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Abstract

Federated Learning (FL) under distributed concept drift is a largely unexplored
area. Although concept drift is itself a well-studied phenomenon, it poses particular
challenges for FL, because drifts arise staggered in time and space (across clients).
Our work is the first to explicitly study data heterogeneity in both dimensions. We
first demonstrate that prior solutions to drift adaptation, with their single global
model, are ill-suited to staggered drifts, necessitating multi-model solutions. We
identify the problem of drift adaptation as a time-varying clustering problem, and
we propose two new clustering algorithms for reacting to drifts based on local drift
detection and hierarchical clustering. Empirical evaluation shows that our solutions
achieve significantly higher accuracy than existing baselines, and are comparable
to an idealized algorithm with oracle knowledge of the ground-truth clustering of
clients to concepts at each time step.

1 Introduction

Federated learning (FL) [22, 29] is a popular machine learning (ML) paradigm that enables collab-
orative training without sharing raw training data. FL is crucial in the era of pervasive computing,
where massive IoT and mobile phones continuously generate relevant ML data that cannot be easily
shared due to privacy and communication constraints. FL also enables different organizations such as
hospitals [33] and retail stores [42] to jointly obtain valuable insights while preserving data privacy.
FL has become an important technology in the real world with massive deployments (500+ million
installations on Android devices) as well as a growing market with many solution providers [28].

Existing FL solutions generally assume the training data comes from a stable underlying distribution,
and the training data in the past is sufficiently similar to the test data in the future. Unfortunately, this
assumption is often violated in the real world, where the underlying data distribution is non-stationary
and constantly evolves. For instance, user sentiment and preference change drastically due to external
environments such as the pandemic and macroeconomics [13, 21]. Data collected by cameras are
also subject to various data changes such as unexpected weather and novel objects, which can lead to
significant ML model performance losses [2, 37].

This concept drift problem [41] has been studied extensively in a centralized learning environment [12,
38]. These centralized solutions, however, cannot address the fundamental challenges of concept
drifts in FL where data is heterogeneous over time and across different clients. When different clients
experience the data drift at different times, no single global model can perform well for all clients.
Similarly, when multiple concepts exist simultaneously, no centralized training decision works well
for all clients. Several recent works have recognized the problem of FL under concept drift and
proposed solutions that adapt learning rates or add regularization terms [8, 9, 16, 26]. Although
these solutions perform better than drift-oblivious algorithms such as FedAvg [29], the solutions still
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use a single global model for all clients, and hence fail to address the aforementioned fundamental
challenges of heterogeneity over time and across clients.

In this work, we present the first FL solution that employs multiple models to address FL under
distributed concept drift. Our solution aims to create one model for each new concept so that all clients
under the same concept can train that model collaboratively, similar to what is done for personalized
or clustered FL [10, 14, 15, 27, 34]. We introduce two new algorithms for model creation and client
clustering so that our solution addresses all the challenges of distributed concept drift. Our first
algorithm, FedDrift-Eager, is a specialized algorithm that creates models based on drift detection.
FedDrift-Eager is effective if new concepts are introduced one at a time. Our second algorithm,
FedDrift, is a general algorithm that leverages hierarchical clustering to adaptively determine the
appropriate number of models. FedDrift isolates drifted clients and conservatively merges clients
via hierarchical clustering, so that FedDrift can effectively handle general cases where an unknown
number of new concepts emerge simultaneously.

We empirically evaluate our solution using four popular concept drift datasets, and we compare
our solution against state-of-the-art centralized concept drift solutions (AUE [6] and DriftSurf [38])
and a recent FL solution that adapts to concept drifts (Adaptive-FedAvg [7]). Our results show that
(i) FedDrift-Eager and FedDrift consistently achieve much higher and more stable model accuracy
than existing baselines (average accuracy 93% vs. 88% for the best baseline, across six dataset/drift
combinations); (ii) FedDrift performs much better than FedDrift-Eager when multiple new concepts
are introduced at the same time; and (iii) our solution achieves a similar model accuracy as Oracle
(94% accuracy), an idealized algorithm that knows the timing and distribution of concept drifts.

2 Background and Motivation

2.1 Problem Setup

We consider a FL setting with P clients, assumed to be stateful and participating at each round,
and a central server that coordinates training across the clients. Training data are decentralized and
arriving over time. The data at each client c = 1, 2, . . . , P and each time t = 1, 2, . . . are sampled
from a distribution (concept) P(t)

c (x, y). We consider that data may be non-IID in two dimensions,
varying across clients and across time. We say that there is a concept drift at time t and at client c if
P(t)
c 6= P(t−1)

c (the standard definition of drift with respect to a single node [12]).

One option is to learn a single global model h (which is a function of time but is notationally
suppressed) that is used for inference at all clients. In this case, the objective is to minimize over
all time t,

∑P
c=1 E(x,y)∼P(t)

c
[`(h(x), y)], where ` is the loss function. However, the optimal single

model may not be well-suited in the presence of concept drifts. By decomposing the joint distribution
P(x, y) = P(x)P(y|x), we distinguish between drifts where only P(x) changes versus drifts where
the feature-to-label mapping P(y|x) changes. Under the former case (which goes by the names
virtual drift [39], covariate drift [36], and feature-distribution skew [19]) the optimal single model can
perform well (although achieving fast convergence still requires a specialized strategy; e.g., FedProx
[24]). But under the latter case where the feature-to-label mapping changes (real drift or concept
drift [39]), lower loss can often be obtained by using specialized models for different concepts.

The multi-model option is to learn a set of global models {hm}, and a time-varying clustering of
clients. For notation, we denote the cluster identities by one-hot vectors w(t)

c , where w(t)
c,m = 1 when

the client c at time t uses model hm for inference; we denote h
w

(t)
c

to represent the unique model hm
where w(t)

c,m = 1. The objective is to minimize over all time t,
P∑
c=1

E
(x,y)∼P(t)

c

[`(h
w

(t)
c
(x), y)]. (1)

2.2 Motivation

The prior work on drift adaptation in FL has considered only restrictive settings such as (i) drifts
occurring simultaneously in time (e.g., Figure 1a), where a centralized approach works well [7], or
(ii) drifts with only minor deviations from a majority concept (e.g., Figure 1b), where updates from
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(b) One majority concept

Figure 1: Simplistic drifts studied in prior work.
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Figure 2: Distributed drift pat-
tern (2 concepts).

drifting clients are suppressed and the minority concept goes unlearned [9, 26]. Our work is the
first to acknowledge and explicitly study the more general settings arising in distributed drifts, with
heterogeneous data across clients and over time.
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Figure 3: Distributed drift pat-
tern (4-concepts).

Consider the distributed drift pattern depicted in Figure 2. This is
representative of an emerging trend (e.g., a breaking news event)
that effects different clients at different times (e.g., due to their lag in
learning of the news). Even for this simple case of a single staggered
transition between two concepts, prior work results in significant
accuracy loss. In particular, their use of a single global model (and
at best a single global drift detection test) results in poor accuracy
during the transition period (time steps 4–8, see Figure 4(left)).

