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Abstract

Machine learning (ML) training is commonly parallelized
using data parallelism. A fundamental limitation of data par-
allelism is that con�icting (concurrent) parameter accesses
during ML training usually diminishes or even negates the
bene�ts provided by additional parallel compute resources.
Although it is possible to avoid con�icting parameter ac-
cesses by carefully scheduling the computation, existing
systems rely on programmer manual parallelization and it
remains a question when such parallelization is possible.

We presentOrion, a system that automatically parallelizes
serial imperative ML programs on distributed shared mem-
ory. The core of Orion is a static dependence analysis mech-
anism that determines when dependence-preserving paral-
lelization is e�ective and maps a loop computation to an
optimized distributed computation schedule. Our evaluation
shows that for a number of ML applications, Orion can paral-
lelize a serial program while preserving critical dependences
and thus achieve a signi�cantly faster convergence rate than
data-parallel programs and a matching convergence rate
and comparable computation throughput to state-of-the-art
manual parallelizations including model-parallel programs.

CCSConcepts •Computingmethodologies→Machine

learning; • Software and its engineering→Distributed

memory; Just-in-time compilers; Source code generation;
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1 Introduction

Machine learning (ML) techniques have been successfully
applied to a wide range of application domains including rec-
ommender systems [27], image classi�cation [21, 28], topic
modeling [8], just to name a few. The core of ML is a sta-
tistical model which is a set of parametric functions that
serve inference queries, such as mapping an image to a label.
ML training �nds model parameter values that minimize (or
maximize) a given objective function so the model best �ts
the observed data samples (i.e., the training dataset) based on
certain criteria. Commonly used training algorithms repeat-
edly process the observed data samples, until the objective
function stops improving, i.e., the algorithm has converged.
Given a training dataset D = {Di |1 ≤ i ≤ N } where Di

denotes a mini-batch of one or multiple data samples, a serial
training algorithm computes an update function ∆ (At ,Di )

for each mini-batch Di using the current parameter values
At and updates the parameters before processing the next
mini-batch. Training algorithms typically take many passes
(i.e. iterations) over the training dataset before they converge.

1.1 Data Parallelism

ML training is commonly parallelized using data parallelism.
Under data parallelism,K randomdatamini-batches {Di∗K+k−1

|1 ≤ k ≤ K } are distributed toK workers at the i-th time step.
Eachworker computes the update functionuk = ∆ (At ,Di∗K+k−1)

in parallel using the current parameter values At and its as-
signed mini-batchDi∗K+k−1. The master copy of parameters
is updated by aggregating re�nements {uk |1 ≤ k ≤ K }

from all workers. The updated parameter values are then
distributed to workers before they enter the next time step.
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Figure 1.Data parallelism vs. dependence-aware parallelism:
(a) the read-write (R/W) sets of data mini-batches D1 to D4;
(b) in data parallelism, mini-batches are randomly assigned
to workers, leading to con�icting parameter accesses; (c) in
dependence-aware parallelization (note that D4 instead of
D2 is scheduled to run in parallel with D1), mini-batches are
carefully scheduled to avoid con�icting parameter accesses.

A key problem of data parallelism is that it is not equiva-
lent to serial execution because a worker does not observe
the other concurrent workers’ parameter updates produced
at the same time step. Compared to a serial execution, under
data parallelism, a worker computes ∆ using a stale version
of model parameter values, violating data dependence.

Non-serializable execution often leads to slower algorithm
convergence and lower model quality, therefore data paral-
lelism is not always the best parallelization method. We can
understand the e�ect of such non-serializable paralleliza-
tion from two perspectives. First, for stochastic gradient
descent (SGD), synchronous data parallelism overK workers
is equivalent to sequential SGD using a mini-batch size of K
times larger. Mini-batch size is a SGD hyperparameter and
a mini-batch size that is too large often requires more data
passes to reach the same model quality and may also lead
to lower model performance on unseen data. Previous work
reported this e�ect for both traditional ML models [26] and
neural networks [23, 25]. Second, generally speaking, non-
serializable parallelization is an erroneous execution of the
sequential algorithm, where parameter values contain error
due to con�icting accesses. Intuitively, the error’s magnitude
increases when more workers are used and decreases when
workers synchronize more frequently. Thanks to ML algo-
rithms’ tolerance to bounded error [22, 39], the erroneous
execution may still produce an acceptable model but the
algorithm’s convergence rate and model quality degrades as
the the error increases [22, 26, 45]. Large mini-batch size or
synchronization once per mulitple mini-batches is common
in distributed training in order to ammortize synchroniza-
tion overhead. This is especially common for traditional ML
models where per-data-sample computation is light.

1.2 Dependence-aware Parallelization

In many ML applications, ∆ reads only a subset of the model
parameters and generates re�nements to a (possibly di�er-
ent) subset of parameters. If each worker is assigned with a
mini-batchD ′

k
such that the read-write sets of all ∆

(

At ,D
′
k

)

computations are disjoint, then the parallel execution is se-
rializable. That is, the parallel execution produces the same

result as a serial exeuction following some sequential order-
ing of the mini-batches. We refer to this style of paralleliza-
tion that preserves data dependence among mini-batches as
dependence-aware parallelization. Fig. 1 compares data paral-
lelism with dependence-aware parallelism. Note that under
the dependence-aware parallelization shown, the parallel ex-
ecution is equivalent to sequentially processing mini-batches
D1, D4, D2, and D3 (serializable), while under the shown
data-parallelism, execution is not serializable.
STRADS [26] has exploited this property and demon-

strates that training algorithms converge considerably faster
compared to data parallelism when computation is sched-
uled to avoid con�icting parameter accesses (also referred to
as model parallelism). However, STRADS requires program-
mers to manually parallelize the training algorithm, which
demands signi�cant programmer e�ort and is error-prone.
In contrast, our system Orion automates dependence-aware
parallelization of serial imperative ML programs for e�-
cient distributed execution. Orion’s parallelization strategies
are similar to STRADS but our focus is on automating de-
pendence analysis and dependence-aware parallelization for
serial imperative ML programs.
While imperative programming with a shared memory

abstraction is highly expressive and natural for program-
mers, parallelization is more di�cult compared to functional
programming as dependency has to be inferred from mem-
ory accesses. Orion employs static dependence analysis and
parallelization techniques from automatic parallelizing com-
pilers and takes advantage of ML-speci�c properties to relax
program semantics and thus improve parallelism. Sematic
relaxations include programmer-controlled dependence vio-
lation, which enables data parallelism with few code changes.
Moreover, Orion minimizes remote random access overhead
via automated data partitioning and bulk prefetching based
on the memory access pattern discovered in static analysis
to achieve e�cient distributed execution.
Experiments on a number of ML applications con�rm

that preserving data dependence can signi�cantly improve
ML training’s convergence progress and our proposed tech-
niques are e�ective. We also compare Orion with various
o�ine ML training systems [5, 26, 45] and show that Orion
achieves much better or matching convergence progress and
at least comparable computation throughput, even when
compared with state-of-the-art manual parallelization, while
substantially reducing programmer e�ort.
This paper makes three major contributions. First, we

present a mechanism to automatically parallelize serial im-
perative ML programs for distributed training, with respect
to data dependence. Our mechanism employs static depen-
dence analysis and parallelization techniques from automatic
parallelizing compilers, enhanced with ML-speci�c seman-
tic relaxations. Second, we describe Orion, an end-to-end
distributed system that e�ciently implements the paralleliza-
tion mechanism. Orion also features a new programming
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abstraction that uni�es dependence-aware parallelization
and data parallelism and supports a wide range of ML appli-
cations. Third, we present an extensive experimental evalua-
tion that demonstrates Orion parallelization’s e�ectiveness
and competitive performance against other state-of-the-art
o�ine ML training systems.

