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Abstract
We introduce Mirage, the first multi-level superoptimizer
for tensor programs. A key idea in Mirage is µGraphs, a
uniform representation of tensor programs at the kernel,
thread block, and thread levels of the GPU compute hier-
archy. µGraphs enable Mirage to discover novel optimiza-
tions that combine algebraic transformations, schedule trans-
formations, and generation of new custom kernels. To nav-
igate the large search space, Mirage introduces a pruning
technique based on abstraction that significantly reduces
the search space and provides a certain optimality guaran-
tee. To ensure that the optimized µGraph is equivalent to
the input program, Mirage introduces a probabilistic equiva-
lence verification procedure with strong theoretical guaran-
tees. Our evaluation shows that Mirage significantly outper-
forms existing approaches even for DNNs that are widely
used and heavily optimized. Mirage is publicly available at
https://github.com/mirage-project/mirage.

1 Introduction

Enabling high-performance execution of deep neural net-
works (DNNs) on GPUs is critical for modern ML applica-
tions. Today’s DNN frameworks generally specify DNN com-
putation using tensor programs, which are directed acyclic
graphs whose nodes and edges represent tensor algebra
operators (e.g., matrix multiplication) and tensors (i.e., n-
dimensional arrays) shared between operators.

To optimize an input tensor program, existing frameworks
(e.g., PyTorch [34] and TensorFlow [9]) use manually de-
signed rules to map the tensor program to expert-written GPU
kernels. These approaches generally require extensive engi-
neering efforts to design and implement optimization rules,
and they may miss certain optimization opportunities. To ad-
dress these challenges, recent work has introduced automated
approaches that optimize tensor programs by searching over a
comprehensive space of program transformations and apply-
ing them based on their performance on target GPUs. These
approaches generally fall into two categories.

The first category of work, including Halide [35],
TVM [13], and Ansor [51], is motivated by the idea of al-
gorithm and schedule separation1 introduced in Halide and
optimizes the schedule of a tensor program while fixing the al-
gorithm. For a given algorithm, these optimizers automatically
generate performant kernels by searching for possible strate-
gies to execute the kernel on the target hardware. However,
due to the linear algebra nature of DNNs, a tensor program
can be represented by a wide spectrum of mathematically
equivalent algorithms. Existing schedule-based optimizers
only consider kernels whose algorithms are manually speci-
fied by users, resulting in missed optimization opportunities.

The second category of work, including TASO, Grappler,
Tensat, and PET, considers algebraic transformations, which
exploit mathematical equivalence among different algorithms
for a tensor program [3, 25, 46, 48]. Examples of algebraic
transformations include (1) converting one linear algebra op-
erator into another, such as transforming a convolution to a
matrix multiplication; (2) fusing multiple operators to reduce
memory access and kernel overhead; and (3) reorganizing op-
erators based on commutativity, associativity, and distributiv-
ity. These optimizers perform algebraic transformations at the
algorithm level and require programmers to manually specify
the set of available operators and their implementations. They
are thus limited by the performance of the provided kernels.

All existing automated optimization approaches, from both
categories, still require programmers to manually specify a
set of kernels (each defined by a tensor function), and then
explore the search space of algebraic or schedule transforma-
tions. However, some advanced performance optimizations
require coordinated transformations across the kernel, thread
block, and thread levels of the GPU compute hierarchy, and in-
volve introducing completely new kernel computations (e.g.,
a custom kernel that decomposes standard kernels and fuses
only certain computations). Such optimizations are not in-
cluded in the search space of existing automated methods and
must still be implemented manually.

1In the schedule optimization literature, an algorithm describes what to
compute in a kernel and a schedule specifies how to compute the kernel.
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Figure 1: An overview of Mirage.

One such example is FlashAttention [17] (see §8.2 for de-
tails), which optimizes attention [47] on GPUs by reordering
operators at the algorithm level (algebraic transformations),
reorganizing the computation across GPU kernels (yielding
new custom kernels), and adapting the parallelization strategy
of each kernel to the GPU architecture (schedule transforma-
tions). The transformations required for this example cannot
be automatically discovered by existing frameworks and must
therefore be implemented manually. An implementation of
FlashAttention in Triton [43], a widely used tensor program
optimizer, contains more than 700 lines of code [8].

We present Mirage, the first multi-level superoptimizer for
tensor programs. Mirage automatically discovers and veri-
fies sophisticated optimizations of tensor programs that re-
quire joint optimization of algebraic transformations, schedule
transformations, and the discovery of new custom kernels.

A key idea in Mirage is µGraphs, a hierarchical graph
representation that specifies tensor programs across multiple
levels of the GPU compute hierarchy. By uniformly treating
the kernel, thread block, and thread levels, µGraphs can cap-
ture both algebraic and schedule transformations across these
levels. Moreover, optimizing a µGraph can introduce new
custom kernels, which go beyond both algebraic and schedule
transformations. For example, Mirage automatically discovers
the µGraphs representing FlashAttention [17] and its infer-
ence variant FlashDecoding [5] as well as other µGraphs that
outperform these manually designed kernels by up to 2.2×
for certain use cases. Most of these optimizations discovered
by Mirage are outside the search space of existing methods.

Figure 1 shows an overview of Mirage. Mirage first splits
an input tensor program into subprograms that fall into the
restricted LAX fragment. The LAX fragment, formally de-
fined in §5, includes multi-linear operators such as matrix
multiplication and convolution, division (useful for normal-

izations), and limited exponentiation (useful for activations).
Partitioning a tensor program into LAX subprograms reduces
the optimization search space while preserving most opti-
mization opportunities; it also enables Mirage’s probabilistic
equivalence verifier.

Expression-guided µGraph generator. For each LAX sub-
program, Mirage’s expression-guided generator exhaustively
searches for possible µGraphs equivalent to it. A key chal-
lenge Mirage must address is its significantly larger search
space compared to prior superoptimization techniques. For
example, TASO [25] and PET [46] search only for tensor
programs at the kernel level, using a fixed set of pre-defined
kernels, while Mirage considers superoptimization across the
kernel, thread block, and thread levels. To efficiently navigate
this significantly larger search space, Mirage introduces a
novel pruning technique based on abstract expressions, which
greatly reduces the number of µGraphs Mirage must consider
while providing a certain theoretical guarantee on the opti-
mality of the discovered µGraphs. Mirage further reduces the
search space by focusing the search on the kernel and block
levels and using a rule-based approach for the thread level.

Probabilistic equivalence verifier. For a µGraph discov-
ered by Mirage, verifying its functional equivalence with the
input program introduces another challenge, since the input
and output tensors of a program include up to many millions
of elements. A key idea behind Mirage is probabilistic equiv-
alence verification, which performs random tests over finite
fields to check equivalence between µGraphs. While random
tests typically provide limited correctness guarantees for gen-
eral programs, Mirage leverages a novel theoretical result
showing that the restrictions imposed by the LAX fragment
ensure that, for LAX programs, random tests over finite fields
offer strong correctness guarantees. Specifically, we show
that a polynomial identity testing (PIT) algorithm [37, 54]
can be generalized to LAX programs, yielding a randomized
algorithm for LAX program equivalence that can be made
arbitrarily precise. Mirage uses this randomized algorithm
to (probabilistically) ensure that each optimized program is
equivalent to the input program.

µGraph optimizer. For each verified µGraph, Mirage’s
µGraph optimizer maximizes its runtime performance by fur-
ther considering potential tensor layouts, scheduling operator
execution orders, and planning memory allocation at all of the
kernel, thread block, and thread levels. Finally, Mirage returns
an optimized tensor program based on the best discovered
µGraph for each individual LAX subprogram.

Evaluation results. We evaluate Mirage on a variety of
commonly used DNN benchmarks on NVIDIA A100 and
H100 GPUs. Even for DNN benchmarks that are widely used
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Figure 2: GPU compute and memory hierarchy.

and heavily optimized by existing systems, such as the group-
query attention used in LLMs [41], Mirage still outperforms
current approaches by up to 3.3× by exploiting subtle custom
kernels and optimizations missing in existing systems.

