
LithOS: An Operating System
for Efficient Machine Learning on GPUs

Patrick H. Coppock, Brian Zhang, Eliot H. Solomon, Vasilis Kypriotis, Leon Yang†, Bikash Sharma†,
Dan Schatzberg†, Todd C. Mowry, and Dimitrios Skarlatos

Carnegie Mellon University †Meta

Abstract
The surging demand for GPUs in datacenters for machine
learning (ML) workloads has made efficient GPU utilization
crucial. However, meeting the diverse needs of individual
ML models while optimizing resource usage is challenging.
To enable transparent, fine-grained management of GPU
resources that maximizes GPU utilization and energy effi-
ciency while maintaining strong isolation, an operating sys-
tems (OS) approach is needed. Hence this paper introduces
LithOS, a first step towards a GPU OS.

LithOS includes the following new abstractions and mech-
anisms for efficient GPU resource management: (i) a novel
TPC Scheduler that supports spatial scheduling at the granu-
larity of individual TPCs, unlocking efficient TPC stealing
between workloads; (ii) transparent kernel atomization to
reduce head-of-line blocking and allow dynamic resource
reallocation mid-execution; (iii) a lightweight hardware right-
sizing mechanism that dynamically determines the minimal
TPC resources needed per atom; and (iv) a transparent power
management mechanism that reduces power consumption
based upon in-flight work characteristics.
We implement LithOS in Rust and evaluate its perfor-

mance across a broad set of deep learning environments,
comparing it to state-of-the-art solutions from NVIDIA and
prior research. For inference stacking, LithOS reduces tail
latencies by 13× compared to MPS; compared to the best-
performing SotA, it reduces tail latencies by 3×while improv-
ing aggregate throughput by 1.6×. Furthermore, in hybrid
inference-training stacking, LithOS reduces tail latencies by
4.7× compared to MPS; compared to the best-performing
SotA, it reduces tail latencies by 1.18× while improving ag-
gregate throughput by 1.35×. Finally, for a modest perfor-
mance hit under 4%, LithOS’s hardware right-sizing provides
a quarter of GPU capacity savings on average, while for a
7% hit, LithOS’s transparent power management delivers a
quarter of a GPU total energy savings on average. Overall,
LithOS transparently increases GPU efficiency, establishing
a foundation for future OS research on GPUs.

1 Introduction
The widespread adoption of machine learning (ML) work-
loads has led to massive GPU deployments across datacen-
ters. However, despite growing concerns around power con-
sumption and hardware supply constraints, GPU resources

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6
Time (days)

0%

20%

40%

60%

GP
U

Ut
iliz

at
io

n
(%

) SM
Device

Memory Capacity
Memory Bandwidth

Figure 1. GPU utilization metrics over a week in a production
Ads inference service at Meta.

remain significantly underutilized. Public reports from Mi-
crosoft and Alibaba cite average and median GPU utilization
rates of just 52% [23] and 10% [49], respectively. Our analysis
of a production Ads service at Meta reveals similarly low
utilization, averaging just 27%, as shown in Figure 1. Given
the high monetary cost and rising power demands—now
exceeding 1,000W per GPU [26, 31]—this is unsustainable.

It is challenging to achieve high utilization without GPU
sharing.While dedicating a GPU to a single workload leads to
high performance, individual workloads often fail to keep the
GPU fully utilized: GPU cores idle on communication stalls,
low batch sizes result in insufficient parallelism, dynamic
request loads lead to overprovisioning, and so on [18, 20, 49].
As GPUs become more powerful with increasing streaming
multiprocessor (SM) counts and memory bandwidth [8, 31],
achieving high utilization will become more challenging.
One potential approach to GPU sharing is collocating

latency-critical (LC) tasks for which performance is of utmost
importance with best-effort (BE) tasks that lack hard dead-
lines. However, existing systems do not offer a practical so-
lution for prioritizing LC tasks over BE tasks when they con-
tend for resources. Many approaches lack transparency, ren-
dering them incompatible with large parts of theML software
stack [1, 12, 13, 19, 20, 22, 29, 32, 34, 39, 41, 44]. For instance,
some are tied to specific versions of frameworks like PyTorch
or TVM that are no longer maintained [1, 13, 19, 44, 49].
Other solutions like TGS [48] or Clockwork [19] fall short
of achieving high GPU utilization due to limited temporal
scheduling that cannot execute multiple models in parallel.
Spatial scheduling solutions, including NVIDIA’s MPS [7]
and MIG [10] or research efforts like REEF [20], Orion [44],

©2025. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) license.
Authors reserve their rights to disseminate the work on their personal and
corporate Web sites with the appropriate attribution.

1

ar
X

iv
:2

50
4.

15
46

5v
1

 [
cs

.O
S]

 2
1

A
pr

 2
02

5

https://creativecommons.org/licenses/by-nc-nd/4.0/

P. H. Coppock, B. Zhang, E. H. Solomon, V. Kypriotis, L. Yang, B. Sharma, D. Schatzberg, T. C. Mowry, and D. Skarlatos

and others [13], enable parallel execution of multiple appli-
cations. However, they are too coarse-grained, scheduling
entire inference requests, training batches, or DNN oper-
ators, resulting in low utilization and head-of-line (HoL)
blocking [1, 4, 13, 15, 20, 27, 29, 32, 39, 44, 45, 48, 50]. Effi-
cient multitenant scheduling on GPUs has remained elusive.
Beyond collocation mechanisms, to address GPU ineffi-

ciencies without sacrificing performance or transparency,
datacenter GPU management must evolve past static provi-
sioning. Current systems fail to account for changing deep
learning workload characteristics—such as fluctuating levels
of compute intensity and parallelism across different models
and execution phases. This is another reason why GPUs are
often not efficiently utilized, even as they draw significant
power. Bridging this gap requires new approaches that can
adapt resource allocation and power consumption to the
fine-grained characteristics of ML workloads.

This utilization crisis is in stark contrast with the situation
for CPUs, where time-sharing operating systems allocate
tasks to cores via inexpensive context switches, providing
isolation, resource allocation, power management, and trans-
parency. The extreme data-parallel nature of GPUs imposes
different trade-offs than do CPUs, but also exposes the limi-
tations of current abstractions built around compilers, frame-
works, and drivers. To transparently improve utilization and
efficiency, we believe that GPUs must evolve toward an op-
erating system model—one that brings first-class support for
control, isolation, and resource management.

1.1 Our Approach: An Operating System for GPUs
To address datacenter GPU efficiency challenges, we intro-
duce LithOS, which brings an operating system approach
to deep learning on GPUs. LithOS is fully transparent to
the ML stack, allowing seamless integration without requir-
ing any modifications to models, runtimes, or frameworks.
LithOS moves the bulk of GPU scheduling from proprietary
drivers and hardware into software, allowing, for the first
time, fine-grained temporal and spatial scheduling of ML
workloads. LithOS operates at the granularity of individual
kernel thread blocks that are dynamically mapped onto the
GPU’s thread processing clusters (TPCs). To achieve this,
LithOS introduces novel abstractions and mechanisms that
decouple kernel work submission from thread block exe-
cution on GPUs, enabling intelligent scheduling decisions,
resource allocation, and power management.

First, LithOS introduces a novel fine-grained TPC Scheduler
that asynchronously determines the compute unit allocation
and submission time for each piece of work. It enables pre-
cise control at the granularity of individual TPCs, providing
strong isolation between workloads. The scheduler is guided
toward efficient scheduling decisions by an online kernel

Contact: dskarlat@cs.cmu.edu

latency predictor and incorporates a technique called TPC
Stealing to improve GPU utilization.

To overcome the lack of hardware preemption, LithOS in-
troduces a kernel atomizationmechanism that transparently—
without compiler, runtime, source, or PTX codemodifications—
splits kernels into independently schedulable units called
atoms. Each atom consists of a subset of a kernel’s thread
blocks, reducing head-of-line blocking and cross-workload
interference. Atomization also enables LithOS to dynami-
cally reconfigure TPC allocations mid-execution, allowing
scheduling flexibility that is impossible with monolithic ker-
nels.

Building on this foundation, LithOS introduces a dynamic
hardware right-sizing mechanism that uses lightweight mod-
eling to determine the minimal TPC resources required for
each kernel and its atoms, yielding significant capacity sav-
ings. Finally, LithOS presents a fine-grained power manage-
ment mechanism that adjusts the GPU’s frequency in re-
sponse to the characteristics of in-flight work, achieving
substantial energy savings.
We implement LithOS in Rust and evaluate its perfor-

mance across a broad set of deep learning environments,
comparing it to state-of-the-art solutions from NVIDIA and
prior research. For inference stacking, LithOS reduces tail
latencies by 13× compared to MPS; compared to the best-
performing SotA, it reduces tail latencies by 3×while improv-
ing aggregate throughput by 1.6×. Furthermore, in hybrid
inference-training stacking, LithOS reduces tail latencies by
4.7× compared to MPS; compared to the best-performing
SotA, it reduces tail latencies by 1.18× while improving ag-
gregate throughput by 1.35×. Finally, for a modest perfor-
mance hit under 4%, LithOS’s hardware right-sizing provides
a quarter of GPU capacity savings on average, while for a
7% hit, LithOS’s transparent power management delivers a
quarter of a GPU total energy savings on average.
Overall, LithOS transparently increases GPU efficiency,

establishing a foundation for future OS research on GPUs.
This paper makes the following contributions:

• A comprehensive study of an Ads inference service at
Meta, highlighting the behavior of production ML models
and the challenges of GPU underutilization.

• A fine-grained spatial TPC Scheduler that dynamically
allocates TPCs using TPC Stealing to boost utilization.

• A transparent Kernel Atomizer that independently sched-
ules subsets of kernel thread blocks, unlocking efficiency.

• A dynamic hardware right-sizing mechanism that opti-
mizes TPC allocations for significant capacity savings.