We also consider more challenging cases, as depicted in Figure 3,
where multiple concepts emerge at the same time and concept drifts
may be recurring (a.k.a. periodic).

2.3 Related Work

Concept drift has been studied extensively in the centralized setting
for decades. We refer the reader to the surveys by Gama et al. [12] and Lu et al. [25]. As previously
discussed, directly applying these centralized algorithms in FL is not well-suited for distributed con-
cept drifts with heterogeneous data across time and clients. We demonstrate this in our experimental
evaluation, where we compare against state-of-the-art algorithms such as DriftSurf [38] and AUE [6].

Drift in FL, on the other hand, has so far seen only preliminary study. One line of work considers
the setting where there is one concept in the system to be learned (either like the example in Figure
1b when a minority of clients drift, or when clients observe the main concept under random noise),
and seek to speed up the convergence of a model for that one concept by suppressing clients with
heterogeneous data via regularization [9, 16] or drift detection [26]. When it comes to adapting to a
new concept over time, we are only aware of two works, and both only consider drifts with uniform
timing like the example in Figure 1a. First, Casado et al. [8] consider only the virtual drift setting
(where the labeling P(y|x) is fixed and only P(x) changes) and uses drift detection to partition data
from distinct concepts, in order to train a single model accurately in the course of revisiting each
partition (i.e., rehearsal). Second, Canonaco et al. [7] propose Adaptive-FedAvg, in which the server
tunes the learning rate used by all clients as a function of the variability across updates, with the goal
of reacting fast when drift occurs while also achieving stable performance in the absence of drift. In
our experimental evaluation, we compare against Adaptive-FedAvg.

Our solution to drift in FL relies on learning multiple models, which has been studied in prior work on
personalized FL and clustered FL. Clients with similar data can be grouped into clusters, where each
cluster of clients is associated with a global model that they collaboratively train [5, 10, 14, 15, 27, 34].
As we extend the problem of data heterogeneity in FL with an additional dimension of time, we train
multiple models with the algorithm in §3, which is heavily inspired by the prior clustering algorithms
IFCA [15] and HypCluster[27]. This serves as the starting point of our solution, where our main
contribution is the creation of new clusters as new concepts arrive over time. Finally, our solution
in §4 to handle an unknown number of concepts relies on hierarchical clustering, which has been
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studied in FL (in the static case) previously by Briggs et al. [5]. In the prior work, the clustering is
based on clients’ local updates, and it is unclear how to set the distance threshold at which to stop
merging. In contrast, an advantage of our approach is that the stopping criterion is identical to the
drift detection threshold, which has an intuitive interpretation of performance loss.

3 Multi-Model Training in FL

As discussed above, distributed concept drift often means that multiple concepts are present simulta-
neously, necessitating the need for multi-model training. In this section, we present an algorithm for
multi-model training in FL over time. Then in §4, we will show how to apply the algorithm to react
to drifts to new concepts.

Our approach (depicted in Algorithms 1 and 2) trains a set of global models, each trained by a cluster
of clients. We define a time step as the granularity at which new data may arrive at a client. A time
step may consist of multiple communication rounds. The set of data arriving at client c and time
t is denoted by S(t)

c . The global models being trained are denoted by hm for m ∈ [M ], where M
is the total number of models at a given time. Each model is trained by a cluster of clients, where
the clustering may vary over time as concept drifts occur. The cluster identity of client c at time t is
denoted by the one-hot vector w(t)

c , where w(t)
c,m = 1 when assigned to the cluster associated with

model hm and 0 otherwise. The cluster identities w(t)
c,m indicate whether the data S(t)

c that arrived at
client c at time t are sampled when computing a local update to the global model hm. Further, the
cluster identity of a client at a given time indicates which model is used for inference.

Within each time, the training of the global models in Algorithm 1 is equivalent to Federated
Averaging [29], since the aggregation weight of each client within each cluster is fixed at time
τ . So the convergence of Algorithm 1 can be guaranteed by directly using previous analyses for
Federated Averaging, such as [24, 40]. The difference here is that the objective function that clients
are minimizing at time τ is replaced by the following:

F̃ (τ)
m (hm) =

P∑
c=1

w̃τc,mF
(τ)
c (hm) (2)

where F (τ)
c denotes the local objective function on client c, and the normalized weight is defined as

w̃τc,m =
∑τ
t=1 w

(t)
c,mN

(t)
c /

∑P
c=1

∑τ
t=1 w

(t)
c,mN

(t)
c .

In the ideal case where each cluster maps to one concept in the system, each hm is specialized for
each concept that is sampled from a unique data distribution (P(x, y)), and these hm form a strong
solution to our overall objective in §2.1. This ideal solution is the Oracle algorithm in our evaluation
in §5, and we empirically demonstrate that our proposed solutions achieve comparable accuracy.

Algorithm 1 Multi-model training at time τ

Input: Cluster identities w(t)
c,m

for each round i = 1, 2, . . . , R do
for each client c = 1, 2, . . . , P
and each model m = 1, 2, . . . ,M in parallel do
hc,m ← LOCALUPDATE(c, hm, {w(t)

c,m}τt=1)
for each model m = 1, 2, . . . ,M do
hm ←

∑P
c=1 hc,m

∑τ
t=1 w

(t)
c,mN

(t)
c∑P

c=1

∑τ
t=1 w

(t)
c,mN

(t)
c

LOCALUPDATE(c, hm, {w(t)
c,m}τt=1):

for each local step j = 1, 2, . . . ,K do
b← random minibatch of size B from

∪
t:w

(t)
c,m=1

S
(t)
c

hm ← hm − η∇`(hm; b)
return hm

τ current time (prior time indexed by t)
P # clients (indexed by c)
M # global models (indexed by m)
R # communication rounds (indexed by i)
K # local steps per model per round (by j)
S

(t)
c new data arriving at client c at time t

N
(t)
c = |S(t)

c |
B minibatch size
η step size
hm global model m
hc,m local update of hm by client c
w

(t)
c,m is S(t)

c used to update hm?

Algorithm 2 Clustering to the lowest loss

`
(τ)
c,m ← loss of hm on client data S(τ)

c

w
(τ)
c,m ← 1{m = argminm′ `

(τ)
c,m′}

Run Algorithm 1
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Note that, as stated, each client c in Algorithm 1 retains its complete history of both the cluster
indicators w(t)

c,m and the local data arrivals S(t)
c . To reduce this overhead, each client could instead

maintain just a sliding window of the most recent time steps, as long as the window suffices for the
minibatch sampling in LOCALUPDATE.

