cost to iteration throughput.

Approximate Model-Parallel: As a middle ground between ideal and random model-parallelization, we
may approximate Sidealp () via a cheap-to-compute schedule
Sapproxp (). A number of strategies exist: one may partition small subsets of parameters at a time (in-
stead of the M2-size full dependency graph), or apply approximate partitioning algorithms [26] such as
METIS [17] (to avoid NP-hard partitioning costs), or even use strategies that are unique to a particular ML
program’s structure.

In this paper, our goal is to explore strategies for efficient and effective approximate model parallelization.
We focus on ideas for generating model partitions and schedules:

Static Partitioning: A fixed, static schedule Sfixp () hard-codes the partitioning for every iteration before-
hand. Progress per iteration varies depending on how well Sfixp () matches the ML program’s dependencies,
but like random model-parallel, this has little cost to iteration throughput.

Dynamic Partitioning: Dynamic partitioning Sdynp () tries to select independent parameters for each
worker, by performing pair-wise dependency tests between a small number L of parameters (which can be
chosen differently at different iterations, based on some priority policy as discussed later); the GraphLab
system achieves a similar outcome via graph consistency models [21]. The idea is to only do L2 computational
work per iteration, which is far less than M2 (where M is the total number of parameters), based on a priority
policy that selects the L parameters that matter most to the program’s convergence. Dynamic partitioning can
achieve high progress per iteration, similar to ideal model-parallelism, but may suffer from poor iteration
throughput on distributed clusters: because only a small number of parameters are updated each iteration,
the time spent computing ∆p() at the P workers cannot amortize away network latencies and the cost of
computing Sdynp ().

Pipelining: This is not a different type of model-parallelism per se, but a complementary technique that
can be applied to any model-parallel strategy. Pipelining allows the next iteration(s) to start before the current
one finishes, ensuring that computation is always fully utilized; however, this introduces staleness into the
model-parallel execution:

A(t) = A(t−1) +
∑P

p=1 ∆p(A
(t−s), Sp(A

(t−s))). (3)

Note how the model parameters A(t−s) being used for ∆p(), Sp() come from iteration (t− s), where s is the
pipeline depth. Because ML algorithms are error-tolerant, they can still converge under stale model images
(up to a practical limit) [16, 7]. Pipelining therefore sacrifices some progress per iteration to increase iteration
throughput, and is a good way to raise the throughput of dynamic partitioning.

Prioritization: Like pipelining, prioritization is complementary to model-parallel strategies. The idea
is to modify Sp() to prefer parameters that, when updated, will yield the most convergence progress [21],
while avoiding parameters that are already converged [20]; this is effective because ML algorithms exhibit
uneven parameter convergence. Since computing a parameter’s potential progress can be expensive, we may
employ cheap-but-effective approximations or heuristics to estimate the potential progress (as shown later).
Prioritization can thus greatly improve progress per iteration, at a small cost to iteration throughput.

2.3 Scheduled Model Parallelism for Programming

Model-parallelism accommodates a wide range of partitioning and prioritization strategies (i.e. the schedule
Sp()), from simple random selection to complex, dependency-calculating functions that can be more expensive
than the updates ∆p(). In existing ML program implementations, the schedule is often written as part of the

4

SMP Function Purpose Available Inputs Output
schedule() Select parameters A to update model A, data D P parameter jobs {Sp}
update() Model-parallel update equation one parameter job Sp, local data Dp, parameters A one intermediate result Rp

aggregate() Collect Rp and update model A P intermediate results {Rp}, model A new model state A
(t+1)
p

Table 1: SMP Instructions. To create an SMP program, the user implements these Instructions. The available inputs
are optional — e.g. schedule() does not necessarily have to read A,D (such as in static partitioning).

SMP	 Instruc,on	

SMPFRAME	 Service	

Service	 	
Implementa,on	

User defined routines:
Schedule(), Update(), Aggregate()

Scheduler
Job

Executor
Parameter
Manager

Static Engine Dynamic Engine

Figure 1: SMPFRAME: To create an SMP program, the user codes the SMP Instructions, similar to MapReduce.
The Services are system components that execute SMP Instructions over a cluster. We provide two Implementations
of the Services: a Static Engine and a Dynamic Engine, specialized for high performance on static-schedule and
dynamic-schedule SMP programs respectively. The user chooses which engine (s)he would like to use.

update logic, ranging from simple for-loops that sweep over all parameters one at a time, to sophisticated
systems such as GraphLab [21], which “activates” a parameter whenever one of its neighboring parameters
changes. We contrast this with scheduled model parallelism (SMP), in which the schedule Sp() computation
is explicitly separated from update ∆p() computation. The rationale behind SMP is that the schedule can be a
distinct object for systematic investigation, separate from the updates, and that a model-parallel ML program
can be improved by simply changing Sp() without altering ∆p().

In order to realize SMP programming, we have developed a framework called SMPFRAME, that
exposes parameter schedules Sp() and parameter updates ∆p() as separate functions for the user to implement
(analogous to how MapReduce requires the user to implement Map and Reduce). This separation allows
generic optimizations to be applied and enjoyed by many model-parallel programs: e.g., our SMPFRAME
implementation performs automatic pipelining for dynamic model-parallelism, and uses a ring communication
topology for static model-parallelism; we believe further yet-unexplored optimizations are possible.

3 The SMPFRAME System

SMPFRAME is a system to execute SMP programs, in which low-level machine/traffic coordination issues
are abstracted away. The goal is to improve ML convergence speed in two ways: (1) users can easily
experiment with new model-parallel schedules for ML programs, using the aforementioned techniques to
improve ML algorithm convergence per iteration; (2) the SMPFRAME provides systems optimizations such
as pipelining to automatically increase the iteration throughput of SMP programs.

Conceptually, SMPFRAME is divided into three parts (Figure 1): (1) SMP Instructions (schedule(),
update(), aggregate()), which the user implements to create an SMP program; (2) Services, which
execute SMP Instructions over a cluster (Scheduler, Job Executors, Parameter Manager); (3) Implemen-
tations of the Services, specialized for high performance on different types of SMP programs (Static Engine
and Dynamic Engine).

5

Algorithm 1 Generic SMP ML program template
A: model parameters
Dp: local data stored at worker p
P : number of workers Function schedule(A,D):

Generate P parameter subsets [S1, . . . ,SP]
Return [S1, . . . ,SP] Function update(p,Sp, Dp, A): // In parallel over p = 1..P
For each parameter a in Sp:
Rp[a] = updateParam(a,Dp)

Return Rp Function aggregate([R1, . . . , RP], A):
Combine intermediate results [R1, . . . , RP]
Apply intermediate results to A

3.1 User-implemented SMP Instructions

Table 1 shows the three SMP Instructions, which are abstract functions that a user implements in order to
create an SMP program. All SMP programs are iterative, where each iteration begins with schedule(),
followed by parallel instances of update(), and ending with aggregate(); Figure 1 shows the general
form of an SMP program.

3.2 SMPFRAME Services

SMPFRAME executes SMP Instructions across a cluster via three Services: the Scheduler, Job Executors,
and the Parameter Manager. The Scheduler is responsible for computing schedule() and passing the
output jobs {Sp} on; most SMP programs only require one machine to run the Scheduler, others may benefit
from parallelization and pipelining over multiple machines (see the following sections). The Scheduler can
keep local program state between iterations (e.g. counter variables or cached computations).

