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Abstract

The increasing performance and decreasing cost
of processors and memory are causing system
intelligence to move into peripherals from the
CPU. Storage system designers are using this
trend toward “excess” compute power to perform
more complex processing and optimizations
inside storage devices. To date, such optimiza-
tions have been at relatively low levels of the stor-
age protocol. At the same time, trends in storage
density, mechanics, and electronics are eliminat-
ing the bottleneck in moving data off the media
and putting pressure on interconnects and host
processors to move data more efficiently. We pro-
pose a system called Active Disks that takes
advantage of processing power on individual disk
drives to run application-level code. Moving por-
tions of an application’s processing to execute
directly at disk drives can dramatically reduce
data traffic and take advantage of the storage par-
allelism already present in large systems today.
We discuss several types of applications that
would benefit from this capability with a focus on
the areas of database, data mining, and multime-
dia. We develop an analytical model of the speed-
ups possible for scan-intensive applications in an
Active Disk system. We also experiment with a
prototype Active Disk system using relatively
low-powered processors in comparison to a data-
base server system with a single, fast processor.
Our experiments validate the intuition in our
model and demonstrate speedups of 2x on 10
disks across four scan-based applications. The
model promises linear speedups in disk arrays of
hundreds of disks, provided the application data is
large enough.

1 Introduction

In this paper we evaluate the performance advantages of
exploiting the processors embedded in individual storage
device for some of the data-intensive applications common
in data mining and multimedia databases. This system is
architecturally similar to the processor-per-disk database
machines dismissed in the literature 15 years ago as expen-
sive and unnecessary. In the intervening years, technology
trends have made possible commodity storage devices with
excess general-purpose computational power and applica-
tion trends are creating massive, complex data sets com-
monly processed with scans. It will soon be possible for
collections of commodity storage devices to couple paral-
lel processing and high-selectivity filtering to dramatically
reduce execution time for many of these applications.

General purpose microcontrollers with 100-200 MHz
processing speeds are common in disk array controllers
and are already being incorporated into high-end commod-
ity disk drives. Vendors of storage devices would welcome
new uses for this largely underutilized processing power if
it allowed their products to compete on metrics beyond
simple capacity and cost ($/MB). We propose a storage
device called an Active Disk that combines in-the-field
software downloadability with recent research in safe
remote execution of code for execution of application-level
functions directly at the device.

In this paper, we emulate an Active Disk with a six-
year-old workstation and contrast host-resident to Active-
Disk-assisted processing of four applications: nearest
neighbor search in a high dimensionality database, fre-
quent set counting to discover association rules, edge
detection in images, and image registration in a medical
database. These applications all process large volumes of
data, ensuring substantial storage parallelism simply to
accommodate the volume of data, and often operate with a
relatively small number of instructions per byte of storage
accessed. The processing in all these applications is scan-
intensive, either due to the nature of the application and
data, or because the high-dimensionality queries being pro-
cessed are not accelerated by traditional indices.

Active Disks benefit I/O-bound scans in two principle
ways: 1) parallelism - massive amounts of data partitioned
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over many disks allows “embarrassingly parallel” scans to
convert a group of Active Disks into a programmable par-
allel-scan database machine, 2) bandwidth reduction -
scans that filter data with a high degree of selectivity or
compute only summary statistics transfer a very small frac-
tion of the data from the disks to the host. For highly selec-
tive scans, a group of Active Disks can process data at the
aggregate disk rate in a machine whose interconnect band-
width was designed for applications demanding much less
bandwidth.

Section 2 compares our work with past research on
database processing performed at storage (i.e. database
machines), discusses the trends in storage systems that
have brought us to this point, and motivates the areas of
data mining and multimedia as fertile ground for applica-
tions of Active Disks. Section 3 provides an analytical
model to illustrate the potential benefit of using Active
Disks and give some intuition on the speedups possible.
Section 4 outlines the four representative applications we
have chosen for detailed study. Section 5 describes our
experimental setup and compares the performance of an
existing server system to a prototype system using Active
Disks. Section 6 further explores issues of performance
and the characteristics of applications that make them suc-
cessful on Active Disks. Section 7 discusses related work
in the area. Finally, Section 8 concludes and briefly dis-
cusses areas of future work.

2 Background

The prevailing counter-arguments to the database
machines of the 80s were that 1) for a significant fraction
of database operations, such as sorts and joins, simple
select filters in hardware did not provide significant bene-
fits, 2) special-purpose hardware increased the design time

and cost of the machine, and 3) a single general purpose
host processor was sufficient to execute select at the full
data rate of a single disk [DeWitt81, Boral83].

Boral and DeWitt concluded that aggregate storage
bandwidth was the principle limitation of database
machines. Fortunately, as shown in Table 1, in the inter-
vening years aggregate storage bandwidth has dramatically
improved. The improvement comes from disk array hard-
ware and software that enable individual database opera-
tions to exploit disk parallelism [Livny87, Patterson88]
and because databases are now large enough to justify hun-
dreds of disks. Moreover, high-end disk rates are now
15 MB/s sustained [Seagate97] and continue to grow at
40% per year [Grochowski96]. In place of raw disk band-
width limitations, modern systems have a limited periph-
eral interconnect bandwidth, as seen in the system bus
column of Table 1. We see that more MB/s can be read into
the memory of a large collection of disk controllers than
can be delivered to a host processor. In this case, the power
of the host is irrelevant to the overall bandwidth limitation
for large scans.

If we next consider the objection to the cost and com-
plexity of special-purpose hardware in database machines,
technology trends again change the trade-offs. The increas-
ing transistor count possible in inexpensive CMOS micro-
chips today is driving the use of microprocessors in
increasingly simple and inexpensive devices. Network
interfaces, peripheral adapters, digital cameras, graphics
adapters, array controllers and disk drives all have micro-
controllers whose processing power exceeds the host pro-
cessors of 15 years ago. For example, Quantum’s high-end
disk drives today contain a 40 MHz Motorola 68000-based
controller that manages the high-level functions of the
drive.

