
DiscFinder: A Data-Intensive Scalable Cluster Finder for
Astrophysics

Bin Fu
binf@cs.cmu.edu

Kai Ren
kair@cs.cmu.edu

Julio López
jclopez@cs.cmu.edu

Eugene Fink
e.fink@cs.cmu.edu

Garth Gibson
garth@cs.cmu.edu

School of Computer Science, Carnegie Mellon University

ABSTRACT
DiscFinder is a scalable approach for identifying large-scale astro-
nomical structures, such as galaxy clusters, in massive observation
and simulation astrophysics datasets. It is designed to operate on
datasets with tens of billions of astronomical objects, even in the
case when the dataset is much larger than the aggregate memory of
compute cluster used for the processing.

1. INTRODUCTION
Today, discoveries in data-driven sciences, such as astrophysics,
seismology and bio-informatics, are often enabled by analysis of
massive datasets. In particular, the advent of digital astronomical
surveys, beginning with the Sloan Digital Sky Survey[2], has dra-
matically increased the size of astronomical data. Similarly, mod-
ern cosmological simulations, such as BHCosmo[4] and Coyote
Universe[9], produce datasets with billions of objects, and multiple
terabytes in size.

Companies that provide Internet services, such as search and social
networks, deal with datasets of similar size. Frameworks, such as
Hadoop and Dryad, are commonly used for data-intensive appli-
cations on Internet-scale data, such as text analysis and indexing
of web pages. Can we leverage these frameworks for science an-
alytics? In this work, we want to understand the requirements for
enabling science analytics using these systems.

We present our work on DiscFinder, which is a data-intensive ap-
proach for finding clusters of astronomical objects, implemented
on top of Hadoop. Although, it is specific to astrophysics, we ex-
pect that similar principles are applicable to clustering problems in
other sciences. The main benefits of this approach, and future sci-
ence analytics applications implemented using these frameworks,
are simplicity, fast development and scalability.

This work was sponsored in part by grants from Google, The Moore
Foundation, National Science Foundation Open Cloud Consortium,
The Petascale Data Storage Institute (PDSI), The McWilliams Cen-
ter for Cosmology and the support of the companies of the Parallel
Data Laboratory Consortium (PDL)

HPDC 2010 Chicago, IL USA

The described technique scales to datasets with tens of billions of
astronomical objects. It leverages sequential algorithms to cluster
relatively small subsets of input objects. The main idea is to parti-
tion the input dataset into regions, then execute a sequential cluster-
ing procedure for each partition, and finally merge the results, join-
ing the clusters across partitions. The developed procedure relies
on Hadoop for splitting the input data, coordinating the execution
of tasks and handling task failures.

2. MOTIVATING APPLICATION
To understand the evolution of the universe, astrophysicists analyze
large-scale astronomical structures[17]. Finding the clusters of ob-
jects that make up large-scale structures is the first step towards this
analysis. In astrophysics, group finding refers to a family of clus-
tering algorithms. Their input is a set of astronomical objects, such
as stars or galaxies. We refer to those objects as particles or points.
A group finder identifies subsets of particles that form larger struc-
tures, such as galaxy halos, groups and clusters. We use the generic
term groups.

p4

p1

p2
p3

p5
p6

p7

p8Groups

Figure 1: Friends of Friends (FOF) clustering.

Huchra and Geller have developed a basic group-finding algorithm,
called Friends-of-Friends (FOF) [10]. Although it analyzes only
distances between astronomical objects, and disregards their masses,
velocities, and other relevant factors, it has been proved effective in
finding galaxy clusters and has become one of the standard astro-
physics tools.

The FOF algorithm uses two parameters: a linking length (τ) and a
minimum group size (minGz). Its input is a set of particles, where
each particle is a tuple 〈pidi,xi,yi,zi〉; pid is the particle identi-
fier and xi,yi,zi are its coordinates. Two particles are considered
“friends” if the distance between them is at most τ. The friend-
ships between particles define an undirected graph, and its con-



Particle Set

Sampling Group SetSplitting

MergingPartitioning RelabelingClustering

Local 
Groups

Figure 2: DiscFinder Pipeline. The DiscFinder computation flowgraph comprises the following stages: 1. Sampling (dist), 2. Splitting (seq), 3. Partitioning
(dist), 4. Clustering (dist), 5. Merging (seq), and 6 Relabeling (dist).

nected components correspond to groups of particles (see Figure 1).
The output of FOF comprises the groups that contain at least minGz
particles.