2 Motivation

In this section, we motivate the need for automation by
discussing what dependence-aware parallelization of a real
ML application entails, for example, when implementing it
on STRADS [26], a state-of-the-art scheduler framework.

2.1 Matrix Factorization using SGD

Matrix factorization (MF) is a popular model used in rec-
ommender systems [27]. Given a large (and sparse)m × n
matrixV and a small rank r , the goal of MF is to �nd anm×r
matrixW and an r × n matrix H such that V ≈WH , where
the quality of approximation is de�ned by an application-
dependent loss function L. A commonly used loss function
in recommender systems is nonzero squared loss LNZSL =
∑

i,j :Vi j,0 (Vi j − [WH ]i j )2.
MF is often solved as an optimization problem using Sto-

chastic Gradient Descent (SGD) that minimizes the loss
function (i.e., the objective function). Note that LNZSL can
be decomposed into the sum of local losses, i.e., LNZSL =
∑

i,j :Vi j,0 l (Vi j ,Wi∗,H∗j ), where l (Vi j ,Wi∗,H∗j ) = (Vi j−Wi∗H∗j )
2.

We denote a subset of the nonzero entries in V as training
set Z . With a step size ϵ , an SGD algorithm for MF can
be described in Alg. 1 1([19, 27]). Alg. 1 describes an ab-
stract serial algorithm that is not bound to a particular sys-
tem. Convergence of the algorithm is measured by a train-
ing loss de�ned over the training set Z ⊆ V , i.e., Ltr =
∑

i,j :Zi,j ∈Z l (Zi j ,Wi∗,H∗j )
2.

Algorithm 1: SGD For Matrix Factorization

Input : the training set Z and rank r
Output : factor matricesW and H
Randomly InitializeW and H

while not converged do

for Zi j ∈ Z do

W ′i∗ ←Wi∗ −Wi∗ϵ
∂

∂Wi∗
l (Zi j ,Wi∗,H∗j )

H∗j ← H∗j − H∗jϵ
∂

∂H∗j
l (Zi j ,Wi∗,H∗j )

Wi∗ ←W ′i∗

2.2 Parallelizing SGD Matrix Factorization

Similar to other iterative convergent ML algorithms, the
heavy computation in SGD MF resides in the for-loop that
iterates over the training set Z , which is desired to be par-
allelized. Implementations of SGD MF on parameter server
1Practical applications may employ regularization. Here we omit regular-
ization for simplicity since it does not a�ect parallelization.
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(c) Time step 3
Figure 2. Strati�ed SGD taking a full pass over Z : Z is par-
titioned into 3 strata, which each corresponds to a unique
time step. Each stratum consists of 3 range-partitioned blocks.
While strata are processed sequentially, blocks within a stra-
tum can be processed in parallel without violating any de-
pendence.

systems [11, 45] and graph processing systems [10, 20, 49]
are often parallelized using data parallelism, where the train-
ing set Z is randomly partitioned and assigned to workers.
Random partitioning leads to con�icting accesses onW or H
and violating data dependence, e.g., if data samples Zip and
Ziq , both reading and writingWi∗, are assigned to di�erent
workers and processed in the same time step.

We may observe two data samples Zi j and Zi′j′ , ∀i, j,i ′, j ′ :
i , i ′, j , j ′, are independent. That is, processing Zi j and
Zi′j′ does not read or write to the same entries inW or H .
We can devise a serializable parallelization by processing
only independent data samples in parallel. Although di�er-
ent orderings of data samples may indeed lead to di�erent
numerical values ofW and H , serializability is often su�-
cient for matching sequential execution’s convergence rate
and model quality. Based on this observations, Gemulla et
al. [19] proposed a serializable, parallel SGD algorithm called
strati�ed SGD, which partitions the training dataset Z (i.e.,
the iteration space) into a sequence of strata. The strata
are processed sequentially but blocks within a stratum are
processed in parallel. A 3 × 3 partitioned matrix Z and the
corresponding strati�ed SGD execution is depicted in Fig 2.

Generally, with manual parallelization, programmers iden-
tify the data dependences among loop iterations based on
how they access shared memory and devise a computation
schedule. A computation schedule breaks down the itera-
tion space (e.g., Z ) into partitions, which conceptually form
a dependency graph. An ideal partitioning provides su�-
cient parallelism (i.e., many partitions can be executed in
parallel) while amortizing synchronization overhead (i.e.,
partitions are large enough). The computation schedule also
assigns partitions to workers. Dependencies among itera-
tion space partitions incur synchronization among workers
and network communication. Partition assignment a�ects
synchronization frequency and communication volume.
STRADS 2 [26] is a scheduler framework for traditional

model-parallel ML programs, whose applications, such as
SGD MF and topic modeling (LDA) achieve state-of-the-art
convergence rate. Compared to Orion, STRADS performs

2STRADS is open-sourced here: https://github.com/sailing-pmls/strads (last
visited: 1/10/2019). SGD MF is not part of the open-sourced repository and
was obtained from STRADS authors.
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DistArrays, parallelization assigns iterations to workers and
adds synchronization when it is needed for preserving data
dependence among loop iterations (i.e., loop-carried depen-
dence). Iterations that have dependences between them be-
cause of shared accesses on DistArrays 3 are executed one
after another in the correct order. Thus the parallel execution
is equivalent to a serial execution of the loop (serializable).

Tools like OpenMP [13] and MATLAB parfor [4] also pro-
vide parallel for-loop primitives, provided that the program-
mer asserts the for-loops have no dependency among its
iterations. But Orion’s @parallel_for macro can be ap-
plied to loops that have dependences among iterations, and
preserves loop-carried dependences. Moreover, Orion’s par-
allel for-loop executes in a distributed cluster while existing
tools only apply to single machines.
Let P = {(p1,p2, ...,pn ) |∀i ∈ [1,n] : 0 ≤ pi < si } repre-

sent the iteration space of a n-dimensional DistArray, where
(p1,p2, ...,pn ) represents the index vector of an iteration, and
the size of the iteration space’s i-th dimension is si . For any
two iterations ~p = (p1,p2, ...,pn ) and ~p ′ = (p ′1,p

′
2, ...,p

′
n ),

Orion can parallelize the for-loop while preserving all loop-
carried dependences if one of the following is true:

1. 1D Parallelization: There exists a dimension i such
that when pi , p ′i , there doesn’t exist any loop-carried

dependence between iteration ~p and iteration ~p ′. Note
that this also includes the case when there’s no depen-
dence between any iterations.

2. 2D Parallelization: There exist two dimensions i and
j such that when pi , p ′i and pj , p ′j , there doesn’t
exist any loop-carried dependence between iteration
~p and iteration ~p ′.

3. 2D Parallelization w/ Unimodular Transforma-

tion: When neither 1D nor 2D parallelization is appli-
cable, in some cases (see Sec. 4.3), unimodular transfor-
mations [46] may be applied to transform the iteration
space to enable 2D parallelization.