System Component Processor
On-Disk

Processing
System Bus

Storage
Throughput

Compaq TPC-C Compaq ProLiant 7000 6/200 800 MHz 2,825 MHz 133 MB/s 1,130 MB/s
4 200 MHz Pentiums, 1 PCI (4 x 200 MHz)
113 disks = 708 GB (113 x 25 MHz) (113 x 10 MB/s)

Microsoft TerraServer Digital AlphaServer 4100 1,600 MHz 8,000 MHz 532 MB/s 3,200 MB/s
4 400 MHz Alphas, 2 64-bit PCI (4 x 400 MHz)
320 disks = 1.3 TB (320 x 25 MHz) (320 x 10 MB/s)

Digital TPC-C Digital AlphaServer 1000/500 500 MHz 1,525 MHz 266 MB/s 610 MB/s
500 MHz Alpha, 64-bit PCI
61 disks = 266 GB (61 x 25 MHz) (61 x 10 MB/s)

Digital TPC-D Digital AlphaServer 4100 1,864 MHz 2,050 MHz 532 MB/s 820 MB/s
4 466 MHz Alphas, 2 64-bit PCI (4 x 466 MHz)
82 disks = 353 GB (82 x 25 MHz) (82 x 10 MB/s)

Table 1: If we estimate that current disk drives have the equivalent of 25 MHz of host processing speed available, large
database systems today already contain more processing power on their combined disks than at the server processors.
Assuming a reasonable 10 MB/s for sequential scans, we also see that the aggregate storage bandwidth is more than twice the
backplane bandwidth of the machine in almost every case. Data from [TPC98] and [Barclay97].



In Figure 1 we show the effects of increasing transistor
counts on disk electronics. Figure 1a reminds us that the
electronics of a disk drive include all the components of a
simple computer: a microcontroller, some amount of
RAM, and a communications subsystem (SCSI), in addi-
tion to the specialized hardware for drive control.
Figure 1b shows that this special control hardware has
already been largely integrated into a single chip in cur-
rent-generation disks. Extrapolating to the next generation
of technology (from .68 micron to .35 micron CMOS in
the ASIC), the specialized drive hardware will occupy
about one quarter of the chip, leaving sufficient area to
include a 200 MHz Digital StrongARM microprocessor
[Turley96], for example. Commodity disk and chip manu-
facturers are already pursuing processor-in-ASIC technol-
ogy. Siemens has announced a chip that offers a 100 MHz
32-bit microcontroller, up to 2 MB of on-chip RAM with
up to 800 MB/s bandwidth, external DRAM and DMA
controllers and customer-specific logic (that is, die area for
the functions of Figure 1b) in a .35 micron process
[TriCore97]. Fundamentally, VLSI technology has evolved
to the point that significant additional computational power
comes at negligible cost.

Processing power inside drives and storage sub-
systems has already been successfully used to optimize
functions behind standardized interfaces such as SCSI.
This includes many innovative optimizations for storage
parallelism, bandwidth and access time [Patterson88,
Drapeau94, Wilkes95, Cao94, StorageTek94] and for dis-

tributed file system scalability [Lee96, VanMeter96,
Gibson97]. With Active Disks, excess computation power
in storage devices is available directly for application-spe-
cific function in addition to supporting these existing stor-
age-specific optimizations. Instead of etching database
functions into silicon as envisioned 15 years ago, Active
Disks are programmed in software and use general purpose
microprocessors.

Downloading application code directly into devices
has significant implications for language, safety, and
resource management [Riedel97]. With block-oriented
application codes, it is efficient to exploit standard mem-
ory management hardware at the drive and provide pro-
tected address spaces for applications as in standard
multiprogrammed systems today. For the cases where effi-
ciency, space or cost constraints require that application
code be co-located with “core” drive code, recent research
offers a range of efficient and safe remote execution facili-
ties that provide innovative ways to ensure proper execu-
tion of code and safeguard the integrity of the drive
[Gosling96, Necula96, Romer96, Bershad95, Small95,
Wahbe93]. Some of these mechanisms also promise a
degree of control over the resource usage of remote func-
tions to aid in balancing utilization of the drive between
demand requests, opportunistic optimizations such as read-
ahead, and demand requests.

The third objection to database machines was the lim-
ited utility of full scan operations. However, a variety of
emerging applications require sequential scanning over
large amounts of data. We focus on two sets of applica-
tions: multimedia and data mining. In multimedia, applica-

Figure 1: The trend in drive electronics is toward higher and higher levels of integration. The Barracuda drive on the left contains
separate chips for servo control, SCSI processing, ECC, and the control microprocessor. The Trident chip in the center has
combined many of the individual specialized chips into a single ASIC, and the next generation of silicon makes it possible to both
integrate the control processor and provide a significantly more powerful embedded core while continuing to reduce total chip
count and cost.

(a)

(c)

(b)



tions such as searching by content [Flickner95, Virage98]
are particularly good candidates. The user provides a desir-
able image and requests a set of similar images. The gen-
eral approach to such a search is to extract feature vectors
from every image, and then search these feature vectors for
nearest neighbors [Faloutsos96]. The dimensionality of
these vectors may be high (e.g. moments of inertia for
shapes [Faloutsos94], colors in histograms for color
matching, or Fourier coefficients). It is well-known
[Yao85], but only recently highlighted in the database liter-
ature [Berchtold97], that for high dimensionalities, sequen-
tial scanning is competitive with indexing methods because
of the “dimensionality curse.” Conventional database wis-
dom is that indices always improve performance over scan-
ning. This is true for low dimensionalities, or for queries
on only a few attributes. However, in high dimensionality
data and nearest neighbor queries, there is a lot of “room”
in the address space and the data points are far from each
other. The two major indexing methods, grid-based and
tree-based, both suffer in high dimensionality data. Grid-
based methods require exponentially many cells and tree-
based methods group similar points together, resulting in
groups with highly overlapping bounds. One way or
another, a nearest neighbor query will have to visit a large
percentage of the database, effectively reducing the prob-
lem to sequential scanning. This is exactly the idea behind
recent high-dimensionality indexing methods such as X-
trees [Berchtold96] which deliberately revert to sequential
scanning for high dimensionalities.