Researchers have developed several sequential versions of FOF such
as the UW-FOF from the “N-body shop” at the University of Wash-
ington[16]. Parallel group finders, such as pHOP[12], Ntropy[7],
Halo World[14], Amiga Halo Finder (AHF)[8] and are implemented
using the Message Passing Interface (MPI)[13] and designed for
parallel distributed memory machines with a fast low-latency inter-
connect between hosts. All these approaches require the complete
dataset to fit in memory. Their reported performance excludes the
time of loading the data. Recently, Kwon et al. developed an ap-
proach atop Dryad[11]. It shares similarities with our work. They
have shown results for clustering datasets with up to 1 billion par-
ticles using eight nodes. We have developed an alternative data-
intensive group finding approach, named DiscFinder, which allows
processing datasets that are much larger than the memory of avail-
able compute resources[5].

3. DiscFinder
DiscFinder is a distributed out-of-core group finder. The basic idea
is to take a large unordered particle set, split it into multiple spatial
regions, find groups in each region using a sequential group finder
and merge the results from the individual regions. DiscFinder is
implemented as a series of MapReduce jobs using Hadoop[1, 3].

Hadoop provides a mechanism for applying a user-defined pro-
cedure (map function) over a large dataset, then grouping the re-
sults by a key produced by the map function, and finally apply-
ing another user-defined procedure (reduce function) to the result-
ing groups. The framework partitions the input data based on a
user-defined criterion, coordinates the distributed execution of the
map and reduce functions, and handles the recovery of failed tasks.
Whenever possible, the framework co-locates the computation with
the input data.

The DiscFinder pipeline stages are shown in Figure 2. They are:
Sampling, Splitting, Partitioning, Clustering, Merging, and Rela-
beling. The input is the set of particles and the output is the set
of groups. Sampling is a parallel stage that reads a small sample of
the input dataset. The Splitting stage builds a kd-tree using the sam-
ple data, which is much smaller than input dataset. The kd-tree is
used to construct the spatial partition for the domain (split boxes).
Sampling and Partitioning are performed as a MapReduce job.

Partitioning and Clustering are implemented as a separate MapRe-
duce job shown in Figure 3. The Partitioning stage uses the split
boxes to determine to which partition a particle belongs. Each par-
tition is processed independently and there is no explicit commu-
nication across tasks that process different partitions. DiscFinder
uses a shell-based partitioning scheme that enables the indepen-
dent and asynchronous processing of each partition by decoupling

the clustering computation inside a partition from the resolution of
groups that span across partitions. This has a small increase in the
memory requirement for each partition. The partitions are extended
by τ/2 on each side, where τ is the linking length parameter. The
end result is that a partition has a shell around it that contains points
shared with adjacent partitions. This approach works under the as-
sumption that the size of the shell is much smaller than the size of
the partition. In practice, commonly used values for τ are relatively
small compared to the partition edge length.

Particle 
Set

Partitioning
Mapper

Partitioning 
Mapper

Partitioning 
Mapper

Clustering 
Reducer

Clustering 
Reducer

Clustering 
Reducer

Sub-domain 
clusters

Shell info

Sub-domain 
clusters

Shell info

Sub-domain 
clusters

Shell info

Figure 3: DiscFinder Partition and Clustering stages. This is the central
MapReduce job in the DiscFinder pipeline

Clustering is a distributed stage where each task independently pro-
cesses a spatial partition of the data by locally executing a sequen-
tial clustering implementations, such as UW’s FOF or aFOF[16].
The tasks generate 〈pid,lGroupId〉 pairs that identify the group
of each particle. The group identifier (lGroupId) is local to each
partition. The pairs are split into two separate sets: one for the
shell of the partition and one for the interior region. The purpose of
the Merging stage is to consolidate groups that span multiple par-
titions by using the group membership for particles in the shells.
This is achieved using a Union-Find algorithm to merge subgroups
that have common points[6]. Union-Find has nearly linear compu-
tational complexity and since it is only applied to a small subset
of the dataset, it accounts for a small portion of the total running
time. Relabeling is a parallel stage that performs a single pass over
the output of the Clustering phase and relabels the particle mem-
bership according to the set of global group identifiers produced by
the Merging step.