2 Multi-Level Graph Representation

Mirage uses a µGraph to specify the execution of a tensor
program on GPUs. A µGraph contains hierarchical graphs at
multiple levels to represent computation at the kernel, block,
and thread levels2. This section first describes the GPU hier-
archy and uses Figure 3 as a running example to introduce
the key components of a µGraph.

GPU hierarchy. Figure 2 shows the hierarchy of today’s
GPUs. Computations on GPUs are organized as kernels, each
of which is a function executed simultaneously on multiple
GPU cores in a single-program-multiple-data (SPMD) fash-
ion. A kernel includes a grid of thread blocks, each of which is
executed on one GPU streaming multiprocessor and includes
multiple threads to perform computation on individual data
elements. Each thread is associated with a per-thread register
file, and all threads within a thread block can access shared
memory to enable collective operations. Finally, all inputs and
outputs of a kernel are stored in GPU device memory.

Kernel graph. Each tensor program corresponds to one
kernel graph, where each node represents a kernel running on
an entire GPU, and each edge is a tensor shared between ker-
nels. All tensors in a kernel graph are stored in GPU device
memory since different kernels cannot share data in regis-
ter files or shared memory. Each node in a kernel graph can
be a pre-defined kernel operator supported by existing kernel
libraries such as convolution by cuDNN [15] and matrix multi-
plication by cuBLAS [16]. In addition, to enable fine-grained
inter-kernel optimizations such as kernel fusion, a node in
a kernel graph can also be a graph-defined kernel operator,
whose semantic and behavior are defined by a lower-level (i.e.,

2For simplicity, we use the term block to refer to a thread block of a
CUDA kernel and thread to refer to a single CUDA thread.
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Figure 3: Figure 3a is the computation graph for RMSNorm
and MatMul. Figure 3b shows the best µGraph discovered by
Mirage for computing RMSNorm and MatMul, which fuses
the computation in a single kernel to reduce device mem-
ory access and kernel launch overhead, outperforms existing
approaches by 1.9×. Numbers in brackets indicate tensor
shapes, and numbers in braces show the imap, omap, or fmap
for the corresponding operators.

block) graph. As an example, the kernel operator in Figure 3b
is a graph-defined operator specified by a block graph.

Block graph. A block graph specifies computation associ-
ated with a thread block3, where each node denotes a block
operator specifying computation within a block, and each
edge (blue arrows in Figure 3b) is a tensor shared between
block operators. Mirage stores all intermediate tensors within
a block graph in GPU shared memory for two considerations.
First, GPU shared memory offers much higher bandwidth
than device memory, and this design allows Mirage to reduce
device memory access by maximally saving intermediate
results in shared memory. Second, for tensors whose sizes
exceed shared memory capacity and must be stored in device
memory, Mirage uses these tensors to split computation into
multiple block graphs, each of which only contains tensors in
shared memory. This separation does not introduce additional
access to device memory.

Each block graph is also associated with properties speci-
fying its execution, which we introduce below.

Grid dimensions. All blocks within a kernel are organized
into a mesh with up to 3 dimensions, identified as x, y, and z. A

3In the CUDA programming model, a kernel’s computation is defined as
computations for independent thread blocks.
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Figure 4: Demonstrating how an input tensor is partitioned
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block graph is associated with up to three grid dimensions that
specify the number of blocks along the x, y, and z dimensions.
The block graph in Figure 3b launches 128 blocks.

First, for each input tensor to a graph-defined kernel op-
erator (e.g., X , G, and W in the kernel graph in Figure 3b),
the associated block graph contains an imap, which specifies
how the input tensor is partitioned into sub-tensors for indi-
vidual blocks. For each grid dimension (i.e., x, y, or z), the
imap maps it to either (1) a data dimension of the input ten-
sor or (2) a special replica dimension φ. For (1), the mapped
data dimension is equally partitioned across blocks along the
grid dimension. For (2), the input tensor is replicated across
these blocks. For example, the block graph in Figure 3b takes
three inputs—X , G, and W—representing the input tensors
to each block. For W , its imap={x↔d} indicates that the d
dimension of tensor W is partitioned into 128 equally sized
chunks. As a result, W has shape [h=1024,d=32].

Second, for each output tensor of a block graph (e.g., Z in
Figure 3b), the block graph includes an omap, which specifies
how the outputs of all blocks are concatenated to construct
the final output of the kernel operator. In an omap, each grid
dimension must map to a data dimension of the output tensor,
since different blocks must store disjoint tensors in device
memory. For Z with shape [b=16,d=32] in Figure 3b, its
omap={x↔d} indicates that blocks with the same x index
are concatenated along the d dimension, resulting in a tensor
Z with shape [b=16,d=4096].

For-loop body. To fit large input tensors in shared memory
and to overlap data loading from device memory with com-
putation, a block graph can include a for-loop body, which is
executed multiple times to complete a kernel. Often, the for
loop in a kernel is followed by some post-processing. For ex-
ample, when computing an average value, the for loop would
perform the summation of n values and the post-processing

would divide by n. Mirage specifies the for-loop body of a
block graph using input iterators, for-loop accumulators, and
all operators in between, as shown in the orange box in Fig-
ure 3b). Each input tensor to a block graph first passes through
an input iterator, which loads part of the tensor (e.g., X , G,
and W ) from device memory into shared memory. Each input
iterator is associated with an fmap to specify which part of
the input tensor to load in each iteration. Formally, the fmap
maps each for-loop dimension to either (1) a data dimension
of the input tensor or (2) the replica dimension φ. Similar to
imap, the tensor is equally partitioned along that dimension
for (1) and replicated for (2). Figure 4 shows how an input ma-
trix is partitioned across blocks and for-loop iterations using
different imap and fmap.

Each block graph is also associated with a for-loop dimen-
sion, which determines how many iterations the for-loop body
is executed to complete the kernel. In addition, Mirage uses
for-loop accumulators (e.g., the two Accum operators in Fig-
ure 3b) to accumulate intermediate results computed in each
iteration (using standard accumulators, e.g., summation and
max) and store the accumulated results in shared memory.
Once the for-loop body is completed, Mirage proceeds to
execute the remaining operators outside the for-loop body di-
rectly on the accumulated results. An output saver then saves
the final result from shared memory back to device memory.

Thread graph. A thread graph further reduces computation
scope from a block to a single thread. Similar to a block graph,
each thread graph is also associated with block dimensions,
which specify the organization of threads within the block,
and for-loop dimensions, which define the total number of
iterations to finish the defined computation. Each thread graph
includes input iterators, each of which loads an input tensor
(e.g., A and B in Figure 3b) from shared memory into register
files, and output savers, each of which stores an output tensor
from register files back to shared memory (e.g., C). A thread
graph is the lowest-level graph in a µGraph and contains only
pre-defined thread operators.

Tensor layout. Each tensor in the kernel, block, or thread
graph is associated with a tensor layout (omitted in Figure 3
for simplicity), specifying how the tensor is linearized in mem-
ory. Note that tensor layouts affect only the performance of a
µGraph and have no impact on its output correctness.

Definition 2.1 (µGraph Validity). A µGraph G is valid if: (1)
for each kernel, block, and thread operator o∈G, its input and
output tensors match the specification of o; (2) all tensors in
each kernel, block, and thread graph can reside in GPU device
memory, shared memory, and register file, respectively; and
(3) for each block and thread graph with a for-loop body, any
path from an input to an output passes through exactly one
input-iterator, one for-loop accumulator, and one output saver.
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Comparison with prior work. Prior work separately con-
siders algebraic [25, 46] or schedule transformations [13, 31,
35], while µGraphs can represent both in a uniform way.
Specifically, the grid and for-loop dimensions and their cor-
responding mappings (i.e., imap, omap, and fmap) to tensor
dimensions constitute a comprehensive search space of possi-
ble schedules for graph-defined operators. The hierarchical
graphs across the kernel, block, and thread levels allow Mi-
rage to explore algebraic transformations at these levels.