• A transparent power management mechanism that adjusts
frequency based on kernel characteristics to save energy.

• The design of LithOS, a step towards an OS for GPUs.
• The evaluation of LithOS across varied ML environments.

2

mailto:dskarlat@cs.cmu.edu

LithOS: An Operating System for Efficient Machine Learning on GPUs

TPC0SM

L2 C
ache

GPC L0 Instruction
Cache

Warp Scheduler

Tensor
Cores

Register File

L1 Cache &
Shared Memory

SM
TPC

SM SM
TPC

SM SM
TPC

SM SM
TPC

SM SM
TPC

SM SM
TPC

SM SM
TPC

SM SM
TPC

H
BM CUDA

Cores

Figure 2. GPU Architecture.

2 Background and Related Work
In this section, we first present a brief background onNVIDIA
GPU architectures and then cover related work.

2.1 A Brief Background on GPUs
GPU Architecture.Modern GPUs have immense hardware
resources catering to the needs of ML workloads. Figure 2
depicts a typical GPU architecture. Each GPU consists of
several General Processing Clusters (GPCs). Each GPC is
a collection of multiple Thread Processing Clusters (TPCs)
and each TPC includes a small number of Streaming Multi-
processors (SMs). Each SM is composed of tens of cores. For
example, NVIDIA’s H100 [8] includes 8 GPCs, 9 TPCs per
GPC, 2 SMs per TPC, and 128 cores per SM.

GPU Programming. GPU applications are composed of
kernels that execute specific operators (e.g., convolution). A
kernel defines its resources—thread blocks, threads, registers,
and shared memory—at launch time. Programmers divide a
kernel’s work among the thread blocks. Each thread block
executes on an SM and consists of multiple SIMD threads.
GPU Streams. CUDA streams enable concurrent execu-

tion of independent tasks, similar to CPU threads. Stream
work is executed in FIFO order. Some CUDA calls are asyn-
chronous, while others wait for all previous tasks to finish.

2.2 Related Work
Cooperative multitenancy. Cooperative scheduling in-
volves tenants coordinating to share resources, typically at
the ML framework level, with all models running in the same
process [1, 12, 13, 19, 20, 22, 29, 32, 34, 39, 41, 44]. These
approaches require custom ML frameworks and are hence
limited by their inability to support arbitrary applications.
Some also rely on extensive offline profiling [20, 44] or kernel
source modifications [20, 32] which are impractical at scale.
Finally, any non-cooperating tenant invalidates guarantees
made by the runtime, making adoption difficult in practice.
Transparent multitenancy. Transparent GPU sharing

solutions support unmodified applications. They include na-
tive mechanisms like time slicing, MPS [7], and MIG [10]
offered by NVIDIA. Nearly all prior software solutions are
not transparent and rely on application or framework modi-
fications. TGS [48] is one exception that offers transparent

A finishes fast

A1 A2 A3

Requests A and B arrive

B1 B2
Wasted

Capacity A1 A2 A3 B1 B2C1 C2

A is severely delayed

MPS allows C to run concurrently

TP
Cs

Figure 3. GPU timeline showcasing the pitfalls of MPS.

sharing between containerized applications. In practice, un-
cooperative tasks and limited application-specific informa-
tion make transparent multitasking a serious challenge.
Temporal multitenancy. Temporal multitenancy ded-

icates the entire GPU to a single task at a time via native
time slicing or software scheduling. Some approaches work
at the level of entire inference requests (e.g., Clipper [12],
Nexus [41], TensorFlow-Serving [34], Clockwork [19], and
INFaaS [39]), while others schedule individual GPU kernels
(e.g., PipeSwitch [1], AntMan [49], and TGS [48]). Time slic-
ing is NVIDIA’s default temporal multitenancy solution. It
shares the GPU in a round-robin fashion, giving each task
exclusive access for several milliseconds. These methods
execute only one job at a time, leading to low utilization.
Spatial multitenancy. Spatial multitenancy typically

builds on MIG or MPS to enable multiple applications to
run concurrently on a GPU and improve utilization. MPS
multiplexes multiple GPU contexts onto one, allowing multi-
ple tasks to use the GPU concurrently. This can yield greater
throughput but leads to performance interference.MIG parti-
tions the GPU’s compute and memory resources along GPC
boundaries, providing strong hardware isolation. However,
the coarse granularity of its partitioning and steep reconfig-
uration overheads (>5s [47]) can leave resources idle.
Like temporal systems, existing spatial sharing systems

are coarse-grained, operating at the level of inference re-
quests or kernels. Their goal is to protect latency-critical
(LC) applications by restricting kernels launched by other
jobs [13, 44] or limiting GPU resources allocated to best-
effort tasks, as seen in systems like REEF [20], MuxFlow [29],
and others [4, 15, 22, 27, 32, 45, 50]. However, the coarseness
of these approaches limits control over GPU resources, often
leading to HoL blocking, low utilization, and interference.
Figure 3 highlights the challenges of spatial sharing. In Fig-
ure 3(a), a single workload runs on the GPU, issuing two
requests with five total kernels. This results in fast kernel
completion for𝐴 and 𝐵 but leaves much of the GPU underuti-
lized. When MPS enables concurrent execution of multiple
tasks in Figure 3(b), utilization is improved, but the original
task’s requests face significant delays. Overall, prior works
have tackled somemultitenant ML scheduling challenges but
fail to offer a complete, transparent solution. Importantly,
prior temporal and spatial strategies operate at a coarse
granularity, limit utilization, and cause HoL blocking, which
interferes with collocated workloads.

3

P. H. Coppock, B. Zhang, E. H. Solomon, V. Kypriotis, L. Yang, B. Sharma, D. Schatzberg, T. C. Mowry, and D. Skarlatos

Right-sizing. Prior efforts have explored GPU job right-
sizing to improve resource efficiency. However, these ap-
proaches often rely on hardware modifications [5, 54], lack
transparency to application software [3, 4, 15, 25, 53], and
depend on offline profiling [4–6, 15, 25, 53]. Crucially, most
existing solutions operate at the granularity of entire jobs,
which limits their ability to fully exploit the benefits of fine-
grained right-sizing and can lead to suboptimal performance.

DynamicVoltage Frequency Scaling.Recent efforts [24,
36, 37, 43, 52] have applied dynamic voltage frequency scal-
ing (DVFS) to minimize the power consumption of GPUs
with a particular focus on LLM inference clusters [24, 43].
Such approaches are based on extensive offline profiling
across several input lengths and train dedicated output length
predictors, failing to provide a transparent mechanism. Prior
work on DVFS operates at a coarser granularity, observing
the performance of the whole inference request and missing
finer optimization opportunities.

3 Motivation
In this section, we showcase a detailed study of production
GPU infrastructure challenges and opportunities.

3.1 Understanding GPU Utilization in Datacenters
To understand GPU utilization in datacenters, we analyze a
subset of Ads inference services at Meta, which serve deep
learning models across its fleet. At Meta, Ads inference relies
in part on NVIDIA H100 GPU nodes. Each node has 8 GPUs,
each partitioned via MIG. The production service performs
offline analysis of each model, assigning models to GPU/MIG
partitions for deployment. The goal is to meet tight SLAs on
tail response times requirements for each model.

GPUUtilization. In Figure 1, we show GPU compute and
memory utilization over a week. Device compute utilization
ranges from 17% to 40%, averaging 27%. SM utilization is
even lower, averaging 14%, with peaks at 21% and lows of
6.7%. Memory bandwidth utilization averages 20%. Overall,
utilization follows a diurnal pattern tied to inference traffic.
However, memory capacity remains steady at 28%, as models
are kept loaded in GPU memory to meet tight SLAs. These
SLAs also enforce small batch sizes, preventing full GPU
resource saturation even at high request loads.
Inference Traffic. To investigate low GPU utilization,

we first examine inference traffic. Figure 4 shows the mean-
normalized requests per second (RPS) over a week, revealing
a diurnal pattern. RPS can scale by 2.2× between minimum
and maximum traffic, closely correlating with the GPU uti-
lization trends shown in Figure 1. Next, we analyze model re-
quest frequencies. We sample thirteen of the most commonly
used models and plot in Figure 5 the normalized frequency
of inference requests over the same week. The distribution’s
variance is significant, with the most popular model A re-
ceiving several hundred times more requests than the least

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6
Time (days)

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

al
ize

d
RP

S

max
min = 2.23

Figure 4. Mean normalized traffic.

A B C D E F G H I J K L M
Model ID

1

10

100

1000

M
od

el
 Fr

eq
ue

nc
y

(lo
g

sc
al

e)

Figure 5. Model frequency distribution.

A B C D E F G H I J K L M
Model ID

0
2
4
6
8

10
12

No
rm

al
ize

d
M

od
el

 S
ize

Figure 6. Model size distribution.

popular model M. Over-provisioning GPUs for such a wide
request distribution can lead to underutilization, particularly
for less popular models.
Model Sizes. To better understand GPU utilization, we

examine the sizes of the most commonly used models based
on weights, parameters, and embeddings. As shown in Fig-
ure 6, model sizes vary significantly, with a more than a 10×
difference between the largest and smallest models. Half are
relatively large, while the rest are smaller. Both large and
small models are frequently used: for example, the smallest
model B has usage comparable to larger models E andG. This
highlights the opportunity to collocate models of different
sizes while meeting each of their service-level agreements.

GPU Sharing Limitations and Takeaways. Despite the
urgent need to improve GPU utilization, datacenters often
rely on limited GPU sharing or hardware approaches like
MIG due to requirements for compatibility and transparency
within theML software stack. Non-transparent solutions that
require framework or application changes for multitenancy
are impractical at scale, given the complexity of maintaining
multiple ML frameworks, runtimes, and compilers. Impor-
tantly, in the rapidly evolving ML space, transparent solu-
tions help avoid the risk of locking infrastructure into rigid,
outdated designs. Based on these insights, we design LithOS
as a fully transparent OS for efficient ML multitenancy.