4. EVALUATION
The goal of our evaluation is to test whether DiscFinder is a feasible
approach for clustering massive particle datasets from astrophysics,
and indirectly whether similar approaches can be used for other
large-scale analytics in science. We want to measure and under-
stand the overheads introduced by the DiscFinder algorithms and
the Hadoop framework, and thus find ways to improve both the ap-
plication and the framework. We conducted a set of scalability and
performance characterization experiments.



Particle Snap Snap Total
Name count size count size
BHCosmo 20 M 1GB 22 22 GB
Coyote Univ. 1.1 B 32GB 20 640 GB
DMKraken 14.7 B 0.5TB 28 14 TB

Figure 4: Cosmology simulation datasets

Datasets. In our evaluation we used snapshots (time slices) from
the three different cosmology simulation datasets shown in Fig-
ure 4: BHCosmo[4], Coyote Universe[9] and DMKraken from our
collaborators at the CMU McWilliams Center for Cosmology. These
datasets are stored using the GADGET-2 format[15].

Experimental Setup. We carried out the experiments in a data-
intensive compute facility that we recently built, named the DISC /
Cloud cluster. Each compute node has eight 2.8GHz CPU cores in
two quad-core processors, 16 GB of memory and four 1 TB SATA
disks. The nodes are connected by a 10 GigE network using Arista
switches and QLogic adapters at the hosts. The nominal bi-section
bandwidth for the cluster is 60 Gbps. The cluster runs Linux (2.6.31
kernel), Hadoop (0.19.1), and Java (1.6). The compute nodes serve
both as HDFS storage servers and worker nodes for the MapReduce
layer. Hadoop is configured to run a maximum of 8 simultaneous
tasks per node: 4 mappers and 4 reducers.

Scalability Experiments. With these experiments we want to an-
swer whether DiscFinder can be used to cluster datasets that are
much larger than the aggregate memory of the available compute
resources, and how its running time changes as we vary the avail-
able resources. Similar to the evaluations of compute-intensive
applications, we performed strong and weak scaling experiments.
The results reported below are the average of three runs with sys-
tem caches flushed between runs. Some of the running times in-
clude partial task failures that were recovered by the framework
and allowed the job to complete successfully.

In the weak scaling experiments, the work per host is kept constant
and the total work grows proportional as compute resources are
added. In the strong scaling experiments, the total work is kept
constant and the work per host changes inversely proportional to
the number of compute nodes. We varied the number of compute
hosts from 1 to 32. The same nodes were used for HDFS as well.
The results are shown in figures 5 and 6. The X axis in these figures
is the cluster size (number of worker nodes) in log scale.

Figure 5 shows the strong scalability of the DiscFinder approach.
The Y axis is the running time in log scale. The curves correspond
to different dataset sizes of 14.7, 1 and 0.5 billion particles. Notice
that the 14.7 billion dataset is larger than the memory available for
the experiments (16 and 32 nodes). The same applies for several
scenarios in the cases for 1 and 0.5 billion particles. Linear scal-
ability corresponds to a straight line with a slope of -1, indicating
the running time decreases proportional to the number of nodes.
The DiscFinder running time is sub-linear. With a small number
of nodes, the running time suffers because each node performs too
much work, and with a larger number of nodes each node performs
too little work and the framework overhead dominates.

In weak scaling graph (Figure 6), the Y-axis is the elapsed running
time in seconds (linear scale). The curves correspond to different

problem sizes of 64 (top, solid line, circles) and 32 (bottom, dashed
line, squares) million particles per node.

The best running time to compute nodes ratio has a sweet spot
around 4 to 8 nodes for datasets smaller than 1 billion particles.
We expect non-negligible overheads, introduced by the framework
and the approach, due to the incurred I/O, data movement and non-
linear operations such as the shuffle/sort in the job that performs
the partitioning and clustering stages. The running time in all cases
exhibits a non-linear trend, especially for larger number of nodes
where the framework overheads dominate the running time. Even
with all the aforementioned overheads and task failures, it was pos-
sible to process and cluster particle datasets that were much larger
than the available memory.