The P jobs {Sp} are distributed to P Job Executors, which start worker processes to run update().
On non-distributed file systems, the Job Executors must place worker processes exactly on machines with
the data. Global access to model variables A is provided by the Parameter Manager, so the Job Executors
do not need to consider model placement. Like the Scheduler, the Job Executors may keep local program
state between iterations.

Once the worker processes finish update() and generate their intermediate results Rp, the aggregator
process on scheduler (1) performs aggregate() on {Rp}, and (2) commit model updates and thus reach
the next state A(t+1)

p . Control is then passed back to the Scheduler for the next iteration (t + 1). Finally,
the Parameter Manager supports the Scheduler and Job Executors by providing global access to model
parameters A. The Static Engine and Dynamic Engine implement the Parameter Manager differently, and
we will discuss the details later.

3.3 Service Implementations (Engines)

Many ML algorithms use a “static” schedule, where the order of parameter updates is known or fixed in
advance (e.g. Matrix Factorization and Topic Modeling). One may also write “dynamic” schedules that
change in response to the model parameters, and which can outperform static-schedule equivalents — our
SMP-Lasso program is one example. These two classes of schedules pose different systems requirements;
static schedule() functions tend to be computationally light, while dynamic schedule() functions are
computationally intensive.

Static-schedule algorithms usually generate jobs Sp with many parameters; it is not uncommon to cover
the whole parameter space A in a single SMP iteration, and communication of parameters A across the
network can easily become a bottleneck. On the other hand, dynamic-schedule algorithms prefer to create
small parameter update jobs Sp, which not only reduces the computational bottleneck at the scheduler, but

6

scheduler	

D1	 A1	

D2	 A2	

D3	 A3	

D4	 A4	

S1	

S2	

S3	

S4	

R1	

R2	 R3	

R4	

JobExecutor-‐1	

JobExecutor-‐3	

JobExecutor-‐2	

JobExecutor-‐4	

(a) Ring topology

Pa
ra
m
et
er
	 	

M
an
ag
er
	

Jo
b	
Po

ol
	

M
an
ag
er
	

Update	
Thread	

Update	
Thread	

Update	
Thread	

Job	 InQ	

OutQ	

Update	
Thread	

Update	
Thread	

In-‐Port	

Out-‐Port	

(b) Job Executor

Figure 2: Static Engine: (a) Parameters Ap and intermediate results Rp are exchanged over a ring topology. (b) Job
Executor architecture: the Parameter Manager and a job pool manager receive and dispatch jobs to executor threads;
results Rp are immediately forwarded without waiting for other jobs to complete.

also allows the ML algorithm to quickly react to and exploit uneven parameter convergence. However, this
makes the SMP iterations very short, and therefore latency (from both scheduler computation and network
communication) becomes a major issue.

Because static- and dynamic-schedule SMP algorithms have different needs, we provide two distinct but
complete Implementations (“engines”) of the three Services: a Static Engine specialized for high performance
on static-schedule algorithms, and a Dynamic Engine specialized for dynamic-schedule algorithms. For
a given ML program, the choice of Engine is primarily driven by domain knowledge — e.g. it is known
that coordinate descent-based regressions benefit greatly from dynamic schedules [26, 19]. Once the user
has chosen an Engine, SMPFRAME provides default schedule() implementations appropriate for that
Engine (described in the next Section) that can used as-is. These defaults cover a range of ML programs,
from regressions through topic models and matrix factorization.

3.3.1 Static Engine

In static-schedule algorithms, every iteration reads/writes to many parameters, causing bursty network commu-
nication. To avoid network hot spots and balance communication, the Static Engine’s Parameter Manager
connects Job Executors into a logical ring (Figure 2), used to transfer parametersAp and intermediate results
Rp.

The Job Executors forward received parameters Ap and results Rp to their next ring neighbor, making
local copies of needed Ap, Rp as they pass by. Once Ap, Rp return to their originator on the ring, they are
removed from circulation. The Static Engine uses a straightforward, single-threaded implementation for its
Scheduler (because static schedule()s are not computationally demanding).

3.3.2 Dynamic Engine

Dynamic-schedule algorithms have short iterations, hence computation time by Job Executors is often
insufficient to amortize away network communication time (Figure 3a). To address this, the Dynamic Engine
uses pipelining (Figure 3b) to overlap communication and computation; the Scheduler will start additional
iterations before waiting for the previous one to finish. The pipeline depth (number of in-flight iterations) can
be set by the user.

Although pipelining improves iteration throughput and overall convergence speed, it may lower progress
per iteration due to (1) using the old model state A(t) instead of new updates A(t+s), and (2) dependencies
between pipelined iterations due to overlapping of update jobs Sp. This does not lead to ML program failure
because ML algorithms can tolerate some error and still converge — albeit more slowly. Pipelining is

7

Master	
Scheduler	

Scheduler-‐1	

Scheduler-‐2	

Jo
b	
Ex
ec
ut
or
s	

scheduling	 aggrega9on	 job	 execu9on	

{Tt}	 {Rt}	 {Tt+1}	 {Rt+1}	 {Tt+2}	 {Rt+2}	

{Tt+1}	

{Tt+2}	

{Tt+3}	

(a) Non-pipelined

Master	
Scheduler	

Scheduler-‐1	

Scheduler-‐3	

Jo
b	
Ex
ec
ut
or
s	

{Rt}	

Scheduler-‐2	

{Tt}	 {Tt+1}	 {Tt+2}	 {Tt+3}	 {Tt+4}	 {Tt+5}	

{Rt+1}	 {Rt+2}	 {Rt+3}	 {Rt+4}	 {Rt+5}	

scheduling	 aggrega:on	 job	 execu:on	

(b) Pipelined

Figure 3: Dynamic Engine pipelining: (a) Non-pipelined execution: network latency dominates; (b) Pipelining
overlaps networking and computation.

basically execution with stale parameters, A(t) = F (A(t−s), {∆p(A
(t−s), Sp(A

(t−s)))}Pp=1) where s is the
pipeline depth.

3.4 Other Considerations

Fault tolerance: SMPFRAME execution can be made fault-tolerant, by checkpointing the model parameters
A every x iterations. Because ML programs are error-tolerant, background checkpointing (which may span
several iterations), is typically sufficient.
Avoiding lock contention: To avoid lock contention, the SMPFRAME Scheduler and Job Executors avoid
sharing data structures between threads in the same process. For example, when jobs Sp are being assigned
by a Job Executor process to individual worker threads, we use a separate, dedicated queue for each worker
thread.
Dynamic Engine parameter reordering: Within each Dynamic Engine iteration, SMPFRAME re-orders
the highest priority parameters to the front of the iteration, which improves the performance of pipelining.
The intuition is as follows: because high-priority parameters have a larger effect on subsequent iterations,
we should make their updated values available as soon as possible, rather than waiting until the end of the
pipeline depth s.

4 SMP Implementations of ML Programs

We describe how two ML algorithms can be written as Scheduled Model Parallel (SMP) programs. The
user implements schedule(), update(), aggregate(); alternatively, SMPFRAME provides pre-
implemented schedule() functions for some classes of SMP programs. Algorithm 1 shows a typical SMP
program.