4

LithOS: An Operating System for Efficient Machine Learning on GPUs

TPC TPC TPC
TPC TPC TPC

TPC TPC
TPC TPC

GPU Hardware

Memory

TensorRT
High Priority
Guaranteed
LibLithOS

Unmodified
Applications
Frameworks
& Binaries

JAX
Low Priority
Guaranteed

PyTorch
Best Effort

LibLithOS LibLithOS

TPC
Scheduler

Kernel
Atomizer

GPU Device Driver

LithOS
Hardware

Right-sizing
Power

Management

High Priority
A

High Priority
B Best Effort

TPC
TPC

TPC
TPC

TPC
TPC

Figure 7. LithOS architecture overview.

4 LithOS Design
We propose LithOS, an OS designed to address GPU ineffi-
ciencies in datacenters. LithOS operates transparently across
the ML stack, enabling efficient machine learning on GPUs.

4.1 Architecture Overview
Figure 7 presents LithOS’s architecture. LithOS runs on CPU
cores and interposes at the driver level, providing a dynami-
cally linked library, LibLithOS, that mimics the native CUDA
library. As a GPU operating system, LithOS maintains a
system-wide view of GPU state across applications with
varying priorities, enabling efficient scheduling and manage-
ment. Applications follow the CUDA programming model
and submit kernels to LithOS, which decouples submission
from GPU execution. This transparently shifts scheduling
control from the driver and hardware to the LithOS layer.
The TPC Scheduler manages resources at the granularity of
individual TPCs, unlocking TPC Stealing opportunities. Idle
TPCs are lent to other tasks, improving utilization.

LithOS also introduces theKernel Atomizer, which—without
access to application source or PTX code—transparently
breaks kernels into smaller thread block chunks called atoms.
This enables finer-grained GPU scheduling and reduces head-
of-line (HoL) blocking. Building on fine-grained control,
LithOS supports dynamic hardware right-sizing, using light-
weight models to reduce TPC allocations for individual ker-
nels and atoms, yielding substantial capacity savings. Fi-
nally, LithOS applies transparent fine-grained DVFS, adjust-
ing GPU frequency based on in-flight work to save energy.
Together, these mechanisms enable intelligent scheduling
policies that maximize GPU utilization and efficiency across
diverse ML workloads. The rest of this section details how
these mechanisms operate and interact, referencing Figure 8.

4.2 Interface with Userspace
Kernel Submission. Applications interact with LithOS via
launch queues that buffer work (Figure 8, Step 1○), giving
LithOS full control over when work is dispatched to the GPU.
This is important because once submitted, a kernel’s priority
or resources cannot be changed, nor can it be rescheduled.
Eagerly dispatching work can lead to sub-optimal scheduling.
LithOS therefore defers dispatch to minimize outstanding

work on the GPU. A launch queue is created when an applica-
tion creates a stream via cuStreamCreate. On asynchronous
CUDA calls like cuLaunchKernel, LithOS enqueues the ker-
nel and returns control to the application.
Compute Quotas. LithOS allows users and system ad-

ministrators to define GPU resource limits, exposing TPC
quotas (Figure 8, Step 2○) that guarantee each application
access to a specified number of TPCs when work is avail-
able. Internally, LithOS manages TPCs analogously to how
a traditional OS manages CPU cores, enabling fine-grained
control over GPU resources. As we will see next, LithOS
relies on a highly efficient TPC Scheduler that interacts with
launch queues and TPC quotas to optimize GPU utilization
and efficiency.

4.3 TPC Scheduler
LithOS introduces a novel scheduler that operates at the
granularity of individual TPCs, offering several advantages.
TPC-level control enables fine-grained GPU resource man-
agement. Unlike static partitioning schemes likeMIG, LithOS
supports dynamic, on-the-fly TPC allocation, allowing each
kernel to run on a different set of TPCs without reconfigura-
tion overhead. This flexibility maximizes utilization without
coarse partitioning or slow reallocation. Kernels are sched-
uled on their assigned TPCs, ensuring guaranteed resources
for high-priority applications. However, as shown in Sec-
tion 3, fixed allocations often leave TPCs idle due to traffic
patterns or model variability. To address this, LithOS em-
ploys dynamic scheduling and TPC Stealing to reassign idle
resources. We believe TPC scheduling lays the foundation
for evolving GPU policies, much like CPU scheduling has
matured over time [17, 35].
Operation. At a high level, the TPC Scheduler uses dis-

patcher threads to monitor launch queues (Figure 8, Step 1○)
and submit work to the GPU. A key goal is to keep the GPU
busy while maintaining scheduling flexibility. The sched-
uler faces two main challenges: varying kernel durations
and balancing flexibility with GPU starvation. To address
the former, it applies Kernel Atomization (Figure 8, Step 3○,
Section 4.4) to split long-running kernels into smaller thread
block chunks called atoms. To address the latter, it tracks out-
standing work via sync queues (Figure 8, Step 5○), throttling
submissions until the backlog drops below a tunable thresh-
old. A dedicated Tracker thread monitors task completion
and updates scheduler state.

TPC Stealing. To improve work conservation, the sched-
uler dynamically reassigns underutilized TPCs across appli-
cations. In Figure 9(a), static allocation leads to idle TPCs.
In Figure 9(b), stealing allows 𝐴1 to borrow TPCs from an
idle workload, reducing waste. However, this may cause
head-of-line (HoL) blocking from priority inversion if a new
request 𝐵 is delayed by 𝐶2 occupying the stolen TPCs. To
mitigate this, the scheduler adopts a layered strategy. It

5

P. H. Coppock, B. Zhang, E. H. Solomon, V. Kypriotis, L. Yang, B. Sharma, D. Schatzberg, T. C. Mowry, and D. Skarlatos

userspace

Launch
Queues 0 1 2 3

TPC
Control

LithOS

321

Kernel
Atomization

atom
(~us)

kernel
(~ms) TPC Stealing

TPC Quotas

S
Freq

DVFS

7

..

Kernel
Submission

S
TPCs

Right-sizing

6

a0a1a2

..

a0

a0Sync
Queues

Outstanding
Work

ξ

ξ

TPCs
0 1 2 3

..

4

GPU
Hardware Device

Queues

5

ξ

ML App

a0 a0

Figure 8. LithOS operations overview.

maintains per-TPC timers informed by a latency predic-
tion module, estimating kernel (and atom) durations at sub-
mission time. These timers help avoid stealing from long-
running TPCs. As tasks complete, sync queues are cleared
and timers updated—potentially refining predictions (Sec-
tion 4.7). LithOS also limits outstanding atoms and uses lower
hardware stream priorities for work on stolen TPCs. Com-
bined with kernel atomization, these mechanisms boost uti-
lization while minimizing interference.

4.4 Kernel Atomizer
At the core of LithOS lies the Kernel Atomizer. The Kernel
Atomizer transforms kernels into small chunks called atoms,
each containing a subset of the grid’s thread blocks (Figure 8,
Step 3○). Importantly, the Kernel Atomizer operates without
any access to source or PTX code, making it fully transpar-
ent to the entire ML software stack. This allows LithOS to
dispatch work at thread-block rather than kernel granularity.
This is a critical requirement for an OS targeting GPUs, as
the execution time of kernels can vary wildly from a few
microseconds to tens of milliseconds.

Impact of Kernel Scheduling on Latency. To illustrate
the need for kernel atomization, Figure 10 presents 𝑃99 ker-
nel latencies across various training and inference work-
loads. Figure 10(a) shows how 𝑃99 latency increases with
larger training batch sizes. Since the typical batch size for
each model varies, we normalize by plotting memory us-
age at each size. Most models quickly produce long-running
kernels lasting several milliseconds, with DLRM [30] stand-
ing out with kernel latencies exceeding 30ms. While train-
ing workloads are the major culprit, in Figure 10(b) we see
that large language model (LLM) inference based on a trace
from Microsoft Azure [43] containing small (S), medium
(M), and large (L) prompt lengths can also produce several-
millisecond-long kernels for large prompts. Based on this
analysis and given that models can have very tight SLO
constraints (in the low tens of milliseconds), we guide the
design of LithOS toward a finer-grained scheduling unit that
mitigates head-of-line blocking effects.
Operation. When a long-running kernel is about to be

scheduled, LithOS predicts the duration of the kernel given
its TPC assignment using the predictor module (detailed in
Section 4.7). LithOS then computes the number of atoms into
which to split the kernel by dividing the predicted kernel

Algorithm 1 Prelude Kernel Pseudocode.
1 kernel fn prelude(*args):
2 let atom : *const AtomMetadata = AtomMetadataAddr as _
3 let block_idx = blockIdx.z * gridDim.y * gridDim.x
4 + blockIdx.y * gridDim.x
5 + blockIdx.x
6 if atom->block_idx_lo <= block_idx < atom->block_idx_hi:
7 atom->kernel_entrypoint(*args)

duration by a tunable parameter called the atom_duration.
If this parameter is set too low, an atomized kernel may
actually take longer to complete. Crucially, LithOS is able to
transparently chunk kernels into atoms at runtime. Atoms
are then submitted to the GPU and can be scheduled on
the TPCs dictated by the TPC Scheduler (Figure 8, 4○). As
a result, LithOS resolves a major challenge faced by prior
works that operate higher in the stack: the Kernel Atomizer
works on applications written in any framework, that use
any libraries (including closed-source ones like cuDNN), and
are built with any compiler.