Applicability. Static parallelization requires the size of the
iteration space to be constant and known at compile time.
ML training applications usually iterate over a �xed input
data set or model parameters and Orion JIT compiles a for-
loop after the iteration space DistArray is loaded or created.
Orion’s dependence-aware parallelization strategies apply
to for-loops when the loop body accesses only a subset of
the shared memory addresses and the addresses can be fully
determined given the loop index variables, i.e., the iteration-
space DistArray index. More speci�cally, our current imple-
mentation accurately captures dependence when DistArray
subscripts contain at most one loop index variable plus or mi-
nus a constant at each position. A more complex subscript is
conservatively regarded as that it may take any value within

3They both access the same DistArray element and at least one of the
accesses is a write.

the DistArray’s bounds. The loop body may inherit any dri-
ver program variable. The inherited variables are assumed to
be read-only 4 during a single loop execution but their values
could change between di�erent executions of the same loop.
ML applications commonly represent data records as a

mapping from a n-tuple key to a value, i.e., (k_1, k_2,
..., k_n) → value, where the key uniquely identi�es

the data record. Thus data records may be organized in a
n-dimensional tensor, indexed by the key tuple.When param-
eter accesses are also indexed by the key tuple, paralleliza-
tion via static dependence analysis is possible. For example,
the popular bag-of-words model represents text as a set of
mappings from a word to its number of occurrences. ML
applications on text data often have parameters associated
with each word, such as the word topic count vector in topic
modeling with Latent Dirichlet Allocation or the word em-
bedding vector, which are accessed based on word ID.
Deep neural network (DNN) training is an increasingly

important class of ML workloads. The core computation of a
typical DNN training program is a loop that iterates over data
mini-batches where each iteration performs a forward pass,
a backward pass and updates the neural network weights.
DNNs commonly read and update all weights in each itera-
tion, therefore serializable parallelization over mini-batches
is not applicable. DNN training is most commonly paral-
lelized with data parallelism, which can be achieved in Orion
by permitting dependence violation as discussed in Sec. 3.3.

3.3 Distributed Array Bu�ers

Static dependence analysis avoids materializing a huge de-
pendence graph whose size is propotional to the training
dataset. Such a graph would be expensive to store and ana-
lyze. However, static dependence analysis requires the Dis-
tArray subscripts to be determined (as an expression of loop
index variables and constants) statically to accurately cap-
ture the dependence among loop iterations.

First, some ML models, such as DNNs, perform dense pa-
rameter accesses. Second, while parameter accesses might
be sparse in some models, the DistArray subscripts may
depend on runtime values (e.g., e_val in Fig. 4). For exam-
ple, in sparse logistic regression, processing a data sample
reads and updates the weights corresponding to the sample’s
nonzero features. In this case, traditional dependence analy-
sis conservatively marks all DistArray positions as accessed,
leading to false dependences among iterations and impeding
parallelization. For these models, serializable parallelization
can be severely limited in computation throughput or simply
inapplicable, therefore such ML training applications are of-
ten parallelized with dependence violations. The algorithm
converges better (closer to serial execution) when there are
fewer collisions and when writes make small changes. In

4The loop body may still write to those variables but the new value is visible
only to the worker that performs the write.
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order to support these applications, Orion application pro-
grammers may selectively exempt certain (or all) writes from
dependence analysis using Distributed Array Bu�ers (or Dis-
tArray Bu�ers). By applying all writes to DistArray Bu�ers
instead of DistArrays, an Orion application e�ectively re-
sorts to data parallelism.
A DistArray Bu�er is a write-back bu�er of a DistArray,

and provides the same API for point and set queries. A Dis-
tArray Bu�er maintains a bu�er instance on each worker,
which is usually initialized empty. The application program
may apply a subset of DistArray writes to a corresponding
DistArray Bu�er and exempt those writes from dependence
analysis, making it possible to parallelize a for-loop that can’t
be parallelized otherwise.

Typically the bu�eredwrites are applied to the correspond-
ing DistArray after the worker executes multiple for-loop
iterations. The application program may optionally bound
how long the writes can be bu�ered. Orion supports an
element-wise user-de�ned function (UDF) for applying each
DistArray Bu�er’s bu�ered writes. This UDF is executed
atomically on each DistArray element and thus supports
atomic read-modify-writes. The UDF for applying bu�ered
writes allows applications to de�ne sophisticated custom
logic for applying updates, and makes it easy to implement
various adaptive gradient algorithms [15, 34, 44].

3.4 Putting Everything Together

Fig. 5 shows a Julia SGD MF program parallelized by Orion.
The serial program has less than 90 lines of Julia code and
can be parallelized by changing only a few lines. The par-
allel program creates DistArrays instead of local matrices
for training data (ratings) and parameters (W and H) by
loading from text �les (text_file) or random initialization
(randomn). DistArrays can be manipulated with set opera-
tions, like map (e.g., line #9). The for-loops that iterate over
the ratings matrix entries (e.g., line #14) are parallelized
by applying the @parallel_for macro.

The parallel for-loop’s loop body may read any driver pro-
gram variable that is visible to the loop (e.g., step_size)
and the driver program may access the result of a parallel
for-loop execution by reading from DistArrays or by using
an accumulator (e.g., err). When an accumulator variable
is created (e.g., line #12), an instance of this variable is cre-
ated on each Orion worker, and the state of each worker’s
accumulators are retained across for-loop executions. The
driver program may aggregate the value of all workers’ acc-
mulators using a user-de�ned commutative and associative
operator (e.g. line #25).

4 Static Parallelization

Given Orion’s expressive programming model, in this sec-
tion, we discuss how for-loops are parallelized and scheduled,
along with various novel techniques to improve distributed
execution throughput without programmer e�ort.

1 step_size = 0.01

2 # Omitted variable and function definitions

3 Orion.@dist_array ratings =

4 Orion.text_file(data_path , parse_line)

5 Orion.materialize(ratings)

6 dim_x, dim_y = size(ratings)

7 Orion.@dist_array W = Orion.randn(K, dim_x)

8 Orion.@dist_array W =

9 Orion.map(W, init_param , map_values=true)

10 Orion.materialize(W)

11 # Omitted: create DistArray H

12 Orion.@accumulator err = Float32(0.0)

13 for iter = 1:num_iterations

14 Orion.@parallel_for for (key, rv) in ratings

15 W_row = @view W[:, key[1]]

16 H_row = @view H[:, key[2]]

17 # Omitted computing W_grad and H_grad

18 W[:, key[1]] .= W_row - W_grad * step_size

19 H[:, key[2]] .= H_row - H_grad * step_size

20 end

21 Orion.@parallel_for for (key, rv) in ratings

22 # Omitted: compute the predicted rating

23 err += abs2(rv - pred)

24 end

25 err = Orion.get_aggregated_value(:err, :+)

26 Orion.reset_accumulator(:err)

27 end

Figure 5. SGDMatrix Factorization Parallelized using Orion

4.1 Parallelization Overview

Orion’s @parallel_for primitive is implemented as a Julia
macro, which is expanded when the for-loop is compiled.
A Julia macro is a function that is invoked during compila-
tion (as opposed to at runtime), which takes in an abstract
syntax tree (AST) and produces a new AST to be compiled
by the Julia compiler. Orion’s @parallel_for macro stati-

cally analyzes the for-loop’s AST to compute dependences
among loop iterations based on the loop body’s access pat-
tern to DistArrays. These dependences are represented as
dependence vectors.