4.1 Parallel Coordinate Descent for Lasso

Lasso, or `1-regularized least-squares regression, is used to identify a small set of important features from
high-dimensional data. It is an optimization problem

minβ
1
2

∑n
i=1

(
yi − xiβ

)2
+ λ‖β‖1 (4)

where ‖β‖1 =
∑d

a=1 |βa| is a sparsity-inducing `1-regularizer, and λ is a tuning parameter that controls
the sparsity level of w. X is an N -by-M design matrix (xi represents the i-th row, xa represents the a-th
column), y is an N -by-1 observation vector, and β is the M -by-1 coefficient vector (the model parameters).
The Coordinate Descent (CD) algorithm is used to solve Eq. (4), and thus learn β from the inputs X,y; the

8

Algorithm 2 SMP Dynamic, Prioritized Lasso
X,y: input data
{X}p, {y}p: rows/samples of X,y stored at worker p
β: model parameters (regression coefficients)
λ: `1 regularization penalty
τ : G edges whose weight is below τ are ignored

Function schedule(β,X):
Pick L > P params in β with probability ∝ (∆βa)2

Build dependency graph G over L chosen params:
edge weight of (βa, βb) = correlation(xa,xb)

[βG1 , . . . , βGK
] = findIndepNodeSet(G, τ)

For p = 1..P :
Sp = [βG1 , . . . , βGK

]
Return [S1, . . . ,SP]

Function update(p,Sp, {X}p, {y}p, β):
For each param βa in Sp, each row i in {X}p:
Rp[a] += xiay

i −
∑

b 6=a x
i
ax

i
bβb

Return Rp

Function aggregate([R1, . . . , RP],S1, β):
For each parameter βa in S1:

temp =
∑P

p=1Rp[a]

βa = S(temp, λ)

CD update rule for βa is

β
(t)
a ← S(x>a y −

∑
b6=a x

>
a xbβ

(t−1)
b , λ), (5)

where S(·, λ) is a soft-thresholding operator [10].
Algorithm 2 shows an SMP Lasso that uses dynamic, prioritized scheduling. It expects that each machine

locally stores a subset of data samples (which is common practice in cluster ML), however the Lasso update
Eq. (5) uses a feature/column-wise access pattern. Therefore every worker p = 1..P operates on the same
scheduled set of L parameters, but using their respective data partitions {X}p, {y}p. Note that update()
and aggregate() are a straightforward implementation of Eq. (5).

We direct attention to schedule(): it picks (i.e. prioritizes) L parameters in β with probability
proportional to their squared difference from the latest update (their “delta”); parameters with larger delta are
more likely to be non-converged. Next, it builds a dependency graph over these L parameters, with edge
weights equal to the correlation2 between data columns xa,xb. Finally, it removes all edges in G below a
threshold τ > 0, and extracts nodes βGk that do not have common edges. All chosen βGk are thus pairwise
independent and safe to update in parallel.

Why is such a sophisticated schedule() necessary? Suppose we used random parameter selection [5]:
Figure 4 shows its progress, on the Alzheimer’s Disease (AD) data [36]. The total compute to reach a fixed
objective value goes up with more concurrent updates — i.e. progress per unit computation is decreasing, and
the algorithm has poor scalability. Another reason is uneven parameter convergence: Figure 5 shows how
many iterations different parameters took to converge on the AD dataset; > 85% of parameters converged in
< 5 iterations, suggesting that the prioritization in Algorithm 2 should be very effective.
Default schedule() functions: The squared delta-based parameter prioritization and dynamic depen-
dency checking in SMP Lasso’s schedule() (Algorithm 2) generalize to other regression problems — for
example, we also implement sparse logistic regression using the same schedule(). SMPFRAME allows
ML programmers to re-use Algorithm 2’s schedule() via a library function scheduleDynRegr().

2On large data, it suffices to estimate the correlation with a data subsample.

9

 0.0015
 0.002

 0.0025
 0.003

 0.0035
 0.004

 2000 4000ob
je

ct
iv

e
va

lu
e

data processed (1K)

degree of parallelism 32
64

128
256

Figure 4: Random Model-Parallel Lasso: Objective value (lower the better) versus processed data samples, with 32
to 256 workers performing concurrent updates. Under naive (random) model-parallel, higher degree of parallelism
results in worse progress.

λ:0.0001 λ:0.001 λ:0.01

84.72% 95.32% 98.23%

1000000

100000

10000

1000

100

5 20 40 60 80 100 5 20 40 60 80 100 5 20 40 60 80 100

#
 o

f
co

n
ve

rg
e

d
 p

ar
am

e
te

rs

Iterations

Figure 5: Uneven Parameter Convergence: Number of converged parameters at each iteration, with different
regularization parameters λ. Red bar shows the percentage of converged parameters at iteration 5.

4.2 Parallel Gibbs Sampling for Topic Modeling

Topic modeling, a.k.a. Latent Dirichlet Allocation (LDA), is an ML model for document soft-clustering; it
assigns each of N text documents to a probability distribution over K topics, and each topic is a distribution
over highly-correlated words. Topic modeling is usually solved via a parallel Gibbs sampling algorithm,
involving three data structures: an N -by-K document-topic table U , an M -by-K word-topic table V (where
M is the vocabulary size), and the topic assignments zij to each word “token” j in each document i. Each
topic assignment zij is associated with the j-th word in the i-th document, wij (an integer in 1 through M);
the zij , wij are usually pre-partitioned over worker machines [1].

The Gibbs sampling algorithm iteratively sweeps over all zij , assigning each one a new topic via this
probability distribution over topic outcomes k = 1..K:

P (zij = k | U, V) ∝ α+Uik

Kα+
∑K

`=1 Ui`
+

β+Vwij,k

Mβ+
∑M

m=1 Vmk
, (6)

where α, β are smoothing parameters. Once a new topic for zij has been sampled, the tables U, V are updated
by (1) decreasing Vi,oldtopic and Uwij ,oldtopic by one, and (2) increasing Ui,newtopic and Vwij ,newtopic by one.

Eq. (6) is usually replaced by a more efficient (but equivalent) variant called SparseLDA [32], which
we also use. We will not show its details within update() and aggregate(); instead, we focus on how
schedule() controls which zij are being updated by which worker. Algorithm 3 shows our SMP LDA
implementation, which uses a static “word-rotation” schedule, and partitions the documents over workers.
The word-rotation schedule partitions the rows of V (word-topic table), so that workers never touch the
same rows in V (each worker just skips over words wij associated with not-assigned rows). The partitioning
is “rotated” P times, so that every word wij in each worker is touched exactly once after P invocations of
schedule().

As with Lasso, one might ask why this schedule() is useful. A common strategy is to have workers
sweep over all their zij every iteration [1], however, as we show later in Sec 6, this causes concurrent writes
to the same rows in V , breaking model dependencies.