In data mining, algorithms such as association discov-
ery and classification also require repeated scans of the
data [Agrawal96].

In addition to supporting complex, scan-based queries,
trends are toward larger and larger database sizes. One
hour of video requires approximately 1 GB of storage and
video databases such as daily news broadcasts can easily
contain over 1 TB of data [Wactlar96]. Such databases can
be searched by content (video, text, or audio) and utilize
both feature extraction and a combination of the searching
algorithms mentioned above. Medical image databases
also impose similarly heavy data requirements [Arya94].
In data mining applications, point-of-sale data is collected
over many months and years and grows continually. Tele-

communication companies maintain tens of TB of histori-
cal call data. Large databases mean many disks, and
therefore, highly parallel Active Disk systems.

3 Basic Approach

The basic characteristics of successful remote functions for
Active Disks are that they 1) can leverage the parallelism
available in systems with large numbers of disks, 2) oper-
ate with a small amount of state, processing data as it
“streams past” from the disk, and 3) execute a relatively
small number of instructions per byte.

In this section we develop an analytical model for the
performance of such applications. The purpose of this
model is to develop an intuition about the behavior of
Active Disk systems relative to a traditional server.

To keep the model simple, we assume that our appli-
cations have the three characteristics mentioned above,
that disk transfer, disk computation, interconnect transfer
and host computation can be pipelined and overlapped
with negligible startup and post-processing costs, and that
interconnect transfer rates always exceed single disk rates.

Starting with the traditional server, overall run time is
the largest of the individual pipeline stages: disk read time,
disk interconnect transfer time, and server processing time
which gives:

 and

For the Active Disks system, the comparable times for disk
read, interconnect transfer, and on-disk processing are:

 and

Each of these throughput equations is a minimum of three
limiting factors: the aggregate disk bandwidth, the storage
interconnect bandwidth, and the aggregate computation
bandwidth.

Application Parameters System Parameters Active Disk Parameters

N in number of bytes processed=

Nout number of bytes produced=

w cycles per byte=

t run time for traditional system=

tactive run time for active disk system=

scpu CPU speed of the host=

rd disk raw read rate=

rn disk interconnect  rate=

scpu' CPU speed of the disk=

rd' active disk raw read rate=

rn' active disk interconnect rate=
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If we rewrite the equation for throughput with Active
Disks in terms of the parameters of the traditional server
and the ratios between traditional and Active Disk parame-
ters - the total data moved (the selectivity ), the disk

bandwidth ( , which should be 1), the interconnect band-

width ( ), and the relative CPU power ( ), we have:

This equation captures the basic advantages of Active
Disks. Applications with high selectivity (large ) expe-

rience less restrictive interconnect limitations, and configu-
rations with many disks ( ) can achieve effective

parallel processing.

3.1 Estimating System Ratios

The kinds of applications we discuss here exhibit selectivi-

ties ( ) of 100 to 108 or more, providing throughput pos-

sible only with effectively infinite interconnect bandwidth
in the traditional system. Practically, this allows system
cost to be reduced with lower bandwidth interconnects
while maintaining high throughput. Therefore, we allow
for slower Active Disk interconnects on the order of

. Active Disk processors will be slower than

traditional server CPUs. In our experiments, first genera-
tion Active Disk CPUs cannot scan data at disk rates.

The final and critical system parameter is the ratio of
Active Disk to server processor speed. We expect 100 and
200 MHz microcontrollers in near-term high-end drives,
and individual server CPUs of 500 to 1,000 MHz in the
same time frame, so a ratio of about may be prac-
tical. In this case, the aggregate Active Disk processing
power exceeds the server processing power once there are
more than 5 disks working in parallel.

3.2 Implications of the Model

Figure 2 illustrates the basic trade-offs for Active Disk sys-
tems. The slope of line A represents the raw disk limitation
in both systems. Because we expect that Active Disks will

not be able to keep up with the disk transfer rates for many
applications ( ), their aggregate throughput will

have the somewhat lower slope shown by line B on the
chart.

Active Disks saturate their interconnects at line C,
with . Since

and interconnect bandwidth is assumed to be

greater than a single disk’s bandwidth ( ), the num-

ber of disks must be larger than the selectivity of the appli-
cation ( ) before this limit sets in. This is

shown to the right of point Z in the figure. With the large
selectivities of the applications discussed here, we would
expect our perfect overlap assumption to fail (Amdahl’s
Law) before this point is reached.

Traditional server systems are likely to exhibit both
interconnect and server CPU bottlenecks, represented by
line D in the figure. The point X in the figure, at which the
Active Disk throughput exceeds the traditional server sys-
tem is determined by , so

.

If we combine all of the above analysis and define
speedup as Active Disk throughput over server throughput,
we find that for , the traditional server is faster. For

, the speedup is:

and for , is:

for at least the first few generations of Active Disks.
We do not consider the “slowdown” of Active Disks

when (the area to the left of point X in the figure),
because this condition is independent of the application
parameters, so a query optimizer can determine apriori
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Figure 2: A simple model of the throughput of an application running in an Active
Disk system compared to a traditional single server system. There are several
regions of interest, depending on characteristics of the application and the
underlying system configuration. The raw media rate of the disks in both cases is
plotted as line A. The raw computation rate in the Active Disk system is line B,
which varies by application. Line C shows the saturation of the interconnect between
the Active Disks and host, which varies with the selectivity of the application
processing. Line D represents the saturation of the server CPU or interconnect in the
traditional system, above which no further gain is possible as additional disks are
added. To the left of point Y, the traditional system is disk-bound. Below the
crossover point X, the Active Disk system is slower than the server system due to its
less powerful CPU. Above point Z, even the Active Disk system is network-
bottlenecked and no further improvement is possible.Number of Disks
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when to prefer traditional execution of the scan for a par-
ticular system configuration, rather than executing the scan
at the drives.