To understand the benefits of scheduling at atom granular-
ity, we return to Figure 9(b). Stealing improves the schedule
but does not eliminate HoL blocking and wasted capacity. By
dividing the kernels into atoms, work can be packed more
tightly, as in Figure 9(c), and TPC allocations can be dynami-
cally adjusted throughout a kernel’s execution. Now, 𝐵1 is no
longer blocked by 𝐶2, as stealing is disabled for the latter’s
subsequent atoms 𝐶2 once request 𝐵 is submitted.
To demonstrate how LithOS’s Kernel Atomizer operates,

we consider a Conv kernel with a grid dimension of {8,8,1},
resulting in 64 blocks with block_idx ranging from 0 to 63.
Instead of launching the Conv kernel directly, LithOS invokes
a Prelude kernel, which calls into the original kernel using
the same launch configuration. The prelude kernel is shown
in Algorithm 1. At a high level, it checks whether block_idx
falls within a specified range—calling Conv if so, or exiting
early otherwise. For example, to partition the grid into 2
atoms, the kernel atomizer launches the prelude twice with
block index ranges [0,32) and [32,64). Using this technique,
LithOS can divide the kernel into up to 64 atoms. By speci-
fying non-overlapping block ranges, the atomizer ensures
each block is executed once, maintaining correctness.
Atomization Considerations. Kernels launch with an

explicit set of resources; thus, the kernel atomizer ensures
that the Prelude kernel uses the same set of resources as
the original Conv kernel. Furthermore, the Prelude kernel

6

LithOS: An Operating System for Efficient Machine Learning on GPUs

TP
Cs

Stealing eliminates some wasted capacity

Wasted Capacity

Three reqs arrive at different times

A1 A2 A3 B1 B2

C1 C2 C1
C2A1 A2 A3

B1B2

B1is blocked by C2

A1

Minimal HoL blocking

All tasks
complete
sooner

Atomization enables optimal scheduling
Ĉ1 Ĉ1 Ĉ1 Ĉ1

Ĉ1Ĉ2 Ĉ2
Ĉ2 Ĉ2
B̂1 B̂1

B2Â2 Â2Â3Â3

^

Figure 9. GPU timeline for two workloads showcasing (a) TPC Scheduling, (B) Stealing, and (C) Atomization.

0 10 20 30 40
Training GPU Memory Usage (GiB)

0

10

20

30

P 9
9 K

er
ne

l L
at

en
cy

 (m
s)

DLRM
BERT
MobileNet
ResNet
VGG

Llama 3 GPT-J
Inference Model

0

1

2

3

4

5 S M L

Figure 10. (a) 𝑃99 kernel latency at different training batch
sizes normalized to memory usage. (b) 𝑃99 kernel latency for
different inference prompt sequence lengths for LLMs.

needs to know the entry point to the Conv kernel. The Kernel
Atomizer passes this information to the Prelude kernel in
an AtomMetadata struct as seen in Algorithm 1.

Performance Optimizations. LithOS continuously mon-
itors the effectiveness of the Kernel Atomizer to enhance
performance. First, to avoid the overhead introduced by ad-
ditional code in the Prelude kernel for kernels with many
short threads, LithOS may disable atomization for such ker-
nels. Additionally, for kernels with a large number of thread
blocks, the Kernel Atomizer dynamically adjusts the atom_-
duration parameter to control its aggressiveness. This min-
imizes the performance penalty due to the increased thread
block traffic from early-exiting threads.

4.5 Right-Sizing Hardware Resources
LithOS’s ability to schedule at the TPC level unlocks new op-
portunities for fine-grained GPU right-sizing. Figure 11 high-
lights this potential by plotting kernel speedups as a function
of allocated TPCs for representative workloads (Section 6).
The selected kernels collectively account for 99% of total
execution time, with color gradients indicating each kernel’s
relative contribution. As an example, for Llama inference,
general matrix multiplication (GEMM) and multihead atten-
tion kernels exhibit diminishing returns, while the kernel
responsible for applying the token frequency penalty does
not scale. The results show that whole-model right-sizing is
suboptimal—there is no single TPC configuration that fits all
kernels. Instead, substantial opportunity lies in right-sizing
at the kernel level. First, individual kernels exhibit diverse
scaling behaviors: some scale linearly, while others show
diminishing returns. Second, the extent to which execution
time is distributed across many kernels varies fromworkload
to workload—highlighting the need for adaptive, per-kernel
scheduling to fully optimize GPU resource consumption.

Modeling Kernel Scaling. LithOS introduces on-the-
fly TPC right-sizing at the granularity of kernels (Figure 8,
Step 6○). The atoms of a given kernel inherit its allocated
TPCs, as they exhibit the same scaling behavior as the kernel
itself. To this end, LithOS introduces a model-based approach
that interpolates the scaling of individual kernels based on
two points: the latencies of a kernel running with all TPCs
and just one TPC. It then fits a curve of the form

𝑙 =
𝑚

𝑡
+ 𝑏

to these points, where 𝑙 is the predicted latency, 𝑡 is the
corresponding number of TPCs, and𝑚 and 𝑏 are constants.
Note that the form of this curve is consistent with Amdahl’s
law for parallel speedup. Intuitively, 𝑏 can be thought of as
how long it takes for a single one of the kernel’s thread blocks
to complete on a single SM, and𝑚 quantifies the extent to
which a kernel can take advantage of parallel processors.

Filtering Outliers. We find that, in practice, this sim-
ple model accurately captures the scaling behavior of most
deep learning kernels. However, a small number of outlier
kernels—typically those with very short runtimes—deviate
from the model, as they fail to benefit from large TPC allo-
cations and are inherently harder to model. To handle these
cases, we introduce a filtering heuristic based on a kernel’s
thread block occupancy. Specifically, we estimate the number
of TPCs a kernel can effectively utilize by dividing its total
number of thread blocks by the occupancy per TPC—that
is, the number of thread blocks a single TPC can execute
concurrently. LithOS already tracks thread blocks per kernel
as part of atomization, while occupancy can be queried from
the driver API [33]. This heuristic provides an intuitive upper
bound on useful TPC allocations per kernel, helping avoid
overprovisioning even for difficult-to-model kernels.
Operation. When a kernel is submitted to LithOS, the

dispatch thread first applies the filtering heuristic to esti-
mate an upper bound on the number of TPCs the kernel
can effectively utilize. If this estimate is lower than the job’s
allocated TPCs, the kernel is launched using the estimated
bound. Otherwise, the dispatch thread leverages the learned
scaling model to determine the minimum number of TPCs
that would increase the kernel’s latency by, at most, a multi-
plicative factor 𝑘 that we call the latency slip parameter. This
tunable parameter allows users and administrators to intu-
itively configure LithOS, for example, by specifying that up to
10% performance degradation is acceptable. Overall, LithOS
enables highly efficient fine-grained right-sizing, while its

7

P. H. Coppock, B. Zhang, E. H. Solomon, V. Kypriotis, L. Yang, B. Sharma, D. Schatzberg, T. C. Mowry, and D. Skarlatos

1 18 36 54
1

18

36

54 Llama 3 Inference

1 18 36 54

Llama 3 Finetuning

1 18 36 54

ResNet Inference

0%

25%

50%

75%

100%

%
 o

f T
ot

al
 T

im
e

of TPCs

Sp
ee

du
p

Figure 11. LithOS’s interpolated TPC scaling curves.

modeling and scaling techniques offer a robust and accurate
solution—as we will see in Section 7.2.

4.6 Transparent Power Management
LithOS is well-positioned to enable transparent and effi-
cient power management via DVFS. Just as right-sizing lets
LithOS adapt resource allocation based on kernel scalabil-
ity across TPCs, DVFS enables vertical scaling through fre-
quency adjustment. Figure 12 shows how kernels from vari-
ous workloads respond to frequency scaling. Many exhibit
predictable behavior, creating opportunities for energy sav-
ings with bounded performance impact. To achieve efficient
DVFS, LithOSmust address two key challenges. First, current
GPUs support relatively slow frequency switching (≈50ms).
While future architectures may reduce this latency [11],
DVFS remains impractical for models with very short kernels.
Thus, LithOS must consider the cumulative impact of scal-
ing across kernel sequences. Second, although many kernels
scale linearly with frequency—enabling significant energy
savings—LithOS must carefully balance these gains against
increased latency.

Modeling Frequency Scaling. LithOS introduces a trans-
parent sequence-based kernel frequency scaling model that
guides DVFS (Figure 8, Step 7○). Similarly to right-sizing, the
atoms of a given kernel inherit its frequency target, as they
exhibit the same scaling behavior as the kernel itself. Specifi-
cally, each kernel is assigned a weight w, the ratio of its total
runtime to the cumulative runtime of all the kernels in a
particular stream. Then, LithOS approximates each kernel’s
relative slowdown as proportional to the fractional drop in
frequency based on a first-order Taylor approximation:

𝑘 =
𝑙𝑎𝑡 (𝑓𝑡ℎ)
𝑙𝑎𝑡 (𝑓𝑚𝑎𝑥)

− 1 = 𝑠 · (𝑓𝑚𝑎𝑥

𝑓𝑡ℎ
− 1)

where 𝑙𝑎𝑡 (𝑓) is the kernel’s latency at frequency 𝑓 . Specifi-
cally, 𝑓𝑚𝑎𝑥 is the maximum frequency, and 𝑓𝑡ℎ is one of the
device’s supported frequencies. Each kernel’s sensitivity is

𝑠 =
𝑘

𝑓𝑚𝑎𝑥

𝑓𝑡ℎ
− 1

and the aggregate sensitivity S across all kernels is equal to∑
𝑤 ∗ 𝑠 . Similarly, the total slowdown is equal to

𝑆 · (𝑓𝑚𝑎𝑥

𝑓𝑓 𝑖𝑛𝑎𝑙
− 1) ≤ 𝑘

750 1000 12500

1

2
LLama 3 Inference

750 1000 1250

BERT Inference

750 1000 1250

ResNet Training

0%

25%

50%

75%

100%

%
 o

f T
ot

al
 T

im
e

Frequency (MHz)

Sp
ee

du
p

Figure 12. LithOS’s interpolated frequency scaling curves.

and thus the final frequency that LithOS assigns to the work-
load is 𝑓𝑓 𝑖𝑛𝑎𝑙 =

𝑓𝑚𝑎𝑥

1+ 𝑘
𝑆

. Intuitively, compute-bound kernels
whose slowdown scales linearly with frequency reduction
skew the final frequency closer to the maximum according to
their sensitivity, while memory-bound kernels whose slow-
down is frequency-insensitive skew the final frequency to
lower levels depending on their weight.
Operation. Similar to right-sizing, LithOS uses a multi-

plicative factor 𝑘 , the latency slip parameter, to guide DVFS
decisions. At runtime, this parameter is used to evaluate the
scaling model and select a target frequency. Due to the high
latency of switching, LithOS adopts a conservative strat-
egy and extends its learning period to avoid unnecessary
transitions. Initially, LithOS collects per-kernel metadata at
maximum frequency, forcing unseen kernels to run at max
frequency. On first appearance, a kernel is assumed to scale
linearly, and its frequency is reduced based on the config-
ured 𝑘 . Depending on the observed performance, LithOS
either further lowers the frequency or stops after confirming
linear behavior. Over time, it fits the collected data to the
scaling model described earlier, enabling more informed and
efficient DVFS decisions.