Thus, we have separated the problem of concept drift in FL into two components: (i) determining the
time-varying clustering of clients in response to concept drifts, which is then used as input for (ii)
multi-model training in Algorithm 1. Suppose, hypothetically, that there is a global model already
initialized for each concept up to some moderate accuracy. In this restrictive setting, Algorithm 2 can
be used to determine the cluster identities for each new time step. Each client tests the global models
from the previous time step over its newly arrived data and chooses to identify with the model with
the best loss (breaking ties randomly).1 The setting considered encompasses time steps involving
drifts that occur between concepts known to the system; e.g., the later stages of a staggered drift from
concept A to concept B after some clients have already observed concept B (Figure 2). However,
Algorithm 2 does not have any mechanism to spawn new clusters or determine the number of clusters.
In §4, we will show how to determine the input for Algorithm 1 with clustering algorithms that can
spawn clusters over time to react to drifts to new concepts.

4 Clustering Algorithms

Under concept drift in FL, data is heterogeneous both over time and across clients. The concept at
each time and client is the ground-truth clustering that we seek to learn. Ideally, the models trained
by each cluster correspond 1-to-1 to the concepts present in the system. We want to avoid spawning
multiple clusters that correspond to a single concept, in which case each model is trained over only a
subset of the relevant data, not taking full advantage of collaborative training. We also want to avoid
merging clients corresponding to multiple concepts into a single cluster (model poisoning).

We present two clustering algorithms for adapting to concept drift. First, in §4.1 we handle the case
where only one new concept emerges at a time, which includes the example drift pattern in Figure
2, by incorporating a straightforward drift detection algorithm. Second, in §4.2 we give a general
algorithm that handles the general case where multiple new concepts may emerge simultaneously,
which includes the example drift pattern in Figure 3, by incorporating a bottom-up technique that
isolates clients that detect drift and iteratively merges clusters corresponding to the same concept.

In the remainder of this section, we assume that the first time step starts with one concept and one
model, and that our clustering is run for each time step τ > 1 as new data arrives.

4.1 Special Case: One New Concept at a Time

When a new concept emerges, the clients that observe the drift should be split off to a new cluster to
start training a new model. Drift detection has been well-studied in the centralized, non-FL, setting
[1, 3, 11, 17, 30, 32, 38]. As we noted in §2.2, for staggered drifts in FL, trying to apply a drift
detection test globally at the server over the aggregate error results in poor performance during the
transition period. Instead, we propose applying drift detection locally at each client.

Drift detection tests commonly work by monitoring the prediction error of a model and signaling
a drift whenever the error increases by a set significance threshold, which represents a trade-off
between false positives and negatives in detection. The literature contains an abundance of tests
refined over the years of increasing sophistication to attain better accuracy and lower detection delay.
The particular test is not a focus of this paper, and for simplicity we consider a test of the following
form. A drift is signaled at client c at time τ with respect to model hm if the loss of the model over
the newly arrived data, denoted as `(τ)c,m, degrades by a threshold δ relative to the loss measured at the
previous time:

`(τ)c,m > `(τ−1)c,m + δ. (3)

This test checks for any drift that incurs performance degradation with respect to a given model.
However, the desired condition for creating a new model should check only for concept drifts that

1If there are no new data at a particular client, then we say its cluster identity is carried over from the previous
time step so the model used for inference is well-defined.
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correspond to a concept previously unobserved and ill-suited for all existing models. For other drifts,
such as the later stage of the staggered drift from concept A to concept B in Figure 2 (after concept B
has already been detected and an appropriate model created), a client should join an existing cluster
(in this case, the cluster for B). Hence, we extend the test for model creation to compare against the
best performing model:

min
m

`(τ)c,m > min
m

`(τ−1)c,m + δ. (4)

Algorithm 3 FedDrift-Eager at time τ

`
(τ)
c,m ← loss of model hm on client data S(τ)

c

w
(τ)
c,m ← 1{m = argminm′ `

(τ)
c,m′}

if minm `
(τ)
c,m > minm `

(τ−1)
c,m + δ at any client c

then
M ←M + 1
Initialize a new global model hM
w

(τ)
c,∗ ← 0; w(τ)

c,M ← 1
Run Algorithm 1

We note that detection tests that compare
across multiple models have been previously
studied in the centralized learning setting in
the context of adapting to recurring drifts; a
system that learns one model at a time may
still maintain previously learned models for
the case that a drift corresponds to a previ-
ously observed concept (e.g., the concept se-
quence A–B–A) [20]. The clustering in Al-
gorithm 3 (FedDrift-Eager) applies this multi-
model drift detection test at each client, and
creates a new cluster for all the clients that
detect a new concept; otherwise, each client
identifies with the cluster with the best-performing model. This algorithm relies on the assumption
that only one new concept occurs at a time by assigning the drifted clients to a single cluster. Despite
this limitation, Algorithm 3 still merits interest as it experimentally performs well on the non-trivial
case of the staggered drift in Figure 2 that has not been addressed by the prior work, as shown in
§5. However, for the drift in Figure 3 in which concepts B and C emerge simultaneously at different
clients, this algorithm creates only one cluster and sub-optimally tries to train a single model for both
new concepts. Next, we extend this algorithm to address the general case where an unknown number
of new concepts can occur at a time.

4.2 General Case

When drifts to new concepts are detected at multiple clients, in general we do not know whether
the drifts all correspond to one concept or multiple concepts (or even zero concepts in the event of
false positives in detection). We designed Algorithm 4 (FedDrift) for clustering in the face of this
uncertainty. For each client that detects drift to a new concept, Algorithm 4 conservatively isolates
the clients to individual clusters, and then merges clusters corresponding to the same concept slowly
and safely over time by iteratively applying classical hierarchical agglomerative clustering [35].

The generic hierarchical clustering procedure is specified by a distance function over the set of
elements to be clustered and a stopping criterion, and at each step until the stopping criterion is
met, merges the two closest clusters, where the distance between clusters of multiple elements is
commonly defined to be the maximum distance between their constituents (known as a max-linkage
clustering). In Algorithm 4, the Merge subroutine combines two clusters i and j by averaging their
models with weight proportional to the size of each model’s training dataset (over all clients) and
unifying the cluster identities.

To specify a distance function for hierarchical clustering, Algorithm 4 first aggregates at the server
the loss estimates Lij of the model hi evaluated over a subsample of the data associated with
the cluster for model hj . 2 Then the distances between each cluster are initialized as D(i, j) ←
max(Lij − Lii, Lji − Ljj , 0).3 The first term Lij − Lii measures the loss degradation of model hi
when evaluated over the data associated with hj , relative to the loss over its own data. We informally
interpret this difference as the magnitude of drift between the concept associated with hi to the
concept associated with hj , analogous to the drift detection condition in Eq (3) (although not identical
due to the bias of Lii measuring a model’s accuracy over its own training data). The term D(i, j) is

2More precisely, at client c, the data clustered to hj are sampled proportionate to the size of the local dataset
relative to the global dataset for hj ,

∑
t w

(t)
c,jN

(t)
c /

∑
c′
∑

t w
(t)

c′,jN
(t)

c′ .
3We note that D(i, j) is not necessarily a true distance function as there is no guarantee that it satisfies the

triangle inequality.
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defined to be symmetric by also accounting for the magnitude of the drift Lji − Ljj in the reverse
direction from concept j to concept i.