Based on the dependence pattern, Orion decides whether
the for-loop is 1D or 2D parallelized and whether a unimod-
ular transformation is needed (see Sec. 4.3). During macro
expansion, Orion generates functions that perform the loop
body’s computation and de�nes those functions in the dis-
tributed workers. According to the parallelization strategy,
the generated new AST, that executes on driver, invokes
a static computation schedule with the corresponding loop
body functions. The generated AST also contains code that 1)
repartitions relevant DistArrays to minimize remote access
overhead; and 2) captures and broadcasts driver program
variables that are inherited in the loop body’s scope. Note
that even though the parallel for-loop may itself be inside
of another for-loop and executed multiple times, the macro
expansion and compilation is executed only once. A global
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for (key, rv) in ratings

W_row = @view W[:, key[1]]

H_row = @view H[:, key[2]]

pred = dot(W_row, H_row)

diff = rv - pred

W_grad .= -2 * diff * H_row

H_grad .= -2 * diff * W_row

W[:, key[1]] .= W_row - W_grad * step_size

H[:, key[2]] .= H_row - H_grad * step_size

end

Input: a for-loop to parallelize

Iteration space: ratings
Loop index vector: key
Iteration ordering: unordered
DistArray reads: W[:, key[1]], H[:, key[2]]
DistArray writes: W[:, key[1]], H[:, key[2]]
Inherited variables: step_size, W_grad, H_grad

Loop information

Statically analyze
the loop code

∀ iterations ~p = (p1, p2), ~p′ = (p′1, p
′
2) and

~p′ > ~p , ~p′ depends on ~p if
(:, p1) == (:, p′1) or (:, p2) == (:, p′2), i.e.,
{

:=:
p1 = p

′
1

or

{

:=:
p2 = p

′
2

. The dependence

vecotrs are thus (0,∞) and (∞, 0).

Compute dependence vectors (Sec. 4.2)

Since ∀ dependence vector ~d = (d1, d2), d1 =
0 or d2 = 0, unordered 2D parallelization is
applicable. Partition ratings by its 1st and
2nd dimension.

Partition & schedule the iteration space (Sec. 4.3)

W and H are range partitioned by its 2nd di-
mension and allocated among executors. The
smaller one of W and H is rotated among
executors.

Partition accessed DistArrays (Sec. 4.4)

Compilation process:

Statically extract loop
information

Compute dependence
vectors

Determine the iter-
ation space’s parti-
tioning scheme and
computation schedule

Determine the ac-
cessed DistArrays’s
partitioning scheme

Code generation: Dis-
tArray partitioning,
driver variable broad-
cast, loop body func-
tions, parallel for-
loop execution, etc.

Figure 6. Overview of Orion’s static parallelization process using SGD MF as an example.

statement in a Julia program is just-in-time compiled and ex-
ecuted before the following global statements are compiled,
thus the compilation of a statement may make use of previ-
ous statements’ runtime execution results, such as DistArray
sizes. Fig. 6 presents an overview of the JIT compilation
process using SGD MF as an example.

4.2 Computing Dependence Vectors

A lexicographically positive vector5 ~d denotes a dependence
vector of an n-loop nest if and only if there exist two depen-

dent iterations ~p1 and ~p2 such that ~p1 = ~p2 + ~d . In�nity∞ (or
positive/negative in�nity, +∞/−∞) in dependence vectors
means that the dependence vector may take any (positive or
negative) integer value at that position. In Fig. 6, dependence
vector (0,∞) means that any iteration (p ′1,p

′
2) depends on

iteration (p1,p2) as long asp ′1−p1 == 0. A dependence vector
implies a dependence pattern shared by all iterations, yield-
ing a concise dependence representation. However, depen-
dence vectors may conservatively represent a dependence
that exists for only certain iterations as a dependence for all
iterations, unnecessarily limiting parallelism.
Previous work discussed how to compute dependence

vectors [24, 33]. An iteration depends on another (earlier)
iteration if and only if they both access the same memory
location and at least one of the accesses is a write. In gen-
eral, computing dependence vectors requires performing a
dependence test on the subscripts of each pair of DistArray
references from two di�erent iterations, and either prove
independence or produce a dependence vector for the loop
indices occuring in the scripts [24]. Since Orion currently

5A vector ~d = (d1, d2, ..., dn ) is lexicographically positive if ∃i : di > 0
and ∀j < i : dj ≥ 0

supports accurate dependence capturing only for subscripts
that contain at most one loop index variable plus or minus
a constant at each position, we can simplify the algorithm.
We represent each subscript as a 3-tuple (dim_idx, const
, stype), representing the loop index variable’s dimension
index in the iteration space, the constant and the type of
the subscript, i.e., whether it is a single value or a range and
whether the subscript is supported for dependence analy-
sis. Alg. 2 presents Orion’s core procedure for computing
dependence vectors. Our algorithm produces at most one
dependence vector from each pair of static DistArray ref-
erences. Two DistArray references are independent when
they are both read, and write-write dependence may be omit-
ted when the loop iterations can be executed in any order
(unordered_loop). After skipping such reference pairs, we
initialize a dependence vector whose elements are in�nity,
meaning that any two iterations may be dependent due to
these two DistArray references. We then re�ne this conser-
vative dependence by checking each subscript position. We
declare the two references are independent if their subscripts
will never match. In the end, we add the dependence vector
to the set of dependence vectors after making sure it is lexi-
cographically positive. The algorithm has a time complexity
of O (N 2 × D) for each referenced DistArray where N is the
number of static DistArray references and D is the number
of dimensions of the referenced DistArray.

4.3 Parallelization and Scheduling

Orion partitions the iteration space based on dependence
vectors so that di�erent partitions can be executed in par-
allel. Each worker is assigned a number of iteration space
partitions and synchronizes at most once per partition.
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(a) 1D parallelization.
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(b) 2D parallelization.
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(c) Unordered 2D parallelization.

in_parallel for j = 0:(N-1)

for iter in partition[j]

execute_iteration(iter)

synchronize()

(d) 1D computation schedule.

for time_step = 0:(M + N - 2)

in_parallel for j = 0:(N-1)

i = time_step - j

if i >= 0 && i < N

for iter in partition[j, i]

execute_iteration(iter)

synchronize()

(e) 2D computation schedule.

for time_step = 0:(M-1)

in_parallel for j = 0:(N-1)

i = (j + time_step) % N

for iter in partition[j, i]

execute_iteration(iter)

synchronize()

(f) Unordered 2D computation schedule.

Figure 7. Parallelization of a 4 × 4 iteration space. Ellipses denote loop iterations and edges denote dependence between
iterations. Note that representing the dependence in (a) requires only 1 depenence vector, namely (0,1), and representing
the dependence in (b) and (c) requires only 2 dependence vectors, namely (1,0) and (0,1). Iterations of the same color are
executed in parallel. Rectangles denote iteration space partitions. Workers are denoted as w0, w1, etc. M and N denote the
number of unique time-dimension (vertical) and space-dimension (horizontal) indices. Although it’s not shown here, typically
each worker is assigned with multiple space-dimension indices for better load balancing and multiple time-dimension indices
for pipelined parallelism (Sec. 4.4).

Given the set of dependence vectors D, if there exists a

dimension i such that ∀~d = (d1,d2, ...,dn ) ∈ D,di = 0, then
any two iterations ~p = (p1,p2, ...,pn ) and ~p ′ = (p ′1,p

′
2, ...,p

′
n )

are independent as long as pi , p ′i . Partitioning the iteration
space by dimension i ensures that any two iterations ~p and
~p ′ from two di�erent partitions are independent. Thus the
loop can be scheduled by assigning di�erent iteration space
partitions to di�erent workers as there’s no data dependence
across partitions. This is referred to as 1-dimensional (i.e.