4.7 Online Latency Prediction
The latency prediction module learns the execution time
of kernels, enabling the optimizations carried out by all of
LithOS’s components. In particular, it enhances TPC Stealing
by estimating the duration of outstanding tasks and guides
the number of atoms the Kernel Atomizer splits each kernel
into. It further assists right-sizing and DVFS by providing the
latencies that are used to calculate speedups based on TPCs
and frequency scaling. This obviates the need for extensive
offline profiling, which is impractical for a transparent OS.
Latency prediction operates separately for independent

launch queues, allowing LithOS to dynamically adapt to
the behavior of different applications. During execution, the
module records kernel latencies and uses this data to refine
its predictions. Each kernel’s latency varies based on the
allocated TPCs, the GPU frequency, and the granularity at
which it is atomized; therefore, the prediction module must
monitor these conditions to produce accurate estimates. In
the case where such metadata are not available for a specific
atom, the prediction module is conservative, assuming opti-
mal linear scaling. For instance, if an atom was previously

8

LithOS: An Operating System for Efficient Machine Learning on GPUs

executed with a TPC allocation of 100%, it fits a linear trend
to estimate the duration when given half of the GPU.

One pitfall in achieving accurate kernel latency prediction
is assuming that a given kernel function always has the same
latency. In actuality, the duration can depend on the kernel’s
launch parameters and input arguments. For instance, a sin-
gle Conv kernel function can be used multiple times across
model layers that have varying tensor sizes. This necessitates
that the latency prediction module track operators rather
than kernel functions themselves.

By recording explicit synchronization events from the ap-
plication, we can determine the start and end of a batch. We
associate kernel launches with an ordinal index 𝑘 , referring
to the 𝑘 th kernel after the start of a batch. This uniquely iden-
tifies operator nodes in the model’s data flow graph (DFG),
despite LithOS lacking explicit access to this high-level infor-
mation. This additional ordinal index is sufficient to identify
model operators and make accurate latency predictions.

5 Implementation
We implement a prototype of LithOS targeting NVIDIAGPUs
in ∼5000 lines of Rust, excluding macro-generated code for
interposing the entire CUDA Driver API. Our prototype
supports applications running natively or in containers. To
enable concurrent execution across GPU contexts, we build
on top of MPS. We defer some low-level details of the imple-
mentation to a separate technical report.

Interposition Architecture. LithOS is fully transparent
to applications, supporting the diverse ML ecosystem and
full GPU stack. A key implementation decision is abstract-
ing the CUDA Driver API, the lowest common denominator
across the stack. Instead of accessing the driver directly, ap-
plications interact with LithOS, which preserves CUDA call
semantics. This abstraction ensures generality and trans-
parency at the OS level. LithOS seamlessly supports unmod-
ified ML applications using frameworks and libraries like
PyTorch, TensorFlow, JAX, TensorRT, and closed-source li-
braries like cuDNN. Beyond transparency, LithOS avoids the
complexity of interposing across the CUDA Runtime and
other libraries that eventually call into the driver. Instead, it
implements a small subset of CUDA APIs (e.g., cuLaunchK-
ernel), while the rest are auto-generated via our toolchain.
The LithOS library also eliminates complex data marshaling
across address spaces, unlike prior CUDA API interposition
systems [51]. This approach enables rapid support for new
CUDA versions with minimal effort, enhancing long-term
OS maintainability.

Isolation and Faults. In LithOS, applications run in sep-
arate address spaces and cannot access each other’s memory.
Illegal accesses lead to termination of the offending applica-
tion. To handle other faults, LithOS enables graceful termi-
nation for common errors [29] by intercepting signals and
terminating the application without affecting other contexts.

Model Mem. (GiB) Batch Size Latency (ms)
VGG-19 [42] 17.4 120 291
ResNet-50 [21] 18.4 184 281

MobileNetV2 [40] 18.4 216 254
DLRM [30] 6.7 32768 74

BERT-Large [14] 17.3 20 159
Llama 3 Finetuning 32.0 4 690

Table 1. Training model parameters.

6 Experimental Setup and Methodology
Testbed. Experiments were conducted on a 1x A100 (SXM4)
Lambda Labs GPU instance with 30 CPU cores and 216 GB
of host memory. The A100 GPU has 108 SMs with 40 GB
of memory. The server was configured with Ubuntu 22.04,
CUDA 12.8, Rust 1.83.0-nightly, Python 3.10, PyTorch 2.3,
TensorRT 10.7, TensorRT-LLM 0.16.0, and Triton 24.12.

Baselines.We compare LithOSwith all four NVIDIA GPU
sharing methods: Time slicing,MPS, stream Priority, andMIG.
We further compare against SOTA prior work across the
spectrum of transparent solutions TGS [48], application mod-
ifications REEF [20], and both application modifications and
offline profiling Orion [44]. We used the open-source TGS
directly but had to re-implement Orion and REEF using our
own interposition infrastructure, since the available codewas
tied to specific CUDA drivers and software stacks. We extend
REEF and Orion to handle multiple HP apps in a straightfor-
ward manner. For REEF, BE kernels are not launched if any
HP app is running. For Orion, BE kernels are not launched
if they contend with any HP kernel.

Models and Configurations. All high priority inference
tasks run on NVIDIA’s Triton Inference Server with dy-
namic batching [9]. RetinaNet runs on ONNX Runtime while
the other served models run on NVIDIA’s TensorRT and
TensorRT-LLM backends. We choose three representative
vision models (RetinaNet [28], YOLOv4 [2], and ResNet-50
v1.5 [21]) and three language models (Llama 3 8B [16], GPT-J
6B [46], and BERT-Large [14]) as inference workloads. For
large language models, we use a Microsoft Azure trace [43].
For the best effort training tasks, we use three vision models,
ResNet-50, MobileNetV2, VGG-19, a deep learning recom-
mendation model (DLRM), a language model BERT-Large,
and LLM fine-tuning with Llama 3 as listed. The training
batch size is adjusted to use at most half of the GPU DRAM
to keep all models in memory when stacking. The best effort
training task runs continuously. More details are shown in
Table 1.

7 Evaluation
Our evaluation answers the following questions:

1. Does LithOS improve performance for different multi-
tenancy environments and SOTA prior works?

2. What are the capacity savings due to LithOS’s hard-
ware right-sizing?

3. What are the energy savings of LithOS’s DVFS?
4. How do different LithOS features affect performance?

9

P. H. Coppock, B. Zhang, E. H. Solomon, V. Kypriotis, L. Yang, B. Sharma, D. Schatzberg, T. C. Mowry, and D. Skarlatos

Model Framework Load (rps) Constraint (ms)
ResNet [21] TensorRT 1000 15

RetinaNet [28] ONNX Runtime 9 100
Llama 3 [16] TensorRT-LLM 0.5 2000
GPT-J [46] TensorRT-LLM 0.5 2000
BERT [14] TensorRT 30 130

Table 2. Inference services for inference-only multitenancy.

0 0.25 0.5 0.75 1
Throughput (×)

0

20

40

60

80

100

SL
O

At
ta

in
m

en
t (

%
)

Limits LithOSMIG

MPS

Orion
PriorityREEFTGS

Time slicing

Figure 13. SLO attainment and throughput by system.

7.1 Performance in Multitenant Environments
In the following experiments, we disable right-sizing and
power management features of LithOS to provide an apples-
to-apples comparison to other systems in terms of scheduling
efficiency alone. We evaluate these features afterwards.

Inference-only Multitenancy. We evaluate LithOS in a
multitenant environment with three inference applications:
one best-effort (BE) and two high-priority (HP). The first
HP app, HP A, has a latency-oriented SLO: percentage of
requests executed within a latency constraint. The second,
HP B, has a throughput-oriented SLO: attained throughput
as a percentage of the case where it executes alone. These
vary according to the model (Table 2).

The BE and HP B models are chosen from Llama 3, GPT-J,
and BERT. For HP A, we add ResNet and RetinaNet. We use
latency constraints from the MLPerf Datacenter inference
benchmark [38] (Table 2). We run all possible combinations.
HP apps follow Poisson load and run on the Triton inference
server, while BE apps execute in a closed loop. Latencies for
all models, including LLMs, are measured end-to-end.
We compare LithOS against all configurations. For sys-

tems that support partitioning, HP A and HP B are isolated
on partitions of 75% and 25%, respectively. MIG’s limited
partitioning configurations cannot support a 25%-75% split,
so we use a 3/7-4/7 split instead. MIG and Limits cannot
support a BE app, but only apps with provisioned resources;
therefore, the BE does not run on these systems. There is
no way to isolate multiple latency-sensitive applications on
systems like Priority, REEF, TGS, and Orion. For these, we
set both of the HP apps to high priority and the BE to low
priority.