In addition to defining the cluster distances D(i, j), employing hierarchical clustering also requires
setting a stopping criterion. Typically, that corresponds to specifying either the desired number of
clusters (which in our case is unknown), or an upper limit on the distance between clusters to stop
merging. By our identification of the cluster distance as a magnitude of drift, we naturally re-use the
drift detection threshold δ to also represent the tolerance level up to which clusters can be merged in
Algorithm 4, which avoids introducing another hyperparameter.

Algorithm 4 FedDrift at time τ

`
(τ)
c,m ← loss of model hm on client data S(τ)

c

for each client c = 1, 2, . . . , P in parallel do
if minm `

(τ)
c,m > minm `

(τ−1)
c,m + δ then

Initialize a local model at client c to be added to the
set of global models at τ + 1, and assign client c to
its own cluster

else
w

(τ)
c,m ← 1{m = argminm′ `

(τ)
c,m′}

for each i, j from 1, 2, . . . ,M in parallel do
Lij ← loss of model hi on subsample of∪

c,t:w
(t)
c,j=1

S
(t)
c

Cluster distances D(i, j)← max(Lij−Lii, Lji−Ljj , 0)
while mini 6=j D(i, j) < δ do

MERGE(i, j,D)
Run Algorithm 1

MERGE(i, j,D):

Add a new model hk ←
hi

∑
c,t w

(t)
c,iN

(t)
c +hj

∑
c,t w

(t)
c,jN

(t)
c∑

c,t w
(t)
c,iN

(t)
c +

∑
c,t w

(t)
c,jN

(t)
c

w
(t)
c,k ← w

(t)
c,i + w

(t)
c,j for all c, t

D(k, l) = max(D(i, l), D(j, l)) for all l
Delete models hi, hj

One subtlety to Algorithm 4 is that the
hierarchical clustering is iteratively
run at every time step, because the
cluster distances vary with time. A
simpler alternative would be to only
try merging newly created clusters of
local models after one time step of
training. However, at that one time
step, even models corresponding to
the same concept may fail to merge
given the limited sample size and lim-
ited number of training iterations. In
other words, while the models are still
warming-up, they may still be sepa-
rated by a distance exceeding δ. As
the models converge over time, the
distance may drop below δ, which Al-
gorithm 4 accounts for by iteratively
attempting to merge.

The hierarchical clustering strategy of
Algorithm 4 allows it to adaptively
determine the appropriate number of
clusters even when an unknown num-
ber of new concepts emerge at a time,
but it also incurs additional computa-
tional resources relative to Algorithm
3. Algorithm 4 creates more global models to be broadcasted, adding to the communication cost.
Additionally, the hierarchical clustering adds an O(M2 logM) time complexity at the server at every
time step (using a heap data structure for finding the minimum pairwise distance), where M is the
number of global models.

Similar to Algorithm 1, each client c could maintain w(t)
c,m and S(t)

c for just a sliding window of the
most recent time steps, as long as the window suffices for Algorithm 4’s subsampling step.

5 Experimental Results

We empirically demonstrate that FedDrift-Eager and FedDrift are more effective than prior centralized
drift adaptation and achieve high accuracy that is comparable to an oracle algorithm in the presence
of distributed concept drifts. Prior work on FL under drifts is limited to simple cases such as in Figure
1, as noted in §2.2. Our evaluation is on the drifts in Figures 2 and 3, which represent more complex
scenarios where drifts (i) occur across clients with staggered timing, (ii) correspond to different
concept changes across different clients, and (iii) involve recurring concepts (e.g., the sequence
A–B–C–D–A).

We investigate these drift patterns with respect to the following datasets studied in the literature
on centralized drift adaptation [6, 38], FL for personalization [5], and FL under drifts [7, 26]. The
datasets SINE and CIRCLE [31] each have two defined concepts, and we generate partitions of the
data under the 2-concept staggered drift of Figure 2. In SINE, the first concept is a decision boundary
of a sine curve and the second concept reverses the direction (swapping the labels). In CIRCLE, the
two concepts are each decision boundaries of two different circles, representing a smaller concept
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Table 1: Average accuracy (%) across all clients and time (over 5 trials)

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4

Oblivious 50.44 ± 1.52 88.36 ± 0.27 86.37 ± 0.34 87.25 ± 0.14 85.38 ± 0.28 82.97 ± 0.04
DriftSurf 83.90 ± 1.01 92.54 ± 0.67 87.27 ± 0.34 91.71 ± 1.60 85.48 ± 0.28 82.99 ± 0.05
AUE 86.06 ± 0.60 92.74 ± 0.51 87.46 ± 0.12 92.19 ± 0.07 85.55 ± 0.08 81.29 ± 0.19
Window 86.42 ± 0.74 93.67 ± 0.15 88.08 ± 0.10 92.15 ± 0.34 85.76 ± 0.16 81.16 ± 0.46
Adaptive-FedAvg 78.02 ± 10.73 86.26 ± 0.00 86.69 ± 0.39 92.16 ± 0.04 85.32 ± 0.25 81.62 ± 0.07
FedDrift-Eager 98.46 ± 0.03 97.86 ± 0.20 88.35 ± 0.37 95.99 ± 0.06 88.08 ± 0.24 89.21 ± 2.02
FedDrift 98.48 ± 0.01 97.88 ± 0.17 88.65 ± 0.43 95.93 ± 0.01 88.41 ± 0.29 94.09 ± 0.08

Oracle 98.46 ± 0.01 97.57 ± 0.59 88.53 ± 0.23 96.00 ± 0.02 88.75 ± 0.20 94.60 ± 0.04

change than SINE. The datasets SEA [4] and MNIST [23] have more concepts defined, and we
generate partitions of the data under both the 2-concept and 4-concept drift patterns of Figures 2 and
3. In SEA, each concept corresponds to a shifted hyperplane. In MNIST, concept A corresponds to
the original labeling of the hand-drawn digits, and under each other concept, the labels of two of the
digits are swapped (B swaps digits 1 and 2, C swaps digits 3 and 4, and D swaps digits 5 and 6).

We compare our algorithms FedDrift-Eager and FedDrift against the following baselines. First, the
Oblivious algorithm learns a single model with FedAvg and has no mechanism for drift adaptation.
Second, we consider traditional (non-FL) drift adaptation algorithms applied centrally at the server on
top of FedAvg. Drift adaptation is typically classified into three categories, and we compare against
algorithms representative of each: the drift detection method DriftSurf [38], the ensemble method AUE
[6], and a Window method that forgets data older than one time step (more are reported in Appendix
B). Third, Adaptive-FedAvg [7] is an FL algorithm that learns a single model and adapts to drifts by
centrally tuning the learning rate used by all clients as a function of the variability across updates.
Fourth, Oracle is an idealized algorithm that has oracle access to the concept ID at training time and
runs the multi-model training of Algorithm 1 with the ground-truth clustering. Appendix B reports
results with less competitive baselines, such as clustered FL [34] and personalized FL [15].