1D) parallelization. Note that all such dimensions i that
satisfy the above condition are candidate partitioning dimen-
sions. Fig. 7a shows an example that applies 1D paralleliza-
tion to a 2-level loop nest and partitions the 2D iteration
space by dimension j. The corresponding compute schedule
is shown in Fig. 7d. The workers synchronize with each other
after executing all iterations in its assigned partition.

If there exist two dimensions i and j such that ∀~d =
(d1,d2, ...,dn ) ∈ D,di = 0,dj = 0, then any two iterations
~p = (p1,p2, ...,pn ) and ~p ′ = (p ′1,p

′
2, ...,p

′
n ) are independent

as long as pi , p ′i and pj , p ′j . In this case, the loop can
be parallelized by partitioning the iteration space by dimen-
sions i and j, which we refer to as 2-dimensional (i.e. 2D)

parallelization (see Fig. 7b). The partitions are assigned to
workers based on one of the dimensions, e.g. j in this case,

which we refer to as the space dimension and the other dimen-
sion is referred to as the time dimension. The computation
is executed in a sequence of global time steps. Within each
time step, multiple workers may execute a local partition
in parallel, where the partition’s time dimension index is
derived from the time step number to ensure that all parallel
partitions’ indices di�er in both space and time dimensions.
We observe that a partition depends on only two other itera-
tion space partitions from the previous time step and one of
them belongs to the same worker. Thus a worker waits for
a signal from a single predecessor worker to begin the next
time step instead of a global synchronization barrier.
Relaxing the ordering constraints. Traditional automatic
parallelizing compilers preserve the lexicographical ordering
of loop iterations and thus dependences indicate the execu-
tion ordering of dependent loop iterations, such as shown
in Fig. 7b. With the ordering constraints, simultaneous ex-
ecution of two iterations might not be possible even when
they do not access the same memory location. For example,
in Fig. 7b, even though they do not access the same memory
location, iteration (3,1) cannot be executed in parallel with
(0,0) due to the ordering constraints enforced by (3,0).
Many ML algorithms such as Gibbs sampling do not re-

quire a particular ordering in which data samples or mini-
batches are processed. Other algorithms such as stochastic
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Algorithm 2: Computing dependence vectors

input :refs - the list of references on DistArray D
output :dvecs - the set of dependence vectors due to

references to D
dvecs = EmptySet();

for each unique pair ref_a and ref_b in refs do
⊲ Skip checking dependence if both references are read or
if the loop is unordered and both references are write.
if (ref_a.is_read and ref_b.is_read) or

(unordered_loop and ref_a.is_write and

ref_b.is_write) then

continue;

dvec = Vec(iter_space.num_dims, inf);

independent = false;

for dim ∈ D.dims do

sub_a = ref_a.subs[dim];

sub_b = ref_b.subs[dim];
if sub_a and sub_b contains a single loop index

variable then

if sub_a.dim_idx == sub_b.dim_idx then

dist = sub_a.const - sub_b.const;
if dvec[sub_a.dim_idx] != inf and

dvec[sub_a.dim_idx] != dist then

independent = true;
break;

dvec[sub_a.dim_idx] = dist;

else

continue;

else

Test dependence for other subscript types;

if not independent then

correct dvec for lexicographical positiveness;

dvecs = union(dvecs, {dvec});

gradient descent usually randomly shu�e the dataset before
or during training. For such ML algorithms, even though
di�erent iteration ordering may result in di�erent numerical
values and thus a�ect the convergence process, enforcing a
particular ordering, such as the lexicographical ordering, is
not necessarily bene�cial but sacri�ces parallelism. There-
fore, Orion’s parallelization by default ensures only serial-
izability but not the lexicogrpahical ordering. Applications
may enforce ordering by using the ordered argument in
@parallel_for. Relaxing the ordering constraints allows
Orion to reorder iterations to maximize parallelism: Orion
schedules workers to start from di�erent indices along the
time dimension to fully utilize all workers (Fig. 7c and Fig. 7f).
Unimodular transformation. When neither 1D or 2D par-
allelization can be directly applied, Orion may apply unimod-
ular transformations on the iteration space, when the depen-
dence vectors contain only numbers or positive in�nity, to en-
able 2D parallelization. Parallelizing for-loops using unimod-
ular transformations was introduced by Wolf et. al [46]. The
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Figure 8. Pipelined computation of a 2D parallelized
unordered loop on 4 workers. An ellipse represents a
worker executing a partition (space_partition_id,
time_partition_id). The workers access di�erent par-
titions of DistArray D at di�erent time steps. Partitions of
D that are being used by workers are lime-colored and the
partitions that are being communicated are pink-colored. At
the beginning of the loop execution, each worker is assigned
with 2 time partition indices and thus 2 partitions of Dis-
tArray D. Upon �nishing the �rst time step, a worker sends
out the updated D partition and immediately begins the next
time step using its locally available D partition.

set of dependence vectors after unimodular transformation

denoted as D ′ satisfy that ∀~d = (d1,d2, ...,dn ) ∈ D
′ : d1 > 0

(all dependences are carried by the outermost loop). With
the transformed loop nest denoted as L1,L2, ...Ln , there’s no
dependence between iterations of the innermost loop nest
L2,L3, ...Ln in the same outermost loop L1. Thus the for-loop
can be parallelized by partitioning the transformed itera-
tion space by the outermost dimension and any combination
of the inner loop dimensions. By reversing the transforma-
tion, we can derive a 2D partitioning of the original iteration
space.

As multiple candidate partitioning dimensions may exist,
Orion uses a simple heuristic to choose the partitioning di-
mension(s) among candidates that minimizes the number
of DistArray elements needed to be communicated among
Orion workers during loop execution. This heuristic can be
overridden by the application program.
Dealing with Skewed Data Distribution. As the paral-
lel for-loop’s iteration space is often sparse and the data
distribution is often skewed, (for example, when iterating
over a skewed dataset) partitioning the iteration space into
equal-sized partitions results in imbalanced workload among
workers. Orion DistArrays support a randomize operation
that randomizes a DistArray along one or multiple dimen-
sions to achieve a more uniform data distribution. Further
more, Orion computes a histogram along each partitioning
dimension to approximate the data distribution, which is
used to generate a more balanaced partitioning.
Fault tolerance. An Orion driver program can checkpoint
a DistArray by writing it to disk, which is eagerly evaluated.
For ML training, a common approach is to checkpoint the
parameter DistArrays every N data passes.
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4.4 Reducing Remote Random Access Overhead

Generally, DistArray random access can be served by a pa-
rameter server. However, in this case, each random access
potentially result in a remote access over the inter-machine
network. The overhead of network communication is signif-
icant even when Orion workers cache DistArray values and
bu�er DistArray writes.
Locality and pipelining. Usually di�erent workers read
and write to disjoint subsets of elements of a DistArray. If
the workers’ read/write sets are disjoint range partitions of
a DistArray, the DistArray may be range partitioned among
workers so random access to it can be served locally.