Finally, if we consider the prevailing technology
trends, we know that the processor performance (B)
improves by 60% per year and disk bandwidth (A) by 40%
per year. This will cause the ratio of processing power to
disk bandwidth in both systems to increase by
15% per year, narrowing the gap between line A and B,
bringing Active Disks closer to the ideal total storage
bandwidth.

We now look in greater detail at some specific applica-
tions that benefit from Active Disks.

4 Applications

In this study, we examine four real-world data-intensive
data mining and multimedia applications that meet the
assumptions of our Active Disks model.

4.1 Database - Nearest Neighbor Search

Our first application is a variation on a standard database
search that determines the k items in a database of
attributes that are closest to a particular input item. We use
synthetic data from the Quest data mining group at IBM
Almaden [Quest97] which contains records of individuals
applying for loans and includes information on nine inde-
pendent attributes: <age>, <education>, <salary>,
<commission>, <zip code>, <make of car>, <cost

of house>, <loan amount>, and <years owned>. In
searches such as this across a large number of attributes, it
has been shown that a scan of the entire database is as effi-
cient as building extensive indices [Berchtold97]. There-
fore, an Active Disk scan is appropriate. The basic
application uses a target record as input and processes
records from the database, always keeping a list of the k
closest matches so far and adding the current record to the
list if it is closer than any already in the list. Distance, for
the purpose of comparison is the sum of the simple carte-
sian distance across the range of each attribute. For cate-
gorical attributes we use the Hamming distance, a distance
of 0.0 is assigned if the values match exactly, otherwise 1.0
is assigned.

For the Active Disks system, each disk is assigned an
integral number of records and the comparisons are per-
formed directly at the drives. The central server sends the
target record to each of the disks which determine the ten
closest records in their portions of the database. These lists
are returned to the server which combines them to deter-
mine the overall ten closest records. Because the applica-
tion reduces the records in a database of arbitrary size to a
constant-sized list of ten records, selectivity is arbitrarily

large. Finally, the state required at the disk is simply the
storage for the list of k closest records.

4.2 Data Mining - Frequent Sets

The second application is an implementation of the Apriori
algorithm for discovering association rules in sales transac-
tions [Agrawal95]. Again, we use synthetic data generated
using a tool from the Quest group to create databases con-
taining transactions from hypothetical point-of-sale infor-
mation. Each record contains a <transaction id>, a
<customer id>, and a list of <items> purchased. The
purpose of the application is to extract rules of the form “if
a customer purchases item A and B, then they are also
likely to purchase item X” which can be used for store lay-
out or inventory decisions. The computation is done in sev-
eral passes, first determining the items that occur most
often in the transactions (the 1-itemsets) and then using this
information to generate pairs of items that occur often (2-
itemsets) and larger groupings (k-itemsets). The threshold
of “often” is called the support for a particular itemset and
is an input parameter to the application (e.g. requiring sup-
port of 1% for a rule means that 1% of the transactions in
the database contain a particular itemset). Itemsets are
determined by successive scans over the data, at each phase
using the result of the k-itemset counts to create a list of
candidate (k+1)-itemsets, until there are no k-itemsets
above the desired support.

For the Active Disks system, the counting portion of
each phase is performed directly at the drives. The central
server produces the list of candidate k-itemsets and pro-
vides this list to each of the disks. Each disk counts its por-
tion of the transactions locally, and returns these counts to
the server. The server then combines these counts and pro-
duces a list of candidate (k+1)-itemsets which are sent
back to the disks. The application reduces the arbitrarily
large number of transactions in a database into a single,
variably-sized set of summary statistics - the itemset
counts - that can be used to determine relationships in the
database. The state required at the disk is the storage for
the candidate k-itemsets and their counts at each state.

4.3 Multimedia - Edge Detection

For image processing, we looked at an application that
detects edges and corners in a set of grayscale images
[Smith95]. We use real images from Almaden’s CattleCam
[Almaden97] and attempt to detect cows in the landscape
above San Jose. The application processes a set of 256 KB
images and returns only the edges found in the data using a
fixed 37 pixel mask. The intent is to model a class of image
processing applications where only a particular set of fea-
tures (e.g. the edges) in an image are important, rather than
the entire image. This includes tracking, feature extraction,



and positioning applications that operate on only a small
subset of the original images data. This application is sig-
nificantly more computation-intensive than the compari-
sons and counting of the first two applications.

Using the Active Disks system, edge detection for
each image is performed directly at the drives and only the
edges are returned to the central server. A request for the
raw image in Figure 3 returns only the data on the right,
which can be represented much more compactly. The
application reduces the amount of data transferred to the
server by a large fraction (from 256 KB to 9 KB for this
particular image). The state required on disk is the storage
for a single image that is buffered and processed as a
whole.

4.4 Multimedia - Image Registration

Our second image processing application performs the
image registration portion of the processing of an MRI
brain scan analysis [Welling98]. Image registration deter-
mines the set of parameters necessary to register (rotate
and translate) an image with respect to a reference image in
order to compensate for movement of the subject during
the scanning. The application processes a set of 384 KB
images and returns a set of registration parameters for each
image. This application is the most computationally inten-
sive of the ones studied. The algorithm performs a Fast
Fourier Transform (FFT), determines the parameters in
Fourier space and computes an inverse-FFT on the result-
ing parameters. In addition to this, the algorithm may
require a variable amount of computation since it is solving
an optimization problem using a variable number of itera-
tions to converge to the correct parameters. Unlike the
other applications, the per byte cost of this algorithm varies
significantly with the data being processed. The average
computation cost of each of the algorithms discussed in
this section is shown in Table 2 in the next section.

For the Active Disks system, this application operates
similarly to the edge detection. The reference image is pro-
vided to all the drives and the registration computation for
each processed image is performed directly at the drives
with only the final parameters (1.5 KB for each image)
returned to the central server. The application reduces the

amount of data transferred to the server by a large, fixed
fraction. The state required at the disk is the storage for the
reference image and the current image.