We run our experiments using the FedML framework [18]. Over the course of 10 time steps, each
of 10 clients observes a new batch of training data. The models trained under each algorithm are
fully connected neural networks with a single hidden layer of size 2d where d is the number of
features. After training for each time step, we test each algorithm over the batch of data arriving
at the following time step. Each experiment is run for 5 trials, and we report the mean and the
standard deviation. Additional details on the experimental setup regarding datasets, algorithms, and
hyperparameters are in Appendix A.

In Table 1, we report the accuracy averaged across all clients and all time steps except for the times
of drifts. We omit the times of drift because there is no chance for a client to adapt to the drift yet,
and all algorithms suffer from the inevitable performance loss. By omitting the time of drift, we
eliminate the noise from beneficial clustering mistakes if by chance a client was clustered to the
model appropriate for the test data after the drift. For completeness, the results averaging over all
time steps including drifts are in Appendix B.

Across all the 2-concept datasets under the staggered drift, we observe that the multi-model algorithms
FedDrift-Eager and FedDrift outperform the prior centralized solutions. In Figure 4(left), the accuracy
is broken down per time step on CIRCLE-2, where we observe that centralized algorithms particularly
suffer during the transition period. The fundamental issue is that when both concepts simultaneously
exist, there is no single model that is an accurate fit at all clients. Even AUE, which uses a weighted
combination over its ensemble of models, has poor performance because all of its models are updated
by all clients, and during the transition period, none of its models are trained solely over data from
the second concept. On the other hand, FedDrift-Eager and FedDrift, with multiple models trained
by different clusters of clients, learn models specialized for the second concept immediately after it
emerges, and learn to apply the appropriate model at each client during the transition, matching the
performance of Oracle.

Another challenge that the 2-concept staggered drift poses for DriftSurf, AUE, and Adaptive-FedAvg is
that their adaptation strategies are a function of estimators that, from the perspective at the central
server, are aggregated over some clients that are drifting and others that are not. It is muddy whether
drift is truly occurring, and even the unsophisticated window-based algorithm performs slightly better.
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Figure 4: Accuracy at each time (averaged across clients) on CIRCLE-2 and MNIST-4.

Regarding the 4-concept drift, we visualize the accuracy per time step on MNIST-4 in Figure 4(right).
The performance of the centralized baselines never recover as long as multiple concepts exist. To
better understand the performance of FedDrift-Eager and FedDrift, we refer to the clustering learned
by each in Figure 5. In the ideal case (Oracle), there is exactly one model for each concept.

0 0 1 0 1 1 1 3 3 0

0 0 1 0 1 1 0 3 0 0

0 0 0 0 0 1 1 1 3 3

0 0 1 1 0 2 2 3 3 3

0 0 1 1 1 1 2 2 3 3

0 0 0 1 1 0 0 0 2 2

0 0 0 0 1 1 0 3 3 1

0 0 0 0 2 2 2 1 1 1

0 0 0 0 0 0 0 2 2 1

0 0 0 0 0 0 3 3 3 3

time

cl
ie
n
ts

(a) FedDrift-Eager

0 0 1 1 4 4 4 6 6 0

0 0 2 1 4 4 6 6 0 0

0 0 3 1 1 4 4 4 6 6

0 0 4 4 1 1 1 6 6 6

0 0 5 4 4 4 1 1 6 6

0 0 0 4 4 6 6 6 1 1

0 0 0 0 4 4 6 6 6 4

0 0 0 0 1 1 1 4 4 4

0 0 0 6 6 6 6 1 1 4

0 0 0 0 0 0 6 6 6 6

time

cl
ie

n
ts

1←[1, 2, 3] 4←[4, 5]

(b) FedDrift

Figure 5: The clustering learned on MNIST-4. Each cell
indicates the model ID at each client and time step, and the
background color indicates the ground-truth concept.

For FedDrift, at time 3 one new model
is created for 5 of the 6 clients that
drifted, and one false negative where
a drifted client stays on the original
model. With hierarchical clustering
applied at the beginning of time 4, the
3 clusters corresponding to the green
concept are correctly merged, while
all clients on the yellow concept clus-
ter to model 4 which had the lowest
test loss over the new data. Also at
time 4, model 6 is created for the new
orange concept. Then at time 5, hier-
archical clustering merges models 4
and 5 (due its iterative application in
FedDrift, as the distance between mod-
els 4 and 5 decreases after model 4 is
further trained). After time 5, FedDrift has a distinct model for each concept, and no excess models.

On the other hand, for FedDrift-Eager, when drifts occur at time 3, only model 1 is created for both
the yellow and green concepts. At time 4, clustering to the lowest loss separates the yellow and green
concepts, but then only a single model is applied for the blue and green concepts, as well as the
orange concept due to a missed drift detection. Ultimately, FedDrift-Eager does eventually learn to
use a distinct model for each concept over time in response to later drifts (when the green concept
occurs again at time 5 and the orange concept at 7), and the accuracy recovers at the end in Figure 4.
Meanwhile, the accuracy of FedDrift is close to Oracle throughout, with one gap at time 3 when each
local model is created.

As noted in §4, one of the drawbacks of FedDrift is that it can create more models compared to
FedDrift-Eager, adding to the communication cost. Appendix B shows that restricting FedDrift to
just one new global model per time step (additional local models are still permitted) decreases its
accuracy by only 0.61 percentage points on the MNIST-4 dataset, while saving communication.

6 Conclusion

Federated learning under distributed concept drift is a largely unexplored area, posing particular
challenges because drifts can arise staggered in time and space (across clients). This paper presented
FedDrift-Eager and FedDrift, the first algorithms explicitly designed to mitigate these challenges.
Empirical evaluation on a variety of dataset/drift combinations showed that these algorithms achieve
significantly higher accuracy than existing baselines, and are comparable to an idealized algorithm
with oracle knowledge of the ground-truth clustering of clients to concepts at each time step. Future
work includes exploring ways to address the privacy implications of clustering clients.
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A Experimental Parameters

For each dataset in our experiments, the training data are distributed across 10 clients and arrive
over 10 time steps. The partition of the data at each client and time is a constant 500 number of
samples from the concept corresponding to the concept drift patterns in Figures 2 and 3 in §2.2. In
our experimental results, after training at each time τ we report the test accuracy over the data at
τ + 1. For clarification, in reporting the accuracy at the last time step 10, we test over an 11th sample
of data at each client that is from the same concept observed during training at time 10.

Across all algorithms we evaluate, the algorithms that learn a single model use FedAvg for training,
and the clustering algorithms that learn multiple models use Algorithm 1 in §3 for training (which
reduces to FedAvg when there is one cluster). The training parameters used in our experiments are
shown in Table 2.