Under 2D parallelization, the DistArray range partition
accessed by a worker may be di�erent at di�erent time
steps and a worker has to wait to receive a DistArray par-
tition from its predecessor before starting a new time step.
When the ordering constraints can be relaxed (Fig. 7f), Orion
avoids the workers’ idle waiting time by creating multiple
time-dimension partition indices per worker and letting the
worker proceed to a locally available time-dimension par-
tition index while waiting for data from its predecessor, as
illustrated in Fig. 8.
Bulk prefetching. If the same elements of a DistArray are
simultaneously accessed by di�erent workers, for example,
when it is updated by a DistArray Bu�er, or the disjoint sets
of elements cannot be obtained from e�ciently partitioning
the DistArray, the DistArray is served by a number of server
processes, similar to a Parameter Server. In this case, in or-
der to minimize the random remote access overhead, Orion
prefetches DistArray reads in bulk.

In order to accurately determine which values to prefetch,
existing Parameter Server systems rely on programmers to
implement a “virtual iteration” besides the actual computa-
tion to provide the parameter access pattern [12] or to man-
ually implement prefetching and cache management [29].
Orion automates bulk prefetching by synthesizing a func-
tion that generates the list of DistArray element indices that
are read during the loop body computation. The generated
function executes loop body statements that read from non-
locally allocated DistArrays, but instead of reading DistArray
elements and performing computation, those statements are
transformed to only record the DistArray subscript value.
Since the DistArray subscripts may depend on runtime val-
ues, such as loop index variable and driver program variables
(which are captured and broadcasted to workers as read-only
variables), the function also executes statements that the
DistArray subscripts have a data or control dependence on
with proper control �ow and ordering. If a DistArray sub-
script depends on values read from DistArrays, computing
it may incur an expensive remote access. Therefore, Dis-
tArray subscripts that depend on other DistArray values
are not recorded for bulk prefetching. The code generation
algorithm is in spirit similar to dead code elimination.

5 O�line ML Training Systems

In this section, we review and compare existing o�ine ML
training systems (Table 1) with Orion, with an emphasis on
their programming model and parallelization strategy. We
focus on data�ow systems and graph processing systems,
which present two distinct programming models.

5.1 Batch Data�ow Systems and TensorFlow

Many systems [5, 36, 51, 52] adopt a data�ow execution
model, where the application program constructs a directed
acyclic graph (DAG) that describes the computation and the
computation DAG is lazily evaluated only when certain out-
put is requested. A popular system among them is Spark [52],
in which each node of the DAG represents a set of data
records called a Resilient Distributed Dataset (RDD) and the
edges represent transformation operations that transform
one RDD to another. A fundamental limitation of traditional
data�ow systems is that their computation DAG does not
allow mutable states in order to ensure deterministic execu-
tion, which makes updating model parameters an expensive
operation. For example, mutable states in Spark such as dri-
ver local variables or accumulators, are not represented in
the computation graph and are stored and updated by a sin-
gle driver process. SparkNet [35] represents model weights
as driver program local variables, which are broadcasted
to workers to compute new weights. The new weights pro-
duced by workers are collected and averaged by the driver.
Each broadcast and collection takes about 20 seconds [35].

TensorFlow [5] is a deep learning system which also
adopts the data�ow programming model, where nodes of
the computation DAG represent operations whose inputs
and outputs are tensors �owing along the edges. TensorFlow
introduces mutable states such as variable and queue into the
computation graph to e�ciently handle model parameter
updates. A typical TensorFlow program constructs a DAG
that implements the update operation processing a single
mini-batch of data, where trainable model parameters are
represented as variables. One approach to represent di�erent
mini-batch’s or data sample’s access pattern on invidiudal
model parameters is to represent each mini-batch (or data
sample) and model parameter as separate nodes in the DAG
(i.e., statically unroll the whole loop), resulting in a huge
DAG that’s expensive to store and analyze.

Alternatively, the computation can be described as a while-
loop [50] iterating over mini-batches or data samples. While
TensorFlow while-loop allows di�erent iterations to be exe-
cuted in parallel, each operation is assigned with, and bound
to, a single computing device (di�erent operations can be
placed on di�erent devices). In other words, a TensorFlow
while-loop does not partition its iteration space among dis-
tributed devices and may fail to exploit the full parallelism
enabled by the loop. On the other hand, a TensorFlow while-
loop enables additional parallelism for loops with a large and
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Category Examples DSM Programming Paradigm App. Program. Lang.

Data�ow Spark [52], DryadLINQ [51] No data�ow Scala, Java, Python
Data�ow w/ mutable states TensorFlow [5] Yes data�ow Python, C, C++

Parameter Server parameter server [29], Bösen [45] Yes imperative C++
PS w/ scheduling STRADS [26] Yes imperative C++
Graph Processing PowerGraph [20], PowerLyra [10] Limited vertex programming C++

Orion Yes imperative Julia

Table 1. Comparing di�erent systems for o�ine machine learning training.

complex loop body (e.g., a multi-layer RNN), since the loop
body can be distributed among multiple computing devices.
Moreover, a TensorFlow while-loop dynamically computes
a loop termination condition and supports data-dependent
control �ow inside the loop body including nested loops.

5.2 Graph Processing Systems

Graph processing systems [10, 20, 31, 32, 49, 53, 54] take
a user-provided data graph as input and execute a vertex
program on each graph vertex. Since a vertex program is
restricted to access only data stored on that vertex itself,
its edges or its neighboring vertices, the graph naturally
describes the vertex program’s data dependence on muta-
ble states. This property allows some systems to schedule
independent vertex computation and ensure serializability
by using graph coloring or pessimistic concurrency con-
trol [20, 31, 32]. However, graph coloring is an NP-complete
problem and is expensive to perform; and with pessimistic
concurrency control, lock contention may heavily limit the
system’s scalability as demonstrated by a weak scaling exper-
iment on PowerGraph [20]. As a result, recent graph process-
ing systems have given up serializability: their vertex pro-
gram either executes asynchronously or synchronizes with
Bulk Synchronous Parallel synchronization [10, 49, 53, 54],
both violating dependence among vertices.

6 Experimental Evaluation

Orion is implemented in ∼17,000 lines of C++ and ∼6,300
lines of Julia (v0.6.2). and has been open sourced.6 In this
section, we evaluate Orion, focusing on parallelization ef-
fectiveness and execution e�ciency. Our experiments were
conducted on a 42-node cluster where each machine con-
tains an Intel E5-2698Bv3 Xeon CPU and 64GiB of memory.
Each CPU contains 16 cores with hyper-threading. These
machines are connected with 40Gbps Ethernet.

6.1 Evaluation Setup and Methodology

Weare interested in answering the following questions through
experimental evaluation:

1. Is the algorithms’ convergence rate sensitive to data
dependence? Can dependence violation (such as data
parallelism) signi�cantly slow down algorithm con-
vergence? Previous work (e.g., STRADS [26]) demon-
strated that data dependence may have critical impact

6URL: h�ps://github.com/jinliangwei/orion

on algorithmic convergence and our results con�rm
their observations.

2. Can proper semantic relaxations such as relaxing the
loop ordering constraints and violating non-critical
dependences indeed improve computation throughput
without jeopardizing convergence?

3. While preserving critical dependences, can Orion par-
allelization e�ectively speed up the computation through-
put and thus overall convergence rate of serial Julia
ML programs?

4. Do Orion applications achieve higher or competative
computation throughput and convergence rates com-
pared to applications on other state-of-the-art o�ine
ML training systems, including both manually paral-
lelized data- and model-parallel programs?