5 Prototype / Experiments

Our experimental testbed contains ten prototype Active
Disks, each one a six-year-old DEC Alpha 3000/400
(133 MHz, 64 MB, Digital UNIX 3.2g) with two 2.0 GB
Seagate ST52160 Medalist disks. For the server case, we
use a single DEC AlphaStation 500/500 (500 MHz,
256 MB, Digital UNIX 3.2g) with four 4.5 GB Seagate
ST34501W Cheetah disks on two Ultra-Wide SCSI busses
(with more bandwidth than the server can use). All these
machines are connected by an Ethernet switch and a
155 Mb/s OC-3 ATM switch.

Our experiments compare the performance of a single
server machine with directly-attached SCSI disks against
the same machine with network-attached Active Disks,
each of which is a workstation with two directly-attached
SCSI disks in our prototype. In the Active Disk experi-
ments, as we increase the number of disks we increase the
total amount of data processed, so the results we report are
the throughputs (MB/s) for both systems. These results all
show significant improvements with Active Disks and con-
firm the intuition provided by the model of Section 3.

5.1 Database - Nearest Neighbor Search

Figure 4 compares the performance of the single server
system against a system with Active Disks as the number
of disks is increased from 1 to 10. As predicted by our
model, we see that for a small number of disks, the single
server system performs better. The server processor is four
times as powerful as a single Active Disk processor and
can perform the computation at full disk rate. We see that
the server system CPU saturates at 25.7 MB/s with two
disks and performance does not improve as two additional
disks are added, while the Active Disks system continues
to scale linearly to 58 MB/s with 10 disks. Our prototype
system was limited to 10 Active Disks by the amount of
hardware we had available, and four traditional disks by
the length limitations of Ultra SCSI, but if we extrapolate
the data from the prototype to a larger system with 60

Figure 3: Edge detection in a
scene outside the IBM Almaden
Research Center. On the left is
the raw image and on the right
are the edges detected with a
brightness threshold of 75.



disks, the smallest of the systems in Table 1, we would
expect throughput near the 360 MB/s that our model pre-
dicts for this configuration.

5.2 Data Mining - Frequent Sets

In Figure 5, we show the results for the first two passes of
the frequent sets application (the 1-itemsets and 2-item-
sets). We again see the crossover point at four drives,
where the server system bottlenecks at 8.4 MB/s and per-
formance no longer improves, while the Active Disks sys-
tem continues to scale linearly to 18.9 MB/s. Figure 5b
illustrates an important property of the frequent sets appli-
cation that affects whether or not a particular analysis is
appropriate for running on Active Disks. The chart shows
the memory requirements across a range of input support
values on two different databases. The lower a support
value, the more itemsets are generated in successive phases

of the algorithm and the larger the state that must be held
on disk. We expect that the support will tend toward the
higher values since it is difficult to deal with a large num-
ber of rules, and the lower the support, the less compelling
the generated rules will be. For very low values of the sup-
port, though, the limited memory at Active Disk may
become an issue. Modern disk drives today contain
between 1 MB and 4 MB of cache memory, so we might
expect 4 - 16 MB in the timeframe in which Active Disks
could become available. This means that care must be
taken in designing algorithms and in choosing when to take
advantage of execution at the disks.

5.3 Multimedia

Figure 6 shows the results for the image processing appli-
cations. As we see in Table 2, the image processing appli-
cations require much more CPU time than search or

Figure 4a: The search application
shows linear scaling with number of
disks up to 58 MB/s, while the server
system bottlenecks at 26 MB/s.

Figure 4b: Because of the high
selectivity of this search, we would
not expect the Active Disks system to
saturate for at least a few hundred
disks.
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Figure 5a: The frequent sets
application shows linear scaling to
18.9 MB/s with eight Active Disks,
while the server system bottlenecks
at 8.4 MB/s.
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Figure 5b: The amount of memory
necessary for the frequent sets
application increases as the level of
support required for a particular rule
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Figure 6a: The edge detection
application shows linear scaling with
number of disks while the server
system bottlenecks at about
1.4 MB/s.
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Figure 6b: The image registration
application also scales linearly, but
requires almost a factor of ten more
CPU cycles, reducing throughput in
both systems.
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frequent sets do, leading to much lower throughputs on
both systems. The edge detection bottlenecks the server
CPU at 1.4 MB/s, while the Active Disk system scales to
3.2 MB/s with 10 disks. Image registration is the most
CPU-intensive of the applications we have considered. It
achieves only 225 KB/s on the server system, and scales to
650 KB/s with 10 Active Disks.

5.4 Model Validation

The graphs of Figure 4, 5, and 6 confirm the shape of the
model in Section 3. To confirm the values, we need the
specific parameters of this testbed. We have

(estimated directly from the clock

rates because the processors use the same basic chip, and
the code is identical for both cases). Ideally, we would have

for our tests, but this was not possible in our

testbed. Instead , ,

and .

Estimating the applications’ selectivity was a straight-
forward exercise of counting bytes and these are shown in
Table 2. Estimating the number of cycles per byte was not
so straightforward. We began by instrumenting the server
implementation of each application to determine the total
number of cycles spent for the entire computation when all
code and data are locally cached, and dividing this by the
total number of bytes processed. This ignores the cost of
forming, issuing and completing the physical SCSI disk
operations, measured in a previous study as 0.58 microsec-
onds on a 150 MHz Alpha or 10.6 cycles per byte
[Patterson95]. We add this to our “hot cache” numbers and
report the resulting estimate of the cycles per byte required
by each application in Table 2.

Figure 7 combines the results for all four applications
and superimposes the predictions of the model based on
these system and application parameters. The search and
frequent sets applications show strong agreement between
the model and the measurements. The largest error, a 14%

αs 133 500⁄ 1 3.8⁄= =

αd αn 1= =

rd 14 MB/s= rd' 7.5 MB/s= rn 60 MB/s=

rn' 10 MB/s=

application
computation
(cycles/byte)

memory
(KB)

selectivity parameter

Search 23.1 72 80,500 k=10
Frequent Sets 61.1 620 15,000 s=0.25%
Edge Detection 288 1776 110 t=75
Image Registration 1495 672 150 -

Table 2: Parameters of the applications presented in the text: computation time per byte of
data, memory required at each Active Disk, and the selectivity factor in the network.