Performance Characterization. We are interested in gaining in-
sight about the DiscFinder running time. We performed additional
experiments to break down the total running time into the time
spent in each stage of the pipeline. For this set of experiments
we used 32 nodes and focused on the largest (14.7 billion particles)
dataset. The running time breakdown is shown in Figure 7. The
rows corresponds to stages in the pipeline. The Partitioning and
Clustering stage are broken down further into the following steps:
Load particles, Load box index, Box search, Shuffle/sort, FOF data
generation, and FOF execution. Columns 2 and 3 show the abso-
lute (in seconds) and relative time (percentage of total time) for the
unmodified implementation of the pipeline. The Sampling, Box
search and Hadoop Shuffle/sort steps account for about 80% of the
running time.

Step
BaseBase ImprovedImproved Speedup

Step
Sec Rel % Sec Rel % X

Sampling 1555 13.4% 859 22.5% 1.8

Splitting 62 0.5% 62 1.6% 1.0

Load particles 229 2.0% 232 6.1% 1.0

Load box idx 3 0.0% 12 0.3% 0.3

Box search 3422 29.5% 122 3.2% 28.0

Shuffle / sort 4363 37.6% 1000 26.2% 4.4

FOF data gen. 762 6.6% 320 8.4% 2.4

FOF exec 576 5.0% 584 15.3% 1.0

Merging 151 1.3% 137 3.6% 1.1

Relabeling 486 4.2% 482 12.7% 1.0

Total 11609 100.0% 3810 100.0% 3.0

Figure 7: Breakdown of the DiscFinder elapsed time needed to find groups
in a snapshot of the DMKraken 14.7 billion particle dataset on 32 worker
nodes.

Performance Improvements. We implemented a set of optimiza-
tions to improve the overall performance of the pipeline. The break-
down of the running time for the improved version is shown in
columns 4 and 5 of Figure 7. Column 4 has the absolute time for
each step in seconds and Column 5 contains the relative time with
respect to the total running time of the improved version. Column 6
shows the speedup for that step relative to the baseline. The over-
all speedup is 3X. Although the framework presents a easy-to-use
programming abstraction, they may lead to inefficient implementa-
tion. Producing performant implementations becomes challenging
and improving the performance requires detailed knowledge of the
framework. Below are the anecdotes of our debugging experience.

Fixing the Sampling/Splitting Phase. In the initial implementation,
all the tasks deterministically sampled the dataset in parallel by
choosing the same set of sample points (starting with a preset seed



100!

1000!

10000!

100000!

1! 2! 4! 8! 16! 32!

R
u

n
n

in
g

 T
im

e
 (

s
)!

Number of compute nodes!

0.5 B!

1 B!

14.7 B!

Nodes 0.5 B 1.1 B 14.7 B
1 23107 7625 n/a
2 8149 2754 n/a
4 2890 1234 n/a
8 1326 675 n/a

16 767 415 30816
32 470 299 11429

Figure 5: Strong scaling.

0!

100!

200!

300!

400!

500!

600!

700!

800!

900!

1! 2! 4! 8! 16! 32!

R
u

n
n

in
g

 T
im

e
 (

s
)!

Number of compute nodes!

64 Million/node!

32 Million/node!

Nodes 60 M/n 32 M/n
1 573 331
2 600 342
4 611 354
8 675 331

16 767 475
32 n/a 470

Figure 6: Weak scaling.

for the random number generator). However, all the tasks were
reading a lot more data than needed. This was caused by the im-
plementation, in the framework libraries, for fetching data from the
distributed file system. The improved solution consists of splitting
the data range over the parallel tasks and having each task sample
its subset of the data. Each task still reads too much data, but the
total data read is reduced by a factor equal to the number of tasks.
We are working on further reducing the sampling time by modify-
ing the framework libraries so the amount of data read from the file
system is reduced further.