Table 2: Training parameters

Parameter Description Experimental setting

P # clients 10
R # communication rounds 100
K # local steps per model per round 50
N

(t)
c number of new data arrivals at client c at time t 500
B minibatch size 50
η step size varies

Regarding the learning rate selection, first we discuss all algorithms excluding Adaptive-FedAvg.
We searched for learning rates of the form 10−a for a = 1, 2, 3, 4, for each dataset, and found that
η = 10−2 was the best for SINE-2, CIRCLE-2, SEA-2, and SEA-4, and that η = 10−3 was best for
MNIST-2 and MNIST-4. (This held for both of the two extremes among our baselines, Oblivious and
Oracle, and we apply the same learning rate across all the algorithms.) Also note that for computing
the Local Update at each client, we use the implementation of Adam in PyTorch with the options
weight decay = 10−3 and amsgrad = True. We treat Adaptive-FedAvg separately, because it uses SGD
with its own internal learning rate scheduler as its mechanism to react to drifts. We found that the
initial learning rate of 10−2 was the best for each dataset with the exception of SINE-2, instead using
10−1. (This higher learning rate explains the high standard deviation in the reported accuracy of
Adaptive-FedAvg on SINE-2.)

Next, we report the selection of the drift detection threshold δ in the algorithms DriftSurf, FedDrift-
Eager, and FedDrift. While the optimal δ is expected to vary across datasets, even for a fixed dataset,
different algorithms can peak in performance at varying δ. The performance of each of these three
algorithms for each dataset across δ in the range 0.02, 0.04, . . . , 0.20 is shown in Figure 6. To not
bias towards any one algorithm, the experimental results are reported for each algorithm and dataset
using its best δ. However, using a fixed δ = 0.04 for FedDrift-Eager and FedDrift makes at most a 1
pp difference in the results reported in Table 1 (on one trial).

For all other hyperparameters of the algorithms we evaluate, we follow the parameter choices stated
in the original papers, with the following exceptions: for DriftSurf, we use r = 3 (which performed
better than their suggested r = 4) and for AUE, we use K = 5 as the total ensemble size (compared
to the K = 10 in their paper they consider over a significantly longer time horizon.)

Finally, regarding the model training in Algorithm 1 at time τ , we apply one optimization for
efficiency to only train models that are currently clustered to. (Although note that any such models
are still retained by FedDrift-Eager and FedDrift in order to react to recurring drifts even if they are
not actively being trained.)

B Additional Experimental Results

We present additional experimental results on more baseline algorithms and on variants of our
algorithms restricted to limited memory or communication.
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Figure 6: Average accuracy of each drift detection-based algorithm under varying thresholds δ.

Additional Baseline Algorithms. The additional algorithms presented in this appendix are:

• Four traditional drift adaptation algorithms. AUE-PC is a variation of the ensemble
method AUE with the ensemble weights set per-client. Window-2 is a window method like
Window, except that it forgets data older than two time steps instead of one. Weighted-Linear
and Weighted-Exp also forget older data like window methods, but do so more gradually by
down-weighting older data with either linear or exponential decay.

• The FL clustering algorithm CFL [34]. In extending the original static algorithm to our
time-varying setting, we also consider a variant CFL-W, in which during training, each client
samples only from the window of the newest data arriving at each time.

• Three variations of the IFCA clustering algorithm [15] that we considered for extending
the original algorithm to the time-varying setting. First, IFCA(T) is exactly Algorithm 2 in §3,
which defines cluster identities for each client and each time, in order to associate the data
within a client that are heterogeneous over time across multiple clusters. IFCA(T) chooses
the cluster identity once per time step (where time steps consist of multiple communication
rounds)—this differs from the original algorithm described by Ghosh et al. [15], which
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recomputes the cluster identity once per round. Second, IFCA does the per-round clustering;
more precisely, for each time step τ , the cluster identity w(τ)

c,m is recomputed at every round
under the same equation used at the beginning of the time step in Algorithm 2. Third,
IFCA-W is a variant of IFCA that trains only over the most recent data arrivals at each
time, and the cluster identities of data from previous time steps are forgotten. In general,
the IFCA-based algorithms require the number of clusters as input, which we provide as
oracle knowledge—either 2 or 4 depending on the total number of concepts over time in
each dataset. This gives IFCA-based algorithms an advantage over all other algorithms we
evaluate, which do not know the number of clusters a priori. For the initialization of all
three variations, at time 1 and round 1, all clients are assigned to a single cluster, matching
the assumption we made for FedDrift and FedDrift-Eager in §4.

• A more communication-efficient variant of FedDrift. FedDrift-C is the algorithm referred
to in the last paragraph of §5 that is restricted to introducing one new global model per time
step. More details on this algorithm are described later in this section.

• Sliding window variants of FedDrift-Eager and FedDrift. FedDrift-Eager-W and FedDrift-W
are restricted to using only the most recent time step of data S(t)

c and cluster identities w(t)
c,m.

• A baseline sliding window variant Oracle-W, which has oracle access to the ground-truth
clustering but only uses the most recent time step of data in training.

In general, we use the -W suffix in the name of an algorithm to indicate a limited memory of a window
of one time step. This memory restriction reduces the number of samples used for training at a time
and might reduce the accuracy achievable under ground-truth clustering (Oracle-W vs. Oracle). Yet,
the window is not strictly a drawback: (i) forgetting the older data builds in a passive adaptation to
drift and (ii) in our setting it also guarantees that each client’s training data at a step are all drawn
from the same distribution—this is why we also investigate -W variants when extending the prior
static clustering algorithms CFL and IFCA to our setting when data arrive over time.

Test Accuracy Results. Table 3 (extending Table 1 in §5) shows the test accuracy of all algorithms,
averaged across all clients and time steps, but omitting the times of drifts. As noted in §5, we omit
the times of drift when all algorithms suffer from the performance loss. For completeness, the test
accuracy averaged over all time steps including drifts is shown in Table 4. In this latter table, note
that Oracle and Oracle-W suffer a performance loss too at the time of drift. Under the test-then-train
evaluation, Oracle has access to the concept ID of the data at training time but not at test time, where
at each client, the model used for inference corresponds to the observed concept in the most recently
arrived training data.

Based on these tables, we make the following observations on the additional algorithms. The AUE-PC
variant of AUE extends the model weights in the ensemble method to be individualized per-client,
based on the performance of each model over each client’s local data (as opposed to weights chosen
based on the aggregate performance at the server). This additional flexibility leads to only a marginal
accuracy improvement over AUE across all datasets. While it is generally valuable for clients at
different stages of a staggered drift to use different models for inference, the more fundamental
obstacle is that each global model trained by AUE-PC is updated by all clients. In the course of the
2-concept staggered drift, all of the models in the ensemble are trained either over a mixture of data
from both concepts or solely from the first concept, and there is no accurate model available that is a
good fit for the second concept.

The Window-2 algorithm and the weighted sampling algorithms Weighted-Linear and Weighted-Exp
are techniques for forgetting older data, but less abruptly compared to Window-1, and in general they
all perform similarly. On the sharp drift of SINE-2, the fastest forgetting algorithm Window performs
the best of these. On the other hand, on the 4-concept drift of MNIST-4 in which the time axis does
not well separate different concepts, the slowest forgetting algorithm Weighted-Linear performs best.
Meanwhile, the performance of all four algorithms are close on the SEA datasets, which have greater
overlap between the concepts.