Figure 7: Validation of the analytical model against the prototype measurements. The
values predicted by the model using the system and application parameters in
Section 5.4 are superimposed as dashed lines on the measurements from the
prototype systems. The differences are within 15% for search and frequent sets. Edge
detection and image registration do not precisely fit the assumptions of our model.
Both applications suffer additional, unmodelled I/O stall time because they read from
the disks in image-sized chunks, rather than streaming in sequential accesses as
search and frequent sets are able to do. This means that there is disk access time that
cannot be overlapped with computation, reducing the throughput. There is serial
overhead in all of the applications. This is largely amortized by the large size of the
databases used in search and frequent sets, but shows up in the image processing
applications that process less total data. The gray lines on the figures estimate the
expected performance when these factors are accounted for. This estimated
performance is now within 15%.
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disagreement between the server model and implementa-
tion of the search may reflect an overestimate of the cycles
per byte devoted to disk processing because the estimate is
based on an older machine with a less aggressive supersca-
lar processor. The other two applications, however, differ
significantly from the model predictions. The problem
with these applications is that they do not yet overlap all
disk accesses with computation, as our model assumes. For
example, the edge detection application reads 256 KB
images as a single request and, since the operating system
read-ahead is not deep enough, causes additional stall time
as each image is fetched. Using asynchronous requests or
more aggressive prefetching in the application should cor-
rect this inefficiency. An additional contributor to this
error is the serial portion of the applications which affects
the image processing applications more seriously since
they process less total data than the other two. To estimate
the performance of these applications if the overlapping
were improved, we estimated the total stall time experi-
enced by each application and subtracted it from the appli-
cation run time.We report these “improved” prototype
estimates as additional lines in Figure 7c and d. With this
modification, our model predicts performance within 15%
for all applications. Given our goal of using the model to
develop intuition about the performance of Active Disks
applications, these are strong results.

6 Discussion

The largest single benefit from using Active Disks, and the
principle effect in our experiments, is the parallelism avail-
able in large storage systems. Although processing power
on disk drives will always be less than on top-of-the-line
server CPUs, there will very often be more aggregate CPU
power in the disks than the server. Applications that can be
partitioned to take advantage of this parallelism, and that
can be “split” across the server and drive CPUs, have avail-
able a much higher total computational power than appli-
cations running only on the server.

The other large benefit of Active Disks is the ability to
dramatically reduce interconnect bandwidth by filtering at
the disks. In many systems in use today, interconnect band-
width is at a premium compared to computational power,
and is all too often a significant bottleneck. If an applica-
tion is scanning large objects in order to select only spe-
cific records or fields or gather summary statistics, a large
fraction of the data otherwise moved across the intercon-
nect will simply be discarded, dramatically reducing the
bottleneck.

These two advantages are the focus of this paper
because they promise orders of magnitude potential
improvements. In storage systems research, however, the
most common application-specific optimizations are
scheduling, batching and prefetching of disk operations
[Bitton88, Ruemmler91]. Active Disks can be expected to

execute these types of remote functions as well. In particu-
lar, we might expect Active Disks to participate as part of a
disk-directed I/O model, where scatter/gather accesses are
optimized using local information at the disks [Kotz94]. Or
in prefetching systems where disks are provided with hints
about future accesses [Patterson95].

A promising variant of these common optimizations is
interconnect transfer scheduling. While network schedul-
ing alone cannot be expected to yield benefits like we have
seen in this paper, it can be an integral part of Active Disk
computations for complex operations such as hash-join
[Kitsuregawa83, DeWitt85] or variants of sort [Salzberg90,
DeWitt91]. The key observation is that if data is going to
move through the network after it is read from disk, it may
be possible to send it to the “right” place under Active
Disks control, reducing network traffic through scheduling
at the disk, rather than sending it to the “wrong” place and
then communicating among the processing nodes.

Consider a parallel sample sort algorithm running
across a network of workstations similar to the setup of
NowSort [Arpaci-Dusseau97]. The algorithm is composed
of a sample phase and a sort phase [Blelloch98]. During
the sample phase, a subset of the total data is read and a
histogram is created allowing the key space to be divided
into n buckets of roughly equal size. In the parallel server
(cluster) version of this sort, the entire data set is then
1) read as is into the nodes from their local disks, 2)
exchanged across the network according to the key space
distribution, 3) sorted locally at each node, and 4) written
back to the assigned disks.

Using network scheduling in an Active Disks system,
we can remove the need for step 2 by having the drives per-
form the read and distribution operations at the same time.
Instead of sending all data to a particular node, the drive is
given the key ranges determined in the sample phase and
responds to a request from client n with only the data
“belonging” to client n as its portion of the key space. This
means that data destined for a particular node will get to
that node as soon as possible, and will never need to be
exchanged among nodes. This reduces the number of tran-
sits of all the data across the network from three to two. In
systems where the network is the bottleneck resource, this
will improve overall performance of the algorithm by up to
one-third.

7 Related Work

The basic idea of executing functions in processing ele-
ments directly attached to individual disks was explored
extensively in the context of database machines such as
CASSM [Su75], RAP [Ozkarahan75], and numerous oth-
ers [DeWitt81]. These machines fell out of favor due to the
limited performance of disks at the time and the complex-



ity of building and programming special-purpose hardware
that could only handle limited functions. Instead, database
research has developed large-scale, shared-nothing data-
base servers with commodity processing elements. It has
recently been suggested that the logical extension is to per-
form all database processing inside programmable,
“smart” system peripherals [Gray97].

Our work on Active Disks follows from our prior
work on network-attached secure disks (NASD), in which
we exploit computational power at storage for parallel and
network file system functions, as well as traditional storage
optimizations [Gibson97, Gibson98]. Our initial work dis-
cussed several classes of applications that can benefit from
Active Disks - including filters, multimedia, batching, and
storage management - and enumerated the challenges to
providing an execution environment on commodity disk
drives [Riedel97].