10

Algorithm 3 SMP Static-schedule Topic Modeling
U, V : doc-topic table, word-topic table (model params)
N,M : number of docs, vocabulary size
{z}p, {w}p: topic indicators and token words stored at worker p
c: persistent counter in schedule() Function schedule():

For p = 1..P : // “word-rotation” schedule
x = (p− 1 + c) mod P
Sp = (xM/P, (x+ 1)M/P) // p’s word range

c = c+ 1
Return [S1, . . . ,SP] Function update(p,Sp, {U}p, V, {w}p, {z}p):
[lower,upper] = Sp // Only touch wij in range
For each token zij in {z}p:

If wij ∈ range(lower,upper):
old = zij
new = SparseLDAsample(Ui, V, wij , zij)
Record old, new values of zij in Rp

Return Rp Function aggregate([R1, . . . , RP], U, V):
Update U, V with changes in [R1, . . . , RP]

Default schedule() functions: Like SMP Lasso, SMP LDA’s schedule() (Algorithm 3) can be gener-
ically applied to ML program where each data sample touches just a few parameters (Matrix Factorization
is one example). The idea is to assign disjoint parameter subsets across workers, who only operate on data
samples that “touch” their currently assigned parameter subset. For this purpose, SMPFRAME provides a
generic scheduleStaticRota() that partitions the parameters into P contiguous (but disjoint) blocks,
and rotates these blocks amongst workers at the beginning of each iteration.

4.3 Other ML Programs

In our evaluation, we consider two more SMP ML Programs — sparse Logistic Regression (SLR) and Matrix
Factorization (MF). SMP SLR uses the same dynamic, prioritized scheduleDynRegr() as SMP Lasso,
while the update() and aggregate() functions are slightly different to accommodate the new LR
objective function. SMP MF uses scheduleStaticRota() that, like SMP LDA, rotates disjoint (and
therefore dependency-free) parameter assignments amongst the P distributed workers.

5 SMP Theoretical Guarantees

SMP programs are iterative-convergent algorithms that follow the general model-parallel Eq. (2). Here, we
briefly state guarantees about their execution. SMP programs with static schedules are covered by existing
ML analysis [5, 26].

Theorem 1 Dynamic scheduling converges: Recall the Lasso Algorithm 2. Let ε := (P−1)(ρ−1)
M < 1,

where P is the number of parallel workers, M is the number of features (columns of the design matrix X),
and ρ is the “spectral radius” of X. After t iterations, we have

E[F (β(t))− F (β?)] ≤ CM

P (1− ε)
1

t
= O

(
1

t

)
, (7)

where F (β) is the Lasso objective function Eq. (4), β? is an optimal solution to F (β), and C is a constant
specific to the dataset (X,y) that subsumes the spectral radius ρ, as well as the correlation threshold τ in
Algorithm 2. The proof can be generalized to other coordinate descent programs.

11

ML app Data set Workload Feature Raw size
MF Netflix 100M ratings 480K users, 17K movies (rank=40) 2.2 GB
MF x256 Netflix 25B ratings 7.6M users, 272K movies (rank=40) 563 GB

LDA NYTimes 99.5M tokens 300K documents, 100K words 1K topics 0.5 GB
LDA PubMed 737M tokens 8.2M documents, 141K words, 1K topics 4.5GB
LDA ClueWeb 10B tokens 50M webpages, 2M words, 1K topics 80 GB
Lasso AlzheimerDisease (AD) 235M nonzeros 463 samples, 0.5M features 6.4 GB
Lasso LassoSynthetic 2B nonzeros 50K samples, 100M features 60 GB

Logistic LogisticSynthetic 1B nonzeros 50K samples, 10M features 29 GB

Table 2: Data sets used in our evaluation.

Dynamic scheduling ensures the gap between the objective at the t-th iteration and the optimal objective is
bounded by O

(
1
t

)
, which decreases as t→∞, ensuring convergence. A more important corollary is that

non-scheduled execution does not enjoy this guarantee — the objective may only improve slowly, or even
diverge.

Theorem 2 Dynamic scheduling is close to ideal: Consider Sideal(), an ideal model-parallel schedule
that proposes P random features with zero correlation. Let β(t)ideal be its parameter trajectory, and let β(t)dyn be
the parameter trajectory of Algorithm 2. Then,

E[|β(t)ideal − β
(t)
dyn|] ≤ C

2M

(t+ 1)2
X>X, (8)

where C is a dataset-specific constant that subsumes the correlation threshold τ in Algorithm 2.

Under dynamic scheduling, coordinate descent regression enjoys algorithm progress per iteration nearly as
good as ideal model-parallelism. Intuitively, this is almost by definition — ideal model-parallelism seeks to
minimize the number of parameter dependencies crossing between workers p = 1..P ; dynamic scheduling
(Algorithm 2) does the same thing, but instead of considering all M parameters, it only looks at L � M
parameters. We end by remarking that SMP-Lasso’s prioritization can also be proven to be ideal.

6 Evaluation

We compare SMP ML programs implemented on SMPFRAME against existing parallel execution schemes —
either a well-known publicly-available implementation, or if unavailable, we write our own implementation —
as well as sequential execution. Our intent is to show (1) SMP implementations executed by SMPFRAME
have significantly improved progress per iteration over other parallel execution schemes, coming fairly close
to “ideal” sequential execution in some cases. At the same time, (2) the SMPFRAME system can sustain
high iteration throughput (i.e. model parameters and data points processed per second) that is competitive
with existing systems. Together, the high progress per iteration and high iteration throughput lead to faster
ML program completion times (i.e. fewer seconds to converge).
Cluster setup: Unless otherwise stated, we used 100 nodes each with 4 quad-core processors (16 physical
cores) and 32GB memory; this configuration is similar to Amazon EC2 c4.4xlarge instances (16 physical
cores, 30GB memory). The nodes are connected by 1Gbps ethernet as well as a 20Gbps Infiniband IP over
IB interface. Most experiments were conducted on the 1Gbps ethernet; we explicitly point out those that
were conducted over IB.
Datasets: We use several real and synthetic datasets — see Table 2 for details. All real datasets except AD
are public.

12

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

 0 200 400 600 800

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

data processed (100M)

SMP-LDA,m=25
SMP-LDA,m=50

YahooLDA,m=25
YahooLDA,m=50

(a) LDA: NYT

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

 0 1000 2000 3000

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

data processed (100M)

SMP-LDA,m=25
SMP-LDA,m=50

YahooLDA,m=25
YahooLDA,m=50

(b) LDA: PubMed

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

 10000 20000 30000

ob
je

ct
iv

e
va

lu
e

(x
 1

011
)

data processed (100M)

SMP-LDA,m=25
SMP-LDA,m=50

SMP-LDA,m=100
YahooLDA,m=25
YahooLDA,m=50

YahooLDA,m=100

(c) LDA: ClueWeb

 1

 1.5

 2

 2.5

 3

 0 200 400

ob
je

ct
iv

e
va

lu
e

(x
 1

08)

data processed (10M)

BSP-MF,m=25 failed
BSP-MF,m=65 failed

Serial-MF,m=1
SMP-MF,m=25
SMP-MF,m=65

(d) MF: Netflix

 0.5

 1

 1.5

 2

 2.5

 0 400 800 1200

ob
je

ct
iv

e
va

lu
e

(x
 1

011
)

data processed (1B)

SMP-MF,m=25
SMP-MF,m=50

SMP-MF,m=100

(e) MF: x256 Netflix

 0

 1

 2

 3

 4

 5

 6

 300 600 900

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

data processed (10M)

m>32,step=1.0e-3 failed

m=32,step=2.2e-4
m=64,step=2.2e-4

m=128,step=2.2e-4
m=256,step=2.2e-4

m=1,step=1.0e-3

(f) BSP-MF:Netflix

Figure 6: Static SMP: OvD. (a-c) SMP-LDA vs YahooLDA on three data sets; (d-e) SMP-MF vs BSP-MF on two
data sets; (f) parallel BSP-MF is unstable if we use an ideal sequential step size. m denotes number of machines.