3 Case Study: RMSNorm

In this section, we use root mean square layer normaliza-
tion (RMSNorm) [50] as a case study to demonstrate the
advantages of the µGraph representation and Mirage’s su-
peroptimization approach. RMSNorm is a widely used nor-
malization technique in recent large language models [41].
Formally, RMSNorm takes two tensors, X and G, as inputs
and normalizes their element-wise products according to the
root mean square:

Yi j =
Xi jG j

RMS(Xi)
,RMS(Xi) =

√√√√1
d

d

∑
j=1

X2
i j, (1)

where d is the hidden dimension size of X .
RMSNorm is often followed by a matrix multiplication

(MatMul). Figure 3a shows the computation graph of an RM-

SNorm followed by a MatMul operator, where X is the input
tensor, and G and W denote two weight tensors. Existing
ML compilers generally launch two separate kernels for RM-
SNorm and MatMul computations, since both operations inter-
nally perform reductions across an input dimension, making
it challenging to fuse their computations into a single kernel.
This approach requires storing intermediate results (i.e., Y ) in
device memory since different kernels cannot share data in
shared memory or register files.

Figure 3b shows the best µGraph automatically discovered
by Mirage for computing RMSNorm and MatMul in a single
kernel. The computation is fused in a single graph-defined
kernel operator to avoid saving intermediate results (i.e., Y )
in device memory and reduce kernel launch overheads.

We highlight the key differences between the µGraph dis-
covered by Mirage and the original µGraph. These differences
involve discovering new custom kernels and combining alge-
braic and schedule transformations, making it infeasible to dis-
cover the final µGraph by separately considering algebraic and
schedule transformations. First, Mirage reorders MatMul and
the division of RMSNorm by leveraging the commutativity
of matrix multiplication and element-wise division (algebraic
transformation). Second, Mirage performs the accumulation
in the root mean square (i.e., Ai=∑ j X2

i j) and the accumula-
tion in the matrix multiplication (i.e., Bik=∑ j Xi jG jWjk) in
parallel (schedule transformation), avoiding writing the accu-
mulation results to device memory. Next, Mirage instantiates
a thread graph to perform a sequence of element-wise op-
erators while maintaining all intermediate results in register
files (schedule transformation). Finally, the best discovered
µGraph uses a new custom kernel to fuse the computation
of RMSNorm and MatMul, reducing device memory access
and kernel launch overheads. This µGraph outperforms the
hand-written kernels in existing systems by 1.5× and 1.9×
on NVIDIA A100 and H100 GPUs respectively.

4 Expression-Guided µGraph Generator

This section introduces the Mirage µGraph generator, which
automatically discovers potential µGraphs for an input tensor
program. To generate µGraphs that capture optimizations at
the kernel, block, and thread levels, Mirage must explore a sig-
nificantly larger search space than existing superoptimizers,
which only consider optimizations at the kernel level. Mirage
employs two key techniques to address this challenge. First,
based on the observation that optimizations at the kernel and
block levels are substantially more critical to performance
than optimizations at the thread level—since accessing device
and shared memory is orders of magnitude more expensive
than accessing register file—Mirage’s µGraph generator em-
ploys a hybrid approach: it exhaustively considers all possible
graphs up to a certain size at the kernel and block levels, and
uses a rule-based strategy to construct graphs at the thread
level. This approach reduces the search space while retaining



Algorithm 1 Mirage’s hybrid µGraph generation algorithm.
Input: A LAX program with a computation graph Gref

Output: A set of µGraphs S
1: EO←E(Gref )
2: S0,S←∅
3: GENERATENEXTKERNELOPERATOR(Inputs(Gref ))
4: for all G∈S0 do
5: S←S ∪{THREADGRAPHCONSTRUCTION(G)}

6: function GENERATENEXTKERNELOPERATOR(GK)
7: S0←S0 ∪{GK}
8: for all kernel graph op type t; input set I do
9: if rank(I, t)> rank(op.I,op.t) for each op∈GK then

10: if t is a pre-defined operator then
11: if o :=CONSTRUCTOP(GK, I, t) is valid then
12: GENERATENEXTKERNELOPERATOR(GK ∪{o})
13: else ▷ t is a graph-defined operator
14: for all gridDims; forloopDims do
15: GB←TBGraph(I,gridDimd, forloopDims)
16: GENERATENEXTBLOCKOPERATOR(GK,GB)

17: function GENERATENEXTBLOCKOPERATOR(GK,GB)
18: if all shared tensors in GB are consumed then
19: if o :=CONSTRUCTOP(GK,GB.I,GB) is valid then
20: GENERATENEXTKERNELOPERATOR(GK ∪{o})
21: for all block graph op type t; input set I do
22: if rank(I, t)> rank(op.I,op.t) for each op∈GB then
23: if o :=CONSTRUCTOP(GB, I, t) is valid then
24: GENERATENEXTBLOCKOPERATOR(GK,GB ∪{o})

25: function CONSTRUCTOP(G, I,attrs)
26: E←EXPRINFR(E(I),attrs) ▷ Refer to Table 1
27: if SUBEXPR(E,EO) then ▷ Prune via abstract expressions
28: S←G.outputTensorShapeInfr(I,attrs) ▷ Check tensor shape
29: if S.valid, G.mAlloc+S.size≤G.mLimit then ▷ Check memory
30: return G.constructOp(I,attrs)
31: return Invalid

32: function THREADGRAPHCONSTRUCTION(G)
33: Gfused←G
34: while ∃o∈Gfused that can be fused with a preceding operator do
35: Gfused←FUSEOP(Gfused,o)
36: return Gfused

most performance-critical optimizations. Second, to further
prune the search space, Mirage introduces a pruning tech-
nique based on an abstraction of µGraphs called abstract
expression, which reduces the number of µGraphs Mirage
must consider while providing a certain theoretical guarantee
on the optimality of the discovered µGraphs. We introduce
the hybrid µGraph generation algorithm in §4.1 and §4.2, and
the expression-guided pruning techniques in §4.3.

4.1 Kernel and Block Graph Generation

Mirage generates kernel and block graphs incrementally and
leverages several pruning techniques to reduce the search
space, as shown in the second part of Figure 5. Specifically,
Mirage maintains a prefix of a valid µGraph and iteratively
extends it with new operators. For a graph G=(V,E) we say

that G′=(V ′,E ′) is a prefix of G if it is a subgraph of G such
that ∀u∈V ′,∀(v,u)∈E,v∈V ′.

To generate the next operator in the kernel graph, Mirage
enumerates the kernel operator type t and the input tensor
set I. If t represents the graph-defined operator type, Mirage
generates the associated block graph that defines its kernel
computation by (1) enumerating the grid and for-loop dimen-
sions (introduced in §2), which enables Mirage to calculate
the input tensor shapes of the block graph; and (2) perform-
ing a nested generation procedure similar to that used at the
kernel level but without considering graph-defined operators.
Line 6-16 and line 17-24 in Algorithm 1 show how Mirage
generates kernel and block operators, respectively. Mirage
checks tensor shape (line 28) and memory usage (line 29)
before adding an operator, ensuring a valid prefix.

To ensure that identical µGraphs are generated only once,
Mirage defines the canonical form of µGraphs. Given a
µGraph G with its operators in topological order o1, . . . ,on,
the index of the j-th output of oi is defined as a tuple (i, j).
Each operator oi in G is assigned a rank (inputi, typei), where
inputi is the list of input tensor indices of oi, and typei is the
operator type. A µGraph is in canonical form if its operators
are ordered in increasing rank. Mirage generates only µGraphs
in canonical form by requiring that operators be added in in-
creasing order of rank (line 9 and 22). This approach does
not prune out any valid solutions, since each µGraph can be
transformed to canonical form by reordering the operators.