ML applications. We’ve implemented a number of ML ap-
plications onOrion, exercising di�erent parallelization strate-
gies, as summarized in Table 2. In this section, we focus on
evaluating performance for SGD MF (w/o and w/ AdaRev)
and LDA, which are commonly used benchmark applications
and allow us to compare Orion with other systems.
Datasets. We evaluated SGD MF (w/o and w/ AdaRev) on
the Net�ix dataset [1] for movie recommendation, which
contains ∼100 million movie ratings (rank is set to 1000).
We evaluated LDA on a smaller NYTimes dataset that con-
tains ∼300 thousand documents and a subset of the large
ClueWeb dataset [2] that contains ∼25 million documents
(32GB) (number of topics is set to 1000 and 400 respectively).
Metrics. Ultimately ML training applications desire to reach
a high model quality in the least amount of time, which we
refer to as overall convergence rate. A high overall conver-
gence rate requires the training system to both process a
large number of data samples per second, i.e., achieve a high
computation throughput, and improve the model quality by a
large margin per data pass, i.e., achieve a high per-iteration

convergence rate. A serial execution typically achieves the
best per-iteration convergence rate and thus serves as a
gold standard. Di�erent parallelizations may have di�erent
per-iteration convergence rates depending on whether and
which data dependences are violated. Our evaluation metrics
include both overall and per-iteration convergence rate to
properly attribute the performance di�erences.
ML systems in comparison. We compared Orion with a
number of state-of-the-art ML o�ine training systems on
SGD MF (w/ and w/o AdaRev) and LDA in terms of both
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Acronym Model Learning Algorithm LoC Parallelizations

SGD MF Matrix Factorization SGD 87 2D Unordered
SGD MF AdaRev Matrix Factorization SGD w/ Adaptive Revision 108 2D Unordered

SLR Sparse Logistic Regression SGD 118 1D (data parallelism)
SLR AdaRev Sparse Logistic Regression SGD w/ Adaptive Revision 143 1D (data parallelism)

LDA Latent Dirichlet Allocation Collaposed Gibbs Sampling 398 2D Unordered, 1D
GBT Gradient Boosted Tree Gradient Boosting 695 1D

Table 2.ML applications parallelized by Orion.
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Figure 9. Orion parallelization e�ectiveness. (a) compares the time per iteration (averaged over iteration 2 to 8) of serial Julia
programs with Orion-parallelized programs. The Orion-parallelized programs are executed using di�erent number of workers
(virtual cores) on up to 12 machines, with up to 32 workers per machine. (b) and (c) compare the per-iteration convergence rate
of di�erent parallelization schemes and serial execution; the parallel programs are executed on 12 machines (384 workers).

computation throughput and overall convergence rate. The
systems that we experimentally compare to include Bösen
parameter server [45], STRADS and TensorFlow.

TuX 2 [49] is a recently proposed graph processing system,
particularly optimized for ML training workloads. TuX 2 was
reported to have an over an order of magnitude faster per-
iteration time on SGD MF compared to PowerGraph [20]
and PowerLyra [10]. With a rank of 50, TuX 2 SGD MF 7

takes ∼0.7 seconds to perform one data pass on the Net-
�ix dataset [1] using 8 machines, each with two Intel Xeon
E5-2650 CPUs (16 physical cores), 256GiB of memory, and
a Mellanox ConnectX-3 In�niBand NIC with 54Gbps band-
width (all higher than ours except for slight slower CPUs).
In contrast, Orion SGD MF achieves a per-iteration time of
∼1.4 seconds on 8 machines with the same number of CPU
cores. On the other hand, with a carefully tuned mini-batch
size, TuX 2 SGD MF reaches a nonzero squared loss (lower
is better) of ∼7 × 1010 in ∼600 seconds using 32 machines
in its best case, while Orion SGD MF reaches ∼8.3 × 107 in
∼68 seconds using only 8 machines. Even though TuX 2 SGD
MF achieves a higher computation throughput, its overall
convergence rate is much lower than Orion’s due to violating
data dependence.

6.2 Summary of Evaluation Results

1. Preserving data dependence is critical for SGD MF
(w/o and w/ AdaRev) and LDA. Dependence-violating
parallelization (i.e., data parallelism) takes many more
data passes than serial execution to reach the same

7TuX 2 is not open sourced

Ordered Unordered Speedup
SGD MF (Net�ix) 13.1 5.9 2.2×

SGD MF AdaRev (Net�ix) 43.6 16.7 2.6×
LDA (NYTimes) 29.9 5.0 6.0×

Table 3. Time per iteration (seconds) with ordered and un-
ordered 2D parallelization (12 machines), averaged over iter-
ation 2 to 100.

model quality, while dependence-aware paralleliza-
tion (even with proper semantic relaxations) retains
a comparable per-iteratoin convergence rate to serial
execution.

2. Orion-parallelized SGD MF (w/ and w/o AdaRev) and
LDA converge signi�cantly faster than manual data-
parallel implementations on Bösen, in terms of both
number of iterations and wall clock time.

3. Data-parallel SGD MF AdaRev and LDA on Bösen con-
verges faster with more frequent communication of
parameter values and updates, approaching Orion par-
allelization at the cost of higher network bandwith.

4. Orion-parallelized SGD MF AdaRev and LDA achieve
a matching per-iteration convergence rate to manual
model-parallel programs on STRADS, but may have a
slower time per iterationmainly due to Julia’s language
overhead compared to C++.

5. Orion-parallelized SGD MF converges considerably
faster than a data-parallel implementation on Tensor-
Flow while achieving a 2.2× faster per-iteration time.

6.3 Parallelization E�ectiveness

We compare Orion-parallelized Julia programs with serial
Julia programs in terms of both computation throughput

12



Automating Dep-Aware Parallelziation of ML Training on DSM EuroSys ’19, March 25–28, 2019, Dresden, Germany

 1
e
+

0
6

 1
e
+

0
7

 1
e
+

0
8

 1
e
+

0
9

 0  200  400  600  800  1000  1200  1400

tr
a
in

in
g
 l
o
s
s

time (seconds)

Manual Data Parallelism on Bosen
w/ Managed Comm & AdaRev on Bosen

Auto-Parallelization by Orion
w/ AdaRev on Orion

(a) Over time - SGD MF (AdaRev), Net�ix

 1
e
+

0
6

 1
e
+

0
7

 1
e
+

0
8

 1
e
+

0
9

 0  20  40  60  80  100  120  140

tr
a
in

in
g
 l
o
s
s

iteration

Manual Data Parallelism on Bosen
w/ Managed Comm & AdaRev on Bosen

Auto-Parallelization by Orion
w/ AdaRev on Orion

(b) Over iterations - SGD MF (AdaRev), Net�ix

-1
.5

e
+

1
1

-1
.4

e
+

1
1

-1
.3

e
+

1
1

-1
.2

e
+

1
1

-1
.1

e
+

1
1

-1
e
+

1
1

-9
e
+

1
0

-8
e
+

1
0

 0  2  4  6  8  10  12  14

lo
g
-l

ik
e
li
h
o
o
d

time (1000 seconds)

Manual Data Parallelism on Bosen
w/ Managed Comm on Bosen
Auto-Parallelization by Orion

(c) Over time - LDA, ClueWeb
Figure 10. Orion vs. Bösen, convergence on 12 machines (384 workers)
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Figure 11. Orion vs. STRADS, convergene on 12 machiens (384 workers)