Performance metrics: We compare ML implementations using three metrics: (1) objective function value
versus total data samples operated upon3, abbreviated OvD; (2) total data samples operated upon versus time
(seconds), abbreviated DvT; (3) objective function value versus time (seconds), referred to as convergence
time. The goal is to achieve the best objective value in the least time — i.e. fast convergence.

OvD is a uniform way to measure ML progress per iteration across different ML implementations, as
long as they use identical parameter update equations — we ensure this is always the case, unless otherwise
stated. Similarly, DvT measures ML iteration throughput across comparable implementations. Note that high
OvD and DvT imply good (i.e. small) ML convergence time, and that measuring OvD or DvT alone (as is
sometimes done in the literature) is insufficient to show that an algorithm converges quickly.

6.1 Static SMP Evaluation

Our evaluation considers static-schedule SMP algorithms separately from dynamic-schedule SMP algorithms,
because of their different service implementations (Section 3.3). We first evaluate static-schedule SMP
algorithms running on the SMPFRAME Static Engine.
ML programs and baselines: We evaluate the performance of LDA (a.k.a. topic model) and MF (a.k.a
collaborative filtering). SMPFRAME uses Algorithm 3 (SMP-LDA) for LDA, and a scheduled version of
the Stochastic Gradient Descent (SGD) algorithm4 for MF (SMP-MF). For baselines, we used YahooLDA,

3ML algorithms operate upon the same data point many times. The total data samples operated upon exceeds N , the number of
data samples.

4Due to space limits, we could not provide a full Algorithm figure. Our SMP-MF divides up the input data such that different
workers never update the same parameters in the same iteration.

13

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

 0 400 800 1200

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

time (seconds)

SMP-LDA,m=25
SMP-LDA,m=50

YahooLDA,m=25
YahooLDA,m=50

(a) LDA: NYT

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

 0 1000 2000 3000 4000

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

time (seconds)

SMP-LDA,m=25
SMP-LDA,m=50

YahooLDA,m=25
YahooLDA,m=50

(b) LDA: PubMed

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

 8000 16000 24000

ob
je

ct
iv

e
va

lu
e

(x
 1

011
)

time (seconds)

SMP-LDA,m=25
SMP-LDA,m=50

SMP-LDA,m=100
YahooLDA,m=25
YahooLDA,m=50

YahooLDA,m=100

(c) LDA: ClueWeb

 1

 1.5

 2

 2.5

 3

 0 30 60 90 120

ob
je

ct
iv

e
va

lu
e

(x
 1

08)

time (seconds)

SMP MF,m=25
SMP MF,m=65

(d) MF: Netfilx

 0.5

 1

 1.5

 2

 6000 12000 18000 24000
ob

je
ct

iv
e

va
lu

e
(x

 1
011

)

time (seconds)

SMP-MF,m=25
SMP-MF,m=50

SMP-MF,m=100

(e) MF: x256 Netflix

Figure 7: Static SMP: convergence times. (a-c) SMP-LDA vs YahooLDA; (d-e) SMP-MF with varying number of
machines m.

and BSP-MF – our own implementation of the classic BSP SGD for MF ; both are data-parallel algorithms,
meaning that they do not use SMP schemes. These baselines were chosen to analyze how SMP affects OvD,
DvT and convergence time; later will we show convergence time benchmarks against the GraphLab system
which does use model parallelism.

To ensure a fair comparison, YahooLDA was modified to (1) dump model state at regular intervals
for later objective (log-likelihood) computation5; (2) keep all local program state in memory, rather than
streaming it off disk, because it fits for our datasets. All LDA experiments were performed on the 20Gbps
Infiniband network, so that bandwidth would not be a bottleneck for the parameter server used by YahooLDA.
Note that in LDA OvD and DvT measurements, we consider each word token as one data sample.

6.1.1 Improvement in convergence times

Static SMP has high OvD: For LDA, YahooLDA’s OvD decreases substantially from 25 to 100 machines,
whereas SMP-LDA maintains the same OvD (Figures 6a, 6b, 6c). For MF, Figure 6f shows that BSP-MF
is sensitive to step size6; if BSP-MF employs the ideal step size determined for serial execution, it does
not properly converge on ≥ 32 machines. In contrast, SMP-MF can safely use the ideal serial step size
(Figures 6d,6e), and approaches the same OvD as serial execution within 20 iterations.
SMPFRAME Static Engine has high DvT: For LDA, table 3 shows that SMP-LDA enjoys higher DvT
than YahooLDA; we speculate that YahooLDA’s lower DvT is primarily due to lock contention on shared
data structures between application and parameter server threads (which the SMPFRAME Static Engine tries

5With overhead less than 1% of total running time.
6A required tuning parameter for SGD MF implementations; higher step sizes lead to faster convergence, but step sizes that are

too large can cause algorithm divergence/failure.

14

Data set(size) #machines YahooLDA SMP-LDA
NYT(0.5GB) 25 38 43
NYT(0.5GB) 50 79 62

PubMed(4.5GB) 25 38 60
PubMed(4.5GB) 50 74 110
ClueWeb(80GB) 25 39.7 58.3
ClueWeb(80GB) 50 78 114
ClueWeb(80GB) 100 151 204

Table 3: Static SMP: DvT for topic modeling (million tokens operated upon per second).

 0

 20

 40

 60

 80

 100

 0 30 60 90

da
ta

 p
ro

ce
ss

ed
 (

x
10

6)

time (seconds)

Macro Sync
Micro Sync

(a) DvT

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

 30 60 90

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

time (seconds)

Macro Sync
Micro Sync

(b) Time

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

 0 300 600 900

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

data processed (1M)

Macro Sync
Micro Sync

(c) OvD

Figure 8: Static Engine: synchronization cost optimization. (a) macro synchronization improves DvT by 1.3 times;
(b) it improves convergence speed by 1.3 times; (c) This synchronization strategy does not hurt OvD.

to avoid).
Static SMP on SMPFRAME has low convergence times: Thanks to high OvD and DvT, SMP-LDA’s
convergence times are not only lower than YahooLDA, but also scale better with increasing machine count
(Figures 7a, 7b, 7c). SMP-MF also exhibits good scalability (Figure 7d, 7e).

6.1.2 Benefits of Static Engine optimizations

The SMPFRAME Static Engine achieves high DvT (i.e iteration throughput) via two system optimizations:
(1) reducing synchronization costs via the ring topology; (2) using a job pool to perform load balancing
across Job Executors.
Reducing synchronization costs: Static SMP programs (including SMP-LDA and SMP-MF) do not require
all parameters to be synchronized across all machines, and this motivates the use of a ring topology. For
example, consider SMP-LDA Algorithm 3: the word-rotation schedule() directly suggests that Job
Executors can pass parameters to their ring neighbor, rather than broadcasting to all machines; this applies
to SMP-MF as well.