In addition, Mirage utilizes the abstract expression tech-
nique to prune out prefixes that do not satisfy certain con-
straints, which will be introduced in §4.3.

4.2 Thread Graph Construction
While a similar nested generation strategy can be applied
to thread graphs, Mirage instead constructs them using a
transformation-based approach (see the third panel of Figure 5
and lines 4–5 in Algorithm 1) to reduce the search space. Mi-
rage applies operator fusion when constructing thread graphs,
which reduces access to shared memory by reusing tensors
in register file whenever possible. For example, Mirage fuses
the three element-wise operators (Mul, Sqrt, and Div) in Fig-
ure 3b into a thread graph, avoiding saving intermediate re-
sults to shared memory and keeping the entire computation
of these operators in register file. While our current imple-
mentation focuses on operator fusion, additional rule-based
transformations can be used to construct thread graphs.

4.3 Pruning via Abstract Expressions
When searching the space of possible µGraphs, we aim to
avoid µGraph prefixes whose intermediate results cannot con-
tribute to the desired computation. For example, for the input
program X ·Z +Y ·Z, we can prune a prefix that computes
X ·Y , but we should not prune one that computes X +Y , as



Table 1: Operators supported by Mirage. The second column
shows the graph levels supporting each operator (K, B and T
denote kernel, block, and thread graphs, respectively). The last
column defines the abstract expressions for the outputs of each
operator, where E maps tensors to their abstract expressions.

µGraph Graph Abstract Expression of Output Tensor
Operator Level

InIter B E(InIter(X))=E(X)
OutSaver B E(OutSaver(X))=E(X)
Matmul K, B, T E(Matmul(X ,Y ))=sum(k,mul(E(X),E(Y )))1

Sum K, B, T E(Sum(dr,kr,X))=sum(kr,E(X))2

EwAdd K, B, T E(EwAdd(X ,Y ))=add(E(X),E(Y ))
EwMul K, B, T E(EwMul(X ,Y ))=mul(E(X),E(Y ))
EwDiv K, B, T E(EwDiv(X ,Y ))=div(E(X),E(Y ))
EwExp K, B, T E(EwExp(X))=exp(E(X))
Repeat K, B E(Repeat(X))=E(X)
Reshape K, B E(Reshape(X))=E(X)
Sqr K, B E(Sqr(X))=mul(E(X),E(X))
Sqrt K, B E(Sqrt(X))=sqrt(E(X))
SiLU K, B E(SiLU(X))=silu(E(X))
Accum B E(Accum(X ,m, i))=sum(i,E(X)) if m=φ else E(X) 3

1 k means the size of the last dimension of A, i.e., the reduction dimension.
Matmul is performed on the inner most two dimensions and leading dimensions
are batched.

2 Sum along the dimension dr for every kr elements.
3 Accumulate the results of i for-loop iterations along fmap m.

(X +Y ) ·Z is equivalent to the input program. However, how
can we determine whether a prefix can contribute to a desired
computation while searching for that computation? Below,
we develop a pruning technique driven by this intuition that
circumvents the “chicken and egg” problem via abstraction.
We first present the abstraction—abstract expressions—and
then explain how it is used for pruning. Finally, we offer a the-
oretical guarantee that, under certain conditions, this pruning
does not exclude the optimal µGraph.

Abstract expressions. Recall that an edge in a µGraph cor-
responds to a tensor-valued function of the input tensors. In-
tuitively, abstract expressions abstract these functions by ig-
noring the differences between elements of the same input
tensor. Formally, abstract expressions are first-order logic
terms over the theory of integers and uninterpreted functions.
In a µGraph, the abstract expression of each edge, denoted
by E(·), is defined in Table 1. When computing a µGraph’s
abstract expression, all graph-defined operators are “inlined”.
Specifically, the expressions computed for a graph-defined
operator’s inputs are passed into its lower-level graph, and the
resulting output expressions of that lower-level graph become
the output expressions of the graph-defined operator. Figure 6
shows the abstract expressions for a subgraph of attention.

While abstract expressions capture some information about
the function computed at each edge, they also abstract away
many details. For example, if X is a k× k matrix, summing
over the rows and summing over the columns both yield the
same abstract expression—sum(k,E(X)). But keeping k as
part of the abstract expression is crucial for effective pruning.

Exp Sum Div Matmul OI1

I2

a ∑64ea ea/∑64ea

∑64b*(ea/∑64ea)
b

ea

Figure 6: Illustration of abstract expressions. The abstract
expressions of tensors are annotated on edges. A human-
friendly notation is used here: ea denotes exp(a), ∑k a denotes
sum(k,a), a/b denotes div(a,b), and a∗b denotes mul(a,b).
The tensors I1, I2 and O are all 64×64 matrices.

Abstract subexpression and pruning. We use abstract ex-
pressions to prune the search space of µGraphs by formalizing
two relations over abstract expressions: equivalence and ab-
stract subexpression. Specifically, we prune any µGraph prefix
whose abstract expression is not a subexpression of some ab-
stract expression equivalent to that of the input program. We
formalize abstract expressions as uninterpreted functions in
first-order logic over the theory of integer arithmetic and un-
interpreted functions, and use an SMT solver to reason about
them based on two sets of axioms in Table 2: Aeq and Asub.

First, Aeq axiomatizes equivalence between abstract ex-
pressions. As will become clear below, these axioms need
not be sound—it is not required that µGraphs with equiva-
lent abstract expressions are functionally equivalent, since
non-equivalent µGraphs can have the same abstract expres-
sion. Second, Asub axiomatizes the subexpression relation
between abstract expressions. A key property of Asub is that
whenever a µGraph G1 is a prefix of G2—meaning G2 can
be constructed by extending G1 with additional operators—
E(G1) is an abstract subexpression of E(G2); formally, Asub |=
subexpr(E(G1),E(G2)), where |= denotes entailment modulo
the theory of integer arithmetic and uninterpreted functions.

During the search, Algorithm 1 first computes the abstract
expression of the input LAX program, denoted EO, and prunes
any µGraph prefix G if Aeq∪Asub ̸|=subexpr(E(G),EO). That
is, a graph is pruned if its abstract expression is not a subex-
pression of EO. This check is performed using an SMT solver
(Z3 [18]). As an optimization, the results of these checks
are cached and reused, since Mirage may encounter multiple
µGraphs with identical abstract expressions during the search.

Theoretical guarantee and the pruning-optimality trade-
off. Intuitively, our pruning would keep any prefix that can
lead to a µGraph whose abstract expression is equivalent (ac-
cording to Aeq) to that of the input LAX program. Formally:

Theorem 1 (Pruning via Abstract Expressions). For an in-
put µGraph G0, and a µGraph G equivalent to G0, if Aeq |=
E(G0)=E(G) then G will be generated by Algorithm 1.

Proof. By Tables 1 and 2, we show that for any operator op,
if Y =op(X1, . . . ,Xn), then Asub |=subexpr(E(Xi),E(Y )) for
1≤ i≤n. That is, the abstract expression of each input to op



Table 2: Axiomatization of abstract expressions used for prun-
ing. Mirage checks whether an abstract expression E1 is a
subexpression of E2 by querying an SMT solver to check if
subexpr(E1,E2) is entailed by these axioms. All variables in
these axioms are universally quantified.