Speeding up Box Lookups. The Box Lookup step determines to
which partition a particle belongs. The performance of this step
was affected by the initial implementation choice. Since the num-
ber of partitions is relatively small, we originally used a simple
linear search mechanism. This box lookup is performed for every
particle and on aggregate, the lookup time becomes significant. Re-
placing the lookup mechanism with a routine that uses a O(logn)
algorithm, where n is the number of partitions, provided major ben-
efits.

Adjusting Number of Reducers. In this set of experiments the par-
ticles are split into 1024 spatial partitions. At first, it was natural
to set the total number of reduce tasks equal to the total number
of partitions, such that a reduce task would process a partition in
the same way that in computational sciences applications the num-
ber of partitions matches the number of processing units. During
the execution of the original DiscFinder implementation, we no-
ticed in our cluster monitoring tool that the network bandwidth
consumption had a cyclic behavior with periods of high utiliza-
tion followed by idle periods. This effect was caused by multiple
waves of reduce tasks fetching data produced by the map tasks. By
setting the number of reducers for the job to (numberOfNodes−
1) ∗ reducersPerNode = 124, all the reduce tasks are able to fetch
and shuffle the data in a single wave, even in the presence of a sin-
gle node failure. In this case, each reduce task processes multiple
partitions. This lesson can be applied to other similar Hadoop ap-
plications.

Overall the running time significantly decreased after these modi-
fications. There is still room for improvement. We are working on
further speeding up the running time, both at the application level
in terms of the algorithmic approach and at the framework level in
terms of more efficient implementations.

5. CONCLUSION
With the increasing in size of current and future astrophysics datasets,
analysis tools need to scale up to operate on these massive datasets.
DiscFinder is a data-intensive distributed cluster finder that can op-
erate on tens of billions of objects, which enables the analysis of the

currently largest sky surveys and cosmology simulation datasets.
We evaluated its efficiency and presented approaches for improv-
ing its performance under Hadoop. We will continue developing
new tools to support data-intensive applications in science.

6. REFERENCES
[1] Hadoop. http://hadoop.apache.org.
[2] K. Abazajian et al. The Seventh Data Release of the Sloan

Digital Sky Survey. ApJS, 182, June 2009.
[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In OSDI, 2004.
[4] T. Di Matteo et al. Direct cosmological simulations of the

growth of black holes and galaxies. ApJ, (676), 2008.
[5] B. Fu, J. López, E. Fink, K. Ren, and G. Gibson. DiscFinder:

A data-intensive scalable cluster finder for astrophisics.
Technical Report CMU-PDL-2010-104, Parallel Data
Laboratory, Carnegie Mellon University, 2010.

[6] B. Galler and M. Fischer. An improved equivalence
algorithm. CACM, 7(5):301–303, 1964.

[7] J. Gardner et al. A framework for analyzing massive
astrophyisical datasets on a distributed grid. In ADASS XVI,
2006.

[8] S. Gill et al. The evolution of substructure - I. A new
identification method. MNRAS, 351:399–409, 2004.

[9] K. Heitmann et al. The Coyote Universe I: Precision
determination of the nonlinear matter power spectrum, 2008.

[10] J. Huchra and M. Geller. Groups of galaxies. I - Nearby
groups. ApJ, 257:423–437, 1982.

[11] Y. Kwon et al. Scalable clustering algorithm for n-body
simulations in a shared-nothing cluster. Technical Report
UW-CSE-09-06-01, University of Washington, June 2009.

[12] Y. Liu et al. Design and evaluation of a parallel HOP
clustering algorithm for cosmological simulation. Proc.
Parallel and Distributed Processing Int. Symp., 2003.

[13] MPI Forum. MPI: A Message Passing Interface. In
Supercomputing ’93. ACM/IEEE, 1993.

[14] D. Pfitzner and J. Salmon. Parallel halo finding in N-body
cosmology simulations. In KDD-96, 1996.

[15] V. Springel. The cosmological simulation code gadget-2.
MNRAS, 364(4):1105–1134, 2005.

[16] U. Washington N-Body Shop. FOF: Find groups in N-body
simulations using the friends-of-friends method.

[17] M. White. The mass function. ApJ, 143:241, 2002.

http://hadoop.apache.org

	Introduction
	Motivating Application
	DiscFinder
	Evaluation
	Conclusion
	References