The clustering algorithms CFL and CFL-W start with each client in one cluster, and recursively split
clusters over rounds and over time based on the intra-cluster similarity of their local updates. We
observe that the CFL-W variant is the better-performing of the two on each dataset except MNIST-4
(which is also the only dataset where Oblivious outperforms Window), and is a consequence of the
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Table 3: Average test accuracy (%) across clients and time, omitting drifts (5 trials)

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4

Oblivious 50.44 ± 1.52 88.36 ± 0.27 86.37 ± 0.34 87.25 ± 0.14 85.38 ± 0.28 82.97 ± 0.04
DriftSurf 83.90 ± 1.01 92.54 ± 0.67 87.27 ± 0.34 91.71 ± 1.60 85.48 ± 0.28 82.99 ± 0.05
AUE 86.06 ± 0.60 92.74 ± 0.51 87.46 ± 0.12 92.19 ± 0.07 85.55 ± 0.08 81.29 ± 0.19
AUE-PC 87.67 ± 1.70 93.05 ± 0.19 87.61 ± 0.08 92.22 ± 0.09 85.60 ± 0.05 81.43 ± 0.22
Window 86.42 ± 0.74 93.67 ± 0.15 88.08 ± 0.10 92.15 ± 0.34 85.76 ± 0.16 81.16 ± 0.46
Window-2 85.21 ± 1.67 93.03 ± 0.46 87.71 ± 0.33 92.54 ± 0.37 85.67 ± 0.16 82.16 ± 0.32
Weighted-Linear 72.78 ± 1.23 89.91 ± 0.65 87.00 ± 0.01 89.70 ± 0.12 85.49 ± 0.17 82.79 ± 0.05
Weighted-Exp 82.77 ± 0.64 92.69 ± 0.25 87.59 ± 0.15 92.19 ± 0.17 85.59 ± 0.09 82.55 ± 0.06
CFL 60.27 ± 4.82 88.39 ± 0.40 86.36 ± 0.28 86.97 ± 0.40 85.33 ± 0.26 81.95 ± 0.55
CFL-W 95.15 ± 0.32 95.62 ± 1.14 87.66 ± 0.36 90.53 ± 0.81 85.67 ± 0.21 79.99 ± 0.58
IFCA(T) 98.45 ± 0.03 91.72 ± 5.19 86.46 ± 0.23 87.33 ± 0.15 85.44 ± 0.14 82.90 ± 0.05
IFCA 98.46 ± 0.02 92.20 ± 5.32 86.45 ± 0.25 87.55 ± 0.25 85.35 ± 0.09 82.89 ± 0.04
IFCA-W 98.49 ± 0.13 94.31 ± 1.62 88.04 ± 0.17 91.76 ± 0.50 86.17 ± 1.00 81.27 ± 0.43
Adaptive-FedAvg 78.02 ± 10.73 86.26 ± 0.00 86.69 ± 0.39 92.16 ± 0.04 85.32 ± 0.25 81.62 ± 0.07

FedDrift-Eager 98.46 ± 0.03 97.86 ± 0.20 88.35 ± 0.37 95.99 ± 0.06 88.08 ± 0.24 89.21 ± 2.02
FedDrift 98.48 ± 0.01 97.88 ± 0.17 88.65 ± 0.43 95.93 ± 0.01 88.41 ± 0.29 94.09 ± 0.08
FedDrift-C 98.51 ± 0.11 97.42 ± 0.57 88.30 ± 0.53 95.85 ± 0.05 87.46 ± 0.42 93.22 ± 0.44
FedDrift-Eager-W 98.51 ± 0.12 97.34 ± 0.76 88.43 ± 0.23 94.05 ± 0.02 87.90 ± 0.25 89.31 ± 0.38
FedDrift-W 98.58 ± 0.17 97.68 ± 0.09 88.43 ± 0.22 93.95 ± 0.02 88.17 ± 0.39 91.47 ± 0.07

Oracle 98.46 ± 0.01 97.57 ± 0.59 88.53 ± 0.23 96.00 ± 0.02 88.75 ± 0.20 94.60 ± 0.04
Oracle-W 98.47 ± 0.03 97.84 ± 0.11 88.70 ± 0.17 94.04 ± 0.02 88.74 ± 0.13 91.89 ± 0.05
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Figure 7: The clustering learned by CFL-W on SINE-2. The number at each client and time indicates
the model ID and the background color indicates the ground-truth concept.

passive drift adaptation of its sliding window which forgets older data. The performance of CFL-W is
relatively high on SINE-2 and CIRCLE-2. As an example, the clustering learned on SINE-2 is shown
in Figure 7. We observe that, for the first 6 time steps, it correctly distinguishes the two concepts by
using distinct models. The disadvantage of the clustering of CFL-W is that it creates excess models
for the same concept and does not take full advantage of collaborative training. At time 5, it is limited
to splitting its cluster for model 0 when the green concept occurs, but cannot merge the drifted clients
to the existing cluster created for the green concept at the previous time step.

For IFCA, IFCA-W, and IFCA(T), the clustering is pre-initialized with a random model for each
concept that can occur over time for each dataset. In general, we observe that this is not a reliable
method for reacting to drift. All the IFCA variants perform well under the sharp label-swap drift
of SINE-2. When the new concept occurs, the drifted clients cluster to the second model, and the
learned clustering matches the ground-truth. On CIRCLE-2, we found that IFCA and IFCA(T) learned
the correct clustering in 2 out of 5 trials, and otherwise used only a single model in the other 3 trials.
IFCA-W learned the correct clustering in 1 out of 5 trials. (Note the high standard deviation in Table
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Table 4: Average test accuracy (%) across clients and time, including drifts (5 trials)