Work at Santa Barbara and Maryland has applied
Active Disk ideas to a set of similar applications, including
database select, external sort, datacubes, and image pro-
cessing, using an extended-firmware model for next-gener-
ation SCSI disks [Acharya98]. Similarly, a group at
Berkeley has independently estimated the benefit of Active
(Intelligent in their terminology) Disks for improving the
performance of large SMP systems running scan, hash-
join, and sort operations in a database context [Keeton98].

8 Conclusions and Future Work

Commodity disks drives with an excess of computational
power are visible on the horizon. Active Disks take advan-
tage of this trend to provide an execution environment for
application-specific code inside individual disk drives.
This allows applications to take advantage of the parallel-
ism in storage, greatly increasing the total computational
power available to them, and circumventing the limited
interconnect bandwidth, greatly increasing the apparent
storage data rate.

We have demonstrated an important class of applica-
tions that will see significant gains (linear scaling in the
number of devices added to the system) from the use of
Active Disks. We have also provided an analytical model
for estimating traditional server and Active Disk perfor-
mance. Our prototype Active Disk system realizes speed-
ups of more than 2 over a comparable single server system
with up to 10 disks. Our system should easily scale to
speedups of more than 10x in reasonably-sized systems
similar to those already in use for large databases today.

Emerging applications such as data mining, multime-
dia feature extraction, and approximate searching involve
the huge data sets, on the order of 100s of GB or TB, justi-
fying large numbers of Active Disks. Many of these appli-
cations have small CPU and memory requirements and are
attractive for execution across Active Disks.

There are a variety of areas to be explored before the
benefits presented here can be put into practice. Providing
a safe environment for application code inside the drive in
order to both protect the integrity of data on the drive and
ensure proper function in the presence of misbehaved
application code is critical. The issue of resource manage-
ment becomes considerably more complex as the computa-
tion becomes more distributed. Active Disks will need to
make more complex scheduling decisions than disk drives
do today, but they also open many new areas for optimiza-
tion by exploiting the much richer interfaces they provide.

9 References
[Acharya98] Acharya, A., Uysal, M. and Saltz, J. “Active Disks”
Technical Report TRCS98-06, March 1998.
[Agrawal95] Agrawal, R. and Srikant, R. ‘‘Fast Algorithms for
Mining Association Rules’’ VLDB, September 1994.
[Agrawal96] Agrawal, R. and Schafer, J. “Parallel Mining of
Association Rules” IEEE Transactions on Knowledge and Data
Engineering 8,6. December 1996.
[Almaden97] Almaden CattleCam, IBM Almaden Research Cen-
ter www.almaden.ibm.com/almaden/cattle, January 1998.
[Arpaci-Dusseau97] Arpaci-Dusseau, A.C., Arpaci-Dusseau,
R.H., Culler, D.E., Hellerstein, J.M. and Patterson, D.A. “High-
Performance Sorting on Networks of Workstations”
ACM SIGMOD, June 1997.
[Arya94] Arya, M., Cody, W., Faloutsos, C., Richardson, J. and
Toga, A. “QBISM: Extending a DBMS to Support 3D Medical
Images” International Conference on Data Engineering,
February 1994.
[Barclay97] Barclay, T. “The TerraServer Spatial Database”
www.research.microsoft.com/terraserver, November 1997.
[Berchtold96] Berchtold, S., Keim, D.A. and Kriegel, H. “The X-
tree: An Index Structure for High-Dimensional Data” VLDB,
1996.
[Berchtold97] Berchtold, S., Boehm, C., Keim, D.A. and Kriegel,
H. “A Cost Model For Nearest Neighbor Search in High-Dimen-
sional Data Space” ACM PODS, May 1997.
[Bershad95] Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G.,
Fiuczynski, M.E., Becker, D., Chambers, C. and Eggers, S.
“Extensibility, Safety, and Performance in the SPIN Operating
System” SOSP, December 1995.
[Bitton88] Bitton, D. and Gray, J. “Disk Shadowing” VLDB,
1988.
[Blelloch98] Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plax-
ton, C.G., Smith, S.J. and Zagha, M. “An Experimental Analysis
of Parallel Sorting Algorithms” Theory of Computing Systems 31
(2), March 1998.
[Boral83] Boral, H. and DeWitt, D.J. “Database Machines: An
Idea Whose Time Has Passed?” International Workshop on
Database Machines, September 1983.
[Cao94] Cao, P., Lim, S.B., Venkataraman, S. and Wilkes, J.
“The TickerTAIP Parallel RAID Architecture” ACM Transac-
tions on Computer Systems 12 (3), August 1994.
[DeWitt81] DeWitt, D.J. and Hawthorn, P. “A Performance Eval-
uation of Database Machine Architectures” VLDB,
September 1981.
[DeWitt85] DeWitt, D.J. and Gerber, R. “Multiprocessor Hash-