Abstract Expression Property Comment

Equivalence Axioms Aeq

∀x,y. add(x,y)=add(y,x) commutativity
∀x,y. mul(x,y)=mul(y,x) commutativity
∀x,y,z. add(x,add(y,z))=add(add(x,y),z) associativity
∀x,y,z. mul(x,mul(y,z))=mul(mul(x,y),z) associativity
∀x,y,z. add(mul(x,z),mul(y,z))=mul(add(x,y),z) distributivity
∀x,y,z. add(div(x,z),div(y,z))=div(add(x,y),z) associativity
∀x,y,z. mul(x,div(y,z))=div(mul(x,y),z) associativity
∀x,y,z. div(div(x,y),z)=div(x,mul(y,z)) associativity
∀x. x=sum(1,x) identity reduction
∀x, i, j. sum(i,sum( j,x))=sum(i∗ j,x) associativity
∀x,y, i. sum(i,add(x,y))=add(sum(i,x),sum(i,y)) associativity
∀x,y, i. sum(i,mul(x,y))=mul(sum(i,x),y) distributivity
∀x,y, i. sum(i,div(x,y))=div(sum(i,x),y) distributivity
∀x,y. mul(exp(x),exp(y))=exp(add(x,y)) distributivity
∀x,y. mul(sqrt(x),sqrt(y))=sqrt(mul(x,y)) distributivity

Subexpression Axioms Asub

∀x,y. subexpr(x,add(x,y))
∀x,y. subexpr(x,mul(x,y))
∀x,y. subexpr(x,div(x,y))
∀x,y. subexpr(y,div(x,y))
∀x. subexpr(x,exp(x))
∀x. subexpr(x,sqrt(x))
∀x. subexpr(x,silu(x))
∀x, i. subexpr(x,sum(i,x))
∀x. subexpr(x,x) reflexivity
∀x,y,z. subexpr(x,y)∧ subexpr(y,z)→subexpr(x,z) transitivity

is always a subexpression of op’s output. Given that Asub
includes reflexivity and transitivity axioms, it follows that
for any G′ that is a prefix of G, Asub |=subexpr(E(G′),E(G)).
Together with the assumption that Aeq |=E(G0)=E(G), we
have Aeq∪Asub |=subexpr(E(G′),E(G0)). Thus, no prefix of
G will be pruned, and Mirage will generate G.

The theorem highlights the role of abstract expressions in
solving the “chicken and egg” problem outlined above. To
decide if a prefix µGraph is useful, we reason about whether
it is a prefix of a useful computation in the abstract. The
choice of abstraction and the axioms Aeq represents a tradeoff
between optimality and pruning. As Theorem 1 shows, we are
only guaranteed to find the optimal µGraph whose abstract ex-
pression is equivalent to that of the input program under Aeq.
Stronger axioms expand the set of µGraphs covered by the
theorem but reduce pruning effectiveness, since more prefixes
would pass the subexpression test. In particular, note that Aeq
does not include cancellation rules (e.g., div(mul(x,y),y)=y).
As a result, Mirage may miss some equivalent µGraphs. How-
ever, including such axioms would make everything a subex-
pression of everything, therefore nulling desired pruning. As
our evaluation shows, the chosen Aeq yields a good balance
between pruning and optimality.

5 Probabilistic Equivalence Verifier

Mirage’s probabilistic equivalence verifier checks if a can-
didate µGraph is equivalent to the desired LAX program.
The key idea is to evaluate both on random inputs in two
finite fields. Using finite fields instead of floating point num-
bers not only avoids floating point errors but also provides a
strong theoretical guarantee: the probability of accepting a
non-equivalent µGraph can be made arbitrarily low.

For general programs, random testing can hardly provide
any correctness guarantee. However, we show that for LAX
programs (formally defined below), random testing offers a
probabilistic correctness guarantee, and repeated tests can
reduce the error probability to an arbitrarily small threshold.

Prior work [46] has applied a similar technique to check
equivalence between tensor programs that contain only lin-
ear operators (e.g., matrix multiplication, convolution). We
develop a random testing technique that also supports divi-
sion and exponentiation, which are needed for many DNN
optimizations (e.g., the RMSNorm example in §3).

Mirage verifies equivalence between LAX µGraphs (linear,
division, and an exponentiation) defined below. We introduce
the main theoretical results in §5.1 and present Mirage’s veri-
fication methodology in §5.2.

Definition 5.1 (LAX µGraph). A µGraph G is a LAX µGraph
if (1) G contains only multi-linear operators4, division, and
exponentiation, and (2) every path from an input to an output
in G includes at most one exponentiation.

5.1 Theoretical Foundations
Without loss of generality, we assume a LAX µGraph G takes
n input tensors and produces one output tensor. Our theoreti-
cal results directly generalize to LAX µGraph with multiple
outputs. Since each LAX µGraph includes linear operators,
divisions, and at most one exponentiation along each path,
the computation for each entry of the output tensor can be
expressed in the following form (by using standard identities
such as

a
b
c
d
= ad

bc , a
b +

c
d =

ad+bc
bd , exey=ex+y):

∑
k
i=1 fi exp(gi/hi)

∑
k′
i=1 f ′i exp(g′i/h′i)

(2)

where fi, gi, hi, f ′j, g′j and h′j (1≤ i≤k, 1≤ j≤k′) are polyno-
mials over the entries of the input tensors.

The main theoretical result that underpins our random-
ized equivalence verification is the following theorem, which
extends polynomial identity testing (PIT) [37, 54] on finite
fields to LAX µGraphs. Note that the difference of two LAX

4Operator op with n inputs is multi-linear if op is linear to all inputs Ik:
(1) ∀X ,Y.op(I1, ..., Ik−1,X , Ik+1, ..., In) + op(I1, ..., Ik−1,Y, Ik+1, ..., In)=
op(I1, ..., Ik−1,X +Y, Ik+1, ..., In), and
(2) α ·op(I1, ..., Ik−1,X , Ik+1, ..., In)=op(I1, ..., Ik−1,α ·X , Ik+1, ..., In).



Table 3: Arithmetic operations for random testing. Mirage
selects two prime numbers p and q such that q divides p−1.
xp and xq are values from the finite fields Zp and Zq, respec-
tively. The notation x−1 and

√
x represents the multiplicative

inverse and square root of x in the corresponding finite field.
Specifically, xx−1 mod p=1 and

√
x
√

x mod p=x.

Opt. Opd. 1 Opd. 2 Output

Add. (xp,xq) (yp,yq)
(
(xp + yp) mod p,(xq + yq) mod q

)
Sub. (xp,xq) (yp,yq)

(
(xp− yp) mod p,(xq− yq) mod q

)
Mul. (xp,xq) (yp,yq)

(
xpyp mod p,xqyq mod q

)
Div. (xp,xq) (yp,yq)

(
xpy−1

p mod p,xqy−1
q mod q

)
Exp. (xp,xq) −

(
ωxq mod p,−

)
Sqrt. (xp,xq) − (

√xp,
√xq)

µGraphs is also of the form of Equation (2). Therefore, iden-
tity testing of two LAX µGraphs reduces to testing if an ex-
pression of that form is zero. Due to the presence of exponen-
tiation, we use two finite fields instead of one.5

Theorem 2. Let P be a function of the form described in
Equation (2), where fi,gi,hi, f ′i ,g

′
i,h
′
i are non-zero polyno-

mials of degree at most d with integer coefficients between
[−w,w]. Let p,q be primes such that q | p−1 and q>2w. Let
G be the set of q-th roots of unity in Zp. If P is not a zero
function, then [27]

Pr
(⃗u,⃗v,ω)←ZN

p×ZN
q ×G

[
∑

k
i=1 fi(⃗u)ωgi (⃗v)/hi (⃗v)

∑
k′
i=1 f ′i (⃗u)ω

g′i (⃗v)/h′i (⃗v)

]
≤ 8dk4/q+q−1/k2

.

5.2 Random Tests over Finite Fields

Mirage leverages Theorem 2 to probabilistically verify the
equivalence of two µGraphs by performing random testing
over the finite fields Zp and Zq as defined in Theorem 2. To
check the equivalence of two µGraphs, Mirage first gener-
ates input tensors, with each entry uniformly sampled from
Zp×Zq. Mirage also samples ω uniformly from the set of
q-roots of unity in Zp, which is used for exponentiation. Mi-
rage then evaluates the two µGraphs on these inputs using the
operations defined in Table 3. As explained in §5.1, Zp and
Zq are used for computations outside and inside the exponent,
respectively. All operations except exponentiation are imple-
mented via modular arithmetic in Zp and Zq independently.
For exponentiation, Mirage uses the value xq from Zq and
computes ωxq mod p to obtain a result in Zp.