SMPFRAME’s Static Engine implements this parameter-passing strategy via a ring topology, and only
performs a global synchronization barrier after all parameters have completed one rotation (i.e. P iterations)
— we refer to this as “Macro Synchronization”. This has two effects: (1) network traffic becomes less
bursty, and (2) communication is effectively overlapped with computation; as a result, DvT is improved
by 30% compared to a naive implementation that invokes a synchronization barrier every iteration (“Micro
Synchronization”, Figure 8a). This strategy does not negatively affect OvD (Figure 8c), and hence time to
convergence improves by about 30% (Figure 8b).
Job pool load balancing: Uneven workloads are common in Static SMP programs: Figure 9a shows that the
word distribution in LDA is highly skewed, meaning that some SMP-LDA update() jobs will be much

15

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 30000 60000 90000

w
or

d
fr

eq
ue

nc
y

(x
 1

03)

rank

Word Frequency

(a) NYTimes

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

 40 80 120

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

time (seconds)

load-balance enabled
load-balance disabled

(b) Time

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

 0 200 400

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

data processed (10M)

load-balance enabled
load-balance disabled

(c) OvD
Figure 9: Static Engine: Job pool load balancing. (a) Biased word frequency distribution in NYTimes data set; (b) by
dispatching the 300 heaviest words first, convergence speed improves by 30 percent to reach objective value -1.02e+9;
(c) this dispatching strategy does not hurt OvD.

longer than others. Hence, SMPFRAME dispatches the heaviest jobs first to the Job Executor threads. This
improves convergence times by 30% on SMP-LDA (Figure 9b), without affecting OvD.

6.1.3 Comparison against other systems:

We compare SMP-MF with GraphLab’s SGD MF implementation, on a different set of 8 machines — each
with 64 cores, 128GB memory. On Netflix , GL-SGDMF converged to objective value 1.8e+8 in 300 seconds,
and SMP-MF converged to 9.0e+7 in 302 seconds (i.e. better objective value in the same time). In terms of
DvT, SMP-MF touches 11.3m data samples per second, while GL-MF touches 4.5m data samples per second.

6.2 Dynamic SMP Scheduling

Our evaluation of dynamic-schedule SMP algoritms on the SMPFRAME Dynamic Engine shows significantly
improved OvD compared to random model-parallel scheduling. We also show that (1) in the single machine
setting, Dynamic SMP comes at a cost to DvT, but overall convergence speed is still superior to random
model-parallel; and (2) in the distributed setting, this DvT penalty mostly disappears.
ML programs and baselines: We evaluate `1-regularized linear regression (Lasso) and `1-regularized
Logistic regression (sparse LR, or SLR) – SMPFRAME uses Algorithm 2 (SMP-Lasso) for the former,
and we solve the latter using a minor modification to SMP-Lasso7 (called SMP-SLR). To the best of
our knowledge, there are no open-source distributed Lasso/SLR baselines that use coordinate descent, so
we implement the Shotgun Lasso/SLR algorithm [5] (Shotgun-Lasso, Shotgun-SLR), which uses random
model-parallel scheduling8

6.2.1 Improvement in convergence times

Dynamic SMP has high OvD: Dynamic SMP achieves high OvD, in both single-machine (Figure 10a) and
distributed, 8-machine (Figure 10b) configurations; here we have compared SMP-Lasso against random
model-parallel Lasso (Shotgun-Lasso) [5]. In either case, Dynamic SMP decreases the data samples required
for convergence by an order of magnitude. Similar observations hold for distributed SMP-SLR versus
Shotgun-SLR (Figure 10d).

7Lasso and SLR are solved via the coordinate descent algorithm, hence SMP-Lasso and SMP-SLR only differ slightly in
their update equations. We use coordinate descent rather gradient descent because it has no step size tuning and more stable
convergence [25, 24].

8Using coordinate descent baselines is essential to properly evaluate the DvT and OvD impact of SMP-Lasso/SLR; other
algorithms like stochastic gradient descent are only comparable in terms of convergence time.

16

 0.001

 0.002

 0.003

 0 1000 2000 3000 4000

ob
je

ct
iv

e
va

lu
e

data processed (100M)

Shotgun-Lasso
SMP-Lasso

(a) AD data

 0.004

 0.008

 0.012

 0.016

 0 200 400

ob
je

ct
iv

e
va

lu
e

data processed (100M)

Shotgun-Lasso,m=8
SMP-Lasso,m=8

(b) Synthetic data

 0.001

 0.002

 0.003

 0 60 120 180

ob
je

ct
iv

e
va

lu
e

data processed (100M)

Priority+Dynamic
Priority Only

(c) AD data

 0.45

 0.55

 0.65

 0 600 1200 1800
ob

je
ct

iv
e

va
lu

e
data processed (100M)

Shotgun-SLR,m=8
SMP-SLR,m=8

(d) Synthetic data

Figure 10: Dynamic SMP: OvD. (a) SMP-Lasso vs Shotgun-Lasso [5] on one machine (64 cores); (b) SMP-Lasso
vs Shotgun-Lasso on 8 machines; (c) SMP-Lasso with & w/o dynamic partitioning on 4 machines; (d) SMP-SLR vs
Shotgun-SLR on 8 machines. m denotes number of machines.

SMPFRAME Dynamic Engine DvT analysis: Table 4 shows how SMPFRAME Dynamic Engine’s DvT
scales with increasing machines. We observe that DvT is limited by dataset density — if there are more
nonzeros per feature column, we observe better DvT scalability with more machines. The reason is that
the Lasso and SLR problems’ model-parallel dependency structure (Section 4.1) limits the maximum
degree of parallelization (number of parameters that can be correctly updated each iteration), thus Dynamic
Engine scalability does not come from updating more parameters in parallel (which may be mathematically
impossible), but from processing more data per feature column.
Dynamic SMP on SMPFRAME has low convergence times: Overall, both SMP-Lasso and SMP-SLR
enjoy better convergence times than their Shotgun counterparts. The worst-case scenario is a single machine
using a dataset (AD) with few nonzeros per feature column (Figure 11a) — when compared with Figure 10a,
we see that SMP DvT is much lower than Shotgun (Shotgun-Lasso converges faster initially), but ultimately
SMP-Lasso still converges 5 times faster. In the distributed setting (Figure 11b Lasso, Figure 11d SLR), the
DvT penalty relative to Shotgun is much smaller, and the curves resemble the OvD analysis (SMP exhibits
more than an order of magnitude speedup).

6.2.2 Benefits of Dynamic Engine optimizations

The SMPFRAME Dynamic Engine improves DvT (data throughput) via iteration pipelining, while improving
OvD via dynamic partitioning and prioritization in schedule().
Impact of dynamic partitioning and prioritization: Figures 10c (OvD) and 11c (OvT) show that the
convergence speedup from Dynamic SMP comes mostly from prioritization — we see that dependency
checking approximately doubles SMP-Lasso’s OvD over prioritization alone, implying that the rest of the

17

 0.001

 0.002

 0.003

 0 400 800 1200 1600

ob
je

ct
iv

e
va

lu
e

time (seconds)

Shotgun-Lasso
SMP-Lasso

(a) AD data

 0.004

 0.008

 0.012

 0.016

 0 2000 4000 6000 8000

ob
je

ct
iv

e
va

lu
e

time (seconds)

Shotgun-Lasso,m=8
SMP-Lasso,m=8

(b) Synthetic data

 0.001

 0.002

 0.003

 0.004

 60 120 180 240 300

ob
je

ct
iv

e
va

lu
e

time (seconds)

Priority+Dynamic
Priority Only

(c) AD data

 0.45

 0.55

 0.65

 0 3000 6000 9000
ob

je
ct

iv
e

va
lu

e
time (seconds)