Based Join Algorithms” VLDB, August 1985.
[DeWitt91] DeWitt, D.J., Naughton, J.F. and Schneider, D.A.
“Parallel Sorting on a Shared-Nothing Architecture using Proba-
bilistic Splitting” PDIS, 1991.
[DeWitt92] DeWitt, D.J. and Gray, J. “Parallel Database Systems:
The Future of High Performance Database Processing” Commu-
nications of the ACM 36 (6), June 1992.
[Drapeau94] Drapeau, A.L., Shirriff, K.W., Hartman, J.H.,
Miller, E.L., Seahan, S., Katz, R.H., Lutz, K., Patterson, D.A.,
Lee, E.K. and Gibson, G.A. “RAID-II: A High-Bandwidth Net-
work File Server” ISCA, 1994.
[Faloutsos94] Faloutsos, C., Barber, R., Flickner, M., Hafner, J.,
Niblack, W., Petkovic, D. and Equitz, W. “Efficient and Effective
Querying by Image Content” Journal of Intelligent Information
Systems 3 (4), July 1994.
[Faloutsos96] Faloutsos, C. Searching Multimedia Databases by
Content, Kluwer Academic Inc., 1996.
[Flickner95] Flickner, M., Sawhney, H., Niblack, W., Ashley, J.,
Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic,
D., Steele, D. and Yanker, P. “Query by Image and Video Con-
tent: the QBIC System” IEEE Computer, September 1995.
[Gibson97] Gibson, G., Nagle, D., Amiri, K., Chang, F., Fein-
berg, E., Gobioff, H., Lee, C., Ozceri, B., Riedel, E., Rochberg,
D. and Zelenka, J. “File Server Scaling with Network-Attached
Secure Disks” ACM SIGMETRICS, June 1997.
[Gibson98] Gibson, G., Nagle, D., Amiri, K., Butler, J., Chang,
F., Gobioff, H., Hardin, C., Riedel, E., Rochberg, D. and Zelenka,
J. “A Cost-Effective, High-Bandwidth Storage Architecture”
Technical Report CMU-CS-98-115, March 1998.
[Gosling96] Gosling, J., Joy, B. and Steele, G. The Java Lan-
guage Specification. Addison-Wesley, 1996.
[Gray97] Gray, J. “What Happens When Processing, Storage, and
Bandwidth are Free and Infinite?” Keynote Address, IOPADS,
November 1997.
[Grochowski96] Grochowski, E.G. and Hoyt, R.F., “Future
Trends in Hard Disk Drives” IEEE Transactions on Magnetics
32  (3), May 1996.
[Hsiao79] Hsiao, D.K. “DataBase Machines Are Coming, Data-
Base Machines Are Coming!” IEEE Computer, March 1979.
[Keeton98] Keeton, K., Patterson, D.A. and Hellerstein, J.M.
“The Intelligent Disk (IDISK): A Revolutionary Approach to
Database Computing Infrastructure” White Paper, University of
California Berkeley, May 1998.
[Kitsuregawa83] Kitsuregawa, M., Tanaka, H. and Moto-Oka, T.
“Application of Hash To Data Base Machine and Its Architec-
ture” New Generation Computing 1, 1983.
[Kotz94] Kotz, D. “Disk-directed I/O for MIMD Multiproces-
sors” OSDI, November 1994.
[Lee96] Lee, E.K. and Thekkath, C.A., “Petal: Distributed Vir-
tual Disks” ASPLOS, October 1996.
[Livny87] Livny, M., “Multi-disk management algorithms” ACM
SIGMETRICS, May 1987.
[Necula96] Necula, G.C. and Lee, P. “Safe Kernel Extensions
Without Run-Time Checking” OSDI, October 1996.
[Ozharahan75] Ozharahan, E.A., Schuster, S.A. and Smith, K.C.
“RAP - Associative Processor for Database Management” AFIPS
Conference, 1975.
[Patterson88] Patterson, D.A., Gibson, G. and Katz, R.H., “A
Case for Redundant Arrays of Inexpensive Disks” ACM SIG-
MOD, June 1988.

[Patterson95] Patterson, R.H., Gibson, G., Ginting, E., Stodolsky,
D. and Zelenka, J. “Informed Prefetching and Caching”, SOSP,
1995.
[Quest97] Quest Project, IBM Almaden Research Center
“Quest Data Mining Project” www.almaden.ibm.com/cs/quest,
December 1997.
[Riedel97] Riedel, E. and Gibson, G. “Active Disks - Remote
Execution for Network-Attached Storage” Technical Report
CMU-CS-97-198, December 1997.
[Romer96] Romer, T.H., Lee, D., Voelker, G.M., Wolman, A.,
Wong, W.A., Baer, J., Bershad, B.N. and Levy, H.M. “The Struc-
ture and Performance of Interpreters” ASPLOS, October 1996.
[Ruemmler91] Ruemmler, C. and Wilkes, J., “Disk Shuffling”
HP Labs Technical Report HPL-CSP-91-30, 1991
[Seagate97] Seagate Technology “Cheetah: Industry-Leading
Performance for the Most Demanding Applications”,
www.seagate.com, 1997.
[Small95] Small, C. and Seltzer, M. “A Comparison of OS Exten-
sion Technologies” USENIX Technical Conference,
January 1996.
[Smith79] Smith, D.C.P. and Smith, J.M. “Relational DataBase
Machines” IEEE Computer, March 1979.
[Smith95] Smith, S.M. and Brady, J.M. “SUSAN - A New
Approach to Low Level Image Processing” Technical Report
TR95SMS1c, Oxford University, 1995.
[StorageTek94] Storage Technology Corporation, “Iceberg 9200
Storage System: Introduction” STK Part Number 307406101,
1994.
[Su75] Su, S.Y.W. and Lipvski, G.J. “CASSM: A Cellular System
for Very Large Data Bases” VLDB, 1975.
[TPC98] Transaction Processing Performance Council “TPC
Executive Summaries” www.tpc.org, February 1998.
[TriCore97] TriCore News Release “Siemens’ New 32-bit
Embedded Chip Architecture Enables Next Level of Performance
in Real-Time Electronics Design” www.tri-core.com,
September 1997.
[Turley96] Turley, J. “ARM Grabs Embedded Speed Lead”
Microprocessor Reports 2 (10), February 1996.
[VanMeter96] Van Meter, R., Holtz, S. and Finn G., “Derived
Virtual Devices: A Secure Distributed File System Mechanism”
Fifth NASA Goddard Conference on Mass Storage Systems and
Technologies, September 1996.
[Virage98] Virage “Media Management Solutions”
www.virage.com, February 1998.
[Wactlar96] Wactlar, H.D., Kanade, T., Smith, M.A. and
Stevens, S.M. “Intelligent Access to Digital Video: Informedia
Project” IEEE Computer, May 1996.
[Wahbe93] Wahbe, R., Lucco, S., Anderson, T.E. and Graham,
S.L. “Efficient Software-Based Fault Isolation” SOSP,
December 1993.
[Welling98] Welling, J. “Fiasco: A Package for fMRI Analysis”
www.stat.cmu.edu/~fiasco, January 1998.
[Wilkes95] Wilkes, J., Golding, R., Staelin, C. and Sullivan, T.
“The HP AutoRAID hierarchical storage system” SOSP,
December 1995.
[Yao85] Yao, A.C. and Yao, F.F. “A General Approach to D-
Dimensional Geometric Queries” ACM STOC, May 1985.