Note that in a LAX µGraph, exponentiation is performed at
most once along each path. Finally, Mirage checks whether
the two µGraphs produce identical outputs. This process is
repeated multiple times, and the two µGraphs are considered

5We use two primes p and q for polynomial identity testing [37, 54]
outside and inside the exponents, respectively. The condition q divides p−1
is to ensure the existence of q-th roots of unity in Zp.

equivalent if they pass all random tests. The following theo-
rem, which follows from Theorem 2, shows that this process
can yield an arbitrarily low error rate.

Theorem 3. Equivalent µGraphs always pass µGraph verifica-
tion. For two non-equivalent µGraphs and a given probability
threshold 0<δ≤1, the µGraphs pass all Ω( k2

lnq · ln
1
δ
) random

tests with probability at most δ.

Numerical stability. While the theorem bridges finite fields
and real-number computations, discrepancies can arise be-
tween real-number computations and floating-point opera-
tions, particularly involving overflow or underflow due to
large intermediate values. Mirage employs floating-point tests
to filter out µGraphs with significant numerical errors.

6 µGraph Optimizer

For each verified µGraph, Mirage’s µGraph optimizer maxi-
mizes its performance by further performing layout optimiza-
tion, operator scheduling, and memory planning, as shown
in Figure 1. Mirage defers these µGraph optimizations until
after verification for two reasons. First, these optimizations
do not affect the correctness of the generated µGraphs; omit-
ting them when generating µGraphs reduces the search space
Mirage must consider, since µGraphs with the same graph
topology but different choices of tensor layouts, operator or-
ders, or memory allocation plans are considered identical by
the µGraph generator. Second, applying these optimizations
after verification also reduces the search space for these opti-
mizations, since the µGraph optimizer only needs to optimize
µGraphs that are functionally equivalent to the input.

Tensor layouts. The µGraph optimizer explores possible
data layouts for all intermediate tensors at the kernel, block,
and thread levels and chooses the best combinations to max-
imize performance. We formulate layout selection as a con-
strained optimization problem and solve it optimally using an
integer linear programming (ILP) algorithm. Specifically, for
each tensor t and each possible layout l for t, we introduce
a boolean variable Bt,l to indicate whether tensor t uses lay-
out l. Operators at the kernel, block, and thread levels may
impose various constraints on tensor layouts. For example, to
use kernels from the cuBLAS library [16] for matrix multi-
plication, the innermost dimension of the two input tensors
must be among the last two dimensions. These restrictions are
converted into a series of linear constraints on Bt,l . Different
tensor layouts may lead to varying performance. For example,
some input tensor layouts support bulk copies from device
to shared memory, while others do not. Mirage introduces
a cost function to model the performance of each operator
under different layout choices. Mirage uses an off-the-shelf
ILP solver (i.e., Z3 [18]) to find an optimal layout strategy
that satisfies all layout constraints while minimizing cost.



Table 4: DNN benchmarks used in our evaluation.

Name Description Base Architecture

GQA Group-query attention LLaMA-3-70B [41]
QKNorm QK normalization with attention Chameleon-7B [40]
RMSNorm RMS normalization with linear LLaMA-2-7B [44]
LoRA Low-rank adaptation GPT-3-7B-LoRA [6]
GatedMLP Gated multi-layer perceptron Falcon-7B [10]
nTrans Normalized Tarnsformer nGPT-1B [28]

Operator scheduling. In a µGraph, there are multiple topo-
logical orders to execute operators, and different orders may
yield different performance. For a given input µGraph, the
µGraph optimizer identifies an efficient strategy to schedule
operators by minimizing thread-level synchronization within
each thread block (i.e., __syncthreads() in CUDA). To
achieve this goal, Mirage labels each node with a depth, de-
fined as the length of the longest path from any input operator
to that node. Mirage uses a dynamic programming algorithm
to compute the depth of each node and schedules all operators
in ascending order of their depths. This approach minimizes
the number of thread-level synchronizations required in the
generated CUDA kernel, as Mirage only needs to insert syn-
chronization points between operators with different depths.

Memory planning. A third class of post-verification opti-
mizations is memory planning, which determines memory off-
sets for all intermediate tensors at the kernel, block, and thread
levels. Mirage formulates memory planning as a dynamic
storage allocation problem and exhaustively enumerates all
possible allocation plans to discover an optimal strategy.

7 Implementation

Mirage is implemented in 30K lines of code in C++, CUDA,
and Python. Kernel operators are implemented with the
cuDNN and cuBLAS libraries [15, 16], and block and thread
operators are implemented using cuTLASS [2] and CUDA
PTX. For each input tensor program, Mirage automatically
generates and verifies potential µGraphs. For each verified
µGraph, Mirage produces CUDA source code for all custom
kernels of the µGraph and compiles the code into binary using
the CUDA compiler. This approach enables just-in-time (JIT)
compilation and deployment for general tensor programs, and
the generated kernels can be directly integrated into a PyTorch
program with a few lines of code changes. Mirage’s SMT and
ILP solvers are implemented using Z3 4.12.6 [18].

Our implementation supports the operators listed in Table 1.
Mirage can be extended to include new operators, such as
variants of convolution or matrix multiplication, at the kernel,
block, and/or thread levels. To support a new linear operator,
Mirage requires (1) a float-pointing implementation of the op-
erator at the kernel, block, and/or thread levels, which is used
by the µGraph optimizer to generate CUDA kernels; (2) an

implementation of the operator over modular arithmetic (see
§5); and (3) an extension to the abstract expression axioms
Aeq and Asub for the operator (see §4.3).

To utilize Theorems 2 and 3, random tests should be per-
formed with sufficiently large prime numbers p and q and
iterated multiple times. Our current implementation uses the
largest values of p and q whose product fits in 16-bit integers
(i.e., p=227,q=113) to run these random tests on GPUs. We
leverage Mirage’s GPU optimizations–such as keeping inter-
mediate results in shared memory–to accelerate the search
procedure. We also perform a single random test without
iterating it and compare all elements of the output tensors.
We note that this equivalence verification procedure does not
introduce false negatives. While it could, in theory, introduce
false positives, we have not observed any in practice. For
these reasons, we consider this procedure sufficient for the
search process and plan to add a final verification step that
provides the theoretical guarantees only for the best µGraph
at the end of the optimization process.

Equivalence verification for non-LAX programs. While
Mirage can generate µGraphs for arbitrary tensor programs,
the probabilistic equivalence verifier is limited to LAX pro-
grams and does not support certain DNN operators such as
ReLU [32]. As an alternative, we have developed a solver-
based verifier for arbitrary tensor programs. The verifier relies
on user-provided mathematical properties of individual opera-
tors (e.g., linearity, associativity, commutativity, and distribu-
tivity) defined in first-order logic and uses these properties to
verify equivalence using an automated theorem prover. Com-
pared to the probabilistic equivalence verifier, the solver-based
verifier supports more general programs, while requiring ad-
ditional manual effort to specify the properties of each new
operator. A detailed discussion of the solver-based verifier is
beyond the scope of this paper.

8 Evaluation

8.1 Experimental Setup
Since Mirage is a superoptimizer for LAX programs, we focus
our evaluation on various DNN benchmarks commonly used
in existing DNNs, each of which is a LAX program. These
benchmarks provide the most fine-grained way to compare the
performance of Mirage and existing systems. Table 4 shows
the six benchmarks in our evaluation. GQA, RMSNorm, and
GatedMLP are the main building blocks of large language
models (LLMs). QKNorm introduces query-key normaliza-
tion before attention to enhance model convergence [40].
LoRA enables low-rank adaptation for fine-tuning a DNN on
different tasks. We use a context length of 8K for GQA and
4K for QKNorm, corresponding to the maximum supported
by LLaMA-3-70B [41] and Chameleon-7B [40], respectively.
In addition, we also evaluate how Mirage-generated kernels
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Figure 7: Comparing Mirage with existing systems for 6 benchmarks on an A100 and an H100 GPU. The performance of all
systems are normalized by Mirage (higher is better). Numbers above the Mirage bars show the speedup over the best baselines.

improve the end-to-end performance of full DNNs, including
Chameleon [40], nGPT [28], LLaMA-3 [41], and LoRA [22].