Best Effort High-priority B High-priority A
0.0

0.2

0.4

0.6

Go
od

pu
t (

×)

MPS
Time slicing
MIG
Limits
Priority
REEF
TGS
Orion
LithOS

Figure 14. Inference-only multitenancy: goodput by app.

Figure 13 compares all systems across two dimensions:
SLO attainment and throughput. “SLO” of 100% means both
HPs reach 100% attainment. “Throughput” of 1 means that
the throughput achieved is as much as if any of the apps
had the entire device. Unsurprisingly, MPS sets the bar for
throughput. MPS’s fine-grained, intra-SM stacking ensures
device resources are maximally utilized, and it allows more
throughput when stacking than any application could have
alone; hence, it achieves a throughput of 1.08. MPS’s through-
put comes at the cost of SLO attainment, at 42%. MIG and
thread limits both successfully meet SLOs. This is expected,
as each systemminimizes interference by devoting resources
to individual apps. However, the partitions are not fully uti-
lized without a BE app. As a result, aggregate throughput
drops to 0.66 and 0.59 for thread limits and MIG, respectively.
Without isolating HP apps, priority-only systems cannot
attain SLOs, with TGS leading at 72%. LithOS provides the
best of both worlds, as it provides spatial isolation like MIG
with an SLO attainment of 100% and a throughput of 1.

Where do the benefits of LithOS come from? Figure 14
shows LithOS consistently leading in goodput (throughput
excluding HP A requests that violate the SLO constraint)
for the HP apps while still allowing significant (0.15) BE
throughput. While the partitioning systems match LithOS
in HP A goodput, they lack in HP B goodput: MIG at 0.31
vs. LithOS at 0.50. Partitioning schemes cannot support any
BE throughput, while LithOS allows HP apps to steal un-
used resources from one another and further support BE
throughput. No SotA system can perform effectively across
all requirements. Specifically, REEF and Orion underperform
in latency-sensitive goodput and TGS in throughput. Only
LithOS provides the best HP goodput while sustaining high
BE throughput.
Diving deeper, we next look into the latencies of the HP

A app in Figure 15. The figure shows the 𝑃99 latencies for
each model averaged across all combinations. Latencies di-
verge in many cases, with only LithOS and the partitioning
systems limiting latencies to the constraints. MPS is the
worst-performing regarding latencies; LithOS’s latencies are
13× better. LithOS reduces latencies by 12× compared to
Orion. This is expected as Orion cannot handle multiple HP
apps. TGS limits latencies much more effectively than Orion
and REEF, but LithOS still improves over it by 3×. Overall,
LithOS provides a robust solution for inference stacking.

10

LithOS: An Operating System for Efficient Machine Learning on GPUs

ResNet
0

10 2

10 1
100
101

P 9
9 L

at
en

cy
 (s

)

RetinaNet
0

10 1

100

101

Llama 3
0

100

101

GPT-J
0

100

101

BERT
0

10 1

MPS Time slicing Priority REEF TGS Orion LithOS constraint baseline

Figure 15. Inference stacking multitenancy: HP A tail latencies by model.

Llama 3 RetinaNet GPT-J BERT YOLO
High-priority Inference Model

0

2

4

P 9
9 L

at
en

cy
 (×

)

5 4 7 9545

Llama 3 RetinaNet GPT-J BERT YOLO
High-priority Inference Model

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (×

)

BE HP

ideal MPS Orion Priority REEF Time slicing MIG TGS LithOS

Figure 16. Hybrid multitenancy: (a) 𝑃99 service latency and (b) aggregate throughput.

Hybrid Inference/Training Multitenancy. In this ex-
periment, we stack an HP that has a latency-oriented SLO
with a training BE app. Similar to the inference-stacking
experiment, resources unused by the sensitive inference app
should be donated to the best-effort training job. At the same
time, service latency must not increase. We choose the infer-
ence model from the set, Llama 3 8B, GPT-J 6B, BERT-Large,
RetinaNet, and YOLOv4. We choose the training model from
those listed in Table 1. We run all model combinations, and
our client creates Poisson loads. Load parameters are chosen
to keep GPU utilization around 80% for the HP app.

Figure 16 shows the 𝑃99 HP latency and aggregate through-
put, averaged across all training models. HP throughput is
normalized to the load before being added to the BE through-
put, normalized to the case where the BEmodel runs alone on
the device. Latencies are also normalized to the case where
the HP runs alone on the device. MPS yields latencies 5.83×
the ideal case, and its service throughput is the lowest at
60%. Time slicing fares better as it enables the long-running
kernels of the best-effort models to be preempted, guaran-
teeing the service approximately 50% of the GPU time. MIG
performs similarly to time slicing by allocating 50% of the
GPU to the service spatially rather than temporally. However,
both methods fail to sustain peak HP throughput. Stream
priority also falls short, leading to a 2.89× increase in service
latency and service throughput as low as 68%.

Both TGS and REEF also struggle to maintain low service
latencies. TGS has an average inference latency of 1.41×
the ideal, and REEF 2.89×. TGS’s poor performance stems
from its adaptive rate control mechanism, which assumes
a constant work arrival rate. This assumption is invalid for
inference services, which have unpredictable load patterns.
REEF fails to sufficiently throttle the trainingmodel, allowing

Lla
ma 3 GPT-

J
BER

T
Re

sN
et

Re
tin

aN
et

YO
LO

Lla
ma 3 BER

T
Re

sN
et

Mob
ileN

et
DLR

M
VGG

Mea
n

0

15

30

45

60
GP

U
Ca

pa
cit

y
Sa

vi
ng

s (
%

) Inference Training / Finetuning

Figure 17. Hardware right-sizing GPU capacity savings.

tail latencies to reach 8.93×. In contrast, LithOS maintains
a tail latency within 20% of the ideal. On average, this is
a 2.34× and 1.18× over REEF and TGS, respectively. Com-
pared to the native MPS solution, LithOS reduces latency
by up to 13.54× and 4.7× on average. LithOS maintains ser-
vice throughput within 1% of load in the worst case. LithOS
improves training throughput by an average of 34× and
aggregate throughput by 1.35× vs. TGS. In total, LithOS im-
proves aggregate throughput 1.23×–1.57× with an average
of 1.38×.

7.2 Kernel-SM Right-Sizing
Capacity Savings. Figure 17 shows the capacity savings due
to right-sizing with LithOS. We compute savings by compar-
ing the time-weighted average of TPC utilization before and
after right-sizing. LithOS provides excellent savings of up
to 51%, and a mean of 26% across all workloads. We expect
that in future GPU architectures with an increased number
of TPCs, the fine-grained right-sizing approach of LithOS
will provide even more aggressive saving potential.

Latency and Throughput Cost. With a latency slip pa-
rameter of 1.1, the performance cost of right-sizing in terms
of 𝑃99 and throughput is modest. The mean increase in 𝑃99
and decrease in throughput are both 4%. Our latency slip
parameter is conservative because not all of the end-to-end

11

P. H. Coppock, B. Zhang, E. H. Solomon, V. Kypriotis, L. Yang, B. Sharma, D. Schatzberg, T. C. Mowry, and D. Skarlatos

Lla
ma 3 GPT-

J
BER

T
Re

sN
et

Re
tin

aN
et

YO
LO

Lla
ma 3 BER

T
Re

sN
et

Mob
ileN

et
DLR

M
VGG

Mea
n

0%

15%

30%

45%

60%

GP
U

En
er

gy
Sa

vi
ng

s (
%

) Inference Training / Finetuning

Figure 18. Power management GPU energy savings.

Llama 3 RetinaNet GPT-J BERT YOLO
High-priority Inference Model

0

2

4

P 9
9 L

at
en

cy
 (×

)

5 4 7 9
MPS + TPC Scheduling + Kernel Atomization

Figure 19. Breakdown of LithOS features for inf-train.

execution time of each inference or training iteration is spent
inside a GPU kernel; this does not impede tuning in practice.
Accuracy. To quantify the accuracy of our prediction

technique, we compute the kernel-execution-time weighted
average of the 𝑅2 values for the curves we fit (i.e., for kernels
where the possible TPCs value exceeds the threshold). Across
all of the evaluated workloads, the average 𝑅2 values range
from 0.92 (Llama finetuning) to 0.99 (RetinaNet inference),
indicating that our technique is highly accurate.

7.3 Kernel-Dependent DVFS
Energy Savings. Figure 18 shows the energy savings of
LithOS’s DVFS mechanism across different inference and
training workloads. We define energy savings by recording
the difference between executing the workload at maximum
frequency, and under LithOS’s DVFS policy. LithOS provides
significant energy savings of up to 46%, and a mean of 26%
across all workloads without offline profiling requirements.
Performance Cost. The slip parameter for this experi-

ment was set at 1.1, and the mean increase in 𝑃99 latency
is 7%. The minimal increase in 𝑃99 latency demonstrates
that LithOS’s DVFS policy is inherently conservative. It re-
spects latency constraints across workloads while transpar-
ently providing substantial energy savings. Finer-grained
frequency control could unlock additional energy savings.

7.4 Ablation and Case Studies
Multi-tenancy Breakdown. Figure 19 presents a perfor-
mance analysis for inference-training as explored in Fig-
ure 16. Enabling the TPC scheduler improves HP tail laten-
cies to 1.38× ideal by throttling BE work, while maintaining
ideal HP throughput. Kernel Atomization offers additional
gains, reducing tail latencies to an average of 1.19× and up
to 1.55×, by splitting long BE kernels and improving TPC
Stealing. Because of space limitations, we plot only latencies.

0 64 128 192 256 320
BE Training Batch Size

0
5

10
15
20
25

P 9
5 L

at
en

cy
 (m

s) 47.9 ms

0 128 256 384 512
BE Inference Prompt Seqlen (Tok)

0
3
6
9

12
15

26.9 ms

REEF LithOS (w/o Kernel Atomization) LithOS

Figure 20. 𝑃95 latency of HP inference collocated with varied
(a) batch sizes training and (b) sequence lengths inference.