(i.e., time per iteration) and per-iteration convergence rate
(Fig. 9). As shown in Fig. 9a, although the Orion abstraction
incurs some overhead, Orion parallelization outperforms the
serial Julia programs using only two workers and enables
consistent speedup up to 384 workers. Although Orion’s par-
allelization relaxes the loop ordering constrants for both SGD
MF and LDA, and violates some non-critical dependences in
LDA, preserving (critical) dependences enable Orion paral-
lelization to achieve a matching convergence rate to serial
execution (Fig. 9b and Fig. 9c). On the other hand, data par-
allelism (using Bösen) converges substantially slower than
serial execution due to violating dependences freely.
Table 3 compares ordered and unordered 2D paralleliza-

tion in terms of computation throughput. Theoretically, re-
laxing the loop ordering constraints at most doubles paral-
lelism. But it also enables a more e�cient communication
scheme (see section 4.4) that hides the communication la-
tency, achieving an over 2× speedup. Fig. 9b and Fig. 9c
show that loop ordering makes negligible di�erences in con-
vergence rate. While we observe a bigger di�erence when
adaptive revision [34] is used, relaxing the loop constraints
is still bene�cial for the improved computation throughput.
Bulk Prefetching. When training SLR using SGD, each
data sample reads and updates a number of weight values
corresponding to the nonzero features of the data record,
which is unknown until the data sample is processed. The
sequence of DistArray reads causes a sequence of inter-
process communication, possibly over inter-machine net-
works. In a single-machine experiment using the KDD2010
(Algebra) [18] dataset, each data pass takes 7682 seconds,
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Figure 12. Bandwidth usage, LDA on NYTimes

wasting most of the time on communication. Orion auto-
matically synthesizes a function to prefetch the needed Dis-
tArray values in bulk (see Section 4.4) and thus reduces the
per-iteration time to 9.2 seconds. It can be further reduced
to 6.3 seconds by caching the prefetch indices.

6.4 Comparison with Other Systems

Manual data parallelism. Under data parallelism, Bösen
workers synchronize after processing the entire local data
partition. While achieving a high computation throughput,
data-parallel applications on Bösen converge considerably
slower than Orion-parallelized programs.
Data parallelismw/ communicationmanagement. Bösen
features a communication management (CM) mechanism
that improves the convergence rate of data-parallel training.
Given a bandwidth budget, CM proactively communicates
parameter updates and fresh parameter values before the
synchronization barrier, when spare network bandwidth
is available, to reduce the error due to violating data de-
pendence. Moreover, CM prioritizes large updates to more
e�ectively utilize the limited bandwidth budget. We assign
each Bösen machine a bandwidth budget of 1600Mbps and
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Figure 13. Orion vs. TensorFlow, SGD MF on Net�ix

2560Mbps respectively for SGD MF and LDA for maximal
overall convergence rate. For SGD MF on Net�ix and LDA
on ClueWeb25M, CM achieves similar per-iteration conver-
gence rate compared to dependence-aware parallelization by
Orion but is still ∼40% slower for LDA on NYTimes. For both
SGD MF and LDA, CM uses substantially higher network
bandwidth than Orion due to the aggressive communication
(Fig. 12). Excessive communication incurs CPU overhead due
to marshalling and lock contention, reducing Bösen’s com-
putation throughput and leading to a slower overall conver-
gence rate than Orion when training LDA on ClueWeb25M.
Manual model parallelism. Compared to manually opti-
mizedmodel-parallel programs on STRADS, Orion-parallelized
SGD MF AdaRev and LDA achieve a matching per-iteration
convergence rate (Fig. 11). While achieving a similar compu-
tation throughput on SGD MF AdaRev, Orion takes ∼1.8×
(ClueWeb25M) and∼4.0× (NYTimes) longer than STRADS to
execute an iteration for LDA. STRADS’s better performance
is largely due to a communication optimization: communicat-
ing data between workers on the samemachine requires only
pointer swapping. Since Julia (v0.6.2) doesn’t yet support
shared-memory multi-threading, inter-process communica-
tion in Orion incurs marshalling and memory copies. This
overhead is negligible for SGDMFwhere the communication
is mostly float arrays with trivial serialization.
TensorFlow. We compare Orion-parallelized SGD MF with
an implementation on TensorFlow (v1.8), both executed on
a single machine using only CPU (Fig. 13). Following Ten-
sorFlow (TF) common practices, our SGD MF program con-
structs a DAGwhich processes of a mini-batch of data matrix
entries to exploit TF’s highly parallelized operators. Since
TF does not update model parameters until a full mini-batch
is processed, TF SGDMF converges considerally slower than
Orion’s iteration-wise. With a mini-batch size of 25 million,
TF is ∼2.2× slower in terms of per-iteration time, partly due
to redundant computation with respect to sparse data matrix
(TF runs out of memory with larger mini-batch sizes). Each it-
eration takes longer with a smaller mini-batch size (Fig. 13b)
because of not fully utilizing all CPU cores. Overall TF SGD

MF converges much slower than Orion’s, indicating that TF
might not be the best option for sparse ML applications.

7 Related Work

Automatic parallelizing compilers.There have been decades
of work on automatically parallelizing programs based on
static data dependence analysis. This includes both vector-
ization [6, 37] and parallelization for multiple processors
with a shared global memory, like Orion. Many loop trans-
formation techniques have been developed for the latter,
including loop interchange [47], loop skewing [48] and loop
reversal. These transformations can be uni�ed under uni-
modular transformations [46], which can only be applied to
perfectly nested loops, e.g., traversing a multi-dimensional
tensor. A�ne scheduling [14, 16, 17] applies to arbitrary
nestings of loops and uni�es unimodular transformation
with loop distribution, fusion, reindexing and scaling. A�ne
scheduling maps dynamic instances of instructions to a time
space and instructions assgned the same time can be exe-
cuted in parallel. Lim et al. [30] additionally partitions the
instructions among processors to minimize synchronization.
Dynamic analysis. Pingali et al. [38] addresses paralleliza-
tion by representing algorithms as operators and a topol-
ogy, which describes the dependence between operators.
The topology graph may be obtained from static analysis or
dynamic tracing, or given as an input. Compared to static
dependence analysis, this approach may be e�ective in par-
allelizing algorithms that deal with irregular data structures,
e.g., graphs, but may su�er a larger overhead due to dynamic
tracing and analyzing a large dependence graph.
Approximate computing. Previous work has proposed
taking advantage of the approximate nature of application
programs and introduced techniques, such as loop perfo-
ration [43] and task skipping [40] to reduce computation
while sacri�cing accuracy. Sampson et al. [41] rely on pro-
grammers to declare data that tolerates approximation so
it can be mapped to lower-power hardware to save energy.
HELIX-UP [9] also proposes to relax program semantics to
increase parallelism and uses programmer-provided train-
ing inputs to tune the degree of approximation. Although
auto-tuning could be incorporated in Orion, we believe that
ML practitioners have domain-speci�c heuristics to make
reasonable decisions while auto-tuning can be expensive.

8 Conclusion

We present Orion, a system that parallelizes ML programs
based on static data dependence and uni�es various par-
allelization strategies under a clean programming abstrac-
tion. Orion achieves better or competitive performance com-
pared to state-of-the-art o�ine ML training systems while
substatially reducing programmer e�ort. We believe that
Orion is an e�ective �rst step towards applying static de-
pendence analysis to parallelize imperative ML programs for
distributed training.
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