The experiments were conducted on NVIDIA A100 and
H100 GPUs, each with 40GB of memory. All our benchmarks
fit on a single GPU except GQA (used for LLaMA-2-70B),
which is generally parallelized across four GPUs using tensor
model parallelism [39]. Therefore, we evaluate GQA under
this parallelism strategy, where the eight key-value heads are
equally partitioned across four GPUs. Since the performance
of Mirage and all baselines depends only on the shapes of the
input tensors, we repeat each experiment 1,000 times using
random inputs and report the average run time.

One of our benchmarks, LoRA, requires concatenation
to express a common optimization: fusing two matrix mul-
tiplications via concatenation. To support this optimization
in Mirage, we introduce a new linear operator that takes
four inputs and computes f (W,X ,Y,Z)=(W∥X)× (Y∥Z),
where ∥ is tensor concatenation. This operator is equivalent
to computing W ×Y + X × Z. We define the abstract ex-
pression associated with this operator as: E( f (W,X ,Y,Z))=
add(sum(k1,mul(E(W ),E(Y ))),sum(k2,mul(E(X),E(Z)))),
where k1 and k2 are the last dimensions of W and X .

Unless otherwise stated, Mirage considers up to 5 operators
in the kernel graph and up to 11 operators in each block graph.

8.2 Benchmark Results

Figure 7 compares the performance of Mirage with systems
on six DNN benchmarks on NVIDIA A100 and H100 GPUs.
All systems use half-precision floating points to run these
DNN benchmarks. TASO [25] and PET [46] are DNN super-
optimizers that automatically generate algebraic transforma-
tions at the kernel level. We report a combined TASO/PET
baseline, as the latest TASO implementation includes PET’s

partially equivalent transformations as special substitutions.
PyTorch [34] uses the highly optimized cuDNN and cuBLAS
libraries [15, 16] to perform DNN operators on GPUs. For
the PyTorch baseline, we enable torch.compile and use
FlashAttention kernels to maximize performance. TensorRT
and its LLM variant TensorRT-LLM include a set of manually
designed and highly optimized kernels for common tensor
operators such as attention [42]. FlashAttention and its infer-
ence variant FlashDecoding are manually written kernels for
efficient attention [17, 21]. Finally, Triton is a schedule-based
optimizer to generate high-performance kernels and has been
adopted in production systems, outperforming other schedule-
based approaches [43]. All baselines use CUDA Graphs to
minimize kernel launch overhead.

Compared to the best existing approaches, Mirage improves
the performance of these benchmarks by up to 3.3× by comb-
ing algebraic transformations, schedule transformations, and
the generation of new custom kernels. §3 shows the best
discovered µGraphs for RMSNorm. Next, we present a case
study for the remaining benchmarks.

GQA. Group-query attention is the backbone of LLMs and
has been heavily optimized by existing frameworks. For exam-
ple, FlashAttention and FlashDecoding are expert-designed
attention kernels and have been adopted in existing LLM in-
ference systems [17]. Mirage discovers these expert-designed
kernels as well as other µGraphs that outperform them by up
to 2.2×. The speedup is achieved by two additional optimiza-
tions on top of existing hand-written kernels. First, current
approaches rely on fixed heuristics to determine the grid di-
mensions for GQA, which are suboptimal in certain scenarios.
For example, TensorRT-LLM launches the GQA kernel with
grid dimensions of (8, 2, 1) and (8, 2, 8) when the batch sizes
are 1 and 8, respectively. However, both configurations can-



Kernel GraphLayer
Norm𝑄

𝐾

𝑉

Layer
Norm Attention 𝑂

[h=64, s=32, d=64]

[h=64, s=4096, d=64]

[h=64, s=4096, d=64]

[h=64, s=32, d=64]

(a) The kernel graph for QKNorm and attention in existing systems.

Kernel Graph𝑄

𝐾

𝑉

𝑂GraphDef
Op 1

Block Graph

𝑄%

𝐾%

𝑉%

Input 
Iterator

Input 
Iterator

Input 
Iterator

Layer
Norm

Layer
Norm

MatMul

Accum

𝑂%Exp

MatMul

Accum

Sum Div

[h=64, s=32, d=64]

[h=64, s=4096, d=64]

[h=64, s=4096, d=64]

[h=64, s=32, d=64]

grid size: [x=64, y=2], forloop: [i=64]

[h=1, s=4096, d=64]
imap: {x↔h, y↔∅}

fmap: {i↔∅}

[h=1, s=4096, d=64]
imap: {x↔h, y↔∅}

[h=1, s=16, d=64]
imap: {x↔h, y↔s}

omap: {x↔h, y↔s}fmap: {i↔s}

fmap: {i↔s}

Output 
Saver

(b) The best µGraph discovered by Mirage for QKNorm and attention.

Figure 8: Comparing the µGraphs used by existing optimizers
and Mirage for QKNorm and attention.

not fully utilize all SMs on A100 (108 SMs) and H100 (132
SMs) GPUs. In contrast, Mirage automatically searches for
the best grid dimensions for each µGraph, resulting in full SM
utilization. Further ablation study shows that the performance
of the best µGraph discovered by Mirage degrades by 18%
when using the same grid dimensions as TensorRT-LLM.

Second, existing approaches use fixed tensor dimensions to
parallelize GQA across thread blocks. For example, FlashAt-
tention [17] parallelizes attention across the sample, head,
and query sequence dimensions, while FlashDecoding and
TensorRT-LLM leverage the sample, head, and key-value se-
quence dimensions. Both strategies are efficient for conven-
tional multi-head attention with many heads but suboptimal
for GQA with fewer attention heads. In contrast, Mirage auto-
matically selects the most efficient parallelization strategy by
choosing among the sample, KV heads, query sequence, and
key-value sequence dimensions. Moreover, Mirage generates
different µGraphs tailored to different attention scenarios, re-
ducing device memory access by up to 7× compared to the
heuristics used in existing systems.

Implementing Mirage’s µGraphs in existing systems is
possible but requires extensive engineering effort to support
different kernels for different scenarios. In contrast, Mirage
automatically generates them and verify their correctness.

QKNorm. To reduce model divergence, several recent
DNNs introduce query-key normalization (QKNorm) into
the Transformer architecture [40]. QKNorm applies layer nor-
malization to the query and key vectors before attention, as
shown in Figure 8a. These additional normalization layers are
not yet supported by existing attention implementations (e.g.,
FlashAttention and TensorRT-LLM) and require launching
separate kernels for normalization and attention.
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Figure 9: Comparing the tensor programs used by existing
optimizers and by Mirage for LoRA: O=W ×X +B×A×X .
Note that both matrices A and B are low-rank.

Mirage automatically discovers a µGraph that integrates
QKNorm and attention computation into a custom kernel, as
shown in Figure 8b. The µGraph reorganizes the attention
computation to enable fusion with the two layer normaliza-
tions, which avoids writing intermediate results to GPU device
memory and reduces the kernel execution time by up to 1.4×.

LoRA. Low-rank adaptation (LoRA) introduces a pair of
low-rank adapters to the linear operators of a pre-trained
DNN to improve its performance for downstream tasks. Ex-
isting tensor program optimizers launch separate kernels
for the original linear operator and the two additional lin-
ear operators introduced by LoRA (Figure 9a), which intro-
duces high kernel launch overheads since these LoRA op-
erators involve minimal computation. Figure 9b shows the
best µGraph discovered by Mirage for LoRA, which fuses
the three Matmuls and the subsequent Add into a single ker-
nel. Mirage reorganizes the computation into two block-
level Matmuls by leveraging the following algebraic trans-
formation: W ×X +B×A×X =(W∥B)×

(
X∥(A×X)

)
. The

Concats in Figure 9b do not involve any computation and are
performed by updating tensor offsets in GPU shared memory.
This µGraph reduces the execution cost of LoRA by 1.1-2.4×.