Kernel Atomization introduces a 10% throughput overhead,
as LithOS prioritizes HP workloads by reducing BE through-
put. Overall, each of LithOS’s features plays a crucial role in
optimizing end-to-end performance.

KernelAtomization.To highlight the challenges of sched-
uling long-running kernels, we collocate an HP BERT infer-
ence workload with either a BE VGG training or a BE Llama
3 inference. In Figure 20, we vary (a) the batch size of the
BE training job and (b) the sequence length of the BE infer-
ence job and measure the 𝑃95 latency of the HP inference job.
LithOS outperforms REEF by 6.5× and 3.9× in (a) and (b),
respectively. Unlike REEF, which simply throttles BE work,
LithOS accounts for kernel durations, which can vary signif-
icantly. To understand the impact of Kernel Atomization, we
further evaluate LithOS with Kernel Atomization disabled.
Kernel Atomization provides an improvement of 2× and 1.3×
in (a) and (b), respectively. As described in Figure 10, kernel
durations grow with training batch size and inference input
sequence length. As Kernel Atomization allows LithOS to
schedule at thread block granularity, HoL blocking is mini-
mized. Consequently, the HP tail latency for the full LithOS
system is within 14% (or 1ms) or 7% (or 0.45ms) of ideal for
even the largest batch size or sequence length, respectively.
Latency Prediction Module. Next, we evaluate the ac-

curacy of the latency prediction module of LithOS that en-
hances the TPC Scheduler and the Kernel Atomizer. Specifi-
cally, we record the predicted atom latencies and compare
them with the corresponding recorded CUDA events. We
consider absolute errors greater than 50𝜇s to be mispredic-
tions. Overall, we find very low misprediction rates of just
0.9% and 0.38% for the HP workloads in inference-inference
and inference-training environments, respectively. Addition-
ally, the prediction error tails are small with 𝑃99 values of
49𝜇s and 31𝜇s. Misprediction rates for the BE workloads are
higher at 14% and 11% for inference-inference and inference-
training, respectively. This is acceptable as BE work is fre-
quently preempted by HP work and has lower priority for
GPU resources.

8 Conclusion
This paper introduces LithOS, a first step towards an operat-
ing system for efficient machine learning on GPUs. LithOS

12

LithOS: An Operating System for Efficient Machine Learning on GPUs

operates transparently to the entireML stack. Throughmech-
anisms like TPC Scheduling, Kernel Atomization, hardware
right-sizing, and power management, LithOS significantly
improves GPU efficiency while laying the foundation for
future OS research on GPUs.

9 Acknowledgments
We would like to thank the members of the Computer Archi-
tecture and Operating Systems (CAOS) group at the Com-
puter Science Department at Carnegie Mellon University for
their feedback on this work. This research was funded by a
Meta AI Hardware/Software Co-design Faculty award and
NSF grants CNS 2239311 and CCF 2217016.

References
[1] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. {PipeSwitch}:

Fast pipelined context switching for deep learning applications. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). 499–514.

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
2020. YOLOv4: Optimal Speed and Accuracy of Object Detection.
arXiv:2004.10934 [cs.CV] https://arxiv.org/abs/2004.10934

[3] Qichen Chen, Hyerin Chung, Yongseok Son, Yoonhee Kim, and
Heon Young Yeom. 2021. smCompactor: a workload-aware fine-
grained resource management framework for GPGPUs. In Proceedings
of the 36th Annual ACM Symposium on Applied Computing (Virtual
Event, Republic of Korea) (SAC ’21). Association for Computing Ma-
chinery, New York, NY, USA, 1147–1155. doi:10.1145/3412841.3441989

[4] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin
Kwon, and Jaehyuk Huh. 2022. Serving Heterogeneous Machine
Learning Models on Multi-GPU Servers with Spatio-Temporal Shar-
ing. In 2022 USENIX Annual Technical Conference (USENIX ATC 22).
USENIX Association, Carlsbad, CA, 199–216. https://www.usenix.
org/conference/atc22/presentation/choi-seungbeom

[5] Marcus Chow, Ali Jahanshahi, and Daniel Wong. 2023. KRISP: En-
abling Kernel-wise RIght-sizing for Spatial Partitioned GPU Inference
Servers. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 624–637. doi:10.1109/HPCA56546.2023.
10071121

[6] Marcus Chow and DanielWong. 2024. CoFRIS: Coordinated Frequency
and Resource Scaling for GPU Inference Servers. In Proceedings of
the 14th International Green and Sustainable Computing Conference
(Toronto, ON, Canada) (IGSC ’23). Association for Computing Machin-
ery, New York, NY, USA, 45–51. doi:10.1145/3634769.3634808

[7] NVIDIA Corporation. [n. d.]. Multi-Process Service. https://docs.
nvidia.com/deploy/mps/index.html. Accessed: April 14, 2025.

[8] NVIDIA Corporation. 2023. NVIDIA H100 Tensor Core GPU Architec-
ture. Technical Report. NVIDIA Corporation, Santa Clara, CA.

[9] NVIDIA Corporation. 2024. Triton Inference Server. https://developer.
nvidia.com/triton-inference-server. Accessed: May 8, 2024.

[10] NVIDIA Corporation. 2025. NVIDIA Multi-Instance GPU User
Guide. https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
index.html. Accessed: April 14, 2025.

[11] NVIDIA Corporation. 2025. NVIDIA RTX BLACKWELL GPU ARCHI-
TECTURE. https://images.nvidia.com/aem-dam/Solutions/geforce/
blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf.

[12] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX As-
sociation, Boston, MA, 613–627. https://www.usenix.org/conference/

nsdi17/technical-sessions/presentation/crankshaw
[13] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen Leng,

Jieru Zhao, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo.
2021. Enable simultaneous DNN services based on deterministic op-
erator overlap and precise latency prediction. In Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (St. Louis, Missouri) (SC ’21). Association
for Computing Machinery, New York, NY, USA, Article 15, 15 pages.
doi:10.1145/3458817.3476143

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805 [cs.CL] https://arxiv.org/
abs/1810.04805

[15] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020.
GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference
Platform. In Proceedings of the 11th ACM Symposium on Cloud Comput-
ing (Virtual Event, USA) (SoCC ’20). Association for Computing Ma-
chinery, New York, NY, USA, 492–506. doi:10.1145/3419111.3421284

[16] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, and Angela et al. Fan. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783 (2024).

[17] Joshua Fried, Zhenyuan Ruan, AmyOusterhout, and Adam Belay. 2020.
Caladan: Mitigating Interference at Microsecond Timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 281–297. https://www.usenix.org/
conference/osdi20/presentation/fried

[18] Yanjie Gao, Yichen He, Xinze Li, Bo Zhao, Haoxiang Lin, Yoyo Liang,
Jing Zhong, Hongyu Zhang, Jingzhou Wang, Yonghua Zeng, et al.
2024. An Empirical Study on Low GPU Utilization of Deep Learning
Jobs. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 1–13.

[19] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like
Clockwork: Performance Predictability from the Bottom Up. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 443–462. https://www.usenix.org/
conference/osdi20/presentation/gujarati

[20] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022.
Microsecond-scale Preemption for Concurrent GPU-accelerated DNN
Inferences. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIXAssociation, Carlsbad, CA, 539–
558. https://www.usenix.org/conference/osdi22/presentation/han

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep
Residual Learning for Image Recognition. arXiv:1512.03385 [cs.CV]
https://arxiv.org/abs/1512.03385

[22] Saksham Jain, Iljoo Baek, ShigeWang, and Ragunathan Rajkumar. 2019.
Fractional GPUs: Software-based compute and memory bandwidth
reservation for GPUs. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 29–41.

[23] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, unjie
Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training Workloads. In Pro-
ceedings of the 2019 USENIX Conference on Usenix Annual Technical
Conference (Renton,WA, USA) (USENIX ATC ’19). USENIX Association,
USA, 947–960.

[24] Andreas Kosmas Kakolyris, Dimosthenis Masouros, Petros Vavarout-
sos, Sotirios Xydis, and Dimitrios Soudris. 2024. SLO-aware GPU
Frequency Scaling for Energy Efficient LLM Inference Serving.
arXiv:2408.05235 [cs.DC] https://arxiv.org/abs/2408.05235

[25] Yunseong Kim, Yujeong Choi, and Minsoo Rhu. 2022. PARIS and
ELSA: an elastic scheduling algorithm for reconfigurable multi-GPU

13

https://www.cs.cmu.edu/~caos/
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1145/3412841.3441989
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://doi.org/10.1109/HPCA56546.2023.10071121
https://doi.org/10.1109/HPCA56546.2023.10071121
https://doi.org/10.1145/3634769.3634808
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1145/3458817.3476143
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3419111.3421284
https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi22/presentation/han
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2408.05235
https://arxiv.org/abs/2408.05235

P. H. Coppock, B. Zhang, E. H. Solomon, V. Kypriotis, L. Yang, B. Sharma, D. Schatzberg, T. C. Mowry, and D. Skarlatos

inference servers. In Proceedings of the 59th ACM/IEEE Design Au-
tomation Conference (San Francisco, California) (DAC ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 607–612.
doi:10.1145/3489517.3530510

[26] Beth Kindig. 2024. AI power consumption: Rapidly becoming mission-
critical. https://www.forbes.com/sites/bethkindig/2024/06/20/ai-
power-consumption-rapidly-becoming-mission-critical/

[27] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh
Tiwari. 2022. MISO: Exploiting Multi-Instance GPU Capability on
Multi-Tenant GPU Clusters. In Proceedings of the 13th Symposium on
Cloud Computing (San Francisco, California) (SoCC ’22). Association
for Computing Machinery, New York, NY, USA, 173–189. doi:10.1145/
3542929.3563510

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
2018. Focal Loss for Dense Object Detection. arXiv:1708.02002 [cs.CV]
https://arxiv.org/abs/1708.02002

[29] Xuanzhe Liu, Yihao Zhao, Shufan Liu, Xiang Li, Yibo Zhu, Xin Liu,
and Xin Jin. 2024. MuxFlow: efficient GPU sharing in production-
level clusters with more than 10000 GPUs. Science China Information
Sciences 67, 12 (2024), 222101. doi:10.1007/s11432-024-4227-2

[30] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. 2019. Deep Learning Recommendation Model for Per-
sonalization and Recommendation Systems. arXiv:1906.00091 [cs.IR]
https://arxiv.org/abs/1906.00091

[31] Microsoft Network. 2024. Dell exec reveals Nvidia has a 1,000 watt
GPU in the works. https://www.msn.com/en-us/lifestyle/other/dell-
exec-reveals-nvidia-has-a-1-000-watt-gpu-in-the-works/ar-
BB1jlE8f. Accessed: June 24, 2024.