Shotgun-SLR,m=8
SMP-SLR,m=8

(d) Synthetic data

Figure 11: Dynamic SMP: convergence time. Subfigures (a-d) correspond to Figure 10.

aaaaaaaaaa
Application

nonzeros per
column 1K 10K 20K

SMP-Lasso 16 × 4 cores 125 212 202
SMP-Lasso 16 × 8 cores 162 306 344

SMP-LR 16 × 4 cores 75 98 103
SMP-LR 16 × 8 cores 106 183 193

Table 4: Dynamic SMP: DvT of SMP-Lasso and SMP-LR, measured as data samples (millions) operated on per
second, for synthetic data sets with different column sparsity.

order-of-magnitude speedup over Shotgun-Lasso comes from prioritization. Additional evidence is provided
by Figure 5; under prioritization most parameters converge within just 5 iterations.
Pipelining improves DvT at a small cost to OvD: The SMPFRAME Dynamic Engine can pipeline iterations
to improve DvT (iteration throughput), at some cost to OvD. Figure 12c shows that SMP-Lasso (on 8
machines) converges most quickly at a pipeline depth of 3, and Figure 12d provides a more detailed
breakdown, including the time take to reach the same objective value (0.0003). We make two observations:
(1) DvT improvement saturates at pipeline depth 3; (2) OvD, expressed as the number of data samples to
convergence, gets proportionally worse as pipeline depth increases. Hence, the sweet spot for convergence
time is pipeline depth 3, which halves convergence time compared to no pipelining (depth 1).

6.2.3 Comparisons against other systems

We compare SMP-Lasso/SLR with Spark MLlib (Spark-Lasso, Spark-SLR), which uses the SGD algorithm.
As with the earlier GraphLab comparison, we use 8 nodes with 64 cores and 128GB memory each. On the

18

 0

 300

 600

 900

 1200

 0 20 40 60

da
ta

 p
ro

ce
ss

ed
(1

0M
)

time (seconds)

(a) DvT

 0

 0.001

 0.002

 0.003

 0.004

 0 800 1600 2400

ob
je

ct
iv

e
va

lu
e

data processed (10M)

 Pipeline Depth 1
 Pipeline Depth 2
 Pipeline Depth 3
 Pipeline Depth 4

(b) OvD

 0.001

 0.002

 0.003

 0.004

 0 60 120 180

ob
je

ct
iv

e
va

lu
e

time (seconds)

 Pipeline Depth 1
 Pipeline Depth 2
 Pipeline Depth 3
 Pipeline Depth 4

(c) Time

0!

60!

120!

180!
time (seconds)!

0!

80!

160!

240!

data processed
(100M)!

0!

50!

100!

150!

200!

throughput !
(1M/s) !

1 2 3 4! 1 2 3 4! 1 2 3 4!

(d) Metrics at objective 3e-4

Figure 12: Dynamic Engine: iteration pipelining. (a) DvT improves 2.5× at pipeline depth 3, however (b) OvD
decreases with increasing pipeline depth. Overall, (c) convergence time improves 2× at pipeline depth 3. (d) Another
view of (a)-(c): we report DvT, OvD and time to converge to objective value 0.0003.

AD dataset (which has complex gene-gene correlations), Spark-Lasso reached objective value 0.0168 after 1
hour, whereas SMP-Lasso achieved a lower objective (0.0003) in 3 minutes. On the LogisticSynthetic dataset
(which was constructed to have few correlations), Spark-SLR converged to objective 0.452 in 899 seconds,
while SMP-SLR achieved a similar result. This confirms that SMP is more effective in the presence of more
complex model dependencies.

Finally, we want to highlight that the SMPFRAME system can significantly reduce the code required
for an SMP program: our SMP-Lasso implementation (Algorithm 2) has 390 lines in schedule(), 181
lines in update() and aggregate(), and another 209 lines for miscellaneous uses like setting up the
program environment; SMP-SLR uses a similar amount of code.

7 Related work

Early systems for scaling up ML focus on data parallelism [6] to leverage multi-core and multi-machine
architecture, following the ideas in MapReduce [9]. Along these lines, Mahout[3] on Hadoop [2] and more
recently MLI [27] on Spark [35] have been developed.

The second generation of distributed ML systems — e.g. parameter servers (PS, [1, 8, 16, 20]) —
address the problem of distributing large shared models across multiple workers. Early systems were
designed for a particular class of ML problems, e.g., [1] for LDA and [8] for deep neural nets. More recent
work [16, 20] have generalized the parameter server concept to support a wide range of ML algorithms.
There are counterparts to parameter server ideas in SMPFRAME: for instance, stale synchronous parallel
(SSP, [16, 7]) and SMPFRAME both control parameter staleness; the former through bookkeeping on the
deviation between workers, and the latter through pipeline depth. Another example is filtering [20], which

19

resembles parameter scheduling in SMPFRAME, but is primarily for alleviating synchronization costs, e.g.,
their KKT filter suppresses transmission of “unnecessary” gradients, while SMPFRAME goes a step further
and uses algorithm information to make update choices (not just synchronization choices).

None of the above systems directly address the issue of conflict updates, which leads to slow convergence
or even algorithmic failure. Within the parallel ML literature, dependency checking is either performed case-
by-case [12, 33]; or simply ignored [5, 23]. The first systematic approach was proposed by GraphLab [21, 13],
where ML computational dependencies are encoded by the user in a graph, so that the system may select
disjoint subgraphs to process in parallel — thus, graph-scheduled model parallel ML algorithms can be written
in GraphLab. Intriguing recent work, GraphX [14], combines these sophisticated GraphLab optimizations
with database-style data processing and runs on a BSP-style MapReduce framework, sometimes without
significant loss of performance.

Task prioritization (to exploit uneven convergence of iterative algorithms) was studied by PrIter [37] and
GraphLab [21]. The former, built on Hadoop [2], prioritizes data points that contribute most to convergence,
while GraphLab ties prioritization to the program’s graph representation. SMPFRAME prioritizes the most
promising model parameter values.

8 Conclusion

We developed SMPFRAME to improve the convergence speed of model-parallel ML at scale, achieving both
high progress per iteration (via dependency checking and prioritization through SMP programming), and
high iteration throughput (via SMPFRAME system optimizations such as pipelining and the ring topology).
Consequently, SMP programs running on SMPFRAME achieve a marked performance improvement over
recent, well-established baselines: to give two examples, SMP-LDA converges 10x faster than YahooLDA,
while SMP-Lasso converges 5x faster than randomly-scheduled Shotgun-Lasso.

There are some issues that we would like to address in future: chief amongst them is automatic
schedule() creation; ideally users should only have to implement update() and aggregate(),
while leaving scheduling to the system. Another issue is generalizability and programmability — what
other ML programs might benefit from SMP, and can we write them easily? Finally, using a different solver
algorithm (e.g. Alternating Least Squares or Cyclic Coordinate Descent instead of SGD) can sometimes
speed up an ML application; SMPFRAME supports such alternatives, though their study is beyond the scope
of this work.

20

References

[1] AHMED, A., ALY, M., GONZALEZ, J., NARAYANAMURTHY, S., AND SMOLA, A. J. Scalable
inference in latent variable models. In WSDM (2012).

[2] Apache Hadoop, http://hadoop.apache.org.

[3] Apache Mahout, http://mahout.apache.org.

[4] BLEI, D. M., NG, A. Y., AND JORDAN, M. I. Latent Dirichlet allocation. Journal of Machine
Learning Research 3 (2003), 993–1022.