GatedMLP. Gated multi-layer perceptrons are commonly
used in DNNs to capture non-linear representations. We use
the GatedMLP configuration introduced in Falcon-7B [10],
whose kernel graph is shown in Figure 10a. Existing ten-
sor program optimizers generally fuse the two Matmuls in
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Figure 10: Comparing the µGraphs used by existing optimiz-
ers and Mirage for GatedMLP.

a single kernel to reduce GPU device memory access, since
the input tensor X only needs to be loaded once. However,
this approach still requires launching multiple kernels and
storing intermediate results—specifically, the output of the
two Matmuls—in device memory, as the SiLU activation and
elementwise multiplication are not fused with the Matmuls.

In contrast, the best µGraph discovered by Mirage (Fig-
ure 10b) performs the two Matmuls in parallel within the
same block graph and fuses the remaining computation (i.e.,
SiLU and Mul) as post-processing steps within the same block
graph. This approach yields 1.5× speedups on A100 GPUs
and 2.7-3.3× speedups on H100 GPUs.

nTrans. To accelerate model training, nGPT introduces nor-
malized Transformer, which normalizes all intermediate re-
sults in Transformer [28]. Formally, the computation is de-
fined as y=Norm(x+α(Norm(h− x))), where Norm is a nor-
malization layer, and x, h, and α are input tensors. Existing
systems launch three separate kernels for nTrans, since it in-
terleaves normalization and elementwise addition and multi-
plication. Mirage automatically discovers a µGraph that fuses
the computation into a single kernel and stores all intermedi-
ate results in GPU shared memory. Mirage outperforms other
baselines but is slower than TensorRT. This performance gap
is because Mirage loads data from global memory to shared
memory and writes it back for each tensor in graph-defined
kernels. This design improves memory efficiency and enables
asynchronous pipelines. However, for kernels with light com-
putation, the overhead of these memory transfers can domi-
nate the kernel runtime. To mitigate this overhead, we plan to
extend Mirage to support bypassing shared memory during
data loading, therefore avoiding unnecessary data movement.
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Figure 11: Comparing the end-to-end inference performance
of PyTorch and PyTorch with Mirage-generated kernels.

Table 5: Ablation study on Mirage’s techniques to accelerate
µGraph generation. We evaluate the impact of multi-threading
and abstract expressions on search time for RMSNorm.

Max # Ops in Mirage Mirage w/o Mirage w/o
a Block Graph Multithreading Abstract Expression

5 11 sec 58 sec 768 sec
6 16 sec 93 sec 19934 sec
7 22 sec 150 sec >10 h
8 24 sec 152 sec >10 h
9 26 sec 166 sec >10 h
10 26 sec 166 sec >10 h
11 28 sec 183 sec >10 h

8.3 End-to-end Results
In addition to the microbenchmark performance, we also eval-
uate how Mirage-generated kernels impact the end-to-end
latency of commonly used DNNs. Mirage supports just-in-
time compilation and deployment, and its generated kernels
can be directly integrated into PyTorch programs. We com-
pare PyTorch with its native handwritten CUDA kernels and
PyTorch with Mirage-generated kernels on four DNN models.
Figure 11 shows the results. Mirage reduces the end-to-end
latency of these models by 0.9-1.9× by automatically gener-
ating highly optimized kernels. The improvement is achieved
with a few lines of code changes to the PyTorch programs.

8.4 Search Time
In our evaluation, Mirage takes up to 4 hours to optimize a
LAX program. This optimization is a one-time cost before
deployment on the target hardware. This subsection provides
detailed results and an ablation study of Mirage’s search pro-
cedure, focusing on how its techniques enable the exploration
of large µGraphs while maintaining low search time. In par-
ticular, we evaluate the impact of two techniques: pruning via
abstract expressions (§4.3) and multi-threading. Table 5 re-
ports the search times for RMSNorm as we vary the maximum
number of operators allowed in a block graph.

Multi-threading significantly reduces the search time, while
pruning via abstract expressions is crucial for the scalability
of Mirage. Specifically, the pruning techniques allow Mirage
to explore µGraphs whose block graphs can each have at
most 11 operators, while disabling abstract expression pruning
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Figure 12: Ablation study on optimizations used in Mirage.
We evaluate the performance degradation when disabling each
optimization independently. The evaluation is performed on
A100 for GQA with batch size 1.

restricts Mirage to handle block graphs with up to 6 operators
within a 10-hour search window. Note that discovering the
optimized µGraph for RMSNorm shown in Figure 3 requires
exploring block graphs with 11 operators.

8.5 Ablation Study on Optimizations
We conduct an ablation study to evaluate the impact of thread
graph construction and optimizations introduced in §6, includ-
ing layout optimization, operator scheduling, and memory
planning. Specifically, we measure the performance degrada-
tion of the best µGraph discovered by Mirage when each opti-
mization is disabled independently. The study is conducted
on an A100 using the GQA benchmark with a batch size of 1.
The results, shown in Figure 12, indicate that disabling any
individual optimization leads to a performance degradation
ranging from 5% to 70%.

9 Related Work

Manually-designed kernels. Many existing frameworks,
such as TensorFlow XLA [1, 9], PyTorch [34], and Ten-
sorRT [42], rely on GPU experts to manually design kernels
for ML operators. Recently, significant engineering effort
has been dedicated to hand-optimizing GPU kernels for com-
monly used DNNs, particularly foundation models [12]. For
example, to accelerate attention computation [47], several
specialized kernels have been developed based on FlashAtten-
tion [4,5,17,21]. Due to the increasing complexity of modern
GPUs—such as tensor cores in A100s [29] and thread block
clusters in H100s [7]—manually designed kernels may miss
subtle optimizations that are hard to discover manually.

Superoptimization-based approaches. Superoptimization
was originally introduced to find optimal instruction se-
quences [11, 30, 36]. Recent work has applied superoptimiza-
tion techniques to tensor programs [23–26, 45, 46, 49, 52].
However, all these attempts only consider algebraic transfor-
mations at the kernel level and cannot discover more sophisti-
cated optimizations that require jointly considering algebraic

and schedule transformations at all of the kernel, block, and
thread levels. Our evaluation shows that Mirage largely out-
performs existing DNN superoptimizers, demonstrating the
importance of multi-level joint optimization.

Schedule-based approaches. Recent work has introduced
ML compilers that automatically optimize the execution
schedule of kernel GPUs. Systems such as TVM [13, 14],
Ansor [51], and Triton [43], along with others [19, 20, 53],
build on the idea of algorithm-schedule separation introduced
in Halide. They search for optimized schedules to execute a
user-specified algorithm on GPUs. However, schedule-based
approaches require users to explicitly specify the algorithm
for each kernel, and their performance is limited to the quality
of these provided algorithms.

Multi-level graph representations. Welder [38] and AS-
PEN [33] introduce multi-level tile graphs that share similari-
ties with Mirage’s µGraphs, as both representations follow the
GPU hierarchy. However, prior work focuses on scheduling
transformations, while Mirage extends beyond scheduling by
also considering algebraic transformations and the discovery
of new custom kernels. Most optimizations presented in this
paper fall outside the scope of these prior approaches.

10 Conclusion

This paper proposes Mirage, the first multi-level superopti-
mizer for tensor programs. Mirage introduces a hierarchy
graph representation to specify a tensor program at the kernel,
thread block, and thread levels of the GPU execution hierar-
chy, and uses a novel pruning technique based on abstraction
to significantly reduce the search space Mirage needs to con-
sider while providing a certain optimality guarantee. Mirage
outperforms existing tensor program optimizers by up to 3.3×,
even for widely used and heavily optimized DNNs.
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