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4

Oblivious 45.77 ± 1.52 87.12 ± 0.26 86.12 ± 0.35 86.28 ± 0.12 85.11 ± 0.24 81.60 ± 0.03
DriftSurf 79.19 ± 0.88 91.16 ± 0.68 87.00 ± 0.35 90.55 ± 1.68 85.13 ± 0.19 81.62 ± 0.04
AUE 81.28 ± 0.81 91.50 ± 0.46 87.21 ± 0.11 91.07 ± 0.07 85.15 ± 0.07 79.65 ± 0.25
AUE-PC 82.18 ± 2.01 91.75 ± 0.17 87.34 ± 0.08 91.07 ± 0.09 85.16 ± 0.04 79.70 ± 0.24
Window 81.92 ± 0.88 92.40 ± 0.11 87.86 ± 0.08 91.35 ± 0.43 85.33 ± 0.10 78.88 ± 0.62
Window-2 80.35 ± 2.02 91.73 ± 0.49 87.45 ± 0.34 91.47 ± 0.47 85.24 ± 0.15 80.06 ± 0.61
Weighted-Linear 67.20 ± 1.43 88.67 ± 0.64 86.77 ± 0.02 88.56 ± 0.12 85.16 ± 0.11 81.38 ± 0.04
Weighted-Exp 76.80 ± 0.88 91.30 ± 0.26 87.34 ± 0.16 91.05 ± 0.18 85.19 ± 0.06 80.96 ± 0.07
CFL 54.41 ± 4.33 87.08 ± 0.31 86.10 ± 0.30 86.00 ± 0.38 85.00 ± 0.25 80.45 ± 0.64
CFL-W 86.83 ± 0.55 93.72 ± 0.93 87.36 ± 0.42 89.47 ± 0.74 85.25 ± 0.17 77.35 ± 0.81
IFCA(T) 88.77 ± 0.02 90.06 ± 4.62 86.22 ± 0.22 86.36 ± 0.14 85.12 ± 0.09 81.53 ± 0.05
IFCA 88.78 ± 0.02 90.49 ± 4.73 86.21 ± 0.28 86.56 ± 0.21 85.06 ± 0.04 81.51 ± 0.03
IFCA-W 88.80 ± 0.12 92.84 ± 1.19 87.84 ± 0.14 90.81 ± 0.67 85.52 ± 0.50 79.17 ± 0.39
Adaptive-FedAvg 73.82 ± 10.75 85.60 ± 0.00 86.55 ± 0.35 91.31 ± 0.05 85.01 ± 0.21 79.45 ± 0.06

FedDrift-Eager 88.76 ± 0.01 95.51 ± 0.18 87.86 ± 0.33 94.09 ± 0.05 86.64 ± 0.18 83.58 ± 0.79
FedDrift 88.77 ± 0.02 95.54 ± 0.15 88.13 ± 0.39 94.03 ± 0.02 86.68 ± 0.20 85.72 ± 0.07
FedDrift-C 88.82 ± 0.09 95.12 ± 0.50 87.78 ± 0.44 93.97 ± 0.05 86.21 ± 0.40 85.62 ± 0.47
FedDrift-Eager-W 88.82 ± 0.12 95.05 ± 0.67 87.87 ± 0.23 92.04 ± 0.03 86.44 ± 0.20 82.15 ± 0.32
FedDrift-W 88.88 ± 0.15 95.35 ± 0.08 87.95 ± 0.15 91.93 ± 0.03 86.46 ± 0.31 83.29 ± 0.06

Oracle 88.77 ± 0.01 95.25 ± 0.52 87.99 ± 0.20 94.11 ± 0.02 86.89 ± 0.17 86.10 ± 0.03
Oracle-W 88.77 ± 0.03 95.51 ± 0.10 88.15 ± 0.14 92.03 ± 0.01 86.83 ± 0.06 83.58 ± 0.03

3.) On the remaining datasets, none of the three algorithms ever used more than a single model (with
one exception—on SEA-4, in 1 out of 5 trials, IFCA-W used a distinct model for the yellow concept).
For these remaining datasets, we observe that IFCA and IFCA(T) degrade to the Oblivious algorithm,
and that IFCA-W degrades to the Window algorithm. The authors of the original paper on IFCA note
that the accuracy of the clustering is sensitive to the initialization of the models, and propose random
restarts to address this issue, but restarts do not translate well to the time-varying setting we study. In
our work, FedDrift-Eager and FedDrift address the initialization problem by using drift detection to
deal with new concepts as they occur and to cultivate new clusters.

We consider a more communication-efficient variant of FedDrift that we call FedDrift-C. As noted in
§4, one of the drawbacks of FedDrift is that it can create more models compared to FedDrift-Eager,
adding to the communication cost. The goal is to only use a number of global models close or equal
to the number of distinct concepts, and while FedDrift can hierarchically merge created models of the
same concept, FedDrift can observe temporary spikes in the number of global models. To mitigate
this cost, we consider the variant FedDrift-C, which differs from FedDrift in that, at each time after
drift occurs, only one random client that drifted contributes its local model as a global model. In
the case that multiple new concepts occur at a time, only one of the new concepts will be learned
immediately, but clients that are still at an unlearned concept can detect drift again at the following
time step, and get another chance to contribute its local model. Meanwhile, while a concept goes
unlearned globally, the drifted clients do not contribute to any of the global models. We observe that
the accuracy of the FedDrift-C variant is only marginally sub-optimal relative to FedDrift on MNIST-4,
and is superior to FedDrift-Eager.

For FedDrift-Eager-W and FedDrift-W, restricting to a window has minimal impact on the accuracy
for the SEA dataset. There is a significant loss of accuracy for the MNIST dataset relative to the
non-windowed versions, but note that the same significant loss occurs when going from Oracle to
Oracle-W, so this loss is a result of windowing, not specific to our algorithm. Indeed, the accuracy of
FedDrift-W is quite close to Oracle-W.

Random Drift Patterns. Throughout this paper, we have considered the 4-concept drift pattern in
Figure 3 in §2.2 as a specific concrete example in order to depict the challenges in distributed concept
drift, motivate the design of FedDrift, and discuss the experimental performance by comparing the
learned clustering matrix to the ground-truth. To demonstrate the performance of our algorithms
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Table 5: Average accuracy (%), omitting drifts

MNIST-R

Oblivious 85.12 ± 1.37
FedDrift-Eager 89.85 ± 1.49
FedDrift 94.06 ± 0.38

Oracle 95.03 ± 0.15

Table 6: Average accuracy (%), including drifts

MNIST-R

Oblivious 83.92 ± 1.23
FedDrift-Eager 85.26 ± 0.81
FedDrift 86.77 ± 0.76

Oracle 87.32 ± 0.86
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Figure 8: Test accuracy at each time on SINE-2, SEA-2, MNIST-2, and SEA-4. Vertical lines
represent standard deviations.

more generally, we consider a family of datasets MNIST-R with random concept changes. Using the
same four concepts as in MNIST-4, MNIST-R is generated with all clients at the first concept to start,
and then each client independently randomly observes one of the four concepts every two time steps
(as opposed to every time step which is not possible to adapt to). We evaluate both FedDrift-Eager
and FedDrift, compared to the single-model baseline Oblivious and the ideal multi-model baseline
Oracle. Across 5 random seeds, the average accuracy is shown in Table 5 (and in Table 6 for all time
including drifts). We observe that the performance of FedDrift is close to that of Oracle. Meanwhile,
the performance of FedDrift-Eager is behind, given that it is likely to have multiple new concepts
occurring simultaneously in MNIST-R.

Test Accuracy Over Time. Finally, in Figure 8, we include the plots of the accuracy over time
that were omitted from the body of the paper for space, supplementing Figure 4 in §5. (Note the
varying scales of the y-axes.) Similarly to Figure 4, here we observe the same general trends: (i) all
of the centralized drift adaptation algorithms suffer in performance, particularly during the transition
period when no one model works well across all clients; (ii) for the 4-concept drift on SEA-4,
centralized baselines never recover in performance when multiple concepts are present; and (iii)
FedDrift-Eager lags behind FedDrift on SEA-4 because it creates only one model after the drifts at
time 3 corresponding to two concepts, but eventually recovers.
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