[5] BRADLEY, J. K., KYROLA, A., BICKSON, D., AND GUESTRIN, C. Parallel coordinate descent for
l1-regularized loss minimization. In ICML (2011).

[6] CHU, C., KIM, S. K., LIN, Y.-A., YU, Y., BRADSKI, G., NG, A. Y., AND OLUKOTUN, K. Map-
reduce for machine learning on multicore. NIPS (2007).

[7] DAI, W., KUMAR, A., WEI, J., HO, Q., GIBSON, G. A., AND XING, E. P. High-performance
distributed ML at scale through parameter server consistency models. In AAAI (2015).

[8] DEAN, J., CORRADO, G., MONGA, R., CHEN, K., DEVIN, M., MAO, M., AURELIO RANZATO,
M., SENIOR, A., TUCKER, P., YANG, K., LE, Q. V., AND NG, A. Y. Large scale distributed deep
networks. In NIPS. 2012.

[9] DEAN, J., AND GHEMAWAT, S. MapReduce: simplified data processing on large clusters. Communica-
tions of the ACM 51, 1 (2008), 107–113.

[10] FRIEDMAN, J., HASTIE, T., HOFLING, H., AND TIBSHIRANI, R. Pathwise coordinate optimization.
Annals of Applied Statistics 1, 2 (2007), 302–332.

[11] FU, W. Penalized regressions: the bridge versus the lasso. Journal of Computational and Graphical
Statistics 7, 3 (1998), 397–416.

[12] GEMULLA, R., NIJKAMP, E., HAAS, P. J., AND SISMANIS, Y. Large-scale matrix factorization with
distributed stochastic gradient descent. In KDD (2011).

[13] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND GUESTRIN, C. Powergraph: Distributed
graph-parallel computation on natural graphs. In OSDI (2012), vol. 12, p. 2.

[14] GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D., FRANKLIN, M. J., AND STOICA, I.
Graphx: Graph processing in a distributed dataflow framework. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI) (2014).

[15] GRIFFITHS, T. L., AND STEYVERS, M. Finding scientific topics. Proceedings of National Academy of
Science 101 (2004), 5228–5235.

[16] HO, Q., CIPAR, J., CUI, H., LEE, S., KIM, J. K., GIBBONS, P. B., GIBSON, G. A., GANGER, G. R.,
AND XING, E. P. More effective distributed ML via a stale synchronous parallel parameter server. In
NIPS (2013).

[17] KARYPIS, G., AND KUMAR, V. Metis-unstructured graph partitioning and sparse matrix ordering
system, version 2.0.

[18] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classification with deep convolu-
tional neural networks. In NIPS (2012).

[19] LEE, S., KIM, J. K., ZHENG, X., HO, Q., GIBSON, G., AND XING, E. P. On model parallelism and
scheduling strategies for distributed machine learning. In NIPS. 2014.

[20] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J., AHMED, A., JOSIFOVSKI, V., LONG, J.,
SHEKITA, E. J., AND SU, B.-Y. Scaling distributed machine learning with the parameter server. In
OSDI (2014).

[21] LOW, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KYROLA, A., AND HELLERSTEIN, J. M.
Distributed graphlab: A framework for machine learning and data mining in the cloud. Proc. VLDB
Endow. 5, 8 (2012), 716–727.

[22] POWER, R., AND LI, J. Piccolo: Building fast, distributed programs with partitioned tables. In OSDI
(2010).

[23] RECHT, B., RE, C., WRIGHT, S., AND NIU, F. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In NIPS (2011).

[24] RICHTÁRIK, P., AND TAKÁČ, M. Parallel coordinate descent methods for big data optimization. arXiv
preprint arXiv:1212.0873 (2012).

[25] SCHERRER, C., HALAPPANAVAR, M., TEWARI, A., AND HAGLIN, D. Scaling up parallel coordinate
descent algorithms. In ICML (2012).

[26] SCHERRER, C., TEWARI, A., HALAPPANAVAR, M., AND HAGLIN, D. Feature clustering for
accelerating parallel coordinate descent. In NIPS. 2012.

[27] SPARKS, E. R., TALWALKAR, A., SMITH, V., KOTTALAM, J., PAN, X., GONZALEZ, J., FRANKLIN,
M. J., JORDAN, M. I., AND KRASKA, T. MLI: An API for distributed machine learning. In ICDM
(2013).

[28] TIBSHIRANI, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological) 58, 1 (1996), 267–288.

[29] TIERNEY, L. Markov chains for exploring posterior distributions. the Annals of Statistics (1994),
1701–1728.

[30] WANG, M., XIAO, T., LI, J., ZHANG, J., HONG, C., AND ZHANG, Z. Minerva: A scalable and highly
efficient training platform for deep learning.

[31] WANG, Y., ZHAO, X., SUN, Z., YAN, H., WANG, L., JIN, Z., WANG, L., GAO, Y., LAW, C., AND

ZENG, J. Peacock: Learning long-tail topic features for industrial applications. ACM Transactions on
Intelligent Systems and Technology 9, 4 (2014).

[32] YAO, L., MIMNO, D., AND MCCALLUM, A. Efficient methods for topic model inference on streaming
document collections. In KDD (2009).

[33] YUAN, J., GAO, F., HO, Q., DAI, W., WEI, J., ZHENG, X., XING, E. P., LIU, T.-Y., AND MA,
W.-Y. LightLDA: Big topic models on modest compute clusters. In WWW (2015).

[34] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J., MCCAULEY, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing. In NSDI (2012).

[35] ZAHARIA, M., DAS, T., LI, H., HUNTER, T., SHENKER, S., AND STOICA, I. Discretized streams:
Fault-tolerant streaming computation at scale. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2013), SOSP ’13, ACM, pp. 423–438.

[36] ZHANG, B., GAITERI, C., BODEA, L.-G., WANG, Z., MCELWEE, J., PODTELEZHNIKOV, A. A.,
ZHANG, C., XIE, T., TRAN, L., DOBRIN, R., ET AL. Integrated systems approach identifies genetic
nodes and networks in late-onset Alzheimer’s disease. Cell 153, 3 (2013), 707–720.

[37] ZHANG, Y., GAO, Q., GAO, L., AND WANG, C. Priter: A distributed framework for prioritized
iterative computations. In SOCC (2011).

[38] ZINKEVICH, M., WEIMER, M., LI, L., AND SMOLA, A. J. Parallelized stochastic gradient descent.
In NIPS (2010).

	Introduction
	Model Parallelism
	Properties of ML Algorithms
	Variations of Model-Parallelism
	Scheduled Model Parallelism for Programming

	The SMPFRAME System
	User-implemented SMP Instructions
	SMPFRAME Services
	Service Implementations (Engines)
	Static Engine
	Dynamic Engine

	Other Considerations

	SMP Implementations of ML Programs
	Parallel Coordinate Descent for Lasso
	Parallel Gibbs Sampling for Topic Modeling
	Other ML Programs

	SMP Theoretical Guarantees
	Evaluation
	Static SMP Evaluation
	Improvement in convergence times
	Benefits of Static Engine optimizations
	Comparison against other systems:

	Dynamic SMP Scheduling
	Improvement in convergence times
	Benefits of Dynamic Engine optimizations
	Comparisons against other systems

	Related work
	Conclusion