[32] Kelvin K. W. Ng, Henri Maxime Demoulin, and Vincent Liu.
2023. Paella: Low-latency Model Serving with Software-defined
GPU Scheduling. In Proceedings of the 29th Symposium on Oper-
ating Systems Principles (<conf-loc>, <city>Koblenz</city>, <coun-
try>Germany</country>, </conf-loc>) (SOSP ’23). Association for
Computing Machinery, New York, NY, USA, 595–610. doi:10.1145/
3600006.3613163

[33] NVIDIACorporation. [n. d.]. NVIDIA CUDADriver API Documentation:
Occupancy. NVIDIA Corporation. https://docs.nvidia.com/cuda/cuda-
driver-api/group__CUDA__OCCUPANCY.html

[34] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li
Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
2017. TensorFlow-Serving: Flexible, High-Performance ML Serving.
arXiv:1712.06139 [cs.DC]

[35] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-sensitive Datacenter Workloads. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
USENIX Association, Boston, MA, 361–378. https://www.usenix.org/
conference/nsdi19/presentation/ousterhout

[36] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Brijesh
Warrier, Nithish Mahalingam, and Ricardo Bianchini. 2024. Charac-
terizing Power Management Opportunities for LLMs in the Cloud. In
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3
(La Jolla, CA, USA) (ASPLOS ’24). Association for Computing Machin-
ery, New York, NY, USA, 207–222. doi:10.1145/3620666.3651329

[37] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha,
Chen Wang, Hubertus Franke, Zbigniew Kalbarczyk, Tamer Başar,
and Ravishankar K. Iyer. 2024. Power-aware Deep Learning Model
Serving with 𝜇-Serve. In 2024 USENIX Annual Technical Conference

(USENIX ATC 24). USENIX Association, Santa Clara, CA, 75–93. https:
//www.usenix.org/conference/atc24/presentation/qiu

[38] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody
Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,
J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff
Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton
Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin
Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George
Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. 2019. MLPerf
Inference Benchmark. arXiv:1911.02549 [cs.LG]

[39] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. INFaaS: Automated Model-less Inference Serv-
ing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, 397–411. https://www.usenix.org/conference/
atc21/presentation/romero

[40] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 4510–4520.

[41] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video
Analysis. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, 322–337.
doi:10.1145/3341301.3359658

[42] Karen Simonyan and Andrew Zisserman. 2015. Very Deep
Convolutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs.CV] https://arxiv.org/abs/1409.1556

[43] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha
Choukse. 2024. DynamoLLM: Designing LLM Inference Clusters for
Performance and Energy Efficiency. arXiv:2408.00741 [cs.AI] https:
//arxiv.org/abs/2408.00741

[44] Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion:
Interference-aware, Fine-grained GPU Sharing for ML Applications.
In Proceedings of the Nineteenth European Conference on Computer Sys-
tems (<conf-loc>, <city>Athens</city>, <country>Greece</country>,
</conf-loc>) (EuroSys ’24). Association for ComputingMachinery, New
York, NY, USA, 1075–1092. doi:10.1145/3627703.3629578

[45] Cheng Tan, Zhichao Li, Jian Zhang, Yu Cao, Sikai Qi, Zherui Liu, Yibo
Zhu, and Chuanxiong Guo. 2021. Serving DNN Models with Multi-
Instance GPUs: A Case of the Reconfigurable Machine Scheduling
Problem. arXiv:2109.11067 [cs.DC]

[46] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Param-
eter Autoregressive Language Model. https://github.com/kingoflolz/
mesh-transformer-jax.

[47] Tianyu Wang, Sheng Li, Bingyao Li, Yue Dai, Ao Li, Geng Yuan,
Yufei Ding, Youtao Zhang, and Xulong Tang. 2024. Improving GPU
Multi-Tenancy Through Dynamic Multi-Instance GPU Reconfigura-
tion. arXiv preprint arXiv:2407.13126 (2024).

[48] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. 2023.
Transparent GPU Sharing in Container Clouds for Deep Learning
Workloads. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). USENIX Association, Boston, MA, 69–
85. https://www.usenix.org/conference/nsdi23/presentation/wu

[49] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi
Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: Dynamic
Scaling on GPU Clusters for Deep Learning. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’20). USENIX Association, USA, Article 30, 16 pages.

14

https://doi.org/10.1145/3489517.3530510
https://www.forbes.com/sites/bethkindig/2024/06/20/ai-power-consumption-rapidly-becoming-mission-critical/
https://www.forbes.com/sites/bethkindig/2024/06/20/ai-power-consumption-rapidly-becoming-mission-critical/
https://doi.org/10.1145/3542929.3563510
https://doi.org/10.1145/3542929.3563510
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://doi.org/10.1007/s11432-024-4227-2
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://www.msn.com/en-us/lifestyle/other/dell-exec-reveals-nvidia-has-a-1-000-watt-gpu-in-the-works/ar-BB1jlE8f
https://www.msn.com/en-us/lifestyle/other/dell-exec-reveals-nvidia-has-a-1-000-watt-gpu-in-the-works/ar-BB1jlE8f
https://www.msn.com/en-us/lifestyle/other/dell-exec-reveals-nvidia-has-a-1-000-watt-gpu-in-the-works/ar-BB1jlE8f
https://doi.org/10.1145/3600006.3613163
https://doi.org/10.1145/3600006.3613163
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__OCCUPANCY.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__OCCUPANCY.html
https://arxiv.org/abs/1712.06139
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.1145/3620666.3651329
https://www.usenix.org/conference/atc24/presentation/qiu
https://www.usenix.org/conference/atc24/presentation/qiu
https://arxiv.org/abs/1911.02549
https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero
https://doi.org/10.1145/3341301.3359658
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2408.00741
https://arxiv.org/abs/2408.00741
https://arxiv.org/abs/2408.00741
https://doi.org/10.1145/3627703.3629578
https://arxiv.org/abs/2109.11067
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://www.usenix.org/conference/nsdi23/presentation/wu

LithOS: An Operating System for Efficient Machine Learning on GPUs

[50] Fei Xu, Jianian Xu, Jiabin Chen, Li Chen, Ruitao Shang, Zhi Zhou,
and Fangming Liu. 2023. iGniter: Interference-Aware GPU Resource
Provisioning for Predictable DNN Inference in the Cloud. IEEE
Transactions on Parallel and Distributed Systems 34, 3 (2023), 812–827.
doi:10.1109/TPDS.2022.3232715

[51] Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and
Christopher J Rossbach. 2020. AvA: Accelerated virtualization of ac-
celerators. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems. 807–825.

[52] Yijia Zhang, Qiang Wang, Zhe Lin, Pengxiang Xu, and Bingqiang
Wang. 2024. Improving GPU Energy Efficiency through an
Application-transparent Frequency Scaling Policy with Performance
Assurance. In Proceedings of the Nineteenth European Conference on
Computer Systems (Athens, Greece) (EuroSys ’24). Association for Com-
puting Machinery, New York, NY, USA, 769–785. doi:10.1145/3627703.

3629584
[53] Yongkang Zhang, Haoxuan Yu, Chenxia Han, Cheng Wang, Baotong

Lu, Yunzhe Li, Zhifeng Jiang, Yang Li, Xiaowen Chu, and Huaicheng
Li. 2025. SGDRC: Software-Defined Dynamic Resource Control for
Concurrent DNN Inference on NVIDIA GPUs. In Proceedings of the
30th ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming (Las Vegas, NV, USA) (PPoPP ’25). Association
for Computing Machinery, New York, NY, USA, 267–281. doi:10.1145/
3710848.3710863

[54] Xia Zhao, Magnus Jahre, and Lieven Eeckhout. 2020. HSM: A Hy-
brid Slowdown Model for Multitasking GPUs. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland)
(ASPLOS ’20). Association for Computing Machinery, New York, NY,
USA, 1371–1385. doi:10.1145/3373376.3378457

15

https://doi.org/10.1109/TPDS.2022.3232715
https://doi.org/10.1145/3627703.3629584
https://doi.org/10.1145/3627703.3629584
https://doi.org/10.1145/3710848.3710863
https://doi.org/10.1145/3710848.3710863
https://doi.org/10.1145/3373376.3378457

	Abstract
	1 Introduction
	1.1 Our Approach: An Operating System for GPUs

	2 Background and Related Work
	2.1 A Brief Background on GPUs
	2.2 Related Work

	3 Motivation
	3.1 Understanding GPU Utilization in Datacenters

	4 LithOS Design
	4.1 Architecture Overview
	4.2 Interface with Userspace
	4.3 TPC Scheduler
	4.4 Kernel Atomizer
	4.5 Right-Sizing Hardware Resources
	4.6 Transparent Power Management
	4.7 Online Latency Prediction

	5 Implementation
	6 Experimental Setup and Methodology
	7 Evaluation
	7.1 Performance in Multitenant Environments
	7.2 Kernel-SM Right-Sizing
	7.3 Kernel-Dependent DVFS
	7.4 Ablation and Case Studies

	8 Conclusion
	9 Acknowledgments
